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1. Introduction

Knowledge Representation is the field of Artificial Intelligence which focuses on the
design of formalisms that are both epistemologically and computationally adequate
for expressing the knowledge an agent has about a particular domain. One of the
main research lines of the field has been concerned with the idea that the knowl-
edge structure should be expressed in terms of the classes of objects that are of
interest in the domain, as well as the relevant relationships holding among such
classes. One of the most important relationships is the one holding between two
classes when one class is a subset of the other. Based on such a relationship, the
organization of the set of classes used to characterize a domain of interest is based
on hierarchical structures which not only provides for an effective and compact
representation of information, but also allows one to perform the basic reasoning
tasks in a computationally effective way.

The above principle formed the basis for the development of the first frame sys-
tems and semantic networks. However, such systems were in general not formally
defined and the associated reasoning tools were strongly dependent on the imple-
mentation strategies. A fundamental step towards a logic-based characterization
of such systems has been accomplished through the work on the KL-ONE system
[Brachman and Schmolze 1985], which collected many of the ideas stemming from
earlier semantic networks and frame-based systems, and provided a logical basis
for interpreting objects, classes (or concepts), and relationships (or links, or roles)
between them [see for example Woods and Schmolze 1992]. One of the basic goals of
such a logical reconstruction was the precise characterization of the set of constructs
used to build class and link expressions.

Providing a formal meaning to the constructs of the representation language has
been fundamental, but knowledge representation systems should also come with
reasoning procedures that are sound and complete with respect to a specified for-
mal semantics. This is required to give the user a clear understanding of the results
of reasoning in terms of well-established notions such as logical consequence. In ad-
dition, one should also give a precise characterization of the computational behavior
of the inference system; thus, this aspect also is to be addressed with formal tools.
With the article “The tractability of subsumption in Frame-Based Description Lan-
guages” by Brachman and Levesque [1984], a research line addressing the tradeoff
between the expressiveness of KL-ONE like languages and the computational com-
plexity of reasoning was originated. In fact, it was shown that an apparently minor
extension of the language could make the basic deduction problem in the language
computationally hard (even undecidable).

There has been a number of changes in terminology used in the area; these reflect
the predominant aspects on which the research has concentrated. The descendants
of KL-ONE have first been grouped under the label terminological systems, to
emphasize the fact that classes and relationships were used to establish the basic
terminology adopted in the modeled domain. Later, the emphasis was on the sets
of concept forming constructs admitted in the language, giving rise to the name
concept languages. Recently, after attention has been further moved towards the
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properties of the underlying logical systems, the term Description Logics has be-
come popular, and will be the one used in this chapter.

A knowledge base expressed in a Description Logic (DL) is constituted by two
components, traditionally called TBox and ABox (originally from “Terminological
Box” and “Assertional Box” respectively). The TBox stores a set of universally
quantified assertions, stating general properties of concepts and roles. For example,
an assertion of this kind is the one stating that a certain concept, say Parent,
is defined as a given expression using other concepts and roles, say “Person with
at least one child”. The ABox comprises assertions on individual objects, called
instance assertions. A typical assertion in the ABox is the one stating that an
individual is an instance of a certain concept. For example, one can assert that
Bill is an instance of “Person with at least one child”.

Several reasoning tasks can be carried out on a knowledge base of the above kind.
The simplest form of reasoning involves computing the subsumption relation be-
tween two concept expressions, i.e., verifying whether one expression always denotes
a subset of the objects denoted by another expression. In the above example, one
can easily derive that Parent is a specialization of Person, i.e., Person subsumes
Parent. A more complex reasoning task consists in checking whether a certain as-
sertion is logically implied by a knowledge base. For example, we can infer from the
above assertions that Bill is an instance of Parent.

The above observations emphasize that a DL system is characterized by four
aspects:

1. The set of constructs constituting the language for building the concepts and
the roles used in the TBox and in the ABox.

2. The kind of assertions that may appear in the TBox.

3. The kind of assertions that may appear in the ABox.

4. The inference mechanisms provided for reasoning on the knowledge bases ex-
pressible in the system.

The expressive power and the deduction capabilities of a DL system depend on
the various choices and assumptions that the system adopts with regard to the
above aspects. As to the fourth aspect, we concentrate in this chapter on inference
mechanisms that are sound and complete with respect to the standard Tarskian
semantics (see Sect. 2), although other choices are possible [Patel-Schneider 1989,
Baader and Hollunder 1995, Donini, Lenzerini, Nardi, Nutt and Schaerf 1992].

The first aspect has been the subject of a lot of research work in the last decade.
Indeed, most of the results on the computational complexity of DLs have been
devised in a simplified context where both the TBox and the ABox are empty
[Nebel 1988, Schmidt-Schauß and Smolka 1991, Donini, Lenzerini, Nardi and Nutt
1991, Donini, Lenzerini, Nardi and Schaerf 1996, Donini, Lenzerini, Nardi and Nutt
1997]. This is not surprising, since these works aimed at studying the language
constructs in isolation, with the goal of singling out their impact on the complexity
of subsumption between concept expressions.

The third aspect has been addressed by a few papers dealing with logical
implication of ABox assertions under the simplifying assumption of an empty
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TBox, again with the goal of studying how the various language constructs in-
fluence the reasoning on individuals [Hollunder 1996, Donini, Lenzerini, Nardi and
Schaerf 1994, Schaerf 1994]. The complete setting, i.e., reasoning with both the
TBox and the ABox, has been the subject of some investigations only recently. For
example, Buchheit, Donini and Schaerf [1993] and De Giacomo and Lenzerini [1996]
study two DL systems with powerful languages for expressing both the TBox and
the ABox.

The second aspect, which is the focus of the present chapter, has first been
analyzed under several simplifying assumptions, such as:

• The assertions in the TBox are restricted to so-called definitions, where a defi-
nition is an assertion stating that the extension of a concept denoted by a name
is equal to the extension of another concept (typically a complex concept).

• For every concept C, at most one definition for C appears in the TBox.

• Definitions are acyclic, i.e., if we build a graph whose nodes are atomic concepts
and whose arcs connect pairs of concepts such that one appears in the definition
of the other, then the graph is acyclic.

It is easy to see that, in principle, when the TBox does not contain cycles, the
reasoning tasks can be turned into reasoning on the concept expressions obtained by
unfolding the definitions, i.e., by substituting the concepts defined in the knowledge
base with their definitions. Interestingly, Nebel [1990] has shown that reasoning on
assertions is computationally hard, even under the assumption of acyclicity (coNP-
complete in this case).

More recently, there has been a strong interest in the problem of reasoning with
TBox assertions without the acyclicity assumption [Nebel 1991, Baader 1991, Schild
1994, De Giacomo and Lenzerini 1994a, Calvanese, De Giacomo and Lenzerini 1995,
Horrocks 1998, Horrocks and Sattler 1999]. One important outcome of this line of
research is that, limiting the expressive power of the language with the goal of
gaining tractability is useless in this setting, because the power of TBox assertions
alone generally leads to high complexity in the inference mechanisms even in simple
languages (see Sect. 3.3. For this reason, these investigations often refer to very
powerful languages for expressing concepts and roles, and the property of interest
is no longer tractability of reasoning, but rather decidability [Buchheit et al. 1993,
Calvanese 1996c, De Giacomo 1995]. In addition, in the presence of assertions with
no restrictions on cycles, there are languages which happen to lack the finite model
property and, consequently, one has to distinguish between reasoning on finite and
infinite models.

The goal of the chapter is to provide a thorough introduction to the recent results
on reasoning on TBoxes in expressive DLs, i.e., DLs where:

1. The language used for building concepts and roles comprise all classical concept
forming constructs, inverse roles, and general forms of number restrictions.

2. No restriction is posed on the assertions in the TBox.

We observe that expressive DLs are important in the light of the renewed inter-
est in DLs that we find in disparate application areas. Indeed, DL systems are now
advocated as suitable knowledge representation systems in many contexts, such
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as Information Systems [Catarci and Lenzerini 1993, Calvanese, De Giacomo and
Lenzerini 1998b], Databases [Borgida 1995, Calvanese, Lenzerini and Nardi 1994,
Bergamaschi and Sartori 1992, Sheth, Gala and Navathe 1993, Ullman 1997, Cal-
vanese, Lenzerini and Nardi 1999], Software Engineering [Devambu, Brachman,
Selfridge and Ballard 1991, Calvanese, De Giacomo and Lenzerini 1999], Intelligent
Access to the Network [Levy, Rajaraman and Ordille 1996, Blanco, Illarramendi
and Goñi 1994], action representation [Artale and Franconi 1994], and Planning
[Weida and Litman 1992]. Many of the above papers point out that the full ca-
pabilities of a DL system (expressive language, general TBox assertions) are often
required in the corresponding application fields [see also Doyle and Patil 1991].

The chapter is organized as follows. Sect. 2 presents syntax and semantics of a
DL admitting a very powerful set of constructs. Such a logic, called ALCQI, will
be used as a basis in the paper. Also, Sect. 2 introduces the basic reasoning tasks in
DLs, and provides a general discussion on the various techniques proposed to carry
out such tasks. Sect. 3 addresses the correspondence between Description Logics
and Propositional Dynamic Logics, which is the basis for several technical results
that are presented in Sect. 4, where the problem of reasoning in unrestricted models
is addressed. Sect. 5 presents results and techniques for reasoning on finite models.
Finally, Sect. 6 provides a more complete picture of the decidability/undecidability
borderline in expressive DLs.

2. Description Logics

The basic elements of DLs are concepts and roles, which denote classes and binary
relations, respectively. Arbitrary concept and role expressions (in the following sim-
ply called concepts and roles) are formed by starting from a set of atomic concepts
and atomic roles, i.e., concepts and roles denoted simply by a name, and apply-
ing concept and role constructs. Each variant of DLs is characterized by the set of
constructors that can be used. We name a DL using calligraphic letters, according
to the convention of using a certain symbol (either a letter or a subscript) for a
specific set of constructs. All DLs we deal with include a set of basic constructs (see
later), which give the prefix AL to the name.

In the following, we present the syntax of all constructs that are considered in this
paper, which correspond to a language called ALCQI. For a comprehensive discus-
sion on the constructs used in DLs, see [Woods and Schmolze 1992, De Giacomo
1995, Calvanese 1996c, Donini et al. 1996].

2.1. Syntax and Semantics of the Logic ALCQI

We introduce now the DL ALCQI, in which concepts and roles are formed according
to the following syntax:

C, C′ −→ A | ¬C | C #C′ | C $ C′ | ∀R.C | ∃R.C | ∃≥nR.C | ∃≤nR.C
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R −→ P | P−

where, A and P denote atomic concepts and atomic roles respectively, C and R
denote arbitrary concepts and roles (either direct or inverse roles), and n denotes
a positive integer. We also use the following abbreviations to increase readability:

• ⊥ for A # ¬A (where A is any atomic concept),

• ( for A $ ¬A,

• C⇒D for ¬C $D,

• ∃=nR.C for ∃≥nR.C # ∃≤nR.C.

Let us comment on the constructs of ALCQI.
Among the constructs used in forming concept expressions we find the basic

set operators, namely set complement, intersection, and union that are denoted
as negation (¬), conjunction (#), and disjunction ($), respectively. DLs admit a
restricted form of quantification which is realized through so-called quantified role
restrictions, that are composed by a quantifier (existential or universal), a role, and
a concept expression. Quantified role restrictions allow one to represent the rela-
tionships existing between the objects in two concepts, and the forms considered
in ALCQI are general enough to capture the most common ways of establishing
such relationships. For example, one can characterize the set of objects all of whose
children are male as ∀child.Male, as well as the set of objects that have at least
one male child as ∃child.Male. The former construct is called universal role restric-
tion while the latter is called (qualified) existential role restriction. The simplest
existence condition on a role is ∃R.(, which is often abbreviated by ∃R and is
called unqualified existential. We obtain the basic language AL from ALCQI by
allowing only atomic roles, and by restricting the concept constructs to conjunction,
negation of atomic concepts only, universal role restriction, and unqualified exis-
tential. Adding to AL general negation, denoted by the letter C, gives the language
ALC [Schmidt-Schauß and Smolka 1991], in which also disjunction and qualified
existential role restriction can be expressed. The letter U indicates the presence of
disjunction in a language where negation is restricted to atomic concepts (such as
for example AL).

Number restrictions are used to constrain the number of fillers, i.e., the objects
that are in a certain relationship with a given object. For example, ∃=2child.Male
characterizes the set of parents with exactly two male children. The form used here,
called qualified number restriction [Hollunder and Baader 1991], is a very general
one. It allows one to pose restrictions on the number of objects connected through a
certain role, counting only those objects that satisfy a certain condition. The most
common form of number restriction does not place any restriction on the concept
the role fillers belong to. This form is called unqualified, and is written ∃≥nR,
which stands for ∃≥nR.( (similarly for ∃≤nR and ∃=nR). Observe that the special
cases of number restrictions where the number involved is equal to “1”, express
functionality (∃≤1R) and existence constraints (∃≥1R, i.e., ∃R), respectively. The
presence of qualified number restrictions is specified by the letter Q in the name
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of the language; unqualified number restrictions are indicated by the letter N , and
when the number can be only “1”, the letter used is F .

In addition to concept forming constructs, ALCQI provides the inverse role
construct, which allows us to denote the inverse of a given relation. One can for
example state with ∃≤2child− that someone has at most two parents, by making
use of the inverse of the role child. It is worth noticing, that in a language without
the inverse of roles, in order to express such a constraint one must use two distinct
roles (e.g., child and parent) that cannot be put in the proper relation to each
other. The presence in the language of inverse roles is specified by the letter I.

From the semantic point of view, concepts are interpreted as subsets of a domain,
and roles as binary relations over that domain. An interpretation I = (∆I , ·I) over
a set A of atomic concepts and a set P of atomic roles consists of a nonempty set
∆I (the domain of I) and a function ·I (the interpretation function of I) that
maps every atomic concept A ∈ A to a subset AI of ∆I (the set of instances of A)
and every atomic role P ∈ P to a subset P I of ∆I×∆I (the set of instances of P ).
The interpretation function can then be extended to arbitrary concepts and roles
as follows1:

(¬C)I = ∆I \ CI

(C # C′)I = CI ∩ C′I

(C1 $ C2)
I = CI

1 ∪ CI
2

(∀R.C)I = {o ∈ ∆I | ∀o′. (o, o′) ∈ RI → o′ ∈ CI}

(∃R.C)I = {o ∈ ∆I | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI}

(∃≥nR.C)I = {o ∈ ∆I | !{o′ | (o, o′) ∈ QI ∧ o′ ∈ CI} ≥ n}

(∃≤nR.C)I = {o ∈ ∆I | !{o′ | (o, o′) ∈ QI ∧ o′ ∈ CI} ≤ n}

(R−)I = {(o, o′) ∈ ∆I×∆I | (o′, o) ∈ RI}

The basic reasoning tasks on concept expressions are concept satisfiability and
concept subsumption.

• Concept satisfiability is the problem of deciding whether a concept has a
nonempty interpretation.

• Concept subsumption (between C1 and C2) is the problem of deciding whether
CI

1 ⊆ CI
2 holds in every interpretation.

In ALCQI, and in any language closed under negation, concept satisfiability and
concept subsumption are obviously related to each other. Namely, a concept C is
satisfiable if and only if it is not subsumed by ⊥, while C1 is subsumed by C2 if
and only if C1 # ¬C2 is unsatisfiable.

1We use !S to denote the cardinality of a set S.
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2.2. Knowledge Bases in ALCQI

Usually, in DLs, a knowledge base is formed by two components, a TBox, expressing
intensional knowledge about classes and relations, and an ABox, expressing exten-
sional knowledge about objects. Here we concentrate on intensional knowledge only,
and therefore we identify a knowledge base with a TBox.

Formally, an ALCQI knowledge base is constituted by a finite set of inclusion
assertions of the form

C1 2 C2

with C1 and C2 arbitrary concept expressions.
The semantics of a knowledge base is specified through the notion of satisfaction

of assertions. An interpretation I satisfies the assertion C1 2 C2 if CI
1 ⊆ CI

2 . An
interpretation is a model of a knowledge base if it satisfies all assertions in it. A
knowledge base is satisfiable if it admits a model.

Assertions of the form above are usually called free (or general) [Buchheit et al.
1993]. Special cases of assertions are also of interest. A primitive inclusion assertion
is an inclusion assertion of the form A 2 C, which specifies (by means of C) only
necessary conditions for an object to be an instance of the atomic concept A. Thus,
with only primitive inclusion assertions, an object cannot be inferred to be an
instance of A, unless this is explicitly stated. Symmetrically, an assertion C 2 A
specifies a sufficient condition for an object to be an instance of A. In contrast,
an equality assertion A ≡ C, which corresponds to the pair of assertions A 2 C
and C 2 A, specifies both necessary and sufficient conditions for the instances
of A. Observe that the inclusion assertion A 2 C is equivalent to the equality
assertion A ≡ A # C, and that the inclusion assertion C 2 A is equivalent to
A ≡ A $ C. Equality assertions, are typical of the frame systems from which DLs
originate, where assertions of this kind (without cycles, see later) are used to define
a taxonomy of concepts.

For knowledge bases consisting only of primitive inclusion and/or equality as-
sertions (and no free assertions), specific restrictions on the form of the assertions
have been considered. For such knowledge bases it is usually assumed that each
atomic concept may appear at most once on the left hand side of an assertion.
Under this condition, allowing or not for the presence of so-called (terminological)
cycles2becomes relevant. When cycles are not allowed, adding knowledge bases to
a DL does not substantially change its properties. In particular, reasoning wrt a
knowledge base can be straightforwardly reduced to concept subsumption. This is
done by unfolding, i.e., by recursively replacing atomic concepts on the left hand side
of a knowledge base assertion with the corresponding right hand side [Nebel 1991].
Instead, the presence of a cyclic knowledge base does have a strong impact on
the DL. In this case, different types of semantics of a knowledge base may be de-
fined, which differ in the interpretation of cycles (but coincide for acyclic knowledge

2We remind the reader that a knowledge base contains a cycle if some concept in the right part
of an assertion refers (either directly or indirectly through other assertions) to the atomic concept
on the left part of the assertion.
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bases). The semantics specified above is called descriptive semantics and is the only
one that generalizes to free assertions. Alternatively, fixpoint semantics have been
considered, in which the assertions are viewed as equations and only those inter-
pretations that are (least or greatest) fixpoints of the equations are accepted as
models. For a detailed discussion on the different semantics, see [Nebel 1991, Buch-
heit et al. 1993, Buchheit, Donini, Nutt and Schaerf 1994, Schild 1994, De Giacomo
and Lenzerini 1997]. Note that the presence of cycles increases also the computa-
tional complexity of reasoning [Baader 1996, Calvanese 1996b] and for this reason,
until recently, it was ruled out in most knowledge representation systems based on
DLs.

2.1. Example. The following ALCQI knowledge base Kfile models a file-system
constituted by file-system elements (FSelem), each of which is either a Directory

or a File. Each FSelem has a unique name and a unique parent (child−). A
Directory may have children while a File may not, and Root is a special directory
which has no parent.

FSelem 2 ∃≤1child−.(

FSelem 2 ∃name.String# ∃≤1name.( (2.1)

FSelem ≡ Directory$ File (2.2)

Directory 2 ¬File (2.3)

Directory 2 ∀child.FSelem (2.4)

File 2 ∀child.⊥

Root ≡ Directory# ∀child−.⊥ (2.5)

The assertions above are typical examples of data modeling constructs. In par-
ticular, assertions (2.2) and (2.3) state that FSelem is a complete generalization of
Directory and File. Assertion (2.1) and assertion (2.4 represent a has-a constraint
and a has-many constraint respectively, while assertion (2.5) provides a definition
of the class Root in terms of a class expression, and implicitly contains an is-a
constraint between the two classes Root and Directory.

In the following, we consider knowledge bases constituted by free assertions,
hence without any restriction on their form. Knowledge bases of this form are in
fact equivalent to knowledge bases constituted by primitive inclusion and equality
assertions without restrictions. This follows easily by observing that a free assertion
C1 2 C2 is equivalent to the pair of assertions A ≡ C1, A 2 C2, where A is a newly
introduced atomic concept. In Sect. 5 we deal also with so-called primitive knowledge
bases, which are constituted only by primitive inclusion assertions. Such assertions
correspond to the kind of constraints that can typically be expressed in conceptual
data models [Calvanese et al. 1994], and reasoning on them is easier than with free
assertions, if the underlying concept language is simple [Calvanese 1996b].

The constructs allowed in ALCQI, in particular number restrictions and in-
verse roles, can interact in such a way that a knowledge base may admit no fi-
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nite model, although it is satisfiable with an infinite domain. Similarly, a con-
cept may be nonempty only in infinite interpretations [Cosmadakis, Kanellakis and
Vardi 1990, Calvanese et al. 1994].

2.2. Example. Let Kguard be the following knowledge base

Guard 2 ∃shields# ∀shields.Guard # ∃≤1shields−

FirstGuard 2 Guard # ∀shields−.⊥

Intuitively, the assertions in Kguard state that: a guard is someone who shields
guards and is shielded by at most one individual; a first guard is a guard who is
not shielded by anyone. It is easy to see that the existence of a first guard implies
the existence of an infinite sequence of guards, each one shielding the following one.
This is due to the fact that all guards (including the first one) must have a shields

successor, the first guard has no shields predecessor while any other guard can
have at most one shields predecessor. Hence no guard can be reused to form a
cycle of guards that shield each other, and the only possibility is to have an infinite
chain (or tree). Summing up we can say that FirstGuard is consistent if we allow
interpretations with a domain of arbitrary cardinality, but becomes inconsistent if
we consider only interpretations with a finite domain.

This example shows that ALCQI lacks the finite model property [Ebbinghaus and
Flum 1999], and hence reasoning with respect to unrestricted and finite domains are
different. This fact becomes important when different assumptions on the domain
being modeled are made. Finite interpretations (and thus models) are typically of
interest in Databases, while a finite domain assumption is usually not considered
in Knowledge Representation, and needs to be taken explicitly into account when
devising reasoning procedures [Calvanese et al. 1994, Calvanese 1996a]. Therefore,
we distinguish between unrestricted and finite model reasoning.

The basic reasoning tasks with respect to a given knowledge base are the follow-
ing:
• Knowledge base satisfiability is the problem of deciding whether a knowledge

base K is satisfiable, i.e., whether K admits a model I.
• Concept consistency is the problem of deciding whether a concept C is con-

sistent in a knowledge base K, i.e., whether K admits a model I such that
CI 4= ∅.

• Logical implication is the problem of deciding whether a knowledge base K
implies an inclusion assertion C1 2 C2 (written as K |= C1 2 C2), i.e., whether
CI

1 ⊆ CI
2 for each model I of K.

Concept consistency and logical implication generalize concept satisfiability and
concept subsumption, respectively, when we take into account a knowledge base.

For logics that do not have the finite model property, we distinguish between
unrestricted and finite model reasoning. In particular, we talk about unrestricted
model reasoning, when we consider arbitrary, and finite model reasoning, when
we consider finite models only. When necessary, we distinguish between the two
variants using the subscript “u” or “f”.
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2.3. Example (2.1 continued). The assertions in Kfile imply that in a model
every object connected by a chain of role child of length n (for some n) to an
instance of Root is an instance of FSelem. Formally, Kfile |= ∃(child−)n.Root 2
FSelem.

The basic reasoning tasks above can be reduced to each other (provided the
language over which the knowledge base is built is sufficiently expressive). We have
that logical implication K |= C1 2 C2 can be reformulated as inconsistency of
C1 #¬C2 in K, while consistency of C in K can be reformulated as K 4|= C 2 ⊥. In
addition, consistency of C in K can be reformulated as satisfiability of the knowledge
base K ∪ {( 2 ∃Pnew .C}, where Pnew is a newly introduced atomic role. Finally,
satisfiability of a knowledge base K can be reformulated as consistency of ( in
K. Since the basic reasoning services can be reduced to each other, we can talk
generically about knowledge base reasoning.

2.3. Reasoning Techniques

The study of suitable techniques for solving the reasoning problems in Description
Logics has been developed starting with severe restrictions on the expressiveness of
the language and on the form of the knowledge base. Consequently, the reasoning
techniques have evolved over time, from specialized, ad-hoc methods to fully general
ones.

The first approaches were developed under the assumption that one can embody
the knowledge represented in the terminology directly into concept expressions,
rather than assertions. Therefore, subsumption on concept expressions was regarded
as the basic reasoning task.

The basic idea of the first algorithms for subsumption between concept expres-
sions was to transform two input concepts into labeled graphs and test whether
one could be embedded into the other; the embedded graph would correspond to
the more general concept (the subsumer) [Borgida and Patel-Schneider 1994]. This
method is called structural comparison, and the relation between concepts it com-
putes is called structural subsumption. However, a careful analysis of the algorithms
for structural subsumption shows that they are sound, but not always complete with
respect to the semantics, provided the language is sufficiently expressive.

The studies on the trade-off between the expressiveness of a representation lan-
guage and the difficulty of reasoning on the representations built using that language
[Levesque and Brachman 1987] lead to the idea of carefully analyzing the various
constructs of DLs, with the goal of characterizing the computational complexity of
the reasoning tasks. This kind of research pointed out the need of a general approach
to reasoning in DLs. Schmidt-Schauß and Smolka [1991] propose the notion of con-
straint system as a general technique to meet this need. Subsequent investigations
showed that constraint systems can be seen as specialized forms of tableaux. Many
results on algorithms for reasoning on concept expressions, and their complexity
were then derived using tableau-based techniques [Donini et al. 1991, Buchheit
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et al. 1993, Donini et al. 1996, Donini et al. 1997, Horrocks 1998, Horrocks and
Sattler 1999]. Such techniques, besides being intuitively appealing, provided a use-
ful framework for modularizing the problem of designing reasoning algorithms for
languages formed by different sets on constructs. In fact, a tableau-based algorithm
essentially amounts to providing an expansion rule for each of the constructs in the
language, and then show the correctness of each rule and the termination of the
expansion process. The algorithms for concept satisfiability and subsumption ob-
tained in this way have also lead to actual implementations by application of clever
control strategies and optimization techniques [Horrocks and Patel-Schneider 1999].

One of the problems of tableau-based techniques for reasoning on concept expres-
sions is that they do not easily extend to reasoning with assertions. Buchheit et al.
[1993] present a first attempt to extend the tableau-based approach to (cyclic)
knowledge bases. While providing an interesting result, this work points out the
difficulties that can arise in proving termination of tableau-based algorithms. Such
difficulties, combined with the reports from the first implementations of these meth-
ods (see for example the comparison of implemented systems by Baader, Hollunder,
Nebel, Profitlich and Franconi [1992]), have shifted the attention to other techniques
for reasoning in expressive DLs. In particular, the correspondence between DLs and
Propositional Dynamic Logics (described in Sect. 3) have motivated the research
on reasoning techniques for expressive DLs that are based on the translation into
reasoning problems in Propositional Dynamic Logics, and therefore rely on the as-
sociated automata-based methods [Vardi and Wolper 1984, Vardi 1985, Vardi and
Wolper 1986]. Such an approach is exactly the one reported in this chapter, in
particular in Sect. 4.

It is worth noticing that the tableau-based approach has recently led to interesting
developments towards DLs of the expressive power considered in this paper [Baader
and Sattler 2000]. In particular it has led to the implementation of systems for
reasoning on (free) assertions [Horrocks and Sattler 1999, Horrocks, Sattler and
Tobies 1999, Horrocks and Patel-Schneider 1999].

All the above observations apply basically to unrestricted reasoning. However,
as we mentioned before, unrestricted reasoning and finite model reasoning differ in
expressive DLs. In Sect. 5 we describe the basic ideas of the techniques for finite
model reasoning in expressive DLs.

3. Description Logics and Propositional Dynamic Logics

Propositional Dynamic Logics (PDLs) have been introduced by Fischer and Ladner
[1979] as a formal system for reasoning about computer programs and they have
since been studied extensively and extended in several ways [Kozen and Tiuryn
1990]. In this section we provide a brief overview of PDLs, and of the correspondence
between PDLs and DLs.
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3.1. Syntax and Semantics of PDLs

Syntactically, a PDL is constituted by expressions of two sorts: programs and for-
mulas. Programs and formulas are built by starting from a set Prog of atomic
programs and a set Prop of propositional letters and applying suitable operators.
We denote propositional letters with A, arbitrary formulas with φ, atomic programs
with P , and arbitrary programs with r, all possibly with subscripts. We focus on
Converse-PDL [Fischer and Ladner 1979] whose abstract syntax is as follows:

φ, φ′ −→ ( | ⊥ | A | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | ¬φ | 〈r〉φ | [r]φ

r, r′ −→ P | r ∪ r′ | r; r′ | r∗ | r− | φ?

The basic propositional dynamic logic PDL [Fischer and Ladner 1979] is obtained
from Converse-PDL by dropping converse programs r−.

The semantics of Propositional Dynamic Logics [see for example Kozen and
Tiuryn 1990] is based on the notion of a (Kripke) structure, which is defined as
a triple M = (S, {RP },Π), where S denotes a non-empty set of states, {RP } is a
family of binary relations over S such that each atomic program P is given a mean-
ing through RP , and Π is a mapping from S to propositional letters such that Π(s)
determines the letters that are true in the state s. The basic semantical relation is
“a formula φ holds at a state s of a structure M”, which is written M, s |= φ and
is defined by induction on the structure of φ:

M, s |= A iff A ∈ Π(s)

M, s |= ( always

M, s |= ⊥ never

M, s |= φ ∧ φ′ iff M, s |= φ and M, s |= φ′

M, s |= φ ∨ φ′ iff M, s |= φ or M, s |= φ′

M, s |= φ → φ′ iff M, s |= φ implies M, s |= φ′

M, s |= ¬φ iff M, s 4|= φ

M, s |= 〈r〉φ iff ∃s′: (s, s′) ∈ Rr and M, s′ |= φ

M, s |= [r]φ iff ∀s′: (s, s′) ∈ Rr implies M, s′ |= φ

where the family {RP } is systematically extended so as to include, for every pro-
gram r, the corresponding relation Rr defined by induction on the structure of
r:

Rr− = {(s1, s2) ∈ S × S | (s2, s1) ∈ Rr}

Rr∪r′ = Rr ∪Rr′

Rr;r′ = Rr ◦Rr′

Rr∗ = (Rr)∗

Rφ? = {(s, s) ∈ S × S | M, s |= φ}.

If for each atomic program P the transition relation RP is required to be a
function that assigns to each state a unique successor state, then we are dealing
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with the deterministic variants of PDL [Ben-Ari, Halpern and Pnueli 1982, Vardi
and Wolper 1986, Goldblatt 1992].

A structure M = (S, {RP },Π) is called a model of a formula φ if there exists a
state s ∈ S such that M, s |= φ. A formula φ is satisfiable if there exists a model of
φ, otherwise the formula is unsatisfiable.

The following two theorems show that satisfiability is EXPTIME-complete for
both PDL and Converse-PDL.

3.1. Theorem ([Fischer and Ladner 1979]). Satisfiability in PDL is EXPTIME-
hard.

3.2. Theorem ([Pratt 1979, Vardi and Wolper 1986]). Satisfiability in Converse-
PDL and in Deterministic-Converse-PDL can be decided in deterministic exponen-
tial time.

3.2. The Correspondence between DLs and PDLs

The correspondence between DLs and PDLs, first pointed out by Schild [1991], is
based on the similarity between the interpretation structures of the two logics: at
the extensional level, individuals (members of ∆I) in DLs correspond to states in
PDLs, whereas links between two individuals correspond to state transitions. At
the intensional level, concepts correspond to propositions, and roles correspond to
programs.

More precisely, Schild [1991] showed that Converse-PDL corresponds to the DL
ALCIreg obtained from ALCQI by dropping qualified number restrictions and
adding the constructs to form regular expressions on roles:

R, R′ −→ P | R− | R $R′ | R ◦R′ | R∗ | id(C)

corresponding directly to the PDLs constructs on programs.
Formally, the correspondence is realized through a (one-to-one and onto) map-

ping δ from ALCIreg concepts to Converse-PDL formulas, and from ALCIreg roles
to Converse-PDL programs. The mapping δ is defined inductively as follows (we
assume $ and ⇒ to be expressed by means of # and ¬):

δ(A) = A δ(P ) = P

δ(¬C) = ¬δ(C) δ(R−) = δ(R)−

δ(C # C′) = δ(C) ∧ δ(C′) δ(R $R′) = δ(R) ∪ δ(R′)

δ(∀R.C) = [δ(R)]δ(C) δ(R ◦R′) = δ(R); δ(R′)

δ(∃R.C) = 〈δ(R)〉δ(C) δ(R∗) = δ(R)∗

δ(id(C)) = δ(C)?

Given the above correspondence, all the DLs constructs that we shall consider can
naturally be mapped into their PDLs analogues. However, DLs are normally used
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to define a knowledge base, while in PDLs such a notion has not been considered
explicitly [see Fischer and Ladner 1979]. Consequently, the above correspondence
is not sufficient to relate the reasoning problems. Therefore, Schild [1991] extends
the mapping in such a way that a knowledge base formed by a set of assertions can
be viewed as a PDL formula, and reasoning with respect to the knowledge base
can be rephrased in terms of reasoning on such a PDL formula. We address this
problem in the next section by showing how the assertions in a knowledge base can
be turned into a DL concept.

Notice that, although the correspondence between PDLs and DLs has been ex-
ploited to provide reasoning methods for DLs, it has also lead to a number of
interesting extensions to PDLs in terms of those constructs that are typical of
DLs and have never been considered in PDLs. In particular, there is a tight re-
lation between qualified number restrictions and graded modalities in modal logic
[Van der Hoek 1992, Van der Hoek and de Rijke 1995, Fattorosi-Barnaba and
De Caro 1985, Fine 1972].

3.3. Internalization of the Knowledge Base

One of the main results of the correspondence between DLs and PDLs is the un-
derstanding that a knowledge base can be “internalized” into a single concept, i.e.,
it is possible to build a concept that expresses all the assertions of the knowledge
base [Schild 1991, Baader 1991].

Below we show that for the DLs ALC·reg , with “·” standing for either nothing, I,
or additional constructs (e.g., number restrictions), reasoning on knowledge bases
is in fact reducible to reasoning over concept expressions. We will see that such
a reduction is possible because we consider DLs that are closed under negation
and that are equipped with both union and reflexive-transitive closure of roles.
Specifically, these constructs allow for denoting a “universal role”, and this enables
quantifying universally and existentially over all the objects in the interpretation
domain, as shown below.

In the following we assume that Q1, . . . , Qm are all atomic roles and inverses of
atomic roles present in the language, i.e., for logics without the inverse, Q1, . . . , Qm

are all atomic roles, while for those equipped with inverse, Q1, . . . , Qm are all atomic
roles and their inverse. Typically we assume that the atomic roles of the language
are those occurring in the knowledge base and in the concepts under analysis.

Next we reformulate a standard result in modal logic, the so called generated sub-
model lemma [Goldblatt 1992], in terms of DLs, introducing the notion of generated
subinterpretation.

Let I = (∆I , ·I) be an interpretation and r ∈ ∆I an object in ∆I . We call
r-generated subinterpretation of I the interpretation Ir = (∆Ir , ·Ir) defined as
follows:

∆Ir = {o ∈ ∆I | (r, o) ∈ (
⋃

i=1,...,m

QI
i )∗}
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AIr = AI ∩∆Ir for each atomic concept A

P Ir = P I ∩∆Ir ×∆Ir for each atomic role P

3.3. Proposition. For every ALC·reg concept C, for every interpretation I, and
for every object r ∈ ∆I , r ∈ CI iff r ∈ CIr .

Prop. 3.3 is a direct consequence of the fact that DL concepts describe properties
of an object r only in terms of those objects linked to it through role chains.
The proof is a straightforward variant of that of the generated submodel lemma by
Goldblatt [1992]. (Cfr. also with the notion of bisimulation described in Chap. XII.)

The main consequence of Prop. 3.3 is that, without loss of generality, we may
restrict our attention to a special class of interpretations that we call “rooted con-
nected interpretations”. An interpretation I = (∆I , ·I) is a rooted connected inter-
pretation if and only if, for some r ∈ ∆I called “root”

∆I = {o | (r, o) ∈ (
⋃

i=1,...,m

QI
i )∗}.

Observe that if the DL we are considering is equipped with the inverse constructor
then all o ∈ ∆I can be considered roots, while if it does not have inverse then there
could be in fact only one root. Note also that generated subinterpretations are, by
definition, rooted connected models. The following proposition ensures that we can
restrict our attention to rooted connected interpretations.

3.4. Proposition. Let K be an ALC·reg knowledge base and C, C′ two ALC·reg
concepts. Then the following holds:
• Knowledge base satisfiability. K is satisfiable iff for some rooted connected in-

terpretation I, I is a model of K.
• Concept consistency. C is consistent in K iff for some rooted connected inter-

pretation I and some s ∈ ∆I, I is a model of K and s ∈ CI.
• Logical implication. K |= C 2 C′ iff every rooted connected interpretation I

that is a model of K is also a model of C 2 C′.

Observe that in ALC·reg , the role U = (
⊔

i=1,...,m Qi)∗ is part of the language,
and that such a role is interpreted as

(
⋃

i=1,...,m

QI
i )∗.

This means that, at least with respect to rooted connected interpretations, we have
in fact a universal role, i.e., a role that reaches from the root every object in the
domain3. Hence ∀U .C expresses that every object in the domain is an instance of
C, and ∃U .C expresses that there exists an object of the domain that is an instance

3The universal role corresponds to a master modality in modal logic, which becomes the so-
called universal modality when connected models are considered [Blackburn, de Rijke and Venema
2000].
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of C. With the notion of universal role in place we can internalize the knowledge
base, i.e., we can encode tasks involving the knowledge base into tasks not involving
it.

3.5. Proposition. Let K = {C1 2 D1, . . . , Cn 2 Dn} be an ALC·reg knowledge
base, C, C′ two ALC·reg concepts, and let CK = (C1⇒D1)# · · ·#(Cn⇒Dn). Then
the following holds:
• Knowledge base satisfiability. K is satisfiable iff ∀U .CK is satisfiable.
• Concept consistency. C is consistent in K iff C # ∀U .CK is satisfiable.
• Logical implication. K |= C 2 D iff (∀U .CK)⇒(∀U .(C⇒D)) is satisfiable,

or equivalently (∀U .CK)# (∃U .(C #¬D)) is unsatisfiable, which can be further
simplified to checking unsatisfiability of (∀U .CK) # (C # ¬D).

An immediate consequence of Prop. 3.5 and of Th. 3.2 is the following.

3.6. Theorem. Concept satisfiability and knowledge base satisfiability (and hence
concept subsumption, concept consistency, and logical implication) in ALCIreg are
EXPTIME-complete.

Observe that for DLs that do not include constructs for building regular expres-
sions over roles, there is a sharp difference between reasoning techniques used in
the presence of knowledge bases, and techniques used to reason on concept expres-
sions. For example the logic ALN admits simple structural algorithms for deciding
reasoning tasks not involving assertions that are sound and complete and require
polynomial time [Borgida and Patel-Schneider 1994]. However, if free assertions are
considered then decision procedures developed involve suitable termination strate-
gies [Donini et al. 1996]. This difference is reflected by the computational proper-
ties of the associated decision problems. In particular, for the logic ALC, reasoning
tasks not involving knowledge bases are PSPACE-complete, while for knowledge
base reasoning the following hardness result holds.

3.7. Theorem. Concept consistency (and hence knowledge base satisfiability and
logical implication) in ALC is EXPTIME-hard.

This result follows directly from the proof of Thm. 3.1, by observing that the PDL
formula used in the reduction has the form φ∧ [P ∗]φ′, where the only program ap-
pearing in φ and φ′ is the atomic program P . By considering Prop. 3.5, satisfiability
of such a formula corresponds to concept consistency in ALC.

4. Unrestricted Model Reasoning

In this section we discuss the problem of reasoning with respect to unrestricted
models in knowledge bases expressed in ALCQI. We show that reasoning in ALCQI
knowledge bases can be “compiled” into satisfiability in standard PDL. In order
to do so we consider ALC·, with “·” standing for either nothing, F , I, or FI,
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augmented by the reflexive-transitive closure operator on atomic and inverse roles
(if present in the logic), with the proviso that such a role construct cannot appear
in functional restrictions. In other words, functional restrictions (if present in the
logic) are only applied to atomic roles or their inverse. We denote such logics by
ALC·∗.

Without loss of generality we concentrate on knowledge base satisfiability. We
provide a cascade of encodings4 starting from knowledge base satisfiability in
ALCQI and arriving to knowledge base satisfiability in ALC∗. Since ALC∗ is a
sublanguage of ALCreg , which in turn corresponds to standard PDL, by internaliz-
ing the knowledge base we get to satisfiability in standard PDL.

The cascade of encodings of knowledge base satisfiability problems is as follows:

ALCQI −→ ALCFI∗ −→ ALCI∗ −→ ALC∗

More precisely, we first eliminate qualified number restrictions in favor of (unqual-
ified) functional restrictions, which are the simplest form of number restriction
considered in DLs –in doing this we need to introduce the reflexive-transitive clo-
sure of atomic and inverse roles; second, we eliminate completely functional restric-
tions; third, we eliminate inverse roles thus arriving to ALC∗. Notably in encoding
ALCFI∗ knowledge bases into ALCI∗ knowledge bases, we go from a logic that
does not have the finite model property to a logic that has it.

The logics ALC∗ and ALCI∗ correspond to a restricted form of standard PDL
and Converse-PDL respectively, which are both well known. We encode ALCI∗

knowledge bases into ALC∗ knowledge bases mainly for two reasons. First, the
conceptual simplicity of encoding allows us to explain a general encoding technique
in simple terms – the same encoding technique is also used to encode ALCFI∗

knowledge bases into ALCI∗ knowledge bases, although its application is much
more subtle in that case. Second, since, as mentioned, ALC∗ is a sublanguage of
ALCreg , we can apply internalization and transform knowledge base reasoning in
ALC∗ into satisfiability in standard PDL, for which decision procedures can be
effectively implemented (e.g., [Pratt 1980, De Giacomo and Massacci 2000] based
on tableaux).

Each of the above encodings is polynomial5. Hence the overall compilation is
polynomial as well. This allows us to conclude that knowledge base satisfiability
(and hence concept consistency and logical implication) in ALCQI is EXPTIME-
decidable, and hence EXPTIME-complete since knowledge base satisfiability in
ALC is already EXPTIME-hard. Moreover such a cascade of encodings provides an
algorithm to reason in ALCQI knowledge bases: first compile the ALCQI knowl-
edge base into a ALC∗ knowledge base (a polynomial step); then by internalization
transform it into a standard PDL satisfiability problem (again a polynomial step);
then run a PDL decision procedure (a possibly exponential step).

4On encoding non-classical logics in classical logic see also Chap. XI, and on encoding modal
logics in other modal logics see [Kracht and Wolter 2000].

5With the assumption, which is standard in DLs, that number restrictions are encoded in
unary. Numbers encoded in binary are considered e.g., in [Tobies 1999b, Tobies 1999a].
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The rest of the section is organized as follows. First we present the notion of
Fischer-Ladner closure of a knowledge base that is used in formulating the encod-
ings. Then we present the encoding of knowledge bases, in order, from ALCI∗ to
ALC∗, from ALCFI∗ to ALCI∗, and finally from ALCQI to ALCFI∗.

4.1. Fisher-Ladner Closure of a Knowledge Base

We assume, without loss of generality, $, ∀ to be expressed by means of ¬,#, ∃. The
Fisher-Ladner closure of an ALCI∗ knowledge base K, denoted CL(K), is the least
set of concepts F such that:

if C 2 C′ ∈ K then C, C′ ∈ F

if C # C′ ∈ F then C, C′ ∈ F

if ¬C ∈ F then C ∈ F

if C ∈ F then ¬C ∈ F (if C is not of the form ¬C′)

if ∃R.C ∈ F then C ∈ F

if ∃R∗.C ∈ F then C, ∃R.∃R∗.C ∈ F

The notion of Fisher-Ladner closure of a knowledge base is closely related to the
notion of Fisher-Ladner closure of a PDL formula [Fischer and Ladner 1979], which
in turn is closely related to that of set of subformulas in simpler modal logics.
Intuitively, given a knowledge base K, CL(K) includes all the concepts that play
some role in establishing the truth-value of the concepts occurring in K. In other
words, CL(K) includes all the concepts occurring in K and those generated by
unfolding each concept of the form ∃R∗.C into C $ ∃R.∃R∗.C. Both the number
and the size of the concepts in CL(K) are linearly bounded by the size of K.

4.2. Inverse Roles

We show now that it is possible to eliminate the “inverse” operator from ALCI∗

knowledge bases, while preserving the soundness and completeness of inference.
Specifically, we present a polynomial encoding of ALCI∗ knowledge bases into
ALC∗ knowledge bases that eliminates inverse roles but adds enough information
so as not to destroy the original meaning of concepts with respect to the reasoning
tasks. Such an encoding, first presented by De Giacomo [1996] in the context of
PDLs, is the simplest illustration of a general technique for deriving reasoning
procedures for expressive logics based on a (possibly polynomial) encoding of logics
into simpler ones. Such a technique has led to several decidability and complexity
results, as well as reasoning procedures in DLs. In particular, in the Sect. 4.3 it is
used to eliminate functional restrictions.

Intuitively, the technique is based on two main points. Let the “Source Logic”
be SL and the “Target Logic” be TL (in this section these logics are ALCI∗ and
ALC∗ respectively):
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1. Identify a finite set of assertion schemas in the language of TL capturing those
characteristics that distinguish SL from TL (in the present case such assertion
schemas are of the form C 2 ∀P .(∃P c.C), C 2 ∀P c.(∃P .C), and force the
binary relation interpreting P c to be the inverse of the one interpreting P ).

2. Devise a function that, given an SL knowledge base K, returns a finite “closed”6

set of SL concepts, whose interpretation uniquely determines that of the con-
cepts in K, and that is used to instantiate the assertion schemas in (1) (in the
present case such a set is simply the Fisher-Ladner closure of K).

Indeed, by instantiating the assertion schemas in (1) to the concepts in (2), we can
derive a TL knowledge base (in the present case, the so called ALC∗-counterpart
of an ALCI∗ knowledge base, see below) which corresponds to the original SL
knowledge base, in the sense that it preserves knowledge base satisfiability, concept
consistency, and logical implication. If both the cardinality of the sets in (1) and (2)
and the size of their elements are polynomially bounded by the original knowledge
base, then so is the knowledge base we get.

We define the encoding ζ from ALCI∗ knowledge bases K to ALC∗ knowledge
bases ζ(K), such that K is satisfiable if and only if ζ(K) is satisfiable. The knowledge
base ζ(K), whose size is polynomial in the size of K, is called the ALC∗-counterpart
of K.

4.1. Definition. Let K be an ALCI∗ knowledge base. The ALC∗-counterpart ζ(K)
of K is the union of two knowledge bases, ζ(K) = ζ1(K) ∪ ζ2(K), where:

• ζ1(K) is obtained from the original knowledge base K by replacing each occur-
rence of P− with a new atomic role P c, for every atomic role P occurring in
K.

• ζ2(K) constitutes of a pair of assertions

C 2 ∀P .∃P c.C

C 2 ∀P c.∃P .C

for every C ∈ CL(ζ1(K)) and every atomic program P occurring in K.

In ζ1(K) the inverse of atomic roles in K is replaced with new atomic roles. Each
new role P c is intended to represent P− in ζ1(K). ζ2(K) constrains the models I of
ζ(K) so that, for all C ∈ CL(ζ1(K)), for all objects o ∈ ∆I , if o is an instance of C
then all the P -successors of o have a P c-successor which is an instance of C as well,
and similarly all the P c-successors of o have a P -successor which is an instance of
C. We show that, as far as knowledge base satisfiability is concerned (and hence
concept consistency and logical implication), this allows us to correctly represent
the inverse of P by means of P c.

6That is, the interpretation of each concept in the set depends only on the interpretation of
the concepts already in the set.
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First of all, observe that if, instead of ζ2(K), we impose the two assertion schemas:

X 2 ∀P .∃P c.X

X 2 ∀P c.∃P .X

where X is to be replaced by every concept of the language defined by the atomic
concepts and roles in ζ1(K), then the models of ζ1(K) would be isomorphic to
the models of K. In fact, the above two assertion schemas correspond to the ones
used in the axiomatization of Converse-PDL to force each program P− to be the
converse of the program P . Hence the resulting logic would not be ALC∗ but ALCI∗

(where P c instead of P− denotes inverse programs). ζ2(K) can be thought of as a
finite instantiation of the above two schemas, with one instance for each concept in
CL(ζ1(K)). Although imposing the validity of such a finite instantiation does not
suffice to guarantee the isomorphism of the models of ζ1(K) and K, it suffices to
guarantee that K has a model if and only if ζ(K) has one.

To prove this result we define an operation that, given a model I of ζ(K), trans-
forms it into a new special model I ′ of ζ(K), called c-closure of I, which is isomor-
phic to a model of K.

Let P̃ be an abstraction for both P and P c, such that P̃ c denotes P c if P̃ = P ,
and P̃ c denotes P if P̃ = P c. Let I = (∆I , ·I) be a model of ζ(K). We call the
c-closure of I, the interpretation I ′ = (∆I′

, ·I
′
), defined as follows:

• ∆I′
= ∆I ;

• AI′

= AI , for each atomic concept A;
• P̃ I′

= P̃ I ∪ {(o′, o) | (o, o′) ∈ (P̃ c)I}, for each atomic role P̃ .
Note that in the c-closure I ′ of a model I, P I′

is obtained from P I by including,
for each pair (o, o′) in (P c)I , the pair (o′, o) in P I′

, and similarly (P c)I
′
is obtained

from (P c)I by including, for each pair (o, o′) in P I , the pair (o′, o) in (P c)I
′
. As a

consequence, in the c-closure of an interpretation each atomic role P c is interpreted
as the inverse of P .

The next lemma relates models of ζ(K) to models of K.

4.2. Lemma. Let K be an ALCI∗ knowledge base, ζ(K) its ALC∗-counterpart, and
I a model of ζ(K). Then the c-closure I ′ of I is a model of K.

From this lemma, and by observing that every model of K can be trivially trans-
formed into a model of ζ(K) by interpreting P c as P−, we get the following result.

4.3. Theorem. An ALCI∗ knowledge base K is satisfiable if and only if its ALC∗-
counterpart ζ(K). is satisfiable.

As a corollary of this theorem we get that knowledge base satisfiability (and hence
concept consistency and logical implication) in ALCI∗ and in ALC∗ have the same
computational complexity: they are both EXPTIME-complete. Observe however
that such a result also follows directly from observing that reasoning with ALCI∗

knowledge bases corresponds to reasoning with a restricted form of Converse-PDL
and similarly, reasoning with ALC∗ knowledge bases corresponds to reasoning with
a restricted form of standard PDL.
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4.3. Functional Restrictions

We now study reasoning in ALCFI∗ knowledge bases. ALCFI∗ is the DL obtained
from ALCI∗ by adding functional restrictions, i.e., number restrictions of the form
∃≤1R, where R is either an atomic role or the inverse of an atomic role. We show
that knowledge base satisfiability (and hence concept consistency and logical im-
plication) in ALCFI∗ is EXPTIME-decidable, by following the technique already
introduced above, and exhibiting an encoding of ALCFI∗ knowledge bases into
ALCI∗ knowledge bases [De Giacomo and Lenzerini 1994a, De Giacomo 1995].
Although such an encoding has a simple form, proving its correctness requires
quite sophisticated manipulations on interpretations. In particular, we observe that
ALCFI∗ knowledge bases do not have the finite model property, while ALCI∗

knowledge bases do have it. Hence filtration arguments, usual in modal logics, can-
not be applied directly.

We formally define the encoding γ from ALCFI∗ knowledge bases K to ALCI∗

knowledge bases γ(K), such that K satisfiable if and only if γ(K) is satisfiable. The
size of γ(K) is polynomial with respect to the size of K. Since knowledge base satis-
fiability in ALCI∗ can be decided in EXPTIME, this ensures that knowledge base
satisfiability (and hence concept consistency and logical implication) in ALCFI∗

can be decided in EXPTIME too.
We assume, without loss of generality, that K is in negation normal form (i.e.,

negations in concepts occurring in K are pushed inside as much as possible). It is
easy to check that the transformation of any concept into negation normal form
can be performed in linear time in the size of the concept.

4.4. Definition. Let K be an ALCFI∗ knowledge base in negation normal form.
The ALCI∗-counterpart γ(K) of K is the union of two knowledge base, γ(K) =
γ1(K) ∪ γ2(K), where:
• γ1(K) is obtained from the original knowledge base K by replacing each
∃≤1R with a new atomic concept A∃≤1R, and each ¬∃≤1R with (∃R.H∃≤1R) #
(∃R.¬H∃≤1R), where H∃≤1R is again a new atomic concept7.

• γ2(K) constitutes of one assertion

(A∃≤1R # ∃R.C) 2 ∀R.C

for every A∃≤1R occurring in γ1(K) and every C ∈ CL(γ1(K)), with the pro-
viso that every concept of the form ¬A∃≤1R is replaced by (∃R.H∃≤1R) #
(∃R.¬H∃≤1R).

γ1(K) introduces the new concepts A∃≤1R and H∃≤1R in place of ∃≤1R, so that
positive occurrences of ∃≤1R are represented by the concept A∃≤1R, and negative
occurrences are represented by (∃R.H∃≤1R) # (∃R.¬H∃≤1R). Note that every in-
stance of (∃R.H∃≤1R) # (∃R.¬H∃≤1R) has at least two R-successors.

7We recall that only atomic roles or inverse of atomic roles can appear inside functional re-
strictions.
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The purpose of γ2(K) is less obvious. Intuitively, it constrains the models I of
γ(K) so that: for every object o ∈ ∆I , if o is an instance of A∃≤1R and o1 and o2

are two R-successors of o, then o1 and o2 are instances of exactly the same concepts
of CL(γ1(K)). This condition is sufficient to build a new model in which o1 and o2

are merged into a single object.
Observe that if, instead of adding γ2(K), we impose the assertion schema

A∃≤1R # ∃R.X 2 ∀R.X

where X is to be replaced by every concept of the language defined by the atomic
concepts and roles in γ1(K), then the models of γ1(C) would be isomorphic to
models of the original ALCFI∗ knowledge base. However, the problem of verifying
whether an ALCI∗ concept is logically implied by an assertion schema is in general
undecidable [Kozen and Tiuryn 1990]. So, adding the above schema to ALCI∗ is of
no use in establishing the decidability of reasoning in ALCFI∗ knowledge bases.

Instead, the knowledge base γ2(K) can be thought of as a finite instantiation of
the schema above, with one instance for each concept in CL(γ1(K))). Intuitively,
imposing the validity of such finite instantiation is sufficient to guarantee that if
γ(K) has a model then K has a model as well, and vice-versa.

The main part in showing this result is showing that, given a model of γ(K) we
can build a model of K. We proceed in two main steps:
1. Given a model I of γ(K), we construct a special tree-like model It.
2. Then, by suitably modifying It, we construct a new model If , in which all func-

tional restriction requirements are satisfied, i.e., every object in which A∃≤1R

holds has at most one R-successor.
The model of γ(K) thus obtained is isomorphic to a model of the original ALCFI∗

knowledge base K. The constructions of It and If are quite sophisticated and we
state only the final result.

4.5. Theorem. An ALCFI∗ knowledge base K is satisfiable if and only if its
ALCI∗-counterpart γ(K). is satisfiable.

Observe that we cannot use a standard filtration argument [Goldblatt 1992] to
prove the theorem above. In general, the ability to get a filtration of a model by a
finite set of concepts (as CL(γ1(K))) leads to a finite model property. But ALCFI∗

knowledge bases do not have the finite model property, so filtration techniques are
not suitable to prove decidability. The construction sketched above instead builds,
from a given model of γ(K), a model of K that can be an infinite tree. Overall it is
notable that reasoning in ALCFI∗ knowledge bases, which do not have the finite
model property, can be encoded, in a simple way, to reasoning in ALCI∗ knowledge
bases, which do have it.

The above result allows for establishing the decidability of reasoning in ALCFI∗

knowledge bases. Moreover, since the encoding is polynomial, we get a characteri-
zation of the computational complexity.

4.6. Theorem. Knowledge base satisfiability (and hence concept consistency and
logical implication) in ALCFI∗ is EXPTIME-complete.
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4.4. Qualified Number Restrictions

We now study reasoning in ALCQI knowledge bases by exhibiting an encoding from
ALCQI knowledge bases to ALCFI∗ knowledge bases [De Giacomo and Lenzerini
1995b, De Giacomo 1995]. The encoding is based on the notion of reification (see
later). As the encoding is polynomial, we get as a result the EXPTIME-decidability
of reasoning in ALCQI knowledge bases. However, before discussing reasoning in
ALCQI knowledge bases, we discuss some of the issues involved in the simpler logic
ALCQ obtained by dropping inverse roles. This allows us to gain some intuition
about results for ALCQI.

4.4.1. Reasoning in ALCQ Knowledge Bases
Let us first ignore qualified number restrictions. Concepts of ALCQ without qual-
ified number restrictions –i.e., concepts of ALC– correspond directly to standard
PDL formulas (of a restricted form). It is well-known that PDL formulas can be
reduced to Deterministic-PDL formulas [Parikh 1981]. The basic idea, reformulated
in DLs terms, is to replace each atomic role P by FP ◦G∗

P , where FP and GP are new
atomic roles that are globally functional (the assertion ( 2 ∃≤1FP #∃≤1GP holds).
Thus we encode ALC knowledge bases into ALCF∗ knowledge bases of a special
form. Let us call the resulting knowledge base K′. We have that K is satisfiable if
and only if it K′ is satisfiable.

We briefly sketch the reasoning behind the proof of this statement. The if direc-
tion is straightforward, since any model I ′ of K′ can be transformed into a model
of K by interpreting P as (FP ◦ G∗

P )I
′
. The only if direction is as follows. Both

ALC knowledge bases and ALCF∗ knowledge bases have the tree model property:
if a knowledge base has a model then it has a tree model, i.e., a model having the
form of a tree. Hence, without loss of generality, we can restrict our attention to
tree models only. Now, there is a one-to-one transformation from tree models IT of
K to (tree) models IB of K′. Indeed, we take ∆IB = ∆IT , AIB = AIT , and given
an object o ∈ ∆IT having as P -successors o1, . . . , ol we take (o, o1) ∈ F IB

P , and
(oi, oi+1) ∈ GIB

P , for i = 1, . . . , l − 1. In this way we have (o, oi) ∈ P IT if and only
if (o, oi) ∈ (FP ◦G∗

P )IB . Note that this construction is similar to the one often used
in programming to transform an n-ary tree into a binary tree by coding children of
a node as the combination of one child and its siblings.

We remark that IT is required to be a tree because, once we get IB, we need
to recover the “original” P -predecessor o of an object oi, and thus (FP ◦ G∗

P )−

needs to be functional. Otherwise, given an object oi, we would not know which of
the various (FP ◦G∗

P )−-successors is its original P -predecessor o, and therefore we
would not be able to reconstruct IT from IB .

Now let us consider again ALCQ knowledge bases. Representing an atomic role
P as FP ◦ (F ′

P )∗, where FP and F ′
P are functional roles, makes it easy to express

qualified number restrictions as constraints on the chain of FP ◦ G∗
P -successors of

an object. For example, denoting the transitive closure of a role F as F+, i.e.,
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F+ .
= F ◦ F ∗, the concept ∃≤3P .C can be expressed by

∀(FP ◦G∗
P ◦ id(C) ◦G+

P ◦ id(C) ◦G+
P ◦ id(C) ◦G+

P ).¬C

which is equivalent to

∀FP .∀G∗
P .(C⇒∀G+

P .(C⇒∀GP .∀G∗
P .(C⇒∀GP .∀G∗

P .¬C))).

This concept can be read as “everywhere along the chain FP ◦G∗
P there are at most

three objects that are instances of C”, which corresponds exactly to the intended
meaning.

The concept ∃≥3P .C can be expressed by

∃(FP ◦G∗
P ◦ id(C) ◦G+

P ◦ id(C) ◦G+
P ).C

which is equivalent to

∃FP .∃G∗
P .(C # ∃GP .∃G∗

P .(C # ∃GP .∃G∗
P .C))

and can be read as “somewhere along the chain FP ◦ G∗
P there are at least three

objects that are instances of C”, which again corresponds exactly to the intended
meaning.

4.4.2. Reification of Roles
The construction above does not apply directly to ALCQI knowledge bases, since
the presence of inverse roles does not allow us to restrict the attention to tree-like
interpretations of the above form8. In order to carry out a similar construction we
first need to reify atomic roles.

Atomic roles are interpreted as binary relations. Reifying a binary relation means
creating for each pair of objects (o1, o2) in the relation an object which is connected
by means of two special roles V1 and V2 to o1 and o2, respectively. The set of such
objects represents the set of pairs forming the relation. However, the following
problem arises: in general, there may be two or more objects being all connected
by means of V1 and V2 to o1 and o2 respectively, and thus all representing the same
pair (o1, o2). Obviously, in order to have a correct representation of a relation such
a situation must be avoided.

Given an atomic role P , we call its reified form the complex role

V −
1 ◦ id(AP ) ◦ V2

where AP is a new atomic concept denoting objects representing the tuples of the
relation associated with P , and V1 and V2 denote two functional roles that connect
each object in AP to the first and the second component respectively of the tuple
represented by the object. Note that there is a clear symmetry between the role

8Indeed the presence of inverse roles allows for restricting the attention to “two-way” tree
interpretations, as opposed to the “one-way” tree interpretations needed here.
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V −
1 ◦id(AP )◦V2 and its inverse V −

2 ◦id(AP )◦V1. Observe that such complex roles are
not part of ALCQI, however given a concept of the form ∃(V −

1 ◦ id(AP )◦V2).C we
can immediately transform it into an ALCQI concept, namely ∃V −

1 .(AP #∃V2.C).
Similarly for universal and number restrictions.

4.7. Definition. Let K be an ALCQI knowledge base. The reified-counterpart
ξ1(K) of K is the union of two knowledge bases, ξ1(K) = ξ0(K) ∪Θ1, where:
• ξ0(K) is obtained from the original knowledge base K by recursively replacing,

for every atomic role P , every existential restriction, universal restriction and
qualified number restriction as follows:

∃P .C by ∃V −
1 .(AP # ∃V2.C),

∀P .C by ∀V −
1 .(AP ⇒∀V2.C),

∃≤nP .C by ∃≤nV −
1 .(AP # ∃V2.C),

∃≥nP .C by ∃≥nV −
1 .(AP # ∃V2.C),

∃P−.C by ∃V −
2 .(AP # ∃V1.C),

∀P−.C by ∀V −
2 .(AP ⇒∀V1.C),

∃≤nP−.C by ∃≤nV −
2 .(AP # ∃V1.C),

∃≥nP−.C by ∃≥nV −
2 .(AP # ∃V1.C),

where V1 and V2 are new atomic roles (the only ones present after the trans-
formation) and AP is a new atomic concept.

• Θ1 = {( 2 ∃≤1V1 # ∃≤1V2}.

The next lemma guarantees us that, without loss of generality, we can restrict
our attention to models of ξ1(K) that correctly represent relations associated with
atomic roles, i.e., models in which each tuple of such relations is represented by a
single object.

4.8. Lemma. If ξ1(K) has a model I, then it has a model I ′ such that for each
(o, o′) ∈ (V −

1 ◦ id(APi
) ◦ V2)I

′

there is exactly one ooo′ such that (ooo′ , o) ∈ V I′

1

and (ooo′ , o′) ∈ V I′

2 . That is, for all o1, o2, o, o
′ ∈ ∆I′

such that o1 4= o2 and o 4= o′,
the following condition holds:

o1, o2 ∈ AI′

Pi
→ ¬((o1, o) ∈ V I′

1 ∧ (o2, o) ∈ V I′

1 ∧ (o1, o
′) ∈ V I′

2 ∧ (o2, o
′) ∈ V I′

2 ).

The proof of Lem. 4.8 exploits the disjoint union model property: let K be an
ALCQI knowledge base and I = (∆I , ·I) and J = (∆J , ·J ) be two models of K,
then also the interpretation I :J = (∆I :∆J , ·I : ·J ) which is the disjoint union
of I and J , is a model of K. We remark that most DLs have such a property, which
is, in fact, typical of modal logics. Without going into details, we just mention that
the model I ′ is constructed from I as the disjoint union of several copies of I, in
which the extension of role V2 is modified by exchanging, in those instances that
cause a wrong representation of a role, the second component with a corresponding
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object in one of the copies of I. To prove that I ′ is indeed a model one can exploit,
e.g., bisimulation (see also Chap. XII).

By using Lem. 4.8 we can prove the result below.

4.9. Lemma. Let K be an ALCQI knowledge base and ξ1(K) its reified-counterpart.
Then K is satisfiable if and only if ξ1(K) is satisfiable.

4.4.3. Reducing ALCQI Knowledge Bases to ALCFI∗ Knowledge Bases
By Lemma 4.9, we can concentrate on the reified-counterparts of ALCQI knowl-
edge bases. Note that these are ALCQI knowledge bases themselves, but their
special form allows us to convert them into ALCFI∗ knowledge bases. We adopt
a technique resembling the one exploited for encoding ALCQ knowledge bases into
ALCF∗ knowledge bases. Intuitively, we represent the role V −

i (i = 1, 2), which
is not functional (while Vi is so), by the role FVi

◦ G∗
Vi

, where FVi
and GVi

are
new functional roles. The main point of such a transformation is that now qualified
number restrictions can be encoded as constraints on the chain FVi

◦G∗
Vi

. Formally,
we define the ALCFI∗-counterpart of an ALCQI knowledge base as follows.

4.10. Definition. Let K be an ALCQI knowledge base and ξ1(K) = ξ0(K) ∪ Θ1

its reified-counterpart. The ALCFI∗-counterpart ξ2(K) of K is the union of two
knowledge bases, ξ2(K) = ξ′0(K) ∪Θ2, where:

• ξ′0(K) is obtained from ξ0(K) by recursively replacing, for Vi (i = 1, 2), every
existential restriction, universal restriction and qualified number restriction as
follows:

∃Vi.C by ∃(G−
Vi

)∗.∃F−
Vi

.C

∀Vi.C by ∀(G−
Vi

)∗.∀F−
Vi

.C

∃V −
i .C by ∃FVi

.∃G∗
Vi

.C

∀V −
i .C by ∀FVi

.∀G∗
Vi

.C

∃≤nV −
i .C by ∀FVi

.∀G∗
Vi

.(C⇒∀G+
Vi

)n.¬C

∃≥nV −
i .C by ∃FVi

.∃G∗
Vi

.(C # ∃G+
Vi

)n−1.C

where FVi
and GVi

are new atomic roles and (C⇒∀G+
Vi

)n.¬C stands for
(C⇒∀GVi

.∀G∗
Vi

.(· · · (C⇒∀GVi
.∀G∗

Vi
.¬C) · · ·)) in which the pattern C⇒∀GVi

.∀G∗
Vi

.·
is repeated n times. Similarly, for (C # ∃G+

Vi
)n−1.C.

• Θ2 = {θ1, θ2}, with θi of the form:

( 2 ∃≤1FVi
# ∃≤1GVi

# ∃≤1F−
Vi
# ∃≤1G−

Vi
# ¬(∃F−

Vi
.( # ∃G−

Vi
.().

Observe that Θ2 constrains the models I of ξ2(K) so that the relations F I
Vi

, GI
Vi

,

(F−
Vi

)I , (G−
Vi

)I are partial functions, and each object cannot be linked to other

objects by both (F−
Vi

)I and (G−
Vi

)I . As a consequence we get that ((FVi
◦G∗

Vi
)−)I

is a partial function. This condition is required to prove the lemma below.
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a b

c d e

P

Figure 1: A model of the knowledge base K = {C0 ≡ ∃P .(∃=2P−.(∃=2P .())}

a b

c d e

V1

V2
1 2 3 4

AP APAP AP

Figure 2: A model of the reified-counterpart ξ1(K) of K

4.11. Lemma. Let K be a ALCQI knowledge base, ξ1(K) its reified-counterpart,
and ξ2(K) its ALCFI∗-counterpart. Then ξ1(K) is satisfiable if and only if ξ2(K)
is satisfiable.

As an immediate consequence of Lem. 4.11 and Lem. 4.9 we get the main result
of this subsection.

4.12. Theorem. Let K be a ALCQI knowledge base and ξ2(K) its ALCFI∗-
counterpart. Then K is satisfiable if and only if its ξ2(K) is satisfiable.

Since the size of ξ2(K) is polynomial in the size of K, we get the following com-
plexity characterization for reasoning in ALCQI knowledge bases 9.

4.13. Theorem. Knowledge base satisfiability (and hence concept consistency and
logical implication) in ALCQI is EXPTIME-complete.

Let us illustrate with an example the basic relationships between models of
an ALCQI knowledge base and those of its reified-counterpart and ALCFI∗-
counterpart.

4.14. Example. Let K be the following ALCQI knowledge base:

{ C0 = ∃P .(∃=2P−.(∃=2P .()) }

Figure 1 depicts a model I of K with a ∈ CI
0 . In Figure 2 the model I of K is

transformed into a model I ′ of its reified-counterpart ξ1(K). Finally, in Figure 3
9We remind that we assume unary coding of numbers in number restrictions.
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a b

c d e

1 4

AP APAP AP

FV1

FV2

2 3 GV1

GV2

Figure 3: A model of the ALCFI∗-counterpart ξ2(K) of K

the model I ′ of ξ1(K) is transformed into a model I ′′ of the ALCFI∗-counterpart
ξ2(K) of K. Notice that from I ′′ we can easily reconstruct I ′, and from I ′ the model
I of the original knowledge base.

5. Finite Model Reasoning

As shown in Sect. 2, a DL which contains constructs for inverse roles and functional-
ity in combination with cyclic assertions lacks the finite model property. Therefore,
it becomes necessary to devise specific techniques to reason with respect to finite
models only. In this section we discuss the problem of reasoning with respect to
finite models in knowledge bases, and propose methods to solve this problem for
various sublanguages of ALCQI. These methods are based on an idea introduced
by Lenzerini and Nobili [1990] and further developed and extended by Calvanese
and Lenzerini [1994a, 1994b] and Calvanese [1996a].

When we restrict the attention to finite models, some properties that are essential
for the reasoning techniques developed in Sect. 4 fail. In particular, all reductions
exploiting the tree-model property cannot be applied since this property does not
hold when only finite models are considered. An intuitive justification can be given
by observing that, whenever a (finite) model contains a cycle, the unraveling of
such a model into a tree generates an infinite structure. The following example
shows that there are indeed cases where any finite model of a knowledge base must
necessarily contain a cycle.

5.1. Example. Let Kc be the ALUNI knowledge base consisting of one assertion:

Node 2 ∀edge−.Node # ∃≤1edge− # ∀edge.Node # ∃edge

As in Example 2.2, the above assertion forces in any model of Kc in which Node has
a nonempty extension the existence of a sequence of objects each connected to the
following one by means of the role edge. However, differently from Example 2.2,
the assertion does not rule out that the edgeI relation forms a cycle. It is easy to
verify that each finite model of Kc will be constituted by a finite number of such
cycles.

If number restrictions (and in particular functionality) are not used, the finite
model property does not fail. Therefore, a procedure for finite model reasoning must
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specifically address the presence of number restrictions. The method we present here
is based on an encoding of the number restrictions that appear in a knowledge base
into a system of linear inequalities. The method represents a generalization of the
one developed by Lenzerini and Nobili [1990] for a simple data model based on
disjoint classes and relationships. We first briefly describe the method on knowl-
edge bases of a restricted form, which captures the data model of Lenzerini and
Nobili [1990]. We then show how to extend it to capture finite model reasoning
in knowledge bases built using more expressive languages, namely ALUNI and
ALCNI.

5.1. Finite Model Reasoning Using Linear Inequalities

To illustrate the reasoning technique we consider ALNI knowledge bases contain-
ing only assertions of a simplified form. Such knowledge bases essentially corre-
spond to schemas expressed in the data model used by Lenzerini and Nobili [1990]
(with roles representing binary relationships), which is a simplified form of the
Entity-Relationship model [Chen 1976] without ISA relationships between classes.
A knowledge base K of this form contains for each atomic role P an assertion

( 2 ∀P .A2 # ∀P
−.A1, (5.1)

where A1 and A2 are two atomic concepts, and for each pair of distinct atomic
concepts A and A′, an assertion

A 2 ¬A′. (5.2)

These assertions enforce that in all models of K the following properties hold:
(Cond1) The atomic concepts have pairwise disjoint extensions.
(Cond2) Each role is “typed”, i.e., its domain is included in the extension of an

atomic concept A1, and its codomain is included in the extension of an atomic
concept A2.

The only additional assertions that are present in K are used to impose cardinality
constraints on roles and inverse roles, and are of the form

( 2 ∃≥m1P # ∃≤n1P

( 2 ∃≥m2P− # ∃≤n2P−,
(5.3)

where m1, n1, m2, and n2 are positive integers with m1 ≤ n1 and m2 ≤ n2.
Due to the restrictions on the use of constructs and assertions (which reflect the

limited expressiveness of the data model), a knowledge base of the above form is
always both satisfiable and finitely satisfiable, and all atomic concepts in it are
consistent. However, due to the use of number restrictions some of the atomic
concepts may not be finitely consistent.

In order to check for finite concept consistency , we construct from K a system
ΨK of linear inequalities with one unknown Var(X) for each atomic concept or role
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X in K. The system contains inequalities

m1 ·Var(A1) ≤ Var(P ) ≤ n1 ·Var(A1)

m2 ·Var(A2) ≤ Var(P ) ≤ n2 ·Var(A2)
(5.4)

corresponding to the assertions (5.3), and for each atomic concept or role X , an
inequality

Var(X) > 0. (5.5)

It can be shown that all atomic concepts in K are simultaneously consistent if
and only if the associated system of inequalities ΨK admits a solution.

The proof of this result exploits the possibility of associating to a positive integer
solution of ΨK a model of K in such a way that the cardinality of the extension
of each atomic concept and role equals the value assigned by the solution to the
corresponding unknown. One direction is easy, since from any model of K one can
obtain an integer solution of ΨK by assigning to each unknown the cardinality of the
extension of the corresponding atomic concept or role. The converse direction needs
more attention. First of all, since the system is homogeneous, if it admits a solution
then it admits also a solution S such that (i) for each atomic concept and role E the
value S(E) assigned by S to Var(E) is a positive integer, and (ii) for each P , A1,
A2 appearing in an assertion of the form (5.1), it holds that S(P ) ≥ S(A1) · S(A2)
[Lenzerini and Nobili 1990]. From such a solution S one can construct a model I
of the knowledge base in which XI has cardinality S(X), for each atomic concept
and role X . Assertions of the form (5.2) are satisfied by assigning to all atomic
concepts disjoint extensions. In order to satisfy assertions (5.1), the extension P I

of each atomic role P is obtained as a set of pairs of instances of A1 and A2.
Moreover, since S satisfies all inequalities (5.4), P I can be constructed in such a
way that also all assertions (5.3) involving number restrictions are satisfied. The
reason is that conditions (Cond1) and (Cond2) allow one to regard all instances of an
atomic concept as equivalent with respect to the participation in roles. Therefore the
number restrictions (5.3), which are local conditions on the number of connections
of single objects, are correctly encoded by means of the inequalities (5.4), which
express global conditions on the total number of instances.

Since verifying the existence of a solution of ΨK can be done in time polynomial
in the size of ΨK

10, and hence time polynomial in the size of K, we have an efficient
method for verifying concept consistency in the knowledge bases considered so far.

The technique presented above is only suitable if one needs to verify the simul-
taneous consistency of all atomic concepts, which is reflected in the use of inequal-
ities (5.5). In general, however, one may want to check the consistency of single
concepts without posing any restrictions on other concepts of the knowledge base.
Therefore, the solutions of the system of inequalities need to reflect also the case
where in a model some atomic concept A, and hence all roles that are typed with
A, have an empty extension. This means that when a solution of the system assigns
the value 0 to the unknown corresponding to A, it must assign the value 0 also to all

10We assume to use a suitable encoding of ΨK in which numbers are represented in binary.
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unknowns corresponding to the roles typed with A. Such a condition is not satisfied
by every solution of the system, and we call a solution in which the condition holds
acceptable.

To verify the existence of acceptable solutions of the system of inequalities derived
from an ALNI knowledge base of the simple form above one can exploit a result
about the complexity of integer programming, which essentially states that the
existence of integer solutions of a system of inequalities implies the existence of
solutions of bounded size [Papadimitriou 1981]. Such a result, combined with the
technique presented by Calvanese and Lenzerini [1994b] allows one to show that
the existence of acceptable solutions can be verified in polynomial time in the size
of the system of inequalities [Calvanese 1996c].

5.2. Finite Model Reasoning on Primitive ALUNI Knowledge Bases

The method we have presented in Sect. 5.1 is not immediately applicable to more
expressive languages and more general forms of knowledge bases. The reason is
that conditions (Cond1) and (Cond2), which are necessary to construct a model of
a knowledge base from a solution of the corresponding system of linear inequali-
ties, are in general not satisfied. In fact, to correctly encode number restrictions
by means of linear inequalities, it is sufficient that the following generalization of
condition (Cond2) is satisfied:
(Cond′

2) For each atomic role P and each concept expression C appearing in K,
the domain of P is either included in the extension of C or disjoint from it.
Similarly for the codomain of P .

This condition guarantees that, in a model, all instances of a concept “behave”
in the same way, and thus the local conditions encoded by number restrictions
can be correctly captured by the global constraints represented by the system of
inequalities.

It is possible to enforce conditions (Cond1) and (Cond′
2) by performing a trans-

formation on the knowledge base, and deriving from the transformed version the
system of inequalities. A technique that makes use of this idea for finite model
reasoning in expressive modeling formalisms was first introduced by Calvanese and
Lenzerini [1994b] for an extended semantic database model, and successively ex-
tended to deal with primitive ALUNI knowledge bases [Calvanese et al. 1994]
and for reasoning in an expressive object-oriented database model [Calvanese and
Lenzerini 1994a]. We illustrate the technique for reasoning on primitive ALUNI
knowledge bases by means of an example, using a slight variation of the knowledge
base in Example 5.1.

5.2. Example. Let Kb be the ALUNI knowledge base consisting of the assertions:

Root 2 ∃≤0edge− # ∀edge.OtherNode# ∃≥1edge# ∃≤2edge

OtherNode 2 ∀edge−.(Root $ OtherNode) # ∃=1edge− #

∀edge.OtherNode# ∃≥1edge# ∃≤2edge# ¬Root.
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Kb describes the properties of binary trees, where each node has at most one pre-
decessor and at most two successors. In fact, we distinguish between nodes that
have no predecessor (Root) and those that have one (OtherNode). Additionally, we
require that each node has at least one successor. This combination of requirements
makes the concept Root finitely inconsistent. The concept OtherNode, on the other
hand, can be populated in a finite model of the knowledge base, although the model
we obtain is somewhat counterintuitive, since it necessarily contains a cycle in the
edge relation.

First of all, it is easy to see that, by introducing at most a linear number of
new atomic concepts, we can transform the knowledge base into an equivalent one
in which the nesting of constructs is eliminated. Specifically, in such a knowledge
base, which we call normalized, the concept on the right hand side of an inclusion
assertion is of the form L, L1 $L2, ∀R.L, ∃≥nR, or ∃≤nR, where L is an atomic or
negated atomic concept.

5.3. Example (5.2 continued). In the normalized ALUNI knowledge base Kn

corresponding to Kb we introduce an additional concept Node to replace the disjunc-
tion Root$ OtherNode nested within the universal quantification, thus obtaining:

Node 2 Root $ OtherNode OtherNode 2 ∀edge−.Node

OtherNode 2 ∃≥1edge−

Root 2 ∃≤0edge− OtherNode 2 ∃≤1edge−

Root 2 ∀edge.OtherNode OtherNode 2 ∀edge.OtherNode

Root 2 ∃≥1edge OtherNode 2 ∃≥1edge

Root 2 ∃≤2edge OtherNode 2 ∃≤2edge

OtherNode 2 ¬Root.

Then, to ensure that conditions (Cond1) and (Cond′
2) are satisfied, we use instead

of atomic concepts, sets of atomic concepts, called compound concepts, and instead
of atomic roles, so called compound roles. Each compound role is a triple (P, D̂1, D̂2)
constituted by an atomic role P and two compound concepts D̂1 and D̂2 typing
respectively the first and second component of the instances of P . Intuitively, the
instances of a compound concept D̂ are all those objects of the domain that are
instances of all concepts in D̂ and are not instances of any concept not in D̂. A
compound role (P, D̂1, D̂2) is interpreted as the restriction of role P to the pairs
whose first component is an instance of D̂1 and whose second component is an
instance of D̂2.

This ensures that two different compound concepts have necessarily disjoint ex-
tensions, and hence that the property corresponding to (Cond1) holds. The same
observation holds for two different compound roles (P, D̂1, D̂2) and (P, D̂′

1, D̂
′
2)

that correspond to the same role P . Moreover, for compound roles the property
corresponding to property (Cond2) holds by definition, and, considering that the
knowledge base is primitive and has been normalized, also (Cond′

2) holds.
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The assertions in the knowledge base that do not involve number restrictions,
force certain compound concepts and compound roles to be inconsistent, i.e., to
have an empty extension in all models of the knowledge base. For example, the as-
sertion A1 2 ¬A2 makes all compound concepts that contain both A1 and A2 incon-
sistent. Similarly, the assertion A1 2 ∀P .A2 makes all compound roles (P, D̂1, D̂2)
such that D̂1 contains A1 and D̂2 does not contain A2 inconsistent. One can check
in polynomial time in the size of the knowledge base whether a compound concept
or role is inconsistent. Observe however, that since the total number of compound
concepts and roles is exponential in the number of atomic concepts in the knowl-
edge base, doing the check for all compound concepts and roles takes in general
exponential time. One can then encode the assertions involving number restrictions
in the normalized knowledge base into assertions involving number restrictions on
compound concepts.

5.4. Example (5.3 continued). For the normalized knowledge base Kn, the set
of consistent compound concepts is D̂n = {E, R, O, RN, ON}, where E = ∅, R = {Root},
O = {OtherNode} RN = {Node, Root}, and ON = {Node, OtherNode}, and the set
of consistent compound roles is Ûn = {(edge, RN, O), (edge, RN, ON), (edge, ON, O),
(edge, ON, ON), (edge, E, R), (edge, E, RN), (edge, E, E)}. The assertions that derive
from the assertions in Kn and which impose number restrictions on compound
concepts are the following:

R 2 ∃≤0edge− RN 2 ∃≤0edge−

R 2 ∃≥1edge RN 2 ∃≥1edge

R 2 ∃≤2edge RN 2 ∃≤2edge

O 2 ∃≥1edge− ON 2 ∃≥1edge−

O 2 ∃≤1edge− ON 2 ∃≤1edge−

O 2 ∃≥1edge ON 2 ∃≥1edge

O 2 ∃≤2edge ON 2 ∃≤2edge.

We construct now a system ΨK of linear inequalities which contains one unknown
for each consistent compound concept and role (the inconsistent compound concepts
and roles are not considered anymore). The inequalities are obtained by encoding
the assertions in the knowledge base involving number restrictions on compound
concepts, in a way similar to inequalities (5.4). Differently from the previous case,
now each inequality involves one unknown corresponding to a compound concept
and a sum of unknowns corresponding to compound roles. For example, the asser-
tion D̂ 2 ∃≥nP , where D̂ is a compound concept and P is an atomic role, results
in the inequality

n ·Var(D̂) ≤
∑

(P,D̂,D̂2)

Var((P, D̂, D̂2)),

where the sum ranges over all consistent compound roles involving P and typed
with D̂ on the first component.
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5.5. Example (5.4 continued). The system ΨKn
derived from Kn consists of the

inequalities

0·r ≥ eE,R 0·rn ≥ eE,RN

1·r ≤ 0 1·rn ≤ eRN,O + eRN,ON

2·r ≥ 0 2·rn ≥ eRN,O + eRN,ON

1·o ≤ eRN,O + eON,O 1·on ≤ eRN,ON + eON,ON

1·o ≥ eRN,O + eON,O 1·on ≥ eRN,ON + eON,ON

1·o ≤ 0 1·on ≤ eON,O + eON,ON

2·o ≥ 0 2·on ≥ eON,O + eON,ON,

where we have denoted the unknown corresponding to a compound concept with
the name of the compound concept in lower-case letters, and the unknown corre-
sponding to a compound role (edge, X, Y ) with eX,Y .

It is possible to show that acceptable nonnegative integer solutions ofΨK (suitably
defined), can be put into correspondence with finite models of the knowledge base
K, in which each compound concept and compound role has a number of instances
that is equal to the value assigned by the solution to the corresponding unknown.

Hence, in order to check whether a concept A in a primitive ALUNI knowledge
base is finitely consistent, we can proceed as follows: We derive from the knowledge
base the system of inequalities. We then add an additional (non-homogeneous)
inequality that forces the solutions of the system to assign a positive value to at
least one of the unknowns corresponding to the compound concepts containing A.
By exploiting the correspondence between acceptable solutions of the system of
inequalities and models of the knowledge base we get the following characterization
of finite concept consistency in primitive ALUNI knowledge bases.

5.6. Theorem. Let K be a knowledge base, A an atomic concept in K, and ΨK the
system of inequalities derived from K. Then A is finitely consistent in K if and only
if

ΨA
K = ΨK

⋃





∑

D̂|A∈D̂

Var(D̂) ≥ 1






admits an acceptable nonnegative integer solution.

5.7. Example (5.5 continued). To check whether the concept Root is finitely
consistent in K0, we add to the system ΨKn

the inequality r+ rn ≥ 1, which forces
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R or RN to be populated, obtaining (after some simplifications)

r = o = 0

eRN,O = eON,O = eE,R = eE,RN = 0

rn ≤ eRN,ON ≤ 2·rn

on ≤ eON,ON ≤ 2·on

on = eRN,ON + eON,ON

r + rn ≥ 1.

It is easy to see that the inequalities in ΨKn
force both r and rn to get assigned

value 0, and therefore the whole system admits no solution. This shows that the
concept Root cannot be populated in any finite model of K0.

Similarly, to check whether the concept OtherNode is finitely consistent in K0,
we can add the following inequality to ΨKn

:

o + on ≥ 1.

All solutions of the resulting system are acceptable. By simplifying the system we
can verify that every solution assigns 0 to all unknowns except to on and to eON,ON,
to which it assigns the same value. Let Sol be such a solution which assigns to on

and to eON,ON the positive integer k. We can obtain from Sol a finite model I of
K0. Since ON must have k instances and it is the only compound concept with a
nonempty extension, we define ∆I = ONI = OtherNodeI = {o1, . . . , ok}. By setting
(edge, ON, ON)I = edgeI = {(oi, oi) | i ∈ {1, . . . , k}}, we obtain indeed a model of
K0, although not one in which the edge relation has a tree-like structure.

The above result can be used for arbitrary concepts as well. An arbitrary concept
C is consistent in K if and only if AC is consistent in K ∪ {AC 2 C}, where AC

is an atomic concept not appearing in K. As for the computational complexity of
the method, since the existence of an acceptable solution of a system of inequalities
can be verified in polynomial time in the size of the system, by Th. 5.6 we obtain
the following upper bound for finite concept consistency.

5.8. Theorem. Whether a concept C is finitely consistent in a primitive ALUNI
knowledge base K can be decided in worst case deterministic exponential time in the
size of K plus the size of C.

Since already for primitive ALU knowledge bases verifying concept consistency is
EXPTIME-hard [Calvanese 1996b], the above method provides a computationally
optimal reasoning procedure.

5.9. Theorem. Finite concept consistency in primitive ALUNI knowledge bases
is EXPTIME-complete.

The method we have described to decide concept consistency with respect to
primitive ALUNI knowledge bases can be extended to handle also a wider class
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of knowledge bases, in which a negated atomic concept and, more in general, an
arbitrary boolean combination of atomic concepts may appear on the left hand side
of assertions. In particular, this makes it possible to deal also with knowledge bases
containing definitions of concepts that are boolean combinations of atomic con-
cepts, and perform finite model reasoning on such knowledge bases in deterministic
exponential time.

Since ALUNI is not closed under negation we cannot immediately reduce logical
implication to concept consistency. However, by making use of the observation
above, the technique for deciding concept consistency can be extended to decide
also finite logical implication K |=f C1 2 C2 in relevant cases in deterministic
exponential time. More precisely, C1 can be an arbitrary ALUNI concept and C2

is required either to not contain the construct for universal quantification or to be of
the form ∀R.C′ with C′ a boolean combination of atomic concepts (see [Calvanese
1996c] for details). For the more general case, where also C2 is an arbitrary concept
expression, we need to resort to more involved techniques of higher computational
complexity, which we briefly sketch in the next section.

5.3. Finite Model Reasoning in ALCNI and ALCQI Knowledge Bases

The method described in Section 5.2 can also be extended to solve the problem of
finite model reasoning on free ALCNI knowledge bases [Calvanese 1996a]. Again,
one can construct a system of linear inequalities and relate the existence of models
for the knowledge base to the existence of particular solutions of the system. How-
ever the presence of arbitrary free inclusion assertions, and the higher expressiveness
of the underlying language (in particular the presence of qualified existential quan-
tification) make the construction of the system more involved than in the previous
case. Indeed, while for primitive ALUNI knowledge bases it is sufficient to con-
struct a system of inequalities whose size is simply exponential in the size of the
knowledge base, the extension of the technique to ALCNI introduced by Calvanese
[1996a] is based on and additional “expansion” step, which introduces an additional
exponential blowup.

The additional expansion step becomes necessary due to the presence of assertions
of the form L1 2 ∃R.L2. The most direct way to handle such assertions would be
to leave their treatment to the system of inequalities (similarly to what is done for
number restrictions). A natural extension of the system of inequalities would be to
add for each assertion of the form L1 2 ∃P .L2 an inequality

∑

(P,D̂1 ,D̂2) |

L1∈D̂1∧L2∈D̂2

Var((P, D̂1, D̂2)) ≥
∑

D̂ | L1∈D̂

Var(D̂),

and a similar inequality for each assertion of the form L1 2 ∃P−.L2. Unfortunately,
imposing such conditions does not guarantee that from each acceptable nonnegative
integer solution of the system a model of the knowledge base can be constructed,
in which the number of instances of each compound concept and compound role
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is given by the value assigned by the solution to the corresponding unknown. The
intuitive reason why this simple approach does not lead to the desired result for
ALCNI knowledge bases, is that it relies on the fact that all objects that are
instances of the same compound concept are characterized by the same properties.
As already observed, the system of inequalities encodes local constraints on the
number of connections that a single object may have, by means of global constraints
on the total number of connections of a certain type. The differences on the types
of connections between instances of different concepts are removed by considering
compound concepts and roles. Once this is done, all instances of the same compound
concept can be regarded as equivalent. The approach works for ALUNI knowledge
bases, where no concept expression can distinguish between different instances of
the same compound concept. This is no longer true if the concept expressions may
contain qualified existential quantification, in which case splitting the domain into
compound concepts is not sufficient to ensure that the instances have the same
properties.

The problem can be dealt with by making a more fine-grained splitting of concepts
and roles, which takes into account also the existence of connections of certain types.
The resulting system of linear inequalities, whose acceptable solutions can be put
into correspondence with finite models of the knowledge base, is doubly exponential
in the size of the knowledge base (see [Calvanese 1996a] for details).

5.10. Theorem. Whether a concept C is finitely consistent in an ALCNI knowl-
edge base K can be decided in worst case deterministic double exponential time in
the size of K plus the size of C.

Since ALCNI is closed under negation, the previous result provides also an upper
bound for finite logical implication.

5.11. Theorem. Finite logical implication K |=f C1 2 C2 in ALCNI knowledge
bases can be decided in worst case deterministic double exponential time in the sum
of the sizes of K, C1, and C2.

The method can also be extended to knowledge bases containing qualified number
restrictions, by making a separation of concepts based not only on the existence but
also on the number of links of a certain type. It turns out that it is in fact sufficient
to consider only intervals of numbers of links, where the ranges of these intervals
are given by the numbers that effectively appear in the knowledge base. In this
way it is still possible to keep the size of the resulting system of linear inequalities
doubly exponential in the size of the knowledge base, and the same upper bounds
as for ALCNI hold also for finite model reasoning over ALCQI knowledge bases.

An EXPTIME lower bound for finite model reasoning in ALCNI can be ob-
tained by observing that e.g., ALC is a sublanguage of ALCNI which has the finite
model property and for which (unrestricted and hence finite model) reasoning over
a knowledge base is EXPTIME-hard. This leaves an exponential complexity gap
between the known upper and lower bounds for finite model reasoning over ALCNI
knowledge bases.
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6. Beyond Basic Description Logics

Several additional constructs for building concept expressions besides those already
present in ALCQI have been proposed in the literature. In this section we discuss
the most important of these extensions, how they influence the reasoning process,
and what modifications to the reasoning procedures are needed to take the ad-
ditional constructs into account. Roughly speaking, the extensions for which a
logic remains decidable are those for which the tree-model property is preserved
[Vardi 1997], possibly after having performed a satisfiability preserving transforma-
tion of the knowledge base11. We remind the reader that this chapter concentrates
on TBox reasoning only. Other extensions to ALCQI have been investigated that
allow one to model and reason on individuals and ABoxes. We refer to [De Giacomo
and Lenzerini 1996] for basic results on this subject.

6.1. Complex Roles

The EXPTIME-completeness result presented in Sect. 4 for unrestricted model
reasoning on ALCQI knowledge bases has been extended to ALCQIreg , which is
the DL obtained from ALCQI by adding the role constructs of PDLs, i.e., chain-
ing, union, reflexive-transitive closure, and the identity role (tests in PDLs). In
particular, qualified number restrictions, which are allowed only on atomic roles
and inverse of atomic roles (called basic roles in the following), can be encoded as
shown in Sect. 4.4, while reasoning in the resulting logic ALCFIreg can be dealt
with techniques based on automata on infinite trees [Calvanese 1996c, Calvanese,
De Giacomo and Lenzerini 1999], which extend the techniques used for Converse-
PDL by Vardi and Wolper [1986] and Vardi [1985].
ALCQIreg and ALCFIreg correspond to variants of PDLs whose computational

properties had not been studied before. The PDL corresponding to ALCQIreg is
an extension of Converse-PDL with “graded modalities” [Fattorosi-Barnaba and
De Caro 1985, Van der Hoek and de Rijke 1995] on atomic programs and their con-
verse. While the PDL corresponding to ALCFIreg is an extension of Deterministic-
Converse-PDL [Vardi and Wolper 1986], in which determinism of both atomic pro-
grams and their inverse is determined by the properties of the starting state.

6.2. Boolean Constructs on Roles

The role constructs of ALC·reg allow one to build roles which are regular expressions
over a set of basic roles. Since regular languages are closed under intersection and
complementation, the intersection of roles and the complement of a role are already
expressible in ALC·reg , provided that we consider them as operators on the regular
languages denoted by the role expressions. However, the more common approach

11The logics discussed by Danecki [1984] and Lutz and Sattler [2000] are an exception, being
decidable without having the tree model property.
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both in PDLs and DLs is to consider boolean operators as applied to the binary
relations denoted by the roles. The logics thus obtained are more expressive than
traditional PDL [Harel 1984], but they lack for example the tree model property,
and reasoning in the presence of these constructs is usually harder. We notice that
the semantics immediately implies that intersection of roles can be expressed by
means of union and complementation.

Unrestricted satisfiability in PDL augmented with intersection of programs is
decidable in deterministic double exponential time [Danecki 1984], and so is satis-
fiability in ALCreg augmented with intersection of roles, even though these logics
have neither the tree nor the finite model property. On the other hand, satisfiability
in PDL augmented with complementation of programs is undecidable [Harel 1984]
(Th. 2.34), and so is reasoning in ALCreg augmented with complementation of roles.
Also, Deterministic-PDL augmented with intersection of roles is highly undecidable
[Harel 1985, Harel 1986], and since global functionality of roles (which corresponds
to determinism of programs) can be expressed by means of local functionality, the
undecidability carries over to ALCFreg augmented with intersection of roles.

The proof of undecidability by Harel [1985] exploits a reduction from the un-
bounded tiling (or domino) problem [Berger 1966, Robinson 1971], which is the
problem of checking whether a quadrant of the integer plane can be tiled using
a finite set of tile types (i.e., square tiles with a color on each side), in such a
way that adjacent tiles have the same color on the sides that touch12. We sketch
the idea of the proof using the terminology of DLs, instead of that of PDLs.
The reduction uses two roles right and up which are globally functional (i.e.,
∀(right $ up)∗.(∃≤1right # ∃≤1up)) and denote pairs of tiles that are adjacent
in the x and y directions, respectively. By means of intersection of roles (i.e.,
∀(right $ up)∗.∃((right ◦ up) # (up ◦ right))), right and up are constrained to
effectively define a two-dimensional grid. Notice that to achieve this, it is necessary
to impose for each point of the grid, that by following right ◦ up one reaches the
same point as by following up ◦ right. The use of intersection of role chains turns
out to be essential to force this condition. Transitive closure (i.e., ∀(right$up)∗.C)
is then exploited also to impose the required local matching constraints on all tiles
of the grid.

The reduction above requires intersection to be applied to complex roles con-
taining concatenations. The question therefore arises if decidability can be pre-
served if one restricts boolean operations to basic roles. This is indeed the case
if complementation of basic roles is used only to express difference of roles. In
fact, decidability in deterministic exponential time of unrestricted model reason-
ing holds for full ALCQIreg extended with intersection and difference of ba-
sic roles, with the additional limitation that intersection or difference between
an atomic role and an inverse atomic role may not be used [De Giacomo and
Lenzerini 1995b, De Giacomo 1995]. The proof is based on the reification of roles

12In fact the reduction is from the Π1
1
-complete –and thus highly undecidable– recurring tiling

problem [Harel 1986], where one additionally requires that a certain tile occurs infinitely often on
the x-axis.
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(see Sect. 4.4.2) and exploits the possibility to impose boolean conditions on the
objects that represent the reified instances of a role. Intersection of basic roles can
also be expressed in the SHIQ DL [Horrocks and Sattler 1999], which extends
ALCQI with transitive roles and role hierarchies.

Using a direct encoding into nonemptiness of automata on infinite trees, Lutz
and Sattler [2000] show that ALC extended with full boolean operators on atomic
roles (which are the only roles in the logic) is EXPTIME-complete. Observe that,
by means of role negation, axioms can be internalized: the concept ∀P .(C⇒C′) #
∀¬P .(C⇒C′) corresponds to the assertion C 2 C′.

Reification of roles can also be exploited to show decidability of finite model
reasoning in knowledge bases in ALCQI augmented with intersection and difference
of basic roles, with the same limitations as above. To this end qualified number
restrictions are needed in order to express even unqualified number restrictions on
the reified roles. For example, the concept ∃≤2edge becomes, after reifying the role
edge, ∃≤2V −

1 .Aedge.

6.3. Role Value Maps

Another construct that stems from frame-systems and that provides additional
useful means to specify structural properties of concepts is the so called role value
map [Brachman and Schmolze 1985]. An object o is an instance of a role value map
(R1 = R2) if the set of objects that are connected to o via role R1 equals the set of
objects connected to o via role R2. A generalization of role value map is role value
inclusion, denoted (R1 ⊆ R2), whose semantics is defined analogously to that of
role value map, using set inclusion instead of set equality. Using these constructs
one can denote, for example, by means of (owns ⊆ lives in ◦ made in−) the set of
all persons that own only products manufactured in the country they live in.

When role value map is added, the logic looses the tree model property, and this
construct leads immediately to undecidability of reasoning. For ALCreg this can
be shown by a reduction from the tiling problem in a similar way as to what is
done by Harel [1985] for Deterministic-PDL with intersection of roles. In this case,
role value map (i.e., ∀(right $ up)∗.(right ◦ up = up ◦ right)) is used instead of
role intersection to define the constraints on the grid. Undecidability holds however
already for concept subsumption (with respect to the empty knowledge base) in
AL augmented with role value map, where the involved roles are concatenations of
atomic roles [Schmidt-Schauß 1989]. This is shown by a reduction from the word
problem for semigroups, which is undecidable [Boone 1959].

Again, in order to show undecidability it is necessary to apply role value map
to concatenations of roles. Indeed, if the application of role value map is restricted
to boolean combinations of basic roles, it can be added to ALCQIreg without
influencing decidability and worst case complexity of reasoning. This follows directly
from the decidability results for the extension with boolean constructs on basic
roles, by observing that (R1 ⊆ R2) is equivalent to ∀(R1#¬R2).⊥, and thus can be
expressed using difference of roles. We observe also that universal and existential
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role agreements introduced by Hanschke [1992], which allow one to define concepts
by posing various types of constraints that relate the sets of fillers of two roles, can
be expressed by means of intersection and difference of roles. Thus reasoning in the
presence of role agreements is decidable, provided these constructs are applied only
to basic roles.

Another way to take role value map into account without loosing decidability is
to restrict the use of such construct to functional roles, as usually done in the area of
Feature Logics [Carpenter 1992]. Finally, we note that the role value map construct
is also related to the notion of path constraints in database modeling [Buneman,
Fan and Weinstein 1998].

6.4. Number Restrictions on Complex Roles

In ALCQIreg , the use of (qualified) number restrictions is limited to basic roles,
which guarantees that the logic has the tree model property. This property is lost,
together with decidability, if number restrictions may be imposed on arbitrary roles.
The reduction to show undecidability is analogous to the one used for intersection
of roles, except that now functionality of a complex role (i.e., ∃≤1(right ◦ up) $
(up ◦ right)) is used instead of role intersection to define the grid.

Again, if one limits number restrictions to basic roles, as in ALCQIreg , then
reasoning remains decidable. By exploiting reification of roles, De Giacomo and
Lenzerini [1995b] show that decidability is not lost if one can impose number re-
strictions on roles that are composed by applying union, intersection, and difference
to basic roles, with the same proviso as above, that direct and inverse roles may
not appear together in such a boolean combination (see also [De Giacomo 1995] for
details).

Another example of a decidable logic that does not have the tree model property
is obtained by allowing the use of concatenation (but not transitive closure) inside
number restrictions. Let us denote with N (X), where X is a subset of {◦,$,#,− },
unqualified number restrictions applied to roles that are obtained by applying to
atomic roles the role constructs in X . As shown by Baader and Sattler [1996, 1999],
concept satisfiability in ALCN (◦,#,$) is decidable in deterministic exponential
time if intersection and union are restricted to role chains (i.e., concatenations of
atomic roles) of the same length. Notice that, by the considerations above, decid-
ability holds only for reasoning on concept expressions and is lost if one considers
reasoning with respect to a knowledge base (or alternatively adds reflexive-transitive
closure of roles). However, reasoning even with respect to the empty knowledge base
is undecidable if one adds to ALCN number restrictions on more complex roles.
In particular, this holds for ALCN (◦,#) (if no constraints on the lengths of the
chains are imposed) and for ALCN (◦,$,− ) [Baader and Sattler 1996, Baader and
Sattler 1999]. The reductions again exploit the tiling problem, and make use of
number restrictions on complex roles to simulate a universal role that is used for
imposing conditions that hold for all points of the grid. Using a more complex re-
duction, Baader and Sattler [1999] show also that concept consistency in ALCN (◦)
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(or concept satisfiability in ALCregN (◦)) is undecidable.
Summing up, we can state that the borderline between decidability and unde-

cidability of reasoning in the presence of number restrictions on complex roles has
been traced quite precisely, although there are still some open problems. In partic-
ular, it is not known whether concept satisfiability in ALCN (◦,− ), ALCregN (#),
or ALCregN ($) is decidable [Baader and Sattler 1999]. Notice that decidability of
knowledge base reasoning in ALCN (#,$,− ) follows from the decidability of C2,
i.e., first order logic with two variables and counting quantifiers [Grädel, Otto and
Rosen 1997, Grädel and Otto 1999].

6.5. Relations of Arbitrary Arity

DLs allow one to define concepts which denote classes of objects with common
properties. These properties are defined by establishing relationships to other ob-
jects by means of roles. In traditional DLs, roles denote binary relations only, while
some real world situations would be modeled more naturally by making use of rela-
tions of arity greater that two. Extensions of DLs with relations of arbitrary arity,
which are interpreted as tuples of objects of the domain of interpretation, have
been proposed in [Schmolze 1989, Catarci and Lenzerini 1993, De Giacomo and
Lenzerini 1994b, De Giacomo 1995]. In order to use these relations for the specifi-
cation of concepts, the notion of role is generalized to include also projections of
relations on two of their components.

By exploiting reification (cfr. Sect. 4.4.2), reasoning in the presence of relations
can be reduced to reasoning on ordinary DLs. A relation is reified by introducing a
new concept and as many roles as the arity of the relation. A tuple of the relation
is represented in the reified counterpart of the knowledge base by an instance of the
corresponding concept, which is linked through each of the associated roles to an
object representing the component of the tuple. Performing the reification requires
however some attention, since, according to the standard semantics, in a relation
there may not be two equal tuples (i.e., constituted by the same components in
the same positions) in its extension. In the reified counterpart, on the other hand,
one cannot explicitly rule out (e.g., by using specific assertions) that there are two
objects o1 and o2 “representing” the same tuple, i.e., that are connected to exactly
the same objects denoting the components of the tuple. A model of the reified
counterpart of a knowledge base in which this situation occurs may not correspond
directly to a model of the original knowledge base containing relations, since the two
equivalent objects in general cannot be collapsed into a single object (representing
the tuple) without violating assertions (e.g., cardinality constraints). However, a
result analogous to Lem. 4.8 holds for relations of arbitrary arity. Therefore one
does not need to take this constraint explicitly into account when reasoning on the
reified counterpart of a knowledge base with relations.

By exploiting this idea, Calvanese, De Giacomo and Lenzerini [1997] introduce
the DL DLR, which extends ALCQI by boolean combinations of n-ary relations,
and show that reasoning over DLR knowledge bases is again EXPTIME-decidable.
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Calvanese, De Giacomo and Lenzerini [1998a] propose a mechanism for specifying
(unions of) conjunctive queries in DLR, and present techniques for checking query
containment. The problem of answering conjunctive queries using views over a DLR
knowledge base is addressed by Calvanese, De Giacomo and Lenzerini [2000].

A method to reason with respect to finite models in the presence of relations of
arbitrary arity is presented by Calvanese and Lenzerini [1994b, 1994a] in the context
of a semantic and an object-oriented database model, respectively. The reasoning
procedure, which represents a direct generalization of the one proposed in Sect. 5.2
to relations of arbitrary arity, does not exploit reification to handle relations but
encodes directly the constraints on them into a system of linear inequalities.

6.6. Structured Objects, Well Foundedness, and Fixpoints

An alternative way to overcome the limitations that result from the restric-
tion to unary and binary relationships, is to consider the interpretation do-
main as being constituted by objects with a complex structure, and extend the
DLs with constructs that allow one to specify such structure [De Giacomo and
Lenzerini 1995b]. This approach is in the spirit of object-oriented data models
[Lecluse and Richard 1989, Bancilhon and Khoshafian 1989, Hull 1988, Bergam-
aschi and Nebel 1994]. In contrast with the idea of introducing n-ary relations, all
aspects of the domain to be modeled can be represented in a uniform way, namely
as concepts whose instances have certain structures. In particular, objects can ei-
ther be unstructured or have the structure of a set or of a tuple. For objects having
the structure of a set a particular role allows one to refer to the members of the
set, and similarly each component of a tuple can be referred to by means of the
(implicitly functional) role that labels it.

Reasoning in the presence of constructs for specifying structured objects is based
on a reduction to reasoning in traditional DLs by exploiting reification of tuples
and sets, and thus can be done in deterministic exponential time [De Giacomo and
Lenzerini 1995a].

A limitation of the above approach is that there is no way to limit the depth of
the structure of an object, and thus one cannot rule out non well-founded struc-
tures, such as a set that has itself as one of its elements, or a tuple that refers to
itself via one of its components. To overcome this problem, Calvanese et al. [1995]
and Calvanese [1996a] propose a well-founded construct wf (R), which allows one
to state that certain substructures of a model have to be finite. Formally wf (R)
is interpreted as the set of those objects which are not the starting point of an
infinite sequence of objects, each connected to the next by means of role R. Thus
it corresponds directly to the negation of a repeat formula in ∆PDL [Harel and
Sherman 1982, Streett 1982]. By means of the well-founded construct one can ex-
press not only that the instances of a certain concept have a structure of finite depth,
but also define inductive structures such as lists, finite trees, or directed acyclic
graphs [Calvanese et al. 1995]. The technique to reason in ALCQIreg extended
with the well-founded construct is based on a reduction by means of reification to
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reasoning in ∆PDL extended with local functionality on direct and inverse pro-
grams, which is dealt with using automata-theoretic techniques [Calvanese 1996c].

Formulas including the well-founded construct can be considered as particular
forms of fixpoint formulas. Fixpoints incorporated directly in the semantics of DLs
have been first studied by Nebel [1991] and Baader [1996] for simple DLs. Fixpoints
on concepts in their full generality have been investigated by Schild [1994] and
De Giacomo and Lenzerini [1997]. The logics studied in these articles include con-
structs to define concepts which are least or greatest fixpoints of concept-equations.
Decidability in deterministic exponential time for variants of these logics which in-
clude number restrictions has been established by exploiting a correspondence with
the propositional µ-calculus [Kozen 1983, Streett and Emerson 1989]. Finally, Cal-
vanese, De Giacomo and Lenzerini [1999] present the logic ALCQIµ which extends
ALCQIreg with the most general form of fixpoint on concepts. It also introduces
DLRµ, which in addition includes n-ary relations. Reasoning in ALCQIµ and in
DLRµ is proved to be EXPTIME-decidable by a reduction to nonemptiness of
two-way alternating automata on infinite trees [Vardi 1998].

7. Conclusions

DLs have been thoroughly investigated in the last fifteen years, especially with the
goal of devising logic-based Knowledge Representation formalisms with a good com-
promise between expressive power and complexity of reasoning. Although the first
studies on DLs concentrated on logics with limited sets of constructs, and tractable
reasoning procedures, recent investigations on the features required in applications
show the need for expressive DLs with decidable reasoning tasks. In this chapter, we
have illustrated the main ideas that lead to the development of reasoning techniques
for expressive DLs. Most of the described techniques rely on the correspondence
between expressive DLs and Propositional Dynamic Logics. Such a correspondence
does not allow one to directly derive sound and complete reasoning procedures for
DLs. Indeed, we have illustrated several sophisticated techniques for reducing rea-
soning in expressive DLs to reasoning in Propositional Dynamic Logics. Also, we
have presented specialized techniques for finite model reasoning in expressive DLs.

Besides being of interest from a scientific point of view, the decidability results
described in this chapter have stimulated the investigation of implemented systems
that are able to reason on expressive DLs. Interesting results on this aspect are
reported by Horrocks and Sattler [1999], Horrocks et al. [1999], and Horrocks and
Patel-Schneider [1999].
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