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Fixpoints

We briefly recall few notions on fixpoints.

@ Consider the equation:

X = f(X)

where f is an operator from 25 to 25 (25 denotes the set of all subsets of a
set S).
Every solution £ of this equation is called a fixpoint of the operator f
every set & such that (&) C £ is called pre-fixpoint, and
every set £ such that £ C (&) is called post-fixpoint.

In general, an equation as the one above may have either no solution, a finite
number of solutions, or an infinite number of them. Among the various
solutions, the smallest and the greatest solutions (with respect to
set-inclusion) have a prominent position, if they exist.

@ The the smallest and the greatest solutions are called least fixpoint and
greatest fixpoint, respectively.
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Tarski-Knaster fixpoint theorem

We say that f is monotonic wrt C (set-inclusion) whenever £ C &, implies
f(&1) C f(&).

Theorem (Tarski'55)

Let S be a set, and f an operator from 2° to 25 that is monotonic wrt C. Then:
@ There exists a unique least fixpoint of f, which is given by

({ECS| f(€) CE&F.

@ There exists a unique greatest fixpoint of f, which is given by

U{ECS| £EC(E)}
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Proof of Tarski-Knaster theorem: least fixpoint

We start by showing the proof for the least fixpoint part. (The proof for the
greatest fixpoint is analogous, see later).

Let us define L={EC S| f(£) C &}

Lemma
f(L)C L

Proof.

@ For every E such that f(£) C &, we have £ C &, by definition of L.

@ Consider now e € f(L). For any & such that () C &, e € f(€) since
f(L) C (&), by monotonicity of f.

@ But then e € L, hence we have f(£) C L.
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Proof of Tarski-Knaster theorem: least fixpoint

Lemma
LCf(L) J

Proof.
@ By the previous lemma, we have (L) C L.
@ But then f(f(£)) C f(£), by monotonicity.
@ Hence, £ = f(L) is such that f(£) C £ .
@ Thus, £ C f(L), by definition of L.

G. De Giacomo (UNIROMAL) Fixpoints 5/ 16

Proof of Tarski-Knaster theorem: least fixpoint

The previous two lemmas together show that £ is indeed a fixpoint: £ = f(L).
We still need to show that is the least fixpoint.

Lemma
L is the least fixpoint: for every f(£) = € we have L C €.

Proof.

By contradiction.
@ Suppose not. Then there exists an € such that f(c‘f) —&and £ C L.
e Being £ a fixpoint (i.e., f(€) = &), we have in particular £(€) C &.
@ Hence by definition of £, we get £ C £. Contradiction.
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Proof of Tarski-Knaster theorem: greatest fixpoint

Now we prove the greatest fixpoint part.

Let us define G = J{ECS| £ CF(E)}.

Lemma
G C f(9)

Proof.
@ For every £ such that £ C f(€), we have £ C G, by definition of G.

o Consider now e € G. Then there exists an £ such that £ C f(€), e € &, by
definition of G.

e But £ C G, and by monotonicity f(£) C f(G), hence e € f(G).
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Proof of Tarski-Knaster theorem: greatest fixpoint

Lemma
f(g)Cg

Proof.
@ By the previous lemma we have G C f(G)
@ But then, we have that f(G) C f(f(G)),
o Hence, £ = f(G) is such that £ C f(£) .
@ Thus, f(G) C G, by definition of G.

by monotonicity.
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Proof of Tarski-Knaster theorem: greatest fixpoint

The previous two lemmas together show that £ is indeed a fixpoint: G = f(G).
We still need to show that is the greatest fixpoint.

Lemma
G is the greatest fixpoint: for every € = f(E) we have £ C G. J

Proof.

By contradiction.
@ Suppose not. Then there exists an & such that £ = () and G C €.
@ Being £ a fixpoint, we have £ C f(SA)
@ Hence by definition of G, we get £ C G. Contradiction.
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Approximates of least fixpoints
The approximates for a least fixpoint £L=[{€ C S| f(£) C &} are as follows:

Zo=10
Zy = f(2Z)

Z, = f(4)

Lemma
Forall i, Z; C L.

Proof.

By induction on 1.

@ Base case: i = 0. By definition Zy = (), and trivially ) C L.
@ Inductive case: i = k + 1. By inductive hypothesis we assume Z, C L, and
we show that Zx, 1 C L.
f(Zx) C (L), by monotonicity.
But then f(Zx) C L, since L = f(L).
Hence, since f(Zx) = Zk+1, we have Zx11 C L.
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Approximates of least fixpoints

Theorem (Tarski-Knaster on approximates of least fixpoints)
If for some n, Z,11 = Z,, then Z, = L.

Proof.
e Z, C L by the above lemma.

@ On the other hand, since Z,.1 = f(Z,) = Z,, we trivially get f(Z,) C Z,,
and hence £ C Z, by definition of L.

Observe also that once for some n, Z,.1 = Z,, then for all m > n we have
Zmi1 = Zm, by definition of approximates.

In fact this theorem can be generalized by ranging n over ordinals instead of
natural numbers.
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Approximates of least fixpoints

The above theorem gives us a simple sound procedure to compute the least
fixpoint:

Least fixpoint algorithm

Zoig = 0;

Z = f(Zo/d);
while (Z 75 Zold){
Lo = Z,

Z:=f(2),

Ifin L=N{E CS| f(€) C &} the set S is finite then the above procedure
terminates in |S| steps and becomes sound and complete.

Notice the above procedure is polynomial in the size of S.
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Approximates of greatest fixpoints

The approximates for the greatest fixpoint G = J{E C S| £ C f(E)} are as
follows:

Zo=S
7y = f(2Z)

Z, = f(4)

Lemma
For all i, G C Z;.

Proof.

By induction on .
@ Base case: i = 0. By definition Zy = S, and trivially G C S.

@ Inductive case: i = k + 1: by inductive hypothesis we assume G C Zx, and
we show that G C Zy ;.
f(G) C f(Zk), by monotonicity.
But then G C f(Zx), since G = f(G).
Hence G C Zi1, since Zki1 = F(Zk).

I:IJ
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Approximates of greatest fixpoints
Theorem (Tarski-Knaster on approximates of greatest fixpoint)
If for some n, Z,11 = Z,, then Z, = G.
Proof.
@ G C Z, by the above lemma.
@ On the other hand, since Z,.1 = f(Z,) = Z,, we trivially get Z, C (Z,),
and hence Z, C G by definition of G.
]

Observe also that once for some n, Z,.1 = Z,, then for all m > n we have
Zm+1 = Zm, by definition of approximates.

In fact this theorem can be generalized by ranging n over ordinals instead of
natural numbers.
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Approximates of greatest fixpoints

The above theorem gives us a simple sound procedure to compute the greatest
fixpoint:

Greatest fixpoint algorithm

Zoid == S;

Z = f(Zo/d);
while (Z 75 Zold){
Lo = Z,

Z:=f(2),

IfinG={EC S| E&CF(E)} the set S is finite then the above procedure
terminates in |S| steps and becomes sound and complete.

Notice the above procedure is polynomial in the size of S.
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Discussion

For simplicity we have considered fixpoint wrt set-inclusion. In fact, the only
property of set inclusion that we have used is the lattice implicitly defined by it.

We recall that a lattice is a the partial order (defined by set inclusion in our case),
with the minimal element () in our case) and maximal element (S in our case).

We can immediately extend all the results presented here to arbitrary lattices
substituting to the relation C the relation < of the lattice.
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