
ESC: A Tool for Automatic Composition of e-Services
based on Logics of Programs

Daniela Berardi1, Diego Calvanese2, Giuseppe De Giacomo1

Maurizio Lenzerini1, and Massimo Mecella2

1 Università di Roma “La Sapienza”
Dipartimento di Informatica e Sistemistica “Antonio Ruberti”

Via Salaria 113, 00198 Roma, Italy
{berardi,degiacomo,lenzerini,mecella}@dis.uniroma1.it

2 Libera Università di Bolzano/Bozen
Facoltà di Scienze e Tecnologie Informatiche

Piazza Domenicani 3, 39100 Bolzano/Bozen, Italy
calvanese@inf.unibz.it

Abstract. In this paper we discuss an effective technique for automatic service
composition, and we present the prototype that implements it. In particular, we
characterize the behavior of a service in terms of a finite state machine. In this
setting we discuss a technique based on satisfiability in a variant of Proposi-
tional Dynamic Logic that solves the automatic composition problem. Specifi-
cally, given (i) a client specification of his desired service, i.e., the service he
would like to interact with, and (ii) a set of available services, our technique syn-
thesizes the orchestration schema of a composite service that uses only the avail-
able services and fully realizes the client specification. The developed system is
an open source software tool, called ESC (E-Service Composer), that implements
our composition technique starting from services each described in terms of a
WSDL specification and a behavioral description expressed in any language that
can capture finite state machines.

1 Introduction

One of the basic aspects of the Service Oriented Computing, and of the Extended Ser-
vice Oriented Architecture proposed by [18], is the composition of services. Basically,
service composition addresses the situation when a client request cannot be satisfied by
any (single) available service, but a composite service, obtained by combining “parts
of” available component services, might be used [17, 10, 6].

Service composition involves two different issues. The first, referred to as com-
position synthesis is concerned with synthesizing such a new composite service, thus
producing a specification of how to coordinate the component services to obtain the
composite service. Such a specification can be obtained either automatically, i.e., using
a tool that implements a composition algorithm, or manually by a human, possibly with
the help of CASE-like . In what follows, we will refer to such a specification of the
composite service as orchestration schema, according to [1]. The second issue, referred
to as orchestration, is concerned with coordinating, during the composite service execu-
tion, the various component services according to the orchestration schema previously
synthesized, and also monitoring control and data flow among the involved services, in

order to guarantee the correct execution of the composite service. Such activities are
performed by the orchestration engine [1].

It has been argued [18, 1], that in order to be able to automatically synthesize a
composite service starting from available ones, the available services should provide
rich service descriptions, consisting of (i) interface, (ii) capabilities, (iii) behavior, and
(iv) quality. In particular, the service interface description publishes the service sig-
nature3, while the service capability description states the conceptual purpose and ex-
pected results of the service. The (expected) behavior of a service during its execution is
described by its service behavior description. Finally, the Quality of Service (QoS) de-
scription publishes important functional and non-functional service quality attributes 4.

Several works in the service literature (refer to [16] for a survey) address the prob-
lem of service composition in a framework where services are represented in terms of
their (static) interface. The aim of this work is twofold: first, we discuss an effective
technique for automatic service composition, when services are characterized in terms
of their behavior, and then we present the prototype design and development of an open
source software tool implementing our composition technique, namely ESC (E-Service
Composer)5.

In [7, 6] we have devised a framework where services export their behavior as finite
state machines, and in [6] we have developed an algorithm that, given (i) a client specifi-
cation of his desired service, i.e., the service he would like to interact with, and (ii) a set
of available services, synthesizes the orchestration schema of a composite service that
uses only the available services and fully realizes the client specification. We have also
studied the computational complexity of our algorithm: it runs in exponential time with
respect to the size of the input state machines. Observe that, it is easy to come up with
examples in which the orchestration schema is exponential in the size of the component
services. However, practical experimentation conducted over some real cases with the
prototype, shows that, given the complexity of the behavior of real services, the tool can
effectively builds a composite service.

Although some papers have already been published that discuss either behavioral
models of services ([16]), or propose algorithms for computing composition (e.g., [17,
10, 19]), to the best of our knowledge, our research is the first one tackling simulta-
neously the following issues: (i) presenting a formal framework where the problem of
service composition is precisely characterized, (ii) providing techniques for automati-
cally computing service composition in the case of services represented as finite state
machines and, (iii) implementing our composition technique into an effective software
tool.

The rest of the paper is organized as follows. In Section 2 we discuss our frame-
work for services that export their behavior. In Section 3 we present our technique for
automatic service composition. In Section 4 we describe our tool. Finally, in Section 5
we draw conclusions and discuss future work.

3 E.g., as a WSDL file.
4 E.g., service metering and cost, performance metrics (e.g., response time), security attributes,

(transactional) integrity, reliability, scalability, availability, etc.
5 cf. the PARIDE (Process-based frAmewoRk for composItion and orchestration of Dynamic E-

services) Open Source Project:http://sourceforge.net/projects/paride/ that
is the general framework in which we intend to release the various prototypes produced by our
research.

2 General Framework

A service is a software artifact that interacts with its client and possibly other services
in order to perform a specified task. A client can be either a human or a software appli-
cation. When executed, a service performs a given task by executing certain actions in
coordination with the client.

We characterize the exported behavior of a service by means of an execution tree.
The nodes of such a tree represent the sequence of actions that have been performed
so far by the service, while the successor nodes represent the actions that can be per-
formed next at the current point of the computation. Observe that in such an execution
tree, for each node we can have at most one successor node for each action. The root
represents the initial state of the computation performed by the service, when no action
have been executed yet. We label the nodes that correspond to completed execution of
the service as “final”, with the intended meaning that in these nodes the service can
(legally) terminate.

We concentrate on services whose behavior can be represented using a finite num-
ber of states. We do not consider any specific representation formalism for represent-
ing such states (such as action languages, situation calculus, state-charts, etc.). Instead,
we use directly deterministic finite state machines (i.e., deterministic and finite labeled
transition systems) 6.

The alphabet of the FSM (i.e., of the symbol labeling transitions) is formed by the
actions that the service can execute. Such actions are the abstractions of the effective
input/output messages and operations offered by the service. As an example, consider
a service that allows for searching and listening to mp3 files; in particular, the client
may choose to search for a song by specifying either its author(s) or its title (action
search by author and search by title, respectively). Then the client selects
and listens to a song (action listen). Finally, the client chooses whether to perform
those actions again. The WSDL interface of this service and the finite state machine
describing its behavior are reported in Figure 1 7.

To represent the set of services available to a client, we introduce the notion of
community C of services, which is a (finite) set of services that share a common (finite)
set of actions Σ, also called the alphabet of the community. Hence, to join a community,
a service needs to export its behavior in terms of the alphabet of the community. From
a more practical point of view, a community can be seen as the set of all services whose
descriptions are stored in a repository. We assume that all such service descriptions have
been produced on the basis of a common and agreed upon reference alphabet/semantics.

Given a service Ai, the execution tree T (Ai) generated by Ai is the execution tree
containing one node for each sequence of actions obtained by following (in any possible
way) the transitions of Ai, and annotating as final those nodes corresponding to the
traversal of final states.

6 FSMs can capture an interesting class of services, that are able to carry on rather complex
interactions with their clients, performing useful tasks. Moreover, several papers in the service
literature adopt FSMs as the basic model of exported behavior of services [16, 1]. Also, FSMs
constitute the core of statecharts, which are one of the main components of UML and are
becoming a widely used formalism for specifying the dynamic behavior of entities.

7 Final nodes are represented by two concentric circles.

<definitions ...
xmlns:y="http://new.thiswebservice.namespace"
targetNamespace="http://new.thiswebservice.namespace">

<!-- Types -->
<types>

<element name="ListOfSong_Type">
<complexType>

<sequence>
<element minOccurs="1"

maxOccurs="unbound"
name="SongTitle"
type="xs:string"/>

</sequence>
</complexType>

</element>
</types>

<!-- Messages -->
<message name="search_by_title_request">

<part name="containedInTitle" type="xs:string"/>
</message>
<message name="search_by_title_response">

<part name="matchingSongs" xsi:type="ListOfSong_Type"/>
</message>
<message name="search_by_author_request">

<part name="authorName" type="xs:string"/>
</message>
<message name="search_by_author_response">

<part name="matchingSongs" xsi:type="ListOfSong_Type"/>
</message>
<message name="listen_request">

<part name="selectedSong" type="xs:string"/>
</message>
<message name="listen_response">

<part name="MP3fileURL" type="xs:string"/>
</message>

<!-- Service and Operations -->
<portType name="MP3ServiceType">

<operation name="search_by_title">
<input message="y:search_by_title_request"/>
<output message="y:search_by_title_response"/>

</operation>
<operation name="search_by_author">

<input message="y:search_by_author_request"/>
<output message="y:search_by_author_response"/>

</operation>
<operation name="listen">

<input message="y:listen_request"/>
<output message="y:listen_response"/>

</operation>
</portType>

</definitions>
(a) WSDL

a

t

l

t = search by title

l = listen

a = search by author

(b) FSM

Fig. 1. The MP3 service

When a client requests a certain service from a service community, there may be
no service in the community that can deliver it directly. However, it may be possible
to suitably orchestrate (i.e., coordinate the execution of) the services of the community
so as to provide the client with his desired service. In other words, there may be an
orchestration that coordinates the services in the community, and that realizes the client
desired service.

Formally, let the community C be formed by n services A1, . . . , An. An orchestra-
tion schema O of the services in C can be formalized as an orchestration tree T (O):

– The root ε of the tree represents the fact that no action has been executed yet.
– Each node x in the orchestration tree T (O) represents the history up to now, i.e.,

the sequence of actions as orchestrated so far.
– For every action a belonging to the alphabet Σ of the community and I ∈ [1..n] 8

(1, . . . , n stand for the services A1, . . . , An, respectively), T (O) contains at most
one successor node x·(a, I).

– Some nodes of the orchestration tree are annotated as final: when a node is final,
and only then, the orchestration can be legally stopped.

– We call a pair (x, x·(a, I)) an edge of the tree. Each edge (x, x·(a, I)) of T (O) is
labeled by a pair (a, I), where a is the orchestrated action, I ∈ [1..n] denotes the
nonempty set of services in C that execute the action.
As an example, the label (a, {1, 3}) means that the action a requested by the client
is executed by, more precisely delegated to, the services A1 and A3.

Given an orchestration tree T (O) and a path p in T (O) starting from the root, we
call the projection of p on a service Ai the path obtained from p by removing each
edge whose label (a, I) is such that i �∈ {I}, and collapsing start and end node of each
removed edge.

We say that an orchestration O is coherent with a community C if for each path p in
T (O) from the root to a node x and for each service A i of C, the projection of p on Ai

is a path in the execution tree T (Ai) from the root to some node y, and moreover, if x
is final in T (O), then y is final in T (Ai).

In our framework, we define client specification a specification of the orchestration
tree according to the client desired service. Of the orchestration tree, the client only
specifies the actions he would like to be executed by the desired service. The client
specification can be realized by an orchestration tree only if it is possible to find a
suitable labeling for each action with a non empty set I of (identifiers of) services that
can execute it. In this work, we consider specifications that can be expressed using a
finite number of states, i.e., as FSMs.

Given a community C of services, and a client specification A0, the problem of
composition existence is the problem of checking whether there exists an orchestration
schema that is coherent with C and that realizes A0. The problem of composition syn-
thesis is the problem of synthesizing an orchestration schema that is coherent with C
and that realizes A0.

Since we are considering services that have a finite number of states, we would like
also to have an orchestration schema that can be represented with a finite number of

8 We use [i..j] to denote the set {i, . . . , j}.

states, i.e., as a Mealy FSM (MFSM), in which the output alphabet is used to denote
which services execute which action.

As an example, consider the case in which the service community is constituted by
two services, A1 and A2, whose behaviors/FSMs are shown in Figure 2. A1 allows for
searching for a song by specifying its author(s) and for listening to the song selected by
the client; then, it allows for executing these actions again. A2 behaves like A1, but it
allows for retrieving a song by specifying its title.

a

l

a = search by author

t = search by title

l = listen

(a) FSM for A1

t

l

(b) FSM for A2

Fig. 2. Services in the community.

If the client specification is the FSM shown in Figure 1(b), then a composition
exists, and its orchestration schema is the Mealy FSM shown in Figure 3, in which
all the actions requested by the client are delegated to services of the community. In
particular, the execution of search by author action and its subsequent listen
action are delegated to A1, and the execution of search by title action and its
subsequent listen action to A2.

(l, {2})

(l, {1})

(a, {1})
(t, {2})

Fig. 3. Composition of A0 wrt A1 and A2

3 Automatic Service Composition

In the framework presented in the previous section, we are interested in knowing
whether: (i) it is always possible to check the existence of a composition; (ii) if a com-
position exists, there exists an orchestration schema which is a finite state machine, i.e.,
a finite state composition; (iii) if a finite state composition exists, how to compute it.
Our approach is based on reformulating the problem of service composition in terms
of satisfiability of a suitable formula of Deterministic Propositional Dynamic Logic

(DPDL [14]), a well-known logic of programs developed to verify properties of pro-
gram schemas. DPDL enjoys three properties of particular interest: (i) the tree model
property, which says that every model of a formula can be unwound to a (possibly
infinite) tree-shaped model; (ii) the small model property, which says that every satisfi-
able formula admits a finite model whose size is at most exponential in the size of the
formula itself; (iii) the EXPTIME-completeness of satisfiability in DPDL.

We represent the FSMs of both the client specification A0 and the services
A1, . . . , An of community C, as a suitable DPDL formula Φ. Intuitively, for each ser-
vice Ai, i = 0 . . . n, involved in the composition, Φ encodes (i) its current state, and in
particular whether Ai is in a final state, and (ii) the transitions that Ai can and cannot
perform, and in particular which component service(s) performed a transition. Addi-
tionally, Φ captures the following constraints: (i) initially all services are in their initial
state, (ii) at each step at least one of the component FSM has moved, (iii) when the
desired service is in a final state also all component services must be in a final state.

The following results hold [6, 5]:

1. From the tree model property, the DPDL formula Φ is satisfiable if and only if there
exists a composition of A0 wrt A1, . . . , An.

2. From the small model property, if there exists a composition of A 0 wrt A1, . . . , An,
then there exists one which is a MFSM of size which is at most exponential in the
size of the schemas of A0, A1, . . . , An.

3. From the EXPTIME-completeness of satisfiability in DPDL and from point 1
above, checking the existence of a service composition can be done in EXPTIME.

As an example, we can encode in a DPDL formula φ both the client specification
shown in Figure 1(b) and the services in the community of Figure 2. Then we can use
a DPDL tableaux algorithm to verify the satisfiability of φ. Such an algorithm returns a
model that corresponds to the composition shown in Figure 3 (cf. [5]).

4 The Service Composition Tool ESC
In this section we discuss the prototype tool ESC that we developed to compute auto-
matic service composition in our framework.

Figure 4 shows the high level architecture for ESC. We assume to have a repos-
itory of services, where each service is specified in terms of both its static interface,
through a WSDL document, and its behavioral description, which can be expressed
in any language that allows to express a finite state machine (e.g., Web Service Con-
versation Language [12], Web Service Transition Language [8], BPEL4WS [2], etc.).
The repository implements the community of services and can be seen, therefore, as
an advanced version of UDDI. The client specifies his desired service in terms of a
WSDL document and of its behavioral description, again expressed using one of the
language mentioned before9. Both the services in the repository and the client desired
service are then abstracted into the corresponding FMS (Abstraction Module).
The Synthesis Engine is the core module of ESC. It takes in input such FSMs,
processes them according to our composition technique and produces in output the

9 Of course, we assume that the behavioral description of both the client specification and the
services in the repository are expressed in the same language.

descriptions of client

services in the
community

FSM of
composition

Abstraction

Module

FSM minimizer)

(DPDL SAT +

Synthesis Engine

Realization

Module

service FSMs

WSDL + behavioral

desired service

BPEL4WS spec
of composite service
to be enacted
by the Orchestrator

WSDL + behavioral
descriptions of

Fig. 4. The Service Composition Architecture

Composer

Module

FSM2ALC

Translator

ALC Tableau

Algorithm

FSM

Minimizer

Fig. 5. Sub-modules of the Synthesis Engine.

MFSM of the composite service, where each action is annotated with (the identifier of)
the component service(s) that executes it. Finally, such abstract version of the composite
service is realized into a BPEL4WS specification (Realization Module), that can
be executed by an orchestration engine, i.e., a software module that suitably coordinates
the execution of the component e-Services participating to the composition.

The implementation of the Abstraction Module depends on which language
is used to represent the behavioral description of services. For example we could use
Web Service Transition Language, which can be translated into FSMs [8]. Or we could
use a BPEL4WS specification, which can be translated into an extended version of
guarded automata [11], and in turn to FSMs.

In the next subsections we will explain in detail the implementation of the
Synthesis Engine and of the Realization Module.

4.1 Implementation of the Synthesis Engine Module

From a practical point of view, in order to actually build a finite state composition, we
resort to Description Logics (DLs [3]), because of the well known correspondence be-

tween Propositional Dynamic Logic formulas (which DPDL belongs to) and DL knowl-
edge bases. Tableaux algorithms for DLs have been widely studied in the literature,
therefore, one can use current highly optimized DL-based systems [15, 13] to check
the existence of service compositions. However, such the state-of-the-art DL reasoning
systems cannot be used to build a finite state composition because they do not return
a model. Therefore, we developed our ESC that, implementing a tableau algorithm for
DL, builds a model (of the DL knowledge base that encodes the specific composition
problem) which is a finite state composition. For our purpose the well-known ALC [3],
equipped with the ability of expressing axioms, suffices.

The various functionalities of the Synthesis Engine are implemented into
three Java sub-modules, as shown in Figure 5.

– The FSM2ALC Translator module takes in input the FSMs produced by the
Abstraction Module, and translates them into an ALC knowledge base, fol-
lowing the encoding presented in [4].

– The ALC Tableau Algorithm module implements the standard tableau al-
gorithm for ALC (cf., e.g., [9]): it verifies if the composition exists and if this is the
case, it returns a model, which is a finite state machine.

– The Minimizer module minimizes the model, since it may contain states which
are unreachable or unnecessary. Classical minimization techniques can be used,
in particular, we implemented the Implication Chart Method [20]. The minimized
FSM is then converted into a Mealy FSM, where each action is annotated with the
service in the repository that executes it.

Since these three modules are in effect independent, they are wrapped into an addi-
tional module, the Composer, which also provides the user interface.

4.2 Implementation of the Realization Module

The technique for realizing an executable BPEL4WS file (i.e., an executable orchestra-
tion schema) starting from the automatically synthesized MFSM is as follows:

– The BPEL4WS file is built visiting the graph of the MFSM in depth, starting from
the initial state and applying the previous rules, so that the nesting on pick and
sequence operations reproduces the automata behavior. In Figure 6 it is shown
the pseudo-code 10 of the whole BPEL4WS file obtained by the MFSM of Figure
3.

– All the transitions originating from the same state are collected in a <pick> oper-
ation, having as many <onMessage> clauses as transitions originating from the
state.

– Each transition in the MFSM corresponds to a BPEL4WS pattern consisting of
(i) an <onMessage> operation (in order to wait for the input from the client of
the composite service), (ii) followed by an invocation to the effective service (i.e.,
the deployed service that executes the operation), and then (iii) a final operation
for returning the result to the client. Of course both before invoking the effective

10 For sake of simplicity, we omit all BPEL4WS details and provide an intuitive, yet complete
skeleton of the BPEL4WS file.

<process>
<pick>

<onMessage="t">
<sequence>

<copy>...</copy>
<invoke operation="t" on service A2 />
<copy>...</copy>
<reply ... />
<pick>

<onMessage="l">
<sequence>

<copy>...</copy>
<invoke operation="l" on service A2 />
<copy>...</copy>
<reply ... />

</sequence>
</onMessage>

</pick>
</sequence>

</onMessage>
<onMessage="a">

<sequence>
<copy>...</copy>
<invoke operation="a" on service A1 />
<copy>...</copy>
<reply ... />
<pick>

<onMessage="l">
<sequence>

<copy>...</copy>
<invoke operation="l" on service A1 />
<copy>...</copy>
<reply ... />

</sequence>
</onMessage>

</pick>
</sequence>

</onMessage>
</pick>

<process>

Fig. 6. BPEL4WS pseudo-code for the MFSM shown in Figure 3

service and before returning the result, messages should be copied forth and back
between the composite and the effective service. As an example, Figure 7 shows the
BPEL4WS code corresponding to the MSFM transition for the listen operation
relative to the MFSM of Figure 3.

5 Final Remarks and Future Work

In this paper we have presented a presented ESC, a prototype tool for automatic com-
position, which starting from a client specification and a set of available services, syn-
thesize a finite state composition.

We are currently extending our framework by allowing some advanced forms of
don’t care non determinism in the client specification and we are studying automatic
composition techniques in this enhanced framework. In the future, we plan to produce
a new version of our prototype tool that takes such extensions into account.

Finally, far-reaching future work may be identified along several directions. First of
all, it could be interesting to study the situation when the available services export a par-
tial description of their behavior, i.e., they are represented by non deterministic FSMs.

This means that, a large (possibly infinite) number of complete description for services
in the community exists that are coherent with each partial description. In such case, the
orchestration schema that is to be synthesized should be coherent with all such possible
complete descriptions. Therefore, computing composition in such a framework is intu-
itively much more difficult that in the framework presented here. Also it is interesting
to study how to add data in our framework and how this impacts the automatic service
composition. In particular, it is worth studying how to introduce data in a way that the
problem of automatic service composition, while exponential in the size of the service
description, remains polynomial in the size of the data.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Concepts, Architectures and
Applications. Springer-Verlag, 2004.

2. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language
for Web Services (Version 1.1). http://www-106.ibm.com/developerworks/library/ws-bpel/,
May 2004.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2003.

4. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. e-Service Com-
position by Description Logic Based Reasoning. In Proc. of DL 2003.

5. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Automatic com-
position of e-services. Technical Report 22-03, 2003.

6. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Automatic Com-
position of e-Services that Export their Behavior. In Proc. of ICSOC 2003.

7. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. A Foundational
Vision of e-Services. In Proc. of CAISE-WES 2003.

8. D. Berardi, F. De Rosa, L. De Santis, and M. Mecella. Finite State Automata as Conceptual
Model for e-Services. In J. of Integrated Design and Process Science, 2004. To appear.

9. M. Buchheit, F. M. Donini, and A. Schaerf. Decidable Reasoning in Terminological Knowl-
edge Representation systems. J. of Artificial Intelligence Research, 1:109–138, 1993.

10. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification: A New Approach to Design
and Analysis of E-Service Composition. In Proc. of WWW 2003.

11. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc. of WWW 04.
12. A. K. H. Kuno, M. Lemon and D. Beringer. Conversations + Interfaces = Business Logic. In

Proc. of VLDB-TES 2001.
13. V. Haarslev and R. Möller. RACER System Description. In Proc. of IJCAR 2001.
14. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.
15. I. Horrocks. The FaCT System. In Proc. of TABLEAUX 1998.
16. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: A Look Behind the Curtain.

In Proc. of PODS 2003.
17. S. McIlraith, T. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent Systems, 16(2),

2001.
18. M. Papazoglou and D. Georgakopoulos. Service Oriented Computing (special issue). Com-

munications of the ACM, 46(10), October 2003.
19. F. Pistore, M.and Barbon, P. Bertoli, and P. Shaparau, D.and Traverso. Planning and Moni-

toring Web Service Composition. In Proc. of ICAPS-P4WGS 2004.
20. R.H. Katz. Contemporany Logic Design. Addison-Wesley, 1993.

<?xml version="1.0" encoding="UTF-8"?>
<process ... >

<partnerLinks>
<!-- The ’client’ role represents the requester of this service. It is used for callback.

In our case it is the client of the composite service -->
<partnerLink name="client"

partnerLinkType="tns:Transition"
myRole="MP3ServiceTypeProvider"
partnerRole="MP3ServiceTypeRequester"/>

<partnerLink name="service"
partnerLinkType="nws:MP3CompositeService"
myRole="MP3ServiceTypeRequester"
partnerRole="MP3ServiceTypeProvider"/>

</partnerLinks>

<variables>
<!-- Reference to the message passed as input during initiation -->

<variable name="input" messageType="tns:listen_request"/>
<!-- Reference to the message that will be sent back to the

requestor during callback -->
<variable name="output" messageType="tns:listen_response"/>
<variable name="request" messageType="nws:listen_request"/>
<variable name="response" messageType="nws:listen_response"/>

</variables>

<pick>
<onMessage partnerLink="client"

portType="tns:MP3ServiceType"
operation="listen"
variable="input">
<sequence>

<assign>
<copy>

<from variable="input" part="selectedSong"/>
<to variable="request" part="selectedSong"/>

</copy>
</assign>
<invoke partnerLink="service"

portType="nws:MP3ServiceType"
operation="listen"
inputVariable="request"
outputVariable="response"/>

<assign>
<copy>

<from variable="response" part="MP3FileURL"/>
<to variable="output" part="MP3FileURL"/>

</copy>
</assign>
<reply name="replyOutput"

partnerLink="client"
portType="tns:MP3ServiceType"
operation="listen"
variable="output"/>

<!-- Other operations here for describing the next transitions -->
</sequence>

</onMessage>
<onMessage>
<!-- Other sequences here for describing the other possible transitions originating

from the same state -->
</onMessage>

</pick>
</process>

Fig. 7. BPEL4WS code for the listen transition of the MFSM shown in Figure 3

