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@ Automata-Theory Overview
@ Language Containment
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System’s computations

@ The behaviors (computations) of a system can be seen as sequences
of propositions.

MODULE main
VAR done: Boolean;
ASSIGN
init (done) :=0;
next (done) := case
ldone: {0,1};
done: domne;
esac;

@ Since the state space is finite, the set of computations can be
represented by a finite automaton.

) Qe ()

Roberto Sebastiani, Stefano Tonetta () Introduction to Formal Methods




Correct computations

@ Some computations are correct and others are not acceptable.
@ We can build an automaton for the set of all acceptable computations.

@ Example: eventually, done will be true forever.

done
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Language Containment Problem

@ Solution to the verification problem

— Check if language of the system automaton is contained in the
language accepted by the property automaton.

@ The language containment problem is the problem of deciding if a
language is a subset of another language.

E(Al) - E(Az) <— ﬁ(Al) N E(Az) = {}

To solve the language containment problem, we need to know:
© how to complement an automaton,
@ how to intersect two automata,

© how to check the language emptiness of an automaton.
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@ Automata-Theory Overview

@ Automata on Finite Words
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Finite Word Languages

@ An Alphabet ¥ is a collection of symbols (letters).
E.g. ¥ ={a, b}.

@ A finite word is a finite sequence of letters. (E.g. aabb.)
The set of all finite words is denoted by 2 *.

@ A language U is a set of words, i.e. U C X%,

Example: Words over ¥ = {a, b} with equal number of a's and b's.
(E.g. aabb or abba.)

Language recognition problem:
determine whether a word belongs to a language.

Automata are computational devices able to solve language recognition
problems.
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Finite State Automata

Basic model of computational systems with finite memory.

Widely applicable

@ Embedded System Controllers.
Languages: Ester-el, Lustre, Verilog.

@ Synchronous Circuits.

@ Regular Expression Pattern Matching
Grep, Lex, Emacs.

@ Protocols
Network Protocols
Architecture: Bus, Cache Coherence, Telephony,...
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a, b € X finite alphabet.
u,v,w € 2* finite words.
€ empty word.
u.v catenation.
)

u' = u.u. .u repeated i-times.
U,V C ¥* Finite word languages.
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FSA Definition

Nondeterministic Finite State Automaton (NFA):
NFA is (Q,X,0,/,F)
Q@ Finite set of states.
> is a finite alphabet
I C Q set of initial states.
F C @ set of final states.
d C Q x X x Q transition relation (edges).
We use ¢ —— ¢’ to denote (g, a,q’) € 6.

Deterministic Finite State Automaton (DFA):

DFA has § : Q@ x ¥ — @, a total function.
Single initial state I = {qo}.
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Regular Languages

@ Arunof NFA Aonu = ag,ai,...,an_1 is a finite sequence of states
a; .
90,q1,---,qnS.t. go € and g — gj11 for 0 </ < n.
@ An accepting run is one where the last state g, € F.

@ The language accepted by A
L(A) = {ueX* | A has an accepting run on u}

@ The languages accepted by a NFA are called regular languages.
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Finite State Automata

Example: DFA A; over ¥ = {a, b}.
Recognizes words which do not end in b.

a b b

a

NFA A,. Recognizes words which end in b.

LN
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Determinisation

Theorem (determinisation) Given a NFA A we can construct a DFA A’ s.t.
L(A) = L(A). Size |A| = 2004D,

e Each state of A’ corresponds to a set {s1, ..., sj} of states in A
(Q" C 29), with the intended meaning that :
o A’is in the state {s1,..,s;} if Ais in one of the states sy, ..., s;

@ The deterministic transition relation ¢’ : 29 x ¥ —— 29 is
o {s} —{si|s— s}
° {Sla 5 55 "'7Sn} = U_?:l{si ‘ 5j - Si}
@ The (unique) initial state is I' =ger {s; | 5; € I}
@ The set of final states F’ is such that
{s1,...,sn} € F'iff s; € F for some i € {1,...,n}
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Determinisation [cont.]

NFA A,: Words which end in b
=50\

5

A> can be determinised into the automaton DA, below.
States = 29.
a

There are NFAs of size n for which the size of the minimum sized DFA
must have size O(2").
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Closure Properties

Theorem (Boolean closure) Given NFA Aj, Ay over & we can construct
NFA A over X s.t.

o L(A) = L(A;) (Complement). |A] = 204,
o L(A) = L(A1)UL(A2) (union). |Al = |A1] + |Azl.
o L(A) = L(A1)N L(A2) (intersection). |A] = |A1] - |Aa].
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Complementation of a NFA

ANFA A= (Q,%,d,1,F) is complemented by:
@ determinizing it into a DFA A" = (Q', ¥/, d",I', F')
o complementing it: A/ = (Q', %/, 0", 1", F/)
o [A] = |A] = 2004)
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Union of two NFAs

Two NFAS Al = (Ql,zl,51, /1, Fl), A2 = (Q2,22,52, /2, F2),
A=A1UA =(Q,%,d,1,F) is defined as follows
@ Q =QLU@, I =hUb, F:=FRUF
Ri(s,s') if se
N .__ )
° Rls;s):= { Ro(s,s) if s € Q
—A is an automaton which just runs nondeterministically either A;
or A2

o L(A) = L(A1)UL(A)
o |Al = [Ai] + |Az|
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Synchronous Product Construction

Let A1 = (Q1,%,01,h,F1) and Ay = (@2, X,62, b, F2). Then,
AL x A = (Q,%,6,1,F) where

OQ:leQQ. /:/1></2.
F = F1><F2.

o <p,g>—<p,qgd>iff p—p and g - ¢

Theorem £(A1 X A2) = E(Al) N ,C(AQ)
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@ A1 recognizes words with an even number of b's.
@ A recognizes words with a number of a's multiple of 3.
@ The Product Automaton A; x Ay with F = {sp, tp}.
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Regular Expressions

Syntax: O | € | a | regi.reg, | regqi|reg, | reg*.

Every regular expression reg denotes a language L(reg).

Example: a*.(b|bb).a*. The words with either 1 b or 2 consecutive b's.

Theorem: For every regular expression reg we can construct a language
equivalent NFA of size O(|reg|).

Theorem: For every DFA A we can construct a language equivalent regular
expression reg(A).
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@ Automata-Theory Overview

@ Automata on Infinite Words
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Infinite Word Languages

Modeling infinite computations of reactive systems.

@ An w-word « over X is an infinite sequence
o, d1, d2....
Formally, a : N — ..
The set of all infinite words is denoted by >“.

@ A w-language L is collection of w-words, i.e. L C 2%,

Example All words over {a, b} with infinitely many a's.

Notation

omega words «, 3,7 € ¥,
omega-languages L, L; C »¥
ForueX™, let v = u.uu...
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Omega-Automata

We consider automaton running over infinite words.

a,b(—\q b

Let « = aabbbb.... There are several possible runs.
Run P1r — S51,51,51,51,52,5 ...
Run p2 = s1,51,51,51,51,51 - - -

Acceptance Conditions Biichi, (Muller, Rabin, Street).
Acceptance is based on states occurring infinitely often
Notation Let p € Q¥. Then,

Inf(p) = {s€Q | I3 eN. p(i)=s}.
(The set of states occurring infinitely many times in p.)
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Buchi Automata

Nondeterministic Blichi Automaton
A = (Q,%,4,],F), where F C Q is the set of accepting states.

@ A run p of A on omega word « is an infinite sequence
P = Go,91,G2,...S.t. go € I and q; SN gi+1 for 0 </,
@ The run p is accepting if
Inf(p) N F # 0.

@ The language accepted by A
L(A) = {a€X¥ | A has an accepting run on a}
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Buchi Automaton: Example

Let ¥ = {a, b}.
Let a Deterministic Biichi Automaton (DBA) A; be

a b b

a

e With F = {s;} the automaton recognizes words with infinitely many
a's.

e With F = {s} the automaton recognizes words with infinitely many
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Blichi Automaton: Example (2)

Let a Nondeterministic Biichi Automaton (NBA) A; be

a,b (_\l b

*’@b 2

With F = {s}, automaton A, recognizes words with finitely many a.
Thus, L(A2) = L(A1).
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Deterministic vs. Nondeterministic Buchi Automata

Theorem DBAs are strictly less powerful than NBA:s.

The subset construction does not work: let DA, be

@ DA; is not equivalent to A;
(e.g., it recognizes (b.a)*)
@ There is no DBA equivalent to As
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Closure Properties

Theorem (union, intersection)

For the NBAs A1, Ao we can construct

—the NBA Ast. L(A) = L(A1)UL(A). |Al = |A1] + |A2
—the NBA Ast. L(A) = L(A1)NL(A). |Al = |A1]-|Az] - 2.
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Union of two NBAs

Two NBAS Al = (Ql, 21,51, /1, Fl), A2 = (Qg, 22,(52, /2, F2),
A=A1UA =(Q,%,d,1,F) is defined as follows
@ Q =QLU@, I =hUb, F:=FRUF
Ri(s,s') if se
N .__ )
° Rls;s):= { Ro(s,s) if s € Q
—A is an automaton which just runs nondeterministically either A;
or A2

o L(A) = L(A1)UL(A)
o |Al = [Ai] + |Az|

@ (same construction as with ordinary automata)
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Synchronous Product of NBAs

Let Ay = (Q1,2,51, I, Fl) and A, = (Q2,2,52, b, F2).
Then, A1 x Ay = (Q,X,8,1,F), where

Q — Ql X Q2 X {172}

| = Il X 12 X {1}

F = F1 X Q2 X {].}

<p,gl><p g 1>iff p—p and g - ¢ and p & Fi.
<p,gl><p.qd,2>iff p—p and g — ¢ and p € F;.
<p,g2><p g, 2>iff p—p and g — ¢ and q & F>.
<p,g2><p.qd.1>iff p—p and g — ¢ and g € F>.
Theorem L(A1 X Az) = L(A1) N L(Az).
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Product of NBAs: Intuition

@ The automaton remembers two tracks, one for each source NBA, and
it points to one of the two tracks

@ As soon as it goes through an accepting state of the current track, it
switches to the other track
=>to visit infinitely often a state in F (i.e., F1), it must visit
infinitely often some state also in F»

@ Important subcase: If F, = @, then

Q = Q1 x Q.
| = /1></2
F = F1x@
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Product of NBAs: Example
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Closure Properties (2)

Theorem (complementation)
For the NBA A; we can construct an NBA A; such that £(A2) = L(A1).
As| = O(21Alos(jA)y,

Method: (hint)

(1) convert a Biichi automaton into a Non-Deterministic Rabin automaton.
(2) determinize and Complement the Rabin automaton

(3) convert the Rabin automaton into a Biichi automaton
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Omega Regular Expressions

A language is called w-regular if it has the form U_; U;.(V;)“ where
U;, V; are regular languages.
Theorem A language L is w-regular iff it is NBA-recognizable.
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@ Automata-Theory Overview

@ Emptiness Checking
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Nonemptiness of NFA Automata

The nonemptiness problem for an automaton is to decide whether there is at least one
word for which there is an accepting run.

For NFA (i.e., standard nondeterministic finite automata), nonemptiness algorithms are
based on reachability

In Datalog/Prolog notation:

nonempty :- initial (X),cn(X,Y),final(Y).
cn(X,Y) := r(X,A,Y).
cn(X,Y) :-= r(X,A,Z2),cn(z2,Y).

where initial (X) denotes that X is an initial state; final (X) denotesthatX is
a final state; r (X, A, Y) denotes that a transition from X to Y reading A; andcn (., .)
is the transitive closure of r (X, A, Y) projected on X,Y.

Notice that cn (., . ) is not expressible in FOL.

Reachability is a well-known problem on graphs, its complexity is NLOGSPACE-complete.
9

Thm. Nonemptiness for NFA a is NLOGSPACE-complete.

Practical algorithms have a linear cost.

Nonemptiness of Blichi Automata

For Blichi automata, nonemptiness algorithms are based on fair reachability
In Datalog/Prolog notation:

nonempty :- initial(X),cn(X,Y),final(Y),cn(Y,Y).
cn(X,Y) := r(X,A,Y).
cn(X,Y) :- r(X,A,2),cn(2,Y).

where, as before, initial (X) denotes that X is an initial state;

final (X) denotesthat X isa finalstate; r (X, A, Y) denotes that a
transition from X to Y reading 2; and cn (., .) is the transitive closure of
r(X,A,Y) projected on X,Y.

Fair reachability amounts to two separate reachability problems: (1) reach a
final state from the initial state, (2) from that final state reach itself through a
loop.

Fair reachability has the same complexity as reachability: NLOGSPACE-
complete. 2

Thm. Nonemptiness for Biichi automata is NLOGSPACE-complete.

Practical algorithms have a linear cost.



NFA emptiness checking

@ Equivalent of finding a final state reachable from an initial state.
@ It can be solved with a DFS or a BFS.

@ A DFS finds a counterexample on the fly (it is stored in the stack of
the procedure).

@ A BFS finds a final state reachable with a shortest counterexample,
but it requires a further backward search to reproduce the path.

o Complexity: O(n).

@ Henceafter, assume w.l.o.g. that there is only one initial state.
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NBA emptiness checking

@ Equivalent of finding an accepting cycle reachable from an initial
state.

@ A naive algorithm:

e a DFS finds the final states f reachable from an initial state;
e for each f, a DFS finds if there exists a loop.
o Complexity: O(n?).

@ SCC-based algorithm:

e the Tarjan’s algorithm uses a DFS to finds the SCCs of a graph in
linear time;

e another DFS finds if a non-trivial final SCC is reachable from an initial
state.

o Complexity: O(n).

e It stores too much information and does not find directly a
counterexample.
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e The Automata-Theoretic Approach to Model Checking
@ Automata-Theoretic LTL Model Checking
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Automata-Theoretic LTL Model Checking

M = Ay (CTL)
My (LTL)

L(Am x Ay) = {}
Ap is a Bilichi Automaton equivalent to M (which represents all and
only the executions of M)

S I A

A-, is a Buchi Automaton which represents all and only the paths
that satisfy =) (do not satisfy 1)

Am X Ay represents all and only the paths appearing in M and not

in 1.

|
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Automata-Theoretic LTL M.C. (dual version)

e MEEyp
— MK~ A-p
= L(Au x Ap) # {}

Ap is a Blichi Automaton equivalent to M (which represents all and
only the executions of M)

@ A, is a Buchi Automaton which represents all and only the paths that
satisfy ¢

— Ap X A, represents all and only the paths appearing in both Ay, and
Agp.
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Automata-Theoretic LTL Model Checking

Four steps:
@ Compute Ay
@ Compute A,
© Compute the product Ay x A,
@ Check the emptiness of L(Apy < Ay)
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e The Automata-Theoretic Approach to Model Checking

@ From Kripke Structures to Biichi Automata
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Computing an NBA Ay, from a Kripke Structure M

@ Transforming a K.S. M = (5,50, R, L, AP) into an NBA
A = (Q,%.6,1,F) s.t.:

o States: @ := S U {init}, init being a new initial state
o Alphabet: ¥ := 247

o Initial State: / := {init}

o Accepting States: F := Q = S U {init}

e Transitions:

6: q-—q iff(q,q) € Rand L(¢') = a
init = qiff g€ Sy and L(q) = a

o L(Am) = L(M)
o ’AM| = ‘M| —|— ].
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Computing a NBA Ay, from a Kripke Structure M:

Example

Kripke Structure Buechi Auromaton

—Substantially, add one initial state, move labels from states to
incoming edges, set all states as accepting states
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Labels on Kripke Structures and BA's - Remark

Note that the labels of a Buchi Automaton are different from the labels of
a Kripke Structure. Also graphically, they are interpreted differently:

()

@ in a Kripke Structure, it means that p is true and all other
propositions are false;

@ in a Buchi Automaton, it means that p is true and all other
propositions are uncertain (they can be either true or false).
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e The Automata-Theoretic Approach to Model Checking

@ From LTL Formulas to Buchi Automata
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Translation problem

Problem
Given an LTL formula ¢, find a Biichi Automaton that accepts the same

language of ¢.

@ It is a fundamental problem in LTL model checking (in other words,
every model checking algorithm that verifies the correctness of an
LTL formula translates it in some sort of finite-state machine).

@ We will translate LTL in a (equivalent) variant of Biichi Automata
called Labeled Generalized Biichi Automata (LGBA).
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Translation from LTL to Blichi Automata: examples

\ 43

L=true* P true®

QUP
L=Q* P true®

mp
L=pu

QU eep

L=Q* true true P true®

Q

true true
" P @’
Q true
” P O‘
P true P
not P %
oppure

true

” true true . P @’

Translation from LTL to Bliichi Automata: examples

H(P->€Q)
L= (not P* P true Q true)® U
(not P* P true Q true)* not P¥

méP

L= (true*pP)v

éomp

L=true*pv

not P
t
p rue
Q
not P p
P
, T ’
not P
true



e The Automata-Theoretic Approach to Model Checking

@ Complexity
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Automata-Theoretic LTL Model Checking: complexity

Four steps:
@ Compute Ay:
@ Compute A
© Compute the product Ay x A,:
@ Check the emptiness of L(Ap x Ay):
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Automata-Theoretic LTL Model Checking: complexity

Four steps:
@ Compute Ay |Ay| = O(IM])
@ Compute A,:
© Compute the product Ay x A,:
@ Check the emptiness of L(Ap x Ay):
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Automata-Theoretic LTL Model Checking: complexity

Four steps:
@ Compute Ay |Ay| = O(IM])
@ Compute A,: |A,| = 0(2/¥))
© Compute the product Ay x A,:
@ Check the emptiness of L(Ap x Ay):
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Automata-Theoretic LTL Model Checking: complexity

Four steps:
@ Compute Ay |Ay| = O(IM])
@ Compute A,: |A,| = 0(2)¥))
© Compute the product Ay x A,:
Am x Agl = |Aul - |Ag] = O(|M] - 21#1)
@ Check the emptiness of L(Ay x Ay):
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Automata-Theoretic LTL Model Checking: complexity

Four steps:
@ Compute Ay |Ay| = O(IM])
@ Compute A,: |A,| = 0(2/¥))
© Compute the product Ay x A,:
[Am x Ag| = [Aul - A, = O(IM]| - 2I¥))
@ Check the emptiness of L(Ay x A,): O(|Ay x Aul) = O(|M] - 21¢)

—>the complexity of LTL M.C. grows linearly wrt. the size of the model
M and exponentially wrt. the size of the property ¢
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Final Remarks

@ Biuchi automata are in general more expressive than LTL!
—>Some tools (e.g., Spin, ObjectGEODE) allow specifications to be
expressed directly as NBAs
—>complementation of NBA important!

@ for every LTL formula, there are many possible equivalent NBAs
—>lots of research for finding “the best” conversion algorithm

@ performing the product and checking emptiness very relevant
—>lots of techniques developed (e.g., partial order reduction)
—>lots on ongoing research
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