Introduction to Formal Methods

08 - Automata-Theoretic LTL Model Checking

Roberto Sebastiani - rseba@disi.unitn.it Stefano Tonetta - tonettas@fbk.eu

A.A. 2008-2009

Last update: February 14, 2009

Roberto Sebastiani, Stefano Tonetta () Introduction to Formal Methods

Content

- Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking
- The Automata-Theoretic Approach to Model Checking
 - Automata-Theoretic LTL Model Checking
 - From Kripke Structures to Büchi Automata
 - From LTL Formulas to Büchi Automata
 - Exponential construction of Buchi Automata
 - On-the-fly construction of Buchi Automata
 - Complexity

nan

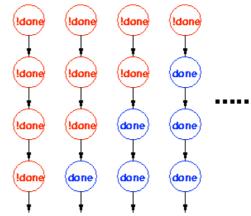
- Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking
- 2 The Automata-Theoretic Approach to Model Checking
 - Automata-Theoretic LTL Model Checking
 - From Kripke Structures to Büchi Automata
 - From LTL Formulas to Büchi Automata
 - Exponential construction of Buchi Automata
 - On-the-fly construction of Buchi Automata
 - Complexity

Roberto Sebastiani, Stefano Tonetta () Introduction to Formal Methods

System's computations

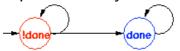
• The behaviors (computations) of a system can be seen as sequences of propositions.

```
MODULE main
VAR.
     done: Boolean;
ASSIGN
  init(done):=0;
  next(done):= case
      !done: {0,1};
      done: done:
    esac;
```



• Since the state space is finite, the set of computations can be represented by a finite automaton.

or

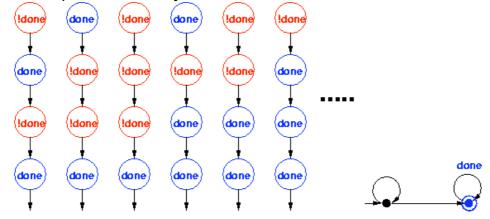


!done

nan

Correct computations

- Some computations are correct and others are not acceptable.
- We can build an automaton for the set of all acceptable computations.
- Example: eventually, done will be true forever.



nan

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 03

Language Containment Problem

- Solution to the verification problem
 - ⇒ Check if language of the system automaton is contained in the language accepted by the property automaton.
- The language containment problem is the problem of deciding if a language is a subset of another language.

$$\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2) \Longleftrightarrow \mathcal{L}(A_1) \cap \overline{\mathcal{L}(A_2)} = \{\}$$

To solve the language containment problem, we need to know:

- how to complement an automaton,
- 2 how to intersect two automata,
- o how to check the language emptiness of an automaton.

- Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking
- 2 The Automata-Theoretic Approach to Model Checking
 - Automata-Theoretic LTL Model Checking
 - From Kripke Structures to Büchi Automata
 - From LTL Formulas to Büchi Automata
 - Exponential construction of Buchi Automata
 - On-the-fly construction of Buchi Automata
 - Complexity

990

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

) 4 (*

Finite Word Languages

- An Alphabet Σ is a collection of symbols (letters). E.g. $\Sigma = \{a, b\}$.
- A finite word is a finite sequence of letters. (E.g. aabb.) The set of all finite words is denoted by Σ^* .
- A language U is a set of words, i.e. $U \subseteq \Sigma^*$.

Example: Words over $\Sigma = \{a, b\}$ with equal number of a's and b's. (E.g. aabb or abba.)

Language recognition problem:

determine whether a word belongs to a language.

Automata are computational devices able to solve language recognition problems.

Finite State Automata

Basic model of computational systems with finite memory.

Widely applicable

- Embedded System Controllers.
 - Languages: Ester-el, Lustre, Verilog.
- Synchronous Circuits.
- Regular Expression Pattern Matching Grep, Lex, Emacs.
- Protocols

Network Protocols

Architecture: Bus, Cache Coherence, Telephony,...

Roberto Sebastiani, Stefano Tonetta () Introduction to Formal Methods

Notation

```
a, b \in \Sigma finite alphabet.
```

 $u, v, w \in \Sigma^*$ finite words.

 ϵ empty word.

u.v catenation.

 $u^i = u.u.$.u repeated i-times.

 $U, V \subseteq \Sigma^*$ Finite word languages.

FSA Definition

Nondeterministic Finite State Automaton (NFA):

NFA is $(Q, \Sigma, \delta, I, F)$

Q Finite set of states.

 Σ is a finite alphabet

 $I \subseteq Q$ set of initial states.

 $F \subseteq Q$ set of final states.

 $\delta \subseteq Q \times \Sigma \times Q$ transition relation (edges). We use $q \stackrel{a}{\longrightarrow} q'$ to denote $(q, a, q') \in \delta$.

Deterministic Finite State Automaton (DFA):

DFA has $\delta: Q \times \Sigma \to Q$, a total function. Single initial state $I = \{q_0\}$.

990

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 02

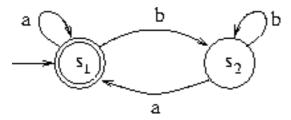
Regular Languages

- A run of NFA A on $u = a_0, a_1, \ldots, a_{n-1}$ is a finite sequence of states q_0, q_1, \ldots, q_n s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \le i < n$.
- An accepting run is one where the last state $q_n \in F$.
- The language accepted by A $\mathcal{L}(A) = \{ u \in \Sigma^* \mid A \text{ has an accepting run on } u \}$
- The languages accepted by a NFA are called regular languages.

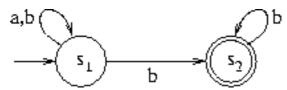
Finite State Automata

Example: DFA A_1 over $\Sigma = \{a, b\}$.

Recognizes words which do not end in b.



NFA A_2 . Recognizes words which end in b.



9 Q Q

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 02

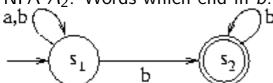
Determinisation

Theorem (determinisation) Given a NFA A we can construct a DFA A' s.t. $\mathcal{L}(A) = \mathcal{L}(A')$. Size $|A'| = 2^{O(|A|)}$.

- Each state of A' corresponds to a set $\{s_1, ..., s_j\}$ of states in A $(Q' \subseteq 2^Q)$, with the intended meaning that :
 - ullet A' is in the state $\{s_1,..,s_j\}$ if A is in one of the states s_1 , ..., s_j
- ullet The deterministic transition relation $\delta': 2^Q imes \Sigma \longmapsto 2^Q$ is
 - $\bullet \ \{s\} \stackrel{a}{\longrightarrow} \{s_i \mid s \stackrel{a}{\longrightarrow} s_i\}$
 - $\bullet \ \{s_1,...,s_j,...,s_n\} \stackrel{a}{\longrightarrow} \dot{\bigcup}_{j=1}^n \{s_i \mid s_j \stackrel{a}{\longrightarrow} s_i\}$
- The (unique) initial state is $I' =_{def} \{s_i \mid s_i \in I\}$
- The set of final states F' is such that $\{s_1,...,s_n\} \in F'$ iff $s_i \in F$ for some $i \in \{1,...,n\}$

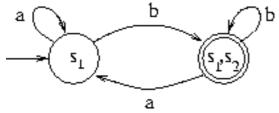
Determinisation [cont.]

NFA A_2 : Words which end in b.



 A_2 can be determinised into the automaton DA_2 below.

States $= 2^Q$.



There are NFAs of size n for which the size of the minimum sized DFA must have size $O(2^n)$.

~ a ~

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 02

Closure Properties

Theorem (Boolean closure) Given NFA A_1, A_2 over Σ we can construct NFA A over Σ s.t.

- $\mathcal{L}(A) = \overline{\mathcal{L}(A_1)}$ (Complement). $|A| = 2^{O(|A_1|)}$.
- $\mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ (union). $|A| = |A_1| + |A_2|$.
- $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$ (intersection). $|A| = |A_1| \cdot |A_2|$.

Complementation of a NFA

A NFA $A = (Q, \Sigma, \delta, I, F)$ is complemented by:

- determinizing it into a DFA $A' = (Q', \Sigma', \delta', I', F')$
- complementing it: $\overline{A'} = (Q', \Sigma', \delta', I', \overline{F'})$
- $|\overline{A'}| = |A'| = 2^{O(|A|)}$

7900

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 03

Union of two NFAs

Two NFAs $A_1 = (Q_1, \Sigma_1, \delta_1, I_1, F_1)$, $A_2 = (Q_2, \Sigma_2, \delta_2, I_2, F_2)$, $A = A_1 \cup A_2 = (Q, \Sigma, \delta, I, F)$ is defined as follows

- $Q := Q_1 \cup Q_2$, $I := I_1 \cup I_2$, $F := F_1 \cup F_2$
- ullet $R(s,s'):=\left\{egin{array}{l} R_1(s,s') \ if \ s\in Q_1 \ R_2(s,s') \ if \ s\in Q_2 \end{array}
 ight.$

 \Longrightarrow A is an automaton which just runs nondeterministically either A_1 or A_2

- $\bullet \ \mathcal{L}(A) \ = \ \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$
- $|A| = |A_1| + |A_2|$

Synchronous Product Construction

Let $A_1=(Q_1,\Sigma,\delta_1,I_1,F_1)$ and $A_2=(Q_2,\Sigma,\delta_2,I_2,F_2)$. Then, $A_1\times A_2=(Q,\Sigma,\delta,I,F)$ where

- ullet $< p, q > \stackrel{a}{\longrightarrow} < p', q' > \text{iff } p \stackrel{a}{\longrightarrow} p' \text{ and } q \stackrel{a}{\longrightarrow} q'.$

Theorem $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$.

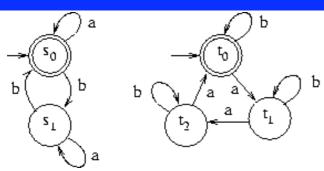
990

Roberto Sebastiani, Stefano Tonetta ()

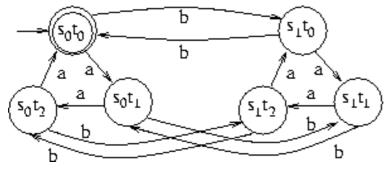
Introduction to Formal Methods

/ 93

Example



- A_1 recognizes words with an even number of b's.
- A_2 recognizes words with a number of a's multiple of 3.
- The Product Automaton $A_1 \times A_2$ with $F = \{s_0, t_0\}$.



Regular Expressions

Syntax: $\emptyset \mid \epsilon \mid a \mid reg_1.reg_2 \mid reg_1|reg_2 \mid reg^*$.

Every regular expression reg denotes a language $\mathcal{L}(reg)$.

Example: $a^*.(b|bb).a^*$. The words with either 1 b or 2 consecutive b's.

Theorem: For every regular expression reg we can construct a language equivalent NFA of size O(|reg|).

Theorem: For every DFA A we can construct a language equivalent regular expression reg(A).

Roberto Sebastiani, Stefano Tonetta () Introduction to Formal Methods

Content

- Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking
- 2 The Automata-Theoretic Approach to Model Checking
 - Automata-Theoretic LTL Model Checking
 - From Kripke Structures to Büchi Automata
 - From LTL Formulas to Büchi Automata
 - Exponential construction of Buchi Automata
 - On-the-fly construction of Buchi Automata
 - Complexity

Infinite Word Languages

Modeling infinite computations of reactive systems.

• An ω -word α over Σ is an infinite sequence

$$a_0, a_1, a_2 \dots$$

Formally, $\alpha : \mathbb{N} \to \Sigma$.

The set of all infinite words is denoted by Σ^{ω} .

• A ω -language L is collection of ω -words, i.e. $L \subseteq \Sigma^{\omega}$.

Example All words over $\{a, b\}$ with infinitely many a's.

Notation

omega words $\alpha, \beta, \gamma \in \Sigma^{\omega}$. omega-languages $L, L_1 \subseteq \Sigma^{\omega}$ For $u \in \Sigma^+$, let $u^{\omega} = u.u.u...$

000

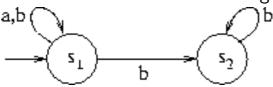
Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 03

Omega-Automata

We consider automaton running over infinite words.



Let $\alpha = aabbbb...$ There are several possible runs.

Run
$$\rho_1 = s_1, s_1, s_1, s_1, s_2, s_2 \dots$$

Run
$$\rho_2 = s_1, s_1, s_1, s_1, s_1, s_1 \dots$$

Acceptance Conditions Büchi, (Muller, Rabin, Street).

Acceptance is based on states occurring infinitely often Notation Let $\rho \in Q^{\omega}$. Then,

$$Inf(\rho) = \{s \in Q \mid \exists^{\infty}i \in \mathbb{N}. \ \rho(i) = s\}.$$

(The set of states occurring infinitely many times in ρ .)

Büchi Automata

Nondeterministic Büchi Automaton

 $A = (Q, \Sigma, \delta, I, F)$, where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on omega word α is an infinite sequence $\rho = q_0, q_1, q_2, \ldots$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \le i$.
- The run ρ is accepting if $Inf(\rho) \cap F \neq \emptyset$.
- The language accepted by A $\mathcal{L}(A) = \{ \alpha \in \Sigma^{\omega} \mid A \text{ has an accepting run on } \alpha \}$

990

Roberto Sebastiani, Stefano Tonetta ()

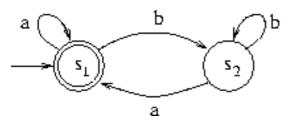
Introduction to Formal Methods

/ 03

Büchi Automaton: Example

Let $\Sigma = \{a, b\}$.

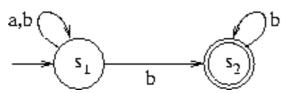
Let a Deterministic Büchi Automaton (DBA) A_1 be



- With $F = \{s_1\}$ the automaton recognizes words with infinitely many a's.
- With $F = \{s_2\}$ the automaton recognizes words with infinitely many b's.

Büchi Automaton: Example (2)

Let a Nondeterministic Büchi Automaton (NBA) A_2 be



With $F = \{s_2\}$, automaton A_2 recognizes words with finitely many a. Thus, $\mathcal{L}(A_2) = \overline{\mathcal{L}(A_1)}$.

900

Roberto Sebastiani, Stefano Tonetta ()

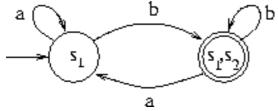
Introduction to Formal Methods

/ 03

Deterministic vs. Nondeterministic Büchi Automata

Theorem DBAs are strictly less powerful than NBAs.

The subset construction does not work: let DA_2 be



- DA_2 is not equivalent to A_2 (e.g., it recognizes $(b.a)^{\omega}$)
- There is no DBA equivalent to A_2

Closure Properties

Theorem (union, intersection)

For the NBAs A_1, A_2 we can construct

- the NBA A s.t. $\mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$. $|A| = |A_1| + |A_2|$
- the NBA A s.t. $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$. $|A| = |A_1| \cdot |A_2| \cdot 2$.

990

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 02

Union of two NBAs

Two NBAs $A_1 = (Q_1, \Sigma_1, \delta_1, I_1, F_1)$, $A_2 = (Q_2, \Sigma_2, \delta_2, I_2, F_2)$, $A = A_1 \cup A_2 = (Q, \Sigma, \delta, I, F)$ is defined as follows

- $Q := Q_1 \cup Q_2$, $I := I_1 \cup I_2$, $F := F_1 \cup F_2$
- ullet $R(s,s'):=\left\{egin{array}{l} R_1(s,s') \ if \ s\in Q_1 \ R_2(s,s') \ if \ s\in Q_2 \end{array}
 ight.$

 \Longrightarrow A is an automaton which just runs nondeterministically either A_1 or A_2

- $\bullet \ \mathcal{L}(A) \ = \ \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$
- $|A| = |A_1| + |A_2|$
- (same construction as with ordinary automata)

Synchronous Product of NBAs

Let
$$A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$$
 and $A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$.
Then, $A_1 \times A_2 = (Q, \Sigma, \delta, I, F)$, where $Q = Q_1 \times Q_2 \times \{1, 2\}$.
 $I = I_1 \times I_2 \times \{1\}$.
 $F = F_1 \times Q_2 \times \{1\}$.
 $< p, q, 1 > \xrightarrow{a} < p', q', 1 > \text{iff } p \xrightarrow{a} p' \text{ and } q \xrightarrow{a} q' \text{ and } p \notin F_1$.
 $< p, q, 1 > \xrightarrow{a} < p', q', 2 > \text{iff } p \xrightarrow{a} p' \text{ and } q \xrightarrow{a} q' \text{ and } p \in F_1$.
 $< p, q, 2 > \xrightarrow{a} < p', q', 2 > \text{iff } p \xrightarrow{a} p' \text{ and } q \xrightarrow{a} q' \text{ and } q \notin F_2$.
 $< p, q, 2 > \xrightarrow{a} < p', q', 1 > \text{iff } p \xrightarrow{a} p' \text{ and } q \xrightarrow{a} q' \text{ and } q \notin F_2$.
Theorem $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$.

9 Q Q

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 03

Product of NBAs: Intuition

- The automaton remembers two tracks, one for each source NBA, and it points to one of the two tracks
- As soon as it goes through an accepting state of the current track, it switches to the other track

 \Longrightarrow to visit infinitely often a state in F (i.e., F_1), it must visit infinitely often some state also in F_2

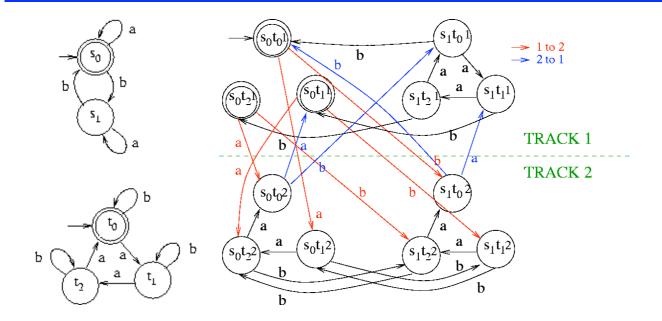
• Important subcase: If $F_2 = Q_2$, then

$$Q = Q_1 \times Q_2.$$

$$I = I_1 \times I_2.$$

$$F = F_1 \times Q_2.$$

Product of NBAs: Example



990

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 93

Closure Properties (2)

Theorem (complementation)

For the NBA A_1 we can construct an NBA A_2 such that $\mathcal{L}(A_2) = \overline{\mathcal{L}(A_1)}$. $|A_2| = O(2^{|A_1| \cdot \log(|A_1|)})$.

Method: (hint)

- (1) convert a Büchi automaton into a Non-Deterministic Rabin automaton.
- (2) determinize and Complement the Rabin automaton
- (3) convert the Rabin automaton into a Büchi automaton

Omega Regular Expressions

A language is called ω -regular if it has the form $\bigcup_{i=1}^n U_i.(V_i)^{\omega}$ where U_i, V_i are regular languages.

Theorem A language L is ω -regular iff it is NBA-recognizable.

200

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 02

Content

- 1 Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking
- 2 The Automata-Theoretic Approach to Model Checking
 - Automata-Theoretic LTL Model Checking
 - From Kripke Structures to Büchi Automata
 - From LTL Formulas to Büchi Automata
 - Exponential construction of Buchi Automata
 - On-the-fly construction of Buchi Automata
 - Complexity

Nonemptiness of NFA Automata

- The **nonemptiness** problem for an automaton is to decide whether there is at least one word for which there is an accepting run.
- For NFA (i.e., standard nondeterministic finite automata), nonemptiness algorithms are based on reachability
- In Datalog/Prolog notation:

```
nonempty :- initial (X), cn (X,Y), final (Y). cn (X,Y) :- r(X,A,Y). cn (X,Y) :- r(X,A,Z), cn (Z,Y). where initial (X) denotes that X is an initial state; final (X) denotes that X is a final state; r(X,A,Y) denotes that a transition from X to Y reading A; and cn (.,.) is the transitive closure of r(X,A,Y) projected on X,Y.
```

Notice that cn (.,.) is not expressible in FOL.

Reachability is a well-known problem on graphs, its complexity is NLOGSPACE-complete.

Thm. Nonemptiness for NFA a is **NLOGSPACE**-complete.

Practical algorithms have a linear cost.

Nonemptiness of Büchi Automata

- For Büchi automata, nonemptiness algorithms are based on fair reachability
- In Datalog/Prolog notation:

```
nonempty :- initial(X), cn(X,Y), final(Y), cn(Y,Y).

cn(X,Y) := r(X,A,Y).

cn(X,Y) := r(X,A,Z), cn(Z,Y).
```

where, as before, initial (X) denotes that X is an initial state; final (X) denotes that X is a final state; r(X, A, Y) denotes that a transition from X to Y reading A; and cn(.,.) is the transitive closure of r(X, A, Y) projected on X,Y.

- Fair reachability amounts to two separate reachability problems: (1) reach a final state from the initial state, (2) from that final state reach itself through a loop.
- Fair reachability has the same complexity as reachability: NLOGSPACE-complete. →

Thm. Nonemptiness for Büchi automata is **NLOGSPACE**-complete.

Practical algorithms have a linear cost.

NFA emptiness checking

- Equivalent of finding a final state reachable from an initial state.
- It can be solved with a DFS or a BFS.
- A DFS finds a counterexample on the fly (it is stored in the stack of the procedure).
- A BFS finds a final state reachable with a shortest counterexample, but it requires a further backward search to reproduce the path.
- Complexity: O(n).
- Henceafter, assume w.l.o.g. that there is only one initial state.

naa

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 93

NBA emptiness checking

- Equivalent of finding an accepting cycle reachable from an initial state.
- A naive algorithm:
 - a DFS finds the final states f reachable from an initial state;
 - for each f, a DFS finds if there exists a loop.
 - Complexity: $O(n^2)$.
- SCC-based algorithm:
 - the Tarjan's algorithm uses a DFS to finds the SCCs of a graph in linear time;
 - another DFS finds if a non-trivial final SCC is reachable from an initial state.
 - Complexity: O(n).
 - It stores too much information and does not find directly a counterexample.

- Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking
- 2 The Automata-Theoretic Approach to Model Checking
 - Automata-Theoretic LTL Model Checking
 - From Kripke Structures to Büchi Automata
 - From LTL Formulas to Büchi Automata
 - Exponential construction of Buchi Automata
 - On-the-fly construction of Buchi Automata
 - Complexity

) a (~

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 02

Automata-Theoretic LTL Model Checking

- $M \models \mathbf{A}\psi$ (CTL*)
- $\iff M \models \psi \quad (LTL)$
- $\iff \mathcal{L}(M) \subseteq \mathcal{L}(\psi)$
- $\iff \mathcal{L}(M) \cap \overline{\mathcal{L}(\psi)} = \{\}$
- $\iff \mathcal{L}(A_M) \cap \mathcal{L}(A_{\neg \psi}) = \{\}$
- $\iff \mathcal{L}(A_M \times A_{\neg \psi}) = \{\}$
 - A_M is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
 - $A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)
- \implies $A_M \times A_{\neg \psi}$ represents all and only the paths appearing in M and not in ψ .

Automata-Theoretic LTL M.C. (dual version)

- $M \models \mathbf{E}\varphi$
- $\iff M \not\models \mathbf{A} \neg \varphi$
- ← ...
- $\iff \mathcal{L}(A_M \times A_{\varphi}) \neq \{\}$
 - A_M is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
 - A_{φ} is a Büchi Automaton which represents all and only the paths that satisfy φ
- $\Longrightarrow A_M \times A_{\varphi}$ represents all and only the paths appearing in both A_M and A_{φ} .

990

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 03

Automata-Theoretic LTL Model Checking

Four steps:

- Compute A_M
- **2** Compute A_{φ}
- **3** Compute the product $A_M \times A_{\varphi}$
- **4** Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$

- Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking
- 2 The Automata-Theoretic Approach to Model Checking
 - Automata-Theoretic LTL Model Checking
 - From Kripke Structures to Büchi Automata
 - From LTL Formulas to Büchi Automata
 - Exponential construction of Buchi Automata
 - On-the-fly construction of Buchi Automata
 - Complexity

9 a a

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

) 4 (*

Computing an NBA A_M from a Kripke Structure M

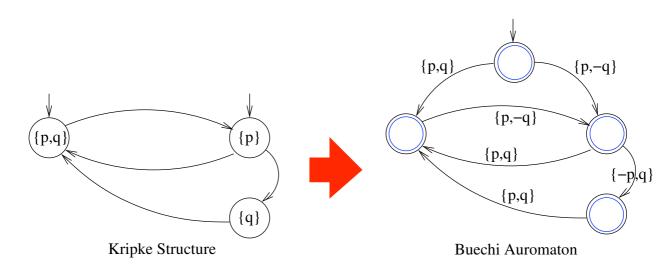
- Transforming a K.S. $M = \langle S, S_0, R, L, AP \rangle$ into an NBA $A_M = \langle Q, \Sigma, \delta, I, F \rangle$ s.t.:
 - States: $Q := S \cup \{init\}$, init being a new initial state
 - Alphabet: $\Sigma := 2^{AP}$
 - Initial State: I := {init}
 - Accepting States: $F := Q = S \cup \{init\}$
 - Transitions:

$$\delta: q \xrightarrow{a} q' \text{ iff } (q, q') \in R \text{ and } L(q') = a$$

 $init \xrightarrow{a} q \text{ iff } q \in S_0 \text{ and } L(q) = a$

- $\mathcal{L}(A_M) = \mathcal{L}(M)$
- $|A_M| = |M| + 1$

Computing a NBA A_M from a Kripke Structure M: Example



⇒Substantially, add one initial state, move labels from states to incoming edges, set all states as accepting states

nan

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 02

Labels on Kripke Structures and BA's - Remark

Note that the labels of a Büchi Automaton are different from the labels of a Kripke Structure. Also graphically, they are interpreted differently:

- in a Kripke Structure, it means that *p* is true and all other propositions are false;
- in a Büchi Automaton, it means that *p* is true and all other propositions are uncertain (they can be either true or false).

- 1 Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking
- 2 The Automata-Theoretic Approach to Model Checking
 - Automata-Theoretic LTL Model Checking
 - From Kripke Structures to Büchi Automata
 - From LTL Formulas to Büchi Automata
 - Exponential construction of Buchi Automata
 - On-the-fly construction of Buchi Automata
 - Complexity

9 a a

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 03

Translation problem

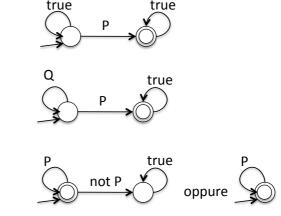
Problem

Given an LTL formula ϕ , find a Büchi Automaton that accepts the same language of ϕ .

- It is a fundamental problem in LTL model checking (in other words, every model checking algorithm that verifies the correctness of an LTL formula translates it in some sort of finite-state machine).
- We will translate LTL in a (equivalent) variant of Büchi Automata called Labeled Generalized Büchi Automata (LGBA).

Translation from LTL to Büchi Automata: examples

- \mathcal{L} = true* P true $^{\omega}$
- Q**U**P $\mathcal{L} = Q^* P true^{\omega}$
- $\blacksquare P$ $\mathcal{L} = P^{\omega}$
- Q U ● P



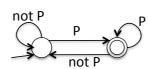
true true $\mathcal{L} = Q^*$ true true P true^{ω}

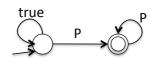
Q

Translation from LTL to Büchi Automata: examples

- ■(P -> ◆Q) \mathcal{L} = (not P* P true Q true) $^{\omega}$ U (not P^* P true Q true)* not P^{ω}
- **■**◆P $\mathcal{L} = (true^*P)^{\omega}$
- **◆**■P $\mathcal{L} = true^*P^\omega$

not P





- Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking
- 2 The Automata-Theoretic Approach to Model Checking
 - Automata-Theoretic LTL Model Checking
 - From Kripke Structures to Büchi Automata
 - From LTL Formulas to Büchi Automata
 - Exponential construction of Buchi Automata
 - On-the-fly construction of Buchi Automata
 - Complexity

990

00...

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

Automata-Theoretic LTL Model Checking: complexity

Four steps:

- Compute A_M :
- **2** Compute A_{φ} :
- **3** Compute the product $A_M \times A_{\varphi}$:
- Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$:

Automata-Theoretic LTL Model Checking: complexity

Four steps:

- Compute A_M : $|A_M| = O(|M|)$
- **2** Compute A_{φ} :
- **3** Compute the product $A_M \times A_{\varphi}$:
- **4** Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$:

200

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 02

Automata-Theoretic LTL Model Checking: complexity

Four steps:

- Compute A_M : $|A_M| = O(|M|)$
- 2 Compute A_{φ} : $|A_{\varphi}| = O(2^{|\varphi|})$
- **3** Compute the product $A_M \times A_{\varphi}$:
- **4** Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$:

Automata-Theoretic LTL Model Checking: complexity

Four steps:

- Compute A_M : $|A_M| = O(|M|)$
- 2 Compute A_{φ} : $|A_{\varphi}| = O(2^{|\varphi|})$
- **3** Compute the product $A_M \times A_{\varphi}$: $|A_M \times A_{\varphi}| = |A_M| \cdot |A_{\varphi}| = O(|M| \cdot 2^{|\varphi|})$
- Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$:

200

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

/ 02

Automata-Theoretic LTL Model Checking: complexity

Four steps:

- Compute A_M : $|A_M| = O(|M|)$
- 2 Compute A_{φ} : $|A_{\varphi}| = O(2^{|\varphi|})$
- **3** Compute the product $A_M \times A_{\varphi}$: $|A_M \times A_{\varphi}| = |A_M| \cdot |A_{\varphi}| = O(|M| \cdot 2^{|\varphi|})$
- Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$: $O(|A_M \times A_{\varphi}|) = O(|M| \cdot 2^{|\varphi|})$

 \Longrightarrow the complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially wrt. the size of the property φ

Final Remarks

- Büchi automata are in general more expressive than LTL!
 ⇒Some tools (e.g., Spin, ObjectGEODE) allow specifications to be expressed directly as NBAs
 - ⇒complementation of NBA important!
- for every LTL formula, there are many possible equivalent NBAs —>lots of research for finding "the best" conversion algorithm
- performing the product and checking emptiness very relevant
 lots of techniques developed (e.g., partial order reduction)
 lots on ongoing research