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Abstract. The main focus of this paper is on automatic e-Service composition. We start by developing
a framework in which the exported behavior of an e-Service is described in terms of its possible execu-
tions (execution trees). Then we specialize the framework to the case in which such exported behavior
(i.e., the execution tree of the e-Service) is represented by a finite state machine. In this specific setting,
we analyze the complexity of synthesizing a composition, and develop sound and complete algorithms
to check the existence of a composition and to return one such a composition if one exists. To the
best of our knowledge, our work is the first attempt to provide an algorithm for the automatic synthe-
sis of e-Service composition, that is both proved to be correct, and has an associated computational
complexity characterization.

1 Introduction

Service Oriented Computing (SOC [20]) aims at building agile networks of collaborating business applications,
distributed within and across organizational boundaries.1 e-Services, which are the basic building blocks of
SOC, represent a new model in the utilization of the network, in which self-contained, modular applications
can be described, published, located and dynamically invoked, in a programming language independent way.

The commonly accepted and minimal framework for e-Services, referred to as Service Oriented Architec-
ture (SOA [21]), consists of the following basic roles: (i) the service provider, which is the subject (e.g., an
organization) providing services; (ii) the service directory, which is the subject providing a repository/registry
of service descriptions, where providers publish their services and requestors find services; and, (iii) the ser-
vice requestor, also referred to as client, which is the subject looking for and invoking the service in order
to fulfill some goals. A requestor discovers a suitable service in the directory, and then it connects to the
specific service provider and uses the service.

Research on e-Services spans over many interesting issues regarding, in particular, composability, syn-
chronization, coordination, and verification [26]. In this paper, we are particularly interested in automatic
e-Service composition. e-Service composition addresses the situation when a client request cannot be satisfied
by an available e-Service, but a composite e-Service, obtained by combining “parts of” available component
e-Services, might be used. Each composite e-Service can be regarded as a kind of client wrt its components,
since it (indirectly) looks for and invokes them. e-Service composition leads to enhancements of the SOA,
by adding new elements and roles, such as brokers and integration systems, which are able to satisfy client
needs by combining available e-Services.

Composition involves two different issues. The first, sometimes called composition synthesis, or simply
composition, is concerned with synthesizing a new composite e-Service, thus producing a specification of
how to coordinate the component e-Services to obtain the composite e-Service. Such a specification can be
obtained either automatically, i.e., using a tool that implements a composition algorithm , or manually by a
human. The second, often referred to as orchestration, is concerned with coordinating the various component
e-Services according to some given specification, and also monitoring control and data flow among the
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involved e-Services, in order to guarantee the correct execution of the composite e-Service, synthesized in
the previous phase.

Our main focus in this paper is on automatic composition synthesis. In order to address this issue in
an effective and well-founded way, our first contribution is a general formal framework for representing e-
Services. Note that several works published in the literature address service oriented computing from different
points of views (see [13] for a survey), but an agreed comprehension of what an e-Service is, in an abstract
and general fashion, is still lacking. Our framework, although simplified in several aspects, provides not
only a clear definition of e-Services, but also a formal setting for a precise characterization of automatic
composition of e-Services.

The second contribution of the paper is an effective technique for automatic e-Service composition. In
particular, we specialize the general framework to the case where e-Services are specified by means of finite
state machines, and we present an algorithm that, given a specification of a target e-Service, i.e., specified
by a client, and a set of available e-Services, synthesizes a composite e-Service that uses only the available
e-Services and fully captures the target one. We also study the computational complexity of our algorithm,
and we show that it runs in exponential time with respect to the size of the input state machines.

Although several papers have been already published that discuss either a formal model of e-Services
(even more expressive than ours, see e.g., [7]), or propose algorithms for computing composition (e.g., [19]),
to the best of our knowledge, the work presented in this paper is the first one tackling simultaneously the
following issues: (i) presenting a formal model where the problem of e-Service composition is precisely char-
acterized, (ii) providing techniques for computing e-Service composition in the case of e-Services represented
by finite state machines, and (iii) providing a computational complexity characterization of the algorithm
for automatic composition.

The rest of this paper is organized as follows. In Section 2 and 3 we define our general formal framework,
and in Section 4 we define the problem of composition synthesis in such a framework. In Section 5 we
specialize the general framework to the case where e-Services are specified by means of finite state machines,
and in Section 6 we present an EXPTIME algorithm for automatic e-Service composition in the specialized
framework. Finally, in Section 7 we consider related research work and in Section 8 we draw conclusions by
discussing future work.

2 General Framework

Generally speaking, an e-Service is a software artifact (delivered over the Internet) that interacts with its
clients in order to perform a specified task. A client can be either a human user, or another e-Service. When
executed, an e-Service performs its task by directly executing certain actions, and interacting with other
e-Services to delegate to them the execution of other actions. In order to address SOC from an abstract and
conceptual point of view, we start by identifying several facets, each one reflecting a particular aspect of an
e-Service during its life time, as shown in Figure 1:

– The e-Service schema specifies the features of an e-Service, in terms of functional and non-functional
requirements. Functional requirements represent what an e-Service does. All other characteristics of
e-Services, such as those related to quality, privacy, performance, etc. constitute the non-functional
requirements. In what follows, we do not deal with non-functional requirements, and hence use the term
“e-Service schema” to denote the specification of functional requirements only.

– The e-Service implementation and deployment indicate how an e-Service is realized, in terms of software
applications corresponding to the e-Service schema, deployed on specific platforms. This aspect regards
the technology underlying the e-Service implementation, and it goes beyond the scope of this paper.
Therefore, although implementation issues, and other related characteristics such as recovery mechanisms
or exception handling, are important issues in SOC, in what follows we abstract from these properties
of e-Services.

– An e-Service instance is an occurrence of an e-Service effectively running and interacting with a client. In
general, several running instances corresponding to the same e-Service schema exist, each one executing
independently from the others.
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In order to execute an e-Service, the client needs to activate an instance from a deployed e-Service. In
our abstract model, the client can then interact with the e-Service instance by repeatedly choosing an action
and waiting for either the fulfillment of the specific task, or the return of some information. On the basis
of the information returned the client chooses the next action to invoke. In turn, the activated e-Service
instance executes (the computation associated to) the invoked action; after that, it is ready to execute new
actions. Under certain circumstances, i.e., when the client has reached his goal, he may explicitly end (i.e.,
terminate) the e-Service instance. However, in principle, a given e-Service instance may need to interact
with a client for an unbounded, or even infinite, number of steps, thus providing the client with a continuous
service. In this case, no operation for ending the e-Service instance is ever executed.

In general, when a client invokes an e-Service instance e, it may happen that e does not execute all of
its actions on its own, but instead it delegates some or all of them to other e-Service instances. All this is
transparent to the client. To precisely capture the situations when the execution of certain actions can be
delegated to other e-Service instances, we introduce the notion of community of e-Services, which is formally
characterized by:

– a finite common set of actions Σ, called the action alphabet, or simply the alphabet of the community,
– a set of e-Services specified in terms of the common set of actions.

Hence, to join a community, an e-Service needs to export its service(s) in terms of the alphabet of the
community. The added value of a community is the fact that an e-Service of the community may delegate
the execution of some or all of its actions to other instances of e-Services in the community. We call such
an e-Service composite. If this is not the case, an e-Service is called simple. Simple e-Services realize offered
actions directly in the software artifacts implementing them, whereas composite e-Services, when receiving
requests from clients, can invoke other e-Service instances in order to fulfill the client’s needs.

Notably, the community can be used to generate (virtual) e-Services whose execution completely delegates
actions to other members of the community. In other words, the community can be used to realize a target
e-Service requested by the client, not simply by selecting a member of the community to which delegate
the target e-Service actions, but more generally by suitably “composing” parts of e-Service instances in the
community in order to obtain a virtual e-Service which is coherent with the target one. This function of
composing existing e-Services on the basis of a target e-Service is known as e-Service composition, and is
the main subject of the research reported in this paper.

3 e-Service Schema

From the external point of view, i.e., that of a client, an e-Service E, belonging to a community C, is seen as
a black box that exhibits a certain exported behavior represented as sequences of atomic actions of C with
constraints on their invocation order. From the internal point of view, i.e., that of an application deploying
E and activating and running an instance of it, it is also of interest how the actions that are part of the
behavior of E are effectively executed. Specifically, it is relevant to specify whether each action is executed
by E itself or whether its execution is delegated to another e-Service belonging to the community C with
which E interacts, transparently to the client of E. To capture these two points of view we introduce the
notion of e-Service schema, as constituted by two different parts, called external schema and internal schema,
respectively.

Also e-Service instances can be characterized by an external and an internal view: further details can be
found in [5].

3.1 External Schema

The aim of the external schema is to specify the exported behavior of the e-Service. For now we are not
concerned with any particular specification formalism, rather we only assume that, whatever formalism is
used, the external schema specifies the behavior in terms of a tree of actions, called external execution tree.
The external execution tree abstractly represents all possible executions of all possible instances of an e-
Service. Therefore, any instance of an e-Service executes a path of such a tree. In this sense, each node x of
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Fig. 2. External execution tree of e-Service E0

an external execution tree represents the history of the sequence of actions of all e-Service instances2, that
have executed the path to x. For every action a belonging to the alphabet Σ of the community, and that can
be executed at the point represented by x, there is a (single) successor node x·a. The node x·a represents the
fact that, after performing the sequence of actions leading to x, the client chooses to execute action a, among
those possible, thus getting to x·a. Therefore, each node represents a choice point at which the client makes
a decision on the next action the e-Service should perform. We call the pair (x, x·a) edge of the tree and we
say that such an edge is labeled with action a. The root ε of the tree represents the fact that the e-Service
has not yet executed any action. Some nodes of the execution tree are final : when a node is final, and only
then, the client can stop the execution of the e-Service. In other words, the execution of an e-Service can
correctly terminate only at these points3.

Notably, an execution tree does not represent the information returned to the client by the e-Service
instance execution, since the purpose of such information is to let the client choose the next action, and the
rationale behind this choice depends entirely on the client.

Given the external schema Eext of an e-Service E, we denote with T (Eext) the external execution tree
specified by Eext .

Example 1. Figure 2 shows (a portion of) an (infinite) external execution tree representing e-Service E0 that
allows for searching and listening to mp3 files4. In particular, the client may choose to search for a song
by specifying either its author(s) or its title (action search by author and search by title, respectively).
Then the client selects and listens to a song (action listen). Finally, the client chooses whether to perform
those actions again. �

3.2 Internal Schema

The internal schema specifies, besides the external behavior of the e-Service, the information on which e-
Service instances in the community execute each given action. As before, for now, we abstract from the
specific formalism chosen for giving such a specification, instead we concentrate on the notion of internal
execution tree. An internal execution tree is analogous to an external execution tree, except that each edge
is labeled by (a, I), where a is the executed action and I is a nonempty set denoting the e-Service instances
executing a. Every element of I is a pair (E′, e′), where E′ is an e-Service and e′ is the identifier of an
instance of E′. The identifier e′ uniquely identifies the instance of E′ within the internal execution tree. In
2 In what follows, we omit the terms “schema” and “instance” when clear from the context.
3 Typically, in an e-Service, the root is final, to model that the computation of the e-Service may not be started at

all by the client.
4 Final nodes are represented by two concentric circles.
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general, in the internal execution tree of an e-Service E, some actions may be executed also by the running
instance of E itself. In this case we use the special instance identifier this. Note that, since I is in general
not a singleton, the execution of each action can be delegated to more than one other e-Service instance.

An internal execution tree induces an external execution tree: given an internal execution tree Tint we
call offered external execution tree the external execution tree Text obtained from Tint by dropping the part
of the labeling denoting the e-Service instances, and therefore keeping only the information on the actions.
An internal execution tree Tint conforms to an external execution tree Text if Text is equal to the offered
external execution tree of Tint .

Given an e-Service E, the internal schema Eint of E is a specification that uniquely represents an internal
execution tree. We denote such an internal execution tree by T (Eint).

An e-Service E with external schema Eext and internal schema Eint is well formed, if T (Eint) conforms
to T (Eext), i.e., its internal execution tree conforms with its external execution tree.

We now formally define when an e-Service of a community correctly delegates actions to other e-Services
of the community. We need a preliminary definition: given the internal execution tree Tint of an e-Service E,
and a path p in Tint starting from the root, we call the projection of p on an instance e′ of an e-Service E′

the path obtained from p by removing each edge whose label (a, I) is such that I does not contain e′, and
collapsing start and end node of each removed edge.

We say that the internal execution tree Tint of an e-Service E is coherent with a community C if:

– for each edge labeled with (a, I), the action a is in the alphabet of C, and for each pair (E′, e′) in I, E′

is a member of the community C;
– for each path p in Tint from the root of Tint to a node x, and for each pair (E′, e′) appearing in p, with

e′ different from this, the projection of p on e′ is a path in the external execution tree T ′
ext of E′ from

the root of T ′
ext to a node y, and moreover, if x is final in Tint , then y is final in T ′

ext .

Observe that, if an e-Service of a community C is simple, i.e., it does not delegate actions to other e-
Service instances, then it is trivially coherent with C. Otherwise, it is composite and hence delegates actions
to other e-Service instances. In the latter case, the behavior of each one of such e-Service instances must be
correct according to its external schema.

A community of e-Services is well-formed if each e-Service in the community is well-formed, and the
internal execution tree of each e-Service in the community is coherent with the community.

Example 2. Figure 35 shows (a portion of) an (infinite) internal execution tree, conforming to the external
execution tree of e-Service E0 shown in Figure 2, where all the actions are delegated to e-Services of the
5 In the figure, each action is delegated to exactly one instance of an e-Service schema. Hence, for simplicity, we have

denoted a label (a, {(Ei, ei)}) simply by (a, Ei, ei), for i = 1, 2.
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community. In particular, the execution of search by title action and its subsequent listen action are
delegated to instance e2 of e-Service E2, and search by author action and its subsequent listen action to
instance e1 of e-Service E1. �

4 Composition Synthesis

When a user requests a certain service from an e-Service community, there may be no e-Service in the
community that can deliver it directly. However, it may still be possible to synthesize a new composite
e-Service, which suitably delegates action execution to the e-Services of the community, and when suitably
orchestrated, provides the user with the service he requested. Formally, given an e-Service community C and
the external schema Eext of a target e-Service E expressed in terms of the alphabet Σ of C, a composition
of E wrt C is an internal schema Eint such that (i) T (Eint) conforms to T (Eext), (ii) T (Eint) delegates all
actions to the e-Services of C (i.e., this does not appear in T (Eint)), and (iii) T (Eint) is coherent with C.

The problem of composition existence is the problem of checking whether there exists some internal
schema Eint that is a composition of E wrt C. Observe that, since for now we are not placing any restriction
of the form of Eint , this corresponds to checking if there exists an internal execution tree Tint such that
(i) Tint conforms to T (Eext), (ii) Tint delegates all actions to the e-Services of C, and (iii) Tint is coherent
with C.

The problem of composition synthesis is the problem of synthesizing an internal schema Eint for E that
is a composition of E wrt C.

Figure 4 shows the architecture of an e-Service Integration System, which delivers possibly composite
e-Services on the basis of user requests, exploiting the available e-Services of a community C. When a client
requests a new e-Service E, he presents his request in the form of an external e-Service schema Eext for E,
and expects the e-Service Integration System to execute an instance of E. To do so, first a composer module
makes the composite e-Service E available for execution, by synthesizing an internal schema Eint6 of E that
is a composition of E wrt the community C. Then, following the internal execution tree T (Eint) specified by
Eint , an orchestration engine activates an (internal) instance of E, and orchestrates the different available
e-Services, by activating and interacting with their external view, so as to fulfill the client’s needs.

The orchestration engine is also in charge of terminating the execution of component e-Service instances,
offering the correct set of actions to the client, as defined by the external execution tree, and invoking the
action chosen by the client on the e-Service that offers it.

All this happens in a transparent manner for the client, who interacts only with the e-Service Integration
System and is not aware that a composite e-Service is being executed instead of a simple one.

6 If at least one exists.
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5 e-Services as Finite State Machines

Till now, we have not referred to any specific form of e-Service schemas. In what follows, we consider e-
Services whose schema (both internal and external) can be represented using only a finite number of states,
i.e., using (deterministic) Finite State Machines (FSMs).

The class of e-Services that can be captured by FSMs are of particular interest. This class allows us
to address an interesting set of e-Services, that are able to carry on rather complex interactions with their
clients, performing useful tasks. Indeed, several papers in the e-Service literature adopt FSMs as the basic
model of exported behavior of e-Services [7, 6]. Also, FSMs constitute the core of statecharts, which are
one of the main components of UML and are becoming a widely used formalism for specifying the dynamic
behavior of entities.

In the study we report here, we make the simplifying assumption that the number of instances of an e-
Service in the community that can be involved in the internal execution tree of another e-Service is bounded
and fixed a priori. In fact, wlog we assume that it is equal to one. If more instances correspond to the same
external schema, we simply duplicate the external schema for each instance. Considering that the number
of e-Services in a community is finite, this implies that the overall number of instances orchestrated by the
orchestrator in executing an e-Service is finite and bounded by the number of e-Services belonging to the
community. Within this setting, in the next section, we show how to solve the composition problem, and how
to synthesize a composition that is a FSM. Instead, how to deal with an unbounded number of instances
remains open for future work.

We consider here e-Services whose external schemas can be represented with a finite number of states.
Intuitively, this means that we can factorize the sequence of actions executed at a certain point into a finite
number of states, which are sufficient to determine the future behavior of the e-Service. Formally, for an
e-Service E, the external schema of E is a FSM Aext

E = (Σ,SE , s0
E , δE , FE), where:

– Σ is the alphabet of the FSM, which is the alphabet of the community;
– SE is the set of states of the FSM, representing the finite set of states of the e-Service E;
– s0

E is the initial state of the FSM, representing the initial state of the e-Service;
– δE : SE ×Σ → SE is the (partial) transition function of the FSM, which is a partial function that given

a state s and an action a returns the state resulting from executing a in s;
– FE ⊆ SE is the set of final states of the FSM, representing the set of states that are final for the e-Service

E, i.e., the states where the interactions with E can be terminated.

Example 3. Figure 5(a) shows the external schema of the (target) e-Service E0 of Examples 1 and 2, specified
by the client as a FSM A0. Figure 5 (b) and (c) show the external schema, represented as FSMs A1 and
A2, respectively associated to component e-Services E1 and E2 of Example 2. In other words, A1 and A2

are the external schema of the e-Services that should be composed in order to obtain a new e-Service
that behaves like E0. In particular, E1 allows for searching for a song by specifying its author(s) (action
search by author) and for listening to the song selected by the client (action listen). Then, it allows for
executing these actions again. E2 behaves like E1, but it allows for retrieving a song by specifying its title
(action search by title).

E1 and E2 belong to the same community of e-Services C. Wlog, we assume that C is
composed by only E1 and E2 and therefore, the (finite) alphabet of actions of C is Σ =
{search by author, search by title, listen}. According to our setting, the client specifies the external
schema A0 of his target e-Service in terms of Σ. �

The FSM Aext
E is an external schema in the sense that it specifies an external execution tree T (Aext

E ).
Specifically, given Aext

E we define T (Aext
E ) inductively on the level of nodes in the tree, by making use of an

auxiliary function σ(·) that associates to each node of the tree a state in the FSM. We proceed as follows:

– ε, as usual, is the root of T (Aext
E ) and σ(ε) = s0

E ;
– if x is a node of T (Aext

E ), and σ(x) = s, for some s ∈ SE , then for each a such that s′ = δE(s, a) is
defined, x · a is a node of T (Aext

E ) and σ(x · a) = s′;
– x is final iff σ(x) ∈ FE .
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Example 4. Figure 6 shows (a portion of the) the external execution tree T (A0) defined from A0 by a
mapping σ (from nodes of T (A0) to states of A0): each node of the tree is labeled with the state of A0 that
σ associates to it. The mapping σ is defined as follows.

σ(ε) = s0
0

σ(a) = σ(t) = s1
0

σ(a·l) = σ(t·l) = s0
0

σ(a·l·a) = σ(a·l·t) = σ(t·l·a) = σ(t·l·t) = s1
0

σ(a·l·a·l) = σ(a·l·t·l) = σ(t·l·a·l) = σ(t·l·t·l) = s0
0

. . .

σ maps over s1
0 the nodes of the tree that represent strings ending by a or t; it maps over s0

0 the
root and the nodes of the tree associated to strings ending by l. Note that T (A0) is equal to the external
execution tree Text of Figure 2. That is, Text has a finite representation as a FSM.

The external execution trees T (A1) and T (A2) for the FSMs A1 and A2, respectively, can be defined
similarly.

Finally, note that in general there may be several FSMs that specify the same execution tree. �
Since we have assumed that each e-Service in the community can contribute to the internal execution

tree of another e-Service with at most one instance, in specifying internal execution trees we do not need
to distinguish between e-Service and e-Service instances. Hence, when the community C is formed by n
e-Services E1, . . . , En, it suffices to label the internal execution tree of an e-Service E by the action that
caused the transition and a subset of [n] = {1, . . . , n} that identifies which e-Services in the community have
contributed in executing the action. The empty set ∅ is used to (implicitly) denote this.

We are interested in internal schemas, for an e-Service E, that have a finite number of states, i.e., that
can be represented as a Mealy FSM (MFSM) Aint

E = (Σ, 2[n], Sint
E , s0

E
int

, δint
E , ωint

E , F int
E ), where:

– Σ,Sint
E , s0

E
int

, δint
E , F int

E , have the same meaning as for Aext
E ;

– 2[n] is the output alphabet of the MFSM, which is used to denote which e-Service instances execute each
action;

– ωint
E : Sint

E ×Σ → 2[n] is the output function of the MFSM, that, given a state s and an action a, returns
the subset of e-Services that executes action a when e-Service E is in state s; if such a set is empty then
this is implied; we assume that the output function ωint

E is defined exactly when δint
E is so.

Example 5. Figure 7 shows a possible internal schema for the target e-Service E0. It is represented as a
MFSM M0. In the figure, we have defined the output function ωint as follows:

ωint(s0
0, a) = {1}

ωint(s1
0, l) = {1}

ωint(s0
0, t) = {2}

ωint(s2
0, l) = {2}

�
The MFSM Aint

E is an internal schema in the sense that it specifies an internal execution tree T (Aint
E ).

Given Aint
E we, again, define the internal execution tree T (Aint

E ) by induction on the level of the nodes, by
making use of an auxiliary function σint(·) that associates each node of the tree with a state in the MFSM,
as follows:

10



(a, 1)

(l, 2)(l, 1)

(a, 1)

(l, 1)

(t, 2)

(t, 2)

(l, 2)

(t, 2)

(a, 1)

s1
0

s1
0

s0
0

s0
0

a = search by author

t = search by title

l = listen

.

.

.

.

..
.
..

.

.

.

s0
0

s2
0

s2
0 s1

0 s2
0

s0
0

s0
0

Fig. 8. Internal execution tree T (M0).

– ε is, as usual, the root of T (Aint
E ) and σint(ε) = s0

E
int ;

– if x is a node of T (Aint
E ), and σint(x) = s, for some s ∈ Sint

E , then for each a such that s′ = δint
E (s, a) is

definied, x · a is a node of T (Aint
E ) and σint(x · a) = s′;

– if x is a node of T (Aint
E ), and σint(x) = s, for some s ∈ Sint

E , then for each a such that ωint
E (s, a) is

defined (i.e., δint
E (s, a) is defined), the edge (x, x · a) of the tree is labeled by ωint

E (s, a);
– x is final iff σint(x) ∈ F int

E .

Example 6. Figure 8 shows a portion of the internal execution tree T (M0) defined from M0, shown in
Figure 7. Each node of the tree is labeled with the state of M0 that mapping σint from nodes of T (M0) to
states of M0, associates to it. The mapping σint is defined as follows.

σint(ε) = s0
0

σint(a) = s1
0

σint(t) = s2
0

σint(a·l) = σint(t·l) = s0
0

σint(a·l·a) = σint(t·l·a) = s1
0

σint(a·l·t) = σint(t·l·t) = s2
0

σint(a·l·a·l) = σint(a·l·t·l) = σint(t·l·a·l) = σint(t·l·t·l) = s0
0

. . .

σint maps over s1
0 the nodes of the tree that represent strings ending by a, and over s2

0 the nodes
that represent strings ending by t; it maps over s0

0 the root and the nodes of the tree associated to strings
ending by l.

Note that T (M0) is equal to the internal execution tree Tint of Figure 3. That is, Tint has a finite
representation as a MFSM. Therefore, M0 is a specification of an internal execution tree that conforms to
the external execution tree specified by the FSM A0 of Figure 5(a).

Finally, note that in general, a FSM and its corresponding MFSM may have different structures. �

Given an e-Service E whose external schema is an FSM and whose internal schema is an MFSM, checking
whether E is well formed, i.e., whether the internal execution tree conforms to the external execution tree,
can be done using standard finite state machine techniques. Similarly for coherency of E with a community
of e-Services whose external schemas are FSMs. In this paper, we do not go into the details of these problems,
and instead we concentrate on composition.

11



6 Automatic e-Service Composition

We address the problem of actually checking the existence of a composite e-Service in the FSM-based
framework introduced above. We show that if a composition exists then there is one where the internal
schema is constituted by a MFSM, and we show how to actually synthesize such a MFSM. The basic tool
we use to show such results is reducing the problem of composition existence into satisfiability of a suitable
formula of Deterministic Propositional Dynamic Logic (DPDL), a well-known logic of programs developed
to verify properties of program schemas [15]. We refer to Appendix A for a brief tutorial on DPDL. In order
to make clearer the technique, we show how to build a MFSM for the target e-Service whose external schema
is represented in Figure 5(a), and for the community of Example 3.

Given the target e-Service E0 whose external schema is a FSM A0 and a community of e-Services formed
by n component e-Services E1, . . . , En whose external schemas are FSM A1, . . . , An respectively, we build a
DPDL formula Φ as follows. As set of atomic propositions P in Φ we have (i) one proposition sj for each
state sj of Aj , j = 0, . . . , n, denoting whether Aj is in state sj ; (ii) propositions Fj , j = 0, . . . , n, denoting
whether Aj is in a final state; and (iii) propositions moved j , j = 1, . . . , n, denoting whether (component)
automaton Aj performed a transition. As set of atomic actions A in Φ we have the actions in Σ (i.e, A = Σ).

Example 7. The set P of atomic propositions is defined as follows:

P = {s0
0, s

1
0, s

0
1, s

1
1, s

0
2, s

1
2, F0, F1, F2,moved1,moved2}

The meaning of atomic propositions is as follows:

– si
j , for i = 0, 1 and j = 0, . . . , 2: automaton Aj is in state si

j

– Fj for j = 0, . . . , 2: automaton Aj is in a final state
– movedj j = 1, . . . , 2: (component) automaton Aj performed a transition.

The set A of deterministic atomic actions is defined as follows:

A = {a, t, l}

where:

– a denotes action search by author
– t denotes action search by title
– l denotes action listen

�.

In order to state universal assertions, we introduce the master modality [u]. In our running example, we
set

u = (a ∪ t ∪ l)∗

i.e., as the reflexive and transitive closure of the union of all atomic actions in A. In other words, u represents
the iteration of a non deterministic choice among all the possible atomic actions. Indeed, we recall that [u]φ,
where φ is a proposition, asserts that φ holds after any regular expression involving a, t, l.

The formula Φ is built as a conjunction of the following formulas.

– The formulas representing A0 = (Σ,S0, s
0
0, δ0, F0):

• [u](s → ¬s′) for all pairs of states s ∈ S0 and s′ ∈ S0, with s �= s′; these say that propositions
representing different states are disjoint (cannot be true simultaneously).

• [u](s → 〈a〉true ∧ [a]s′) for each a such that s′ = δ0(s, a); these encode the transitions of A0.
• [u](s → [a]false) for each a such that δ(s, a) is not defined; these say when a transition is not

defined.
• [u](F0 ↔ ∨

s∈F0
s); this highlights final states of A0.

12



Example 8. Formulas capturing the external schema A0 of the target e-Service E0.

[u]s0
0 → ¬s1

0

This formula states that automaton A0 can never be simultaneously in the two states s0
0 and s1

0. Note
that it is equivalent to state [u]s1

0 → ¬s0
0.

[u](s0
0 → 〈a〉true ∧ [a]s1

0)
[u](s0

0 → 〈t〉true ∧ [t]s1
0)

[u](s1
0 → 〈l〉true ∧ [l]s0

0)

These formulas encode the transitions that A0 can perform. For example, the first formula asserts that,
for all possible sequence of actions, if A0 is in state s0

0, the automaton allows for searching an mp3 file
by author, i.e., it can execute action a, and it necessarily moves to state s1

0. Analogously for the other
formulas.

[u](s0
0 → [l]false)

[u](s1
0 → [a]false ∧ [t]false)

These formulas encode the transitions that are not defined on A0. For example, the first formula as-
serts that, for all possible sequences of actions, it is never possible to execute action listen when the
automaton is in state s0

0.

[u](F0 ↔ s0
0)

Finally, this formula asserts that s0
0 is a final state for A0. �

– For each component FSM Ai = (Σ,Si, s
0
i , δi, Fi), the following formulas:

• [u](s → ¬s′) for all pairs of states s ∈ Si and s′ ∈ Si, with s �= s′; these again say that propositions
representing different states are disjoint.

• [u](s → [a](moved i∧s′∨¬moved i∧s)) for each a such that s′ = δi(s, a); these encode the transitions
of Ai, conditionalized to the fact that the component Ai is actually required to make a transition a
in the composition.

• [u](s → [a]¬moved i) for each a such that δi(s, a) is not defined; these say that when a transition is
not defined, Ai cannot be asked to execute in the composition.

• [u](Fi ↔
∨

s∈Fi
s); this highlights final states of Ai.

Example 9. Formulas capturing the external schema A1 of component e-Service E1.

[u]s0
1 → ¬s1

1

This formula has an analogous meaning as that relative to A0.

[u](s0
1 → [a](moved1 ∧ s1

1 ∨ ¬moved1 ∧ s0
1))

[u](s1
1 → [l](moved1 ∧ s0

1 ∨ ¬moved1 ∧ s1
1))

These formulas encode the transitions of A1, conditioned to the fact that component A1 is actually
required to make a transition in the composition. As an example, the first formula asserts that for
all possible sequences of actions, if the automaton A1 is in s0

1, then after action a has been executed,
necessarily one of the following conditions must hold: either it is A1 that performed the transition and
therefore it moved to state s1

1, or the transition has been performed by another automaton, hence A1

did not move and remained in the current state s0
1.

[u](s0
1 → [l]¬moved1 ∧ [t]¬moved1)

[u](s1
1 → [a]¬moved1 ∧ [t]¬moved1)

These formulas encode the situation when a transition is not defined. For example, the first formula
states that if the automaton is in state s0

1 and it receives actions l or t in input, it does not move; this

13



holds for all possible (previous) sequences of actions. Note that the situation when the automaton does
not move is different from the situation when it loops on a state: indeed, in the latter case the transition
is defined whereas in the former it does not.
Finally, the formula

[u](F1 ↔ s0
1)

asserts that state s0
1 is final for automaton A1.

Formulas capturing the external schema A2 of component e-Service E2.

Such formulas are analogous to the previous ones, therefore, we will just report them, without further
comments.

[u]s0
2 → ¬s1

2

[u](s0
2 → [t](moved2 ∧ s1

2 ∨ ¬moved2 ∧ s0
2))

[u](s1
2 → [l](moved2 ∧ s0

2 ∨ ¬moved2 ∧ s1
2))

[u](s0
2 → [l]¬moved2 ∧ [a]¬moved2)

[u](s1
2 → [t]¬moved2 ∧ [a]¬moved2)

[u](F2 ↔ s0
2)

�

– Finally, the following formulas:

• s0
0 ∧

∧
i=1,...,n s0

i ; this says that initially all e-Services are in their initial state; note that this formula
is not prefixed by [u]·.

• [u](〈a〉true → [a]
∨

i=1,...,n moved i), for each a ∈ Σ; these say that at each step at least one of the
component FSM has moved.

• [u](F0 → ∧
i=1,...,n Fi); this says that when the target e-Service is in a final state also all component

e-Services must be in a final state.

Example 10. The following formulas must hold for the overall composition.

s0
0 ∧ s0

1 ∧ s0
2

It asserts that all e-Services start from their initial states.

[u](〈a〉true → [a](moved1 ∨ moved2))
[u](〈t〉true → [t](moved1 ∨ moved2))
[u](〈l〉true → [l](moved1 ∨ moved2))

Each formula expresses that at each step at least one FSM moves. For example, the first one asserts that
for all possible execution sequences, if execution of a terminates, then necessarily a is executed by at
least one component e-Service, either E1 or E2.
Finally, if the composite e-Service is in a final state, both component e-Services must be in a final state:
the composite e-Service may terminate only if also all the component e-Services can.

[u](F0 → F1 ∧ F2)

�
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It is easy to prove that the Kripke structure for DPDL formula Φ is deterministic, as it should be. Non
determinism may be introduced by the operator 〈〉. However, we are guaranteed that no atomic action a
relates state s1 with two different target states s1 and s2, because 〈〉 appears only in front of the atomic
proposition true. Indeed, if a related s1 with s2 and s3, such target states would actually be the same, since
characterized by the same atomic proposition true.

Theorem 1. The DPDL formula Φ, constructed as above, is satisfiable if and only if there exists a compo-
sition of E0 wrt E1, . . . , En.

Proof (sketch). “⇐” Suppose that there exists some internal schema (without restriction on its form)
E0

int which is a composition of E0 wrt E1, . . . , En. Let Tint = T (E0
int) be the internal execution tree defined

by E0
int .

Then for the target e-Service E0 and each component e-Service Ei, i = 1, . . . n, we can define mappings
σ and σi from nodes in Tint to states of A0 and Ai, respectively, by induction on the level of the nodes in
Tint as follows.

– base case: σ(ε) = s0
0 and σi(ε) = s0

i .
– inductive case: let σ(x) = s and σi(x) = si, and let the node x · a be in Tint with the edge (x, x · a)

labeled by (a, I), where I ⊆ [n] and I �= ∅ (notice that this may not occur since Tint is specified by a
composition). Then we define

σ(x · a) = s′ = δ0(s, a)

and

σi(x · a) =

{
si

′ = δi(si, a) if i ∈ I

si if i �∈ I

Once we have σ and σi in place we can define a model I = (∆I , {aI}a∈Σ , {P I}P∈P) of Φ as follows:

– ∆I = {x | x ∈ Tint};
– aI = {(x, x · a) | x, x · a ∈ Tint}, for each a ∈ Σ;
– sI = {x ∈ Tint | σ(x) = s}, for all propositions s corresponding to states of A0;
– sIi = {x ∈ Tint | σi(x) = si}, for all propositions si corresponding to states of Ai;
– movedI

i = {x · a | (x, x · a) is labeled by I with i ∈ I}, for i = 1, . . . , n;
– F I

0 = {x ∈ Tint | σ(x) = s with s ∈ F0};
– F I

i = {x ∈ Tint | σi(x) = si with si ∈ Fi}, for i = 1, . . . , n.

It is easy to check that, being Tint specified by a composition Eint , the above model indeed satisfies Φ.
“⇒” Let Φ be satisfiable and I = (∆I , {aI}a∈Σ , {P I}P∈P) be a tree-like model. From I we can build

an internal execution tree Tint for E0 as follows.

– the nodes of the tree are the elements of ∆I ; actually, since I is tree-like we can denote the elements in
∆I as nodes of a tree, using the same notation that we used for internal/external execution tree;

– nodes x such that x ∈ F I
0 are the final nodes;

– if (x, x · a) ∈ aI and for all i ∈ I, x · a ∈ movedIi and for all j �∈ I, x · a �∈ movedIj , then (x, x · a) is
labeled by (a, I).

It is possible to show that: (i) Tint conforms to T (A0), (ii) Tint delegates all actions to the e-Services of
E1, . . . , En, and (iii) Tint is coherent with E1, . . . , En. Since we are not placing any restriction on the kind
of specification allowed for internal schemas, it follows that there exists an internal schema Eint that is a
composition of E0 wrt E1, . . . , En.

Observe that the size of Φ is polynomially related to A0 and A1, . . . , An. Hence, from the EXPTIME-
completeness of satisfiability in DPDL and from Theorem 1 we get the following complexity result.

Theorem 2. Checking the existence of an e-Service composition can be done in EXPTIME.
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Observe that, because of the small model property, from Φ one can always obtain a model which is
at most exponential in the size of Φ. From such a model one can extract an internal schema for E0 that
is a composition of E0 wrt E1, . . . , En, which has the form of a MFSM. Specifically, given a finite model
I = (∆I , {aI}a∈Σ , {P I}P∈P), we define such an MFSM Ac = (Σ, 2[n], Sc, s

0
c , δc, ωc, Fc, ) as follows:

– Sc = ∆I ;
– s0

c = d0 where d0 ∈ (s0
0 ∧

∧
i=1,...,n s0

i )
I ;

– s′ = δc(s, a) iff (s, s′) ∈ aI ;
– I = ωc(s, a) iff (s, s′) ∈ aI and for all i ∈ I, s′ ∈ movedIi and for all j �∈ I, s′ �∈ movedIj ;
– Fc = F I

0 .

As a consequence of this, we get the following results.

Theorem 3. If there exists a composition of E0 wrt E1, . . . , E0, then there exists one which is a MFSM of
at most exponential size in the size of the external schemas A0, A1, . . . , An of E0, E1, . . . , En respectively.

Proof (sketch). By Theorem 1, if A0 can be obtained by composing A1, . . . , An, then the DPDL formula
Φ constructed as above is satisfiable. In turn, if Φ is satisfiable, for the small-model property of DPDL there
exists a model I of size at most exponential in Φ, and hence in A0 and A1, . . . , An. From I we can construct
a MFSM Ac as above. It is possible to show that the internal execution tree T (Ac) defined by Ac satisfies
all the conditions required for Ac to be a composition, namely: (i) T (Ac) conforms to T (A0), (ii) T (Ac)
delegates all actions to the e-Services of E1, . . . , En, and (iii) T (Ac) is coherent with E1, . . . , En.

From a practical point of view, because of the correspondence between Propositional Dynamic Logics
(which DPDL belongs to) and Description Logics [8], one can use current highly optimized Description Logic
systems [3]7 to check the existence of e-Service compositions. Indeed, these systems are based on tableaux
techniques that construct a model when checking for satisfiability, and from such a model one can construct
a MFSM that is the composition.

6.1 Building composition

In this subsection, we first show how to build a possibly infinite model I for the DPDL formula Φ constituted
as in the previous section. We follow the proof of Theorem 1 (“⇐” direction). In order to build an internal
execution tree for E0 from FMS A1 and A2, i.e., to synthesize a composite e-Service E0 with components E1

and E2 (“⇒” direction), it suffices to repeat the steps backwards. Some of these steps have been discussed
in previous examples, but we report them here for sake of readability.

Then, assuming to have derived from I a finite model If for Φ8, we show how to devise an internal
schema conforming to A0 that has a finite state representation, and such that all conditions in Section 4
holds.

We assume that, given the component FSM A1 and A2 there exists a composite e-Service having FSM
A0 as external schema and A1 and A2 as components. Let T (E0

int) be the internal execution tree for E0

wrt the community C to which E1 and E2 belong, such that: (i) T (E0
int) conforms to T (A0), i.e., to the

external execution tree obtained by A0 as in Section 5, (ii) T (E0
int) delegates all actions to the e-Services

of C and in particular to E1 and E2, and (iii) T (E0
int) is coherent with C.

The mapping σ from nodes of T (E0
int) to states of the automata, is defined as follows by induction

on the level of nodes in the tree. The existence of the mapping guarantees that condition (i) above is satisfied.

σ(ε) = s0
0

σ(a) = σ(t) = s1
0

σ(a·l) = σ(t·l) = s0
0

σ(a·l·a) = σ(a·l·t) = σ(t·l·a) = σ(t·l·t) = s1
0

σ(a·l·a·l) = σ(a·l·t·l) = σ(t·l·a·l) = σ(t·l·t·l) = s0
0

. . .

7 In fact, current Description Logics systems cannot handle Kleene star. However, since in Φ, ∗ is only used to mimic
universal assertions, and such systems have the ability of handling universal assertions, they can indeed check
satisfiability of Φ.

8 Because of the small model property, we know that this is always possible.
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(b) The mapping σ on T (E0
int)

Fig. 9. Composition of e-Services

Figure 9(b) represents the internal execution tree of E0, where each node is labeled with the corre-
sponding state of the automaton. σ maps over s1

0 the nodes of the tree that represent strings ending by a or
t; it maps over s0

0 the root of the tree and the nodes of the tree associated to strings ending by l.
The mapping σ1 from nodes of T (E0

int) to states of A1 is defined as follows.

σ1(ε) = s0
1

σ1(a) = s1
1

σ1(t) = s0
1

σ1(a·l) = σ1(t·l) = s0
1

σ1(a·l·a) = σ1(t·l·a) = s1
1

σ1(a·l·t) = σ1(t·l·t) = s0
1

σ1(a·l·a·l) = σ1(a·l·t·l) = σ1(t·l·a·l) = σ1(t·l·t·l) = s0
1

. . .

Figure 10(b) represents the internal execution tree of E0, where each node is labeled with the corre-
sponding state of the automaton. σ1 maps over s1

1 the nodes of the tree that represent strings ending by a;
it maps over s0

1 the root of the tree and the nodes of the tree associated to strings ending by l or by t. Note
that since the automaton is not defined over t, it does not move when it receives t or t·l as input.

The mapping σ2 from nodes of T (E0
int) to states of A2 is defined as follows.

σ2(ε) = s0
2

σ2(a) = s0
2

σ2(t) = s1
2

σ2(a·l) = σ2(t·l) = s0
2

σ2(a·l·a) = σ2(t·l·a) = s0
2

σ2(a·l·t) = σ2(t·l·t) = s1
2

σ2(a·l·a·l) = σ2(a·l·t·l) = σ2(t·l·a·l) = σ2(t·l·t·l) = s0
2

. . .
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Fig. 10. Composition of e-Services
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(a) External schema A2 of component e-Service E2
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(b) The mapping σ2 on T (E0
int)

Fig. 11. Composition of e-Services
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Fig. 12. Infinite model I for Φ.

Figure 11(b) represents the internal execution tree of E0, where each node is labeled with the corre-
sponding state of the automaton. σ2 maps over s1

2 the nodes of the tree that represent strings ending by t;
it maps over s0

2 the root of the tree and the nodes of the tree associated to strings ending by l or by a.
Given σ, σ1 and σ2, we define I = (∆I , {aI}a∈Σ , {P I}P∈P) of Φ as follows:

– ∆I = {ε, a, t, a·l, t·l, a·l·a, a·l·t, t·l·a, t·l·t, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .},
– aI = {(ε, a), (a·l, a·l·a), (t·l, t·l·a), . . .},
– tI = {(ε, t), (a·l, a·l·t), (t·l, t·l·t), . . .},
– lI = {(a, a·l), (t, t·l), (a·l·a, a·l·a·l), (a·l·t, a·l·t·l), (t·l·a, t·l·a·l), (t·l·t, t·l·t·l), . . .}
– (s0

0)
I = {ε, a·l, t·l, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .}

– (s1
0)

I = {a, t, a·l·a, a·l·t, t·l·a, t·l·t, . . .}
– (s0

1)
I = {ε, t, a·l, t·l, a·l·t, t·l·t, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .}

– (s1
1)

I = {a, a·l·a, t·l·a, . . .}
– (s0

2)
I = {ε, a, a·l, t·l, a·l·a, t·l·a, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .}

– (s1
2)

I = {t, a·l·t, t·l·t, . . .}
– movedI

1 = {a, a·l, a·l·a, t·l·a, a·l·a·l, t·l·a·l, . . .}
– movedI

2 = {t, t·l, a·l·t, t·l·t, a·l·t·l, t·l·t·l, . . .}
– F I

0 = {ε, a·l, t·l, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .}
– F I

1 = {ε, t, a·l, t·l, a·l·t, t·l·t, a·l·a·l, a·l·t·l, t·l·t·l, t·l·t·l, . . .}
– F I

2 = {ε, a, a·l, t·l, a·l·a, t·l·a, a·l·a·l, a·l·t·l, t·l·a·l, t·l·t·l, . . .}

Figure 12 shows that I is a model for the formula Φ9. Each node of the tree is associated with the
propositions in P that hold in that node, according to I. For example, consider the root: I imposes that
s0
0 ∧ s0

1 ∧ s0
2 ∧ F0 ∧ F1 ∧ F2 holds in ε. Note that for sake of readability, in the figure we have associated to

each node simply the list of atomic propositions that are true. Additionally, note that the DPDL encoding
does not pose any constraint on the value of moved i predicates in the root: we have arbitrarily chosen their
value to be false. Finally, note that I is not finite (the figure shows only a portion of the tree).

Because of the small model property, Φ admits a finite model If , shown in Figure 13 as a FSM.
The finite model If induces mappings σf , σf

1 and σf
2 from its states to states of the automata

representing the external schema of the target e-Service and of the component ones.

9 The action labeling on edges, of course, is not part of the model: we report it for readability.
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Fig. 13. Finite model If for Φ.

σf (t0) = σf (t2) = σf (t4) = s0
0

σf (t1) = σf (t3) = s1
0

σf
1 (t0) = σf

1 (t2) = σf
1 (t3) = σf

1 (t4) = s0
1

σf
1 (t1) = s1

1

σf
2 (t0) = σf

2 (t1) = σf
2 (t2) = σf

2 (t4) = s0
2

σf
2 (t3) = s1

2

Given σf , σf
1 and σf

2 , we can define If = (∆I
f , {aIf }a∈Σ , {P If }P∈P) of Φ as follows:

– ∆I
f = {t0, t1, t2, t3, t4},

– aIf = {(t0, t1), (t2, t1), (t4, t1)},
– tIf = {(t0, t3), (t2, t3), (t4, t3)},
– lIf = {(t1, t2), (t3, t4)}
– (s0

0)
If = {t0, t2, t4}

– (s1
0)

If = {t1, t3}
– (s0

1)
If = {t0, t2, t3, t4}

– (s1
1)

If = {t1}
– (s0

2)
If = {t0, t1, t2, t4}

– (s1
2)

If = {t3}
– movedIf

1 = {t1, t2}
– movedIf

2 = {t3, t4}
– F

If

0 = {t0, t2, t4}
– F

If

1 = {t0, t2, t3, t4}
– F

If

2 = {t0, t1, t2, t4}

Given the finite model If = (∆I
f , {aIf }a∈Σ , {P If }P∈P) of Φ, we define the Mealy Machine Ac =

(Σ, 2[n], Sc, s
0
c , δc, ωc, Fc, ) representing the internal schema of the target e-Service, as follows:

– Sc = {t0, t1, t2, t3, t4};
– s0

c = t0, where t0 ∈ (s0
0 ∧ s0

1 ∧ s0
2)

If ; note that we could have as well as chosen either t2 or t4 as initial
state.

– δc is defined as:

δc(t0, a) = t1
δc(t0, t) = t3
δc(t1, l) = t2
δc(t3, l) = t4

δc(t2, a) = t1
δc(t2, t) = t3
δc(t4, a) = t1
δc(t4, t) = t3

20



(a, 1)
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(l, 2)
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0
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0
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t = search by title

l = listen

Fig. 14. Minimal FSM associated to T (E0
int).

– ωc is defined as:

ωc(t0, a) = {1}
ωc(t0, t) = {2}
ωc(t1, l) = {1}
ωc(t3, l) = {2}

ωc(t2, a) = {1}
ωc(t2, t) = {2}
ωc(t4, a) = {1}
ωc(t4, t) = {2}

– Fc = {t0, t2, t4}.

This example shows also that the finite state machine associated to the finite model of Φ is in general
not minimal. Indeed, the minimal FSM associated to the tree representing the infinite model is shown in
Figure 14. It is easy to see that it does not represent a model for Φ since, for instance, state t0 is associated
to both moved1 and ¬moved1.

7 Related Work

Up to now, research on e-Services has mainly concentrated on three issues, namely (i) service description
and modeling, (ii) service discovery (e.g., [24]) and (iii) service composition, including synthesis and orches-
tration.

Current research in description and modeling of e-Services is mainly founded on the work on workflows,
which model business processes as sequences of (possibly partially) automated activities, in terms of data
and control flow among them (e.g., [22, 14]). In [18] e-Services are represented as statecharts, and in [7], an
e-Service is modeled as a Mealy machine, with input and output messages, and a queue is used to buffer
messages that were received but not yet processed.

In our paper, we model e-Services as finite state machines, even if we do not consider communication
delays and therefore any concept of message queuing is not taken into account. Indeed, from the survey
of [13], it stems that the most practical approaches for modeling and describing e-Services are the ones based
on specific forms of state machines. Additionally, our model of e-Service is oriented towards representing the
interactions between a client and an e-Service. Therefore, our focus is on action sequences, rather than on
message sequences as in [7], or on actions with input/output parameters as in [16].

As far as orchestration, it requires that the composite e-Service is specified in a precise way, consider-
ing both the specification of how various component e-Services are linked and the internal process flow of
the component one. In [13], different technologies, standards and approaches for specification of composite
e-Services are considered, including BPEL4WS, BPML, AZTEC, etc. Reference [13] identifies three differ-
ent kinds of composition: (i) peer-to-peer, in which the individual e-Services are equals, (ii) the mediated
approach, based on a hub-and-spoke topology, in which one service is given the role of process mediator,
and (iii) the brokered approach, where process control is centralized but data can pass between component
e-Services. With respect to such a classification, the approach proposed in this paper belongs to the mediated
one.

Also most of other research works [9, 23, 17] can be classified into the mediated approach to composition.
Conversely in [10] the enactment of a composite e-Service is carried out in a decentralized way, through
peer-to-peer interactions.
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The DAML-S Coalition [2] is defining a specific ontology and a related language for e-Services, with the
aim of composing them in automatic way. In [25] the issue of service composition is addressed, in order
to create composite services by re-using, specializing and extending existing ones; in [16, 19] composition
of e-Services is addressed by using Golog and providing a semantics of the composition based on Petri
Nets. In [1] a way of composing e-Services is presented, based on planning under uncertainty and constraint
satisfaction techniques, and a request language, to be used for specifying client goals, is proposed. e-Service
composition is indeed a form of program synthesis as is planning. The main conceptual difference is that,
while in planning we typically are interested in synthesizing a new sequences of actions (or more generally
a program, i.e., an execution tree) that achieves the client goal, in e-Service composition, we try to obtain
(the execution tree of) the target e-Service by reusing in a suitable way fragments of the executions of the
component e-Services.

In [7], the interplay between a composite e-Service (global) and component ones (local) is considered.
The authors represent e-Services as FSMs and show that composite e-Services may no longer be a FSM in
presence of unexpected behavior.

8 Conclusions

The main contribution of this paper wrt research on service oriented computing is in tackling simultaneously
the following issues: (i) presenting a formal model where the problem of e-Service composition is precisely
characterized, (ii) providing techniques for computing e-Service composition in the case of e-Services rep-
resented by finite state machines, and (iii) providing a computational complexity characterization of the
algorithm for automatic composition.

In the future we plan to extend our work both in practical and theoretical directions. On one side, we are
developing a Description Logic based prototype system that implements the composition technique presented
in the paper. Such system will enable us to test how the complexity of composition in our framework impacts
real world applications. On the theoretical side, we will address open issues such as the characterization of
a lower bound for the complexity of the composition problem. Additionally, in the proposed framework, we
have made the fundamental assumption that one has complete knowledge on the e-Services belonging to a
community, in the form of their external and internal schema. We also assumed that a client gives a very
precise specification (i.e., the external schema) of an e-Service he wants to have realized by a community.
In particular, such a specification does not contain forms of “don’t care” nondeterminism. Both such as-
sumptions can be relaxed, and this leads to a development of the proposed framework that is left for further
research. Finally, we plan to extend our setting, by also considering the presence of communication delays
and of an unbounded number of active instances.
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A Deterministic Propositional Dynamic Logic

Propositional Dynamic Logics (PDLs) are a family of modal logics specifically developed for reasoning about
computer programs [15]. They capture the properties of the interaction between programs and propositions
that are independent of the domain of computation. In this appendix, we provide a brief overview of a logic of
this family, namely Deterministic Propositional Dynamic Logic (DPDL). More details can be found in [12].

Syntactically, DPDL formulas are built by starting from a set P of atomic propositions and a set A of
deterministic atomic actions as follows:

φ −→ true | false | P | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈r〉φ | [r]φ
r −→ a | r1 ∪ r2 | r1; r2 | r∗ | φ?

where P is an atomic proposition in P, r is a regular expression over the set of actions in A, and a is an
atomic action in A. That is, DPDL formulas are composed from atomic propositions by applying arbitrary
propositional connectives, and modal operators 〈r〉φ and [r]φ. The meaning of the latter two is, respectively,
that there exists an execution of r reaching a state where φ holds, and that all terminating executions of
r reach a state where φ holds. As far as compound programs, r1 ∪ r2 means “choose non deterministically
between r1 and r2”; r1; r2 means “first execute r1 then exeute r2”; r∗ means “execute r a non deterministically
chosen number of times (zero or more)”; φ? means “test φ: if it is true proceed else fail”.

The main difference between PDLs (and modal logics in general) and classical logics relies on the use
of modalities. A modality is a connective which takes a formula (or a set of formulas) and produces a new
formula with a new meaning. Examples of modalities are 〈r〉 and [r]. The classical logic operator ¬, too,
is a connective, which takes a formula p and produces a new formula ¬p. The only difference is that in
classical logic, the truth value of ¬p is uniquely determined by the value of p, instead modalities are not
truth-functional. Because of modalities, the semantics of PDL formulas (and modal logics) is defined over a
structure, namely a Kripke structure.

The semantics of a DPDL formula is based on a the notion of deterministic Kripke structure. A determin-
istic Kripke structure is a triple of the form I = (∆I , {aI}a∈A, {P I}P∈P), where ∆I denotes a non-empty
set of states (also called worlds); {aI}a∈A is a family of partial functions aI ⊆ ∆I ×∆I from elements of ∆I

to elements of ∆I , each of which denotes the state transitions caused by the atomic program a10; P I ⊆ ∆I

denotes all the elements of ∆I were P is true.
The semantic relation “a formula φ holds at a state s of a structure I”, is written I, s |= φ, and is defined

by induction on the form of φ:

I, s |= true always
I, s |= false never
I, s |= P iff s ∈ P I

I, s |= ¬φ iff I, s �|= φ
I, s |= φ1 ∧ φ2 iff I, s |= φ1 and I, s |= φ2

I, s |= φ1 ∨ φ2 iff I, s |= φ1 or I, s |= φ2

I, s |= 〈r〉φ iff there is s′ such that (s, s′) ∈ rI and I, s′ |= φ
I, s |= [r]φ iff for all s′, (s, s′) ∈ rI implies I, s′ |= φ

where the family {aI}a∈A is systematically extended so as to include, for every program r, the corresponding
function rI defined by induction on the form of r:

aI ⊆ ∆I × ∆I

(r1 ∪ r2)I = rI1 ∪ rI2
(r1; r2)I = rI1 ◦ rI2

(r∗)I = (rI)∗

(φ?)I = {(s, s) ∈ ∆I × ∆I | I, s |= φ}

10 Note that the determinism of the Kripke structure derives from the fact that aI assigns to each state in ∆I a
unique successor state.
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Fig. 15. Kripke structure for Example 11.

Example 11. Let P = {p1, p2} be the set of atomic propositions, let A = {a, b, r} be the set of atomic actions
and let I = (∆I , {aI}a∈A, {P I}P∈P) be the Kripke structure shown in Figure A with:

∆I = {s0, s1, s2}
{aI} = {(s0, s1)}
{bI} = {(s0, s2)}
{rI} = {(s1, s0), (s2, s0)}
{pI1 } = {s0, s1}
{pI2 } = {s0, s2}

It is easy to see that in this structure, s0 |= [a]p1 ∧ [b]p2 ∧ [r]false, s1 |= [r](p1 ∧ p2), and s2 |= [r](p1 ∧ p2).

It is important to understand, given a formula φ, which are the formulas that play some role in establishing
the truth-value of φ. In simpler modal logics, these formulas are simply all the subformulas of φ, but due to
the presence of reflexive-transitive closure (on actions) this is not the case for PDLs. Such a set of formulas
is given by the Fischer-Ladner closure [11].

A structure I = (∆I , {aI}a∈A, {P I}P∈P) is called a model of a formula φ if there exists a state s ∈ ∆I

such that I, s |= φ. A formula φ is satisfiable if there exists a model of φ, otherwise the formula is unsatisfiable.
A formula φ is valid in structure I if for all s ∈ ∆I , I, s |= φ. We call axioms formulas that are used to
select the interpretations of interest. Formally, a structure I is a model of an axiom φ, if φ is valid in I. A
structure I is a model of a finite set of axioms Γ if I is a model of all axioms in Γ . An axiom is satisfiable
if it has a model and a finite set of axioms is satisfiable if it has a model. We say that a finite set Γ of
axioms logically implies a formula φ, written Γ |= φ, if φ is valid in every model of Γ . It is easy to see that
satisfiability of a formula φ as well as satisfiability of a finite set of axioms Γ can be reformulated by means
of logical implication, as ∅ �|= ¬φ and Γ �|= ⊥ respectively.

DPDL enjoys two properties that are of particular interest. The first is the tree model property, which
says that every model of a formula can be unwound to a (possibly infinite) tree-shaped model (considering
domain elements as nodes and partial functions interpreting actions as edges). The second is the small model
property, which says that every satisfiable formula admits a finite model whose size (in particular the number
of domain elements) is at most exponential in the size of the formula itself.

Reasoning in DPDL (and, in general, in PDLs) has been thoroughly studied from the computational
point of view. In particular, the following theorem holds [4]:

Theorem 4. Satisfiability in DPDL is EXPTIME-complete.
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