
High-le vel programming

in the Situation Calculus:

Golog and ConGolog

Yves Lespérance

Department of Computer Science
York University

Toronto, Canada

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica
Universitá di Roma “La Sapienza”

Roma, Italy

Lecture Outline

Part 1: Syntax, Informal Semantics, Examples

Part 2: Formal Semantics

After Holida ys: Implementation

1

References

G. De Giacomo, Y. Lespérance, and H.J. Levesque, ConGolog, a Con-
current Programming Language Based on the Situation Calculus, Arti-
ficial Intelligence, 121, 109–169, 2000.

H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin and R. Scherl, GOLOG:
A Logic Programming Language for Dynamic Domains. Journal of
Logic Programming, 31, 59–84, 1997.

Chapter 6 of R. Reiter, Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press, 2001.

H.R. Nielson and F. Nielson, Semantics with Applications: A Formal
Introduction. Wiley Professional Computing, Wiley, 1992.

2

High-le vel programming in the Situation Calculus —
The Appr oach

Plan synthesis is often too hard; need to script some behaviors in ad-
vance.

Instead of planning, agent’s task is executing a high-level plan/program.

But allow nondeterministic programs.

Then, can direct interpreter to search for a way to execute the program.

So can still do planning/deliberation.

3

The Appr oach (cont.)

Programs are high-level.

Use primitive actions and test conditions that are domain dependent.

Programmer specifies preconditions and effects of primitive actions
and what is known about initial situation in a logical theory, a basic
action theory in the situation calculus.

Interpreter uses this in search/lookahead and in updating world model.

4

Golog [LRLLS97]

AlGOl in LOGic

Constructs:

� , primitive action�
?, test a condition� � � � � � �

, sequence
if

�
then

� �
else

� �
endIf , conditional

while
�

do
�

endWhile , loop
proc � � 	
 � �

endProc , procedure definition
� � 	� �

, procedure call

� � � � � � �
, nondeterministic choice of action
 	
 � � �

, nondeterministic choice of arguments� �
, nondeterministic iteration

5

Golog Semantics

High-level program execution task is a special case of planning:

Program Execution: Given domain theory � and program
�
, the exe-

cution task is to find a sequence of actions
	� such that:

� � � � � � � � � � � � � � 	� � � � � �
where

� � � � � � � � � �
means that program

�
when executed starting in

situation
�

has
� �

as a legal terminating situation.

Since Golog programs can be nondeterministic, may be several termi-
nating situations

� �
.

Will see how
� �

can be defined later.

6

Nondeterminism

A nondeterministic program may have several possible executions.
E.g.:

� � � � � � � � � � � �

Assuming actions are always possible, we have:
� � � � � � � � � � � � � � � � � � � � � � � � � � � ! � � � � � � � � � � � � � �

Above uses abbreviation
� � � � � � � � � � " " " � � # $ � � � # � � � �

meaning� � � � # � � � � � # $ � � " " " � � � � � � � � � � � � � � � � � �
.

Interpreter searches all the way to a final situation of the program, and
only then starts executing corresponding sequence of actions.

7

Nondeterminism (cont.)

When condition of a test action or action precondition is false, back-
track and try different nondeterministic choices. E.g.:

� � � � � � � � � � � � � % &

If
%

is true initially, but becomes false iff � is performed, then
� � � � � � � � � � � � � � � � � � � � � � � � � � �

and interpreter will find it by backtracking.

8

Using Nondeterminism: A Simple Example

A program to clear blocks from table:
�
 � � ' � (� �) * � � � & � � + � , - � . � � � � � � � / 0 � ' � (� �) * � � � &

Interpreter will find way to unstack all blocks (
� + � , - � . � � �

is only pos-
sible if

�
is clear).

9

Example: Contr olling an Elevator

1 Primitive actions:
+ � � � � � � � - � � � � � � + 2 � � 3 3 � � � � � � * � � �) � � *

.

1 Fluents:
3) � � 2 � � � � � � � � � � � � �

.

1 Fluent abbreviation: � *
 � 3) � � 2 � � � � � "

1 Action Precondition Axioms:
% � � � � + � � � � � � � 3) � � 2 � � � 4 � "

% � � � � � � - � � � � � � � 3) � � 2 � � � 5 � "
% � � � � � � * � � � � (2 + * "

10

Elevator Example (cont.)

1 Action Precondition Axioms (cont.):
% � � � � �) � � * � � � (2 + * "

% � � � � � + 2 � � 3 3 � � � � � � � � � � � � � "
% � � � � � � � � � � � (2 + * "

1 Successor State Axioms:3) � � 2 � � � � � � � � � � 6
� � + � � 6 � ! � � � � - � � 6 � !

3) � � 2 � � � � 6 7 / 0 � � � + � � � � 7 / 0 � � � � � - � � � � "
� � � 6 � � � � � � � � �

� � � + � 8 � 6 � ! � � � 6 � � � 7 � 9� � + 2 � � 3 3 � 6 � "

11

Elevator Example (cont.)

1 Fluent abbreviation:

� *
 � 3) � � 2 � � � � � : ; <� � � � � � � � 7
= 6 " � � � 6 � � � > � 6 ? 3) � � 2 � � � � @ � � ? 3) � � 2 � � � � "

1 Golog Procedures:

proc
� * 2 A * � � �

B � 3) � � 2 � � � � � + 2 � � 3 3 � � � � � � * � � �) � � *
endProc

proc B � 3) � � 2 � � �
� � + 2 2 * � � 3) � � 2 � � & � + � � � � � � � - � � � � �

endProc

12

Elevator Example (cont.)

1 Golog Procedures (cont.):

proc
� * 2 A * � 3) � � 2

 � � � *
 � 3) � � 2 � � � & � � * 2 A * � � � �
endProc

proc
� � � � 2 �)

while
0 � � � � � �

do
� * 2 A * � 3) � � 2

endWhile ;� � 2 C
endProc

13

Elevator Example (cont.)

1 Golog Procedures (cont.):

proc
� � 2 C

if
� + 2 2 * � � 3) � � 2 � D

then� � * �
else� � - � � D � � � � * �
endIf

endProc

1 Initial situation:
� + 2 2 * � � 3) � � 2 � � � � � E � � � � F � � � � � � � � G � � � � "

14

Elevator Example (cont.)

1 Querying the theory:

,
 H � 6 � � � 0 � � � � � � � � 2 �) � � � � � � "

1 Successful proof might return
� � � � � � � * � � � � � � � - � � D � � � � � �) � � * � � � � � � * � �

� � � � + 2 � � 3 3 � F � � � � � + � � F � � � � � �) � � * � � � � � � * � �
� � � � + 2 � � 3 3 � G � � � � � � � - � � G � � � � � � � � � � � � � � "

15

Using Nondeterminism to Do Planning:
A Mail Deliver y Example

This control program searches to find a schedule/route that serves all
clients and minimizes distance traveled:

proc
� � � � 2 �)

search
� 6 H � H 6 H I * � H � � � � � * � D � �

endProc

proc
6 H � H 6 H I * � H � � � � � * � � H � � � � � * �

� * 2 A * �)) �) H * � � � - H � 8 H � � � H � � � � � * �
�
% or6 H � H 6 H I * � H � � � � � * � � H � � � � � * J K � � 2 * 6 * � � �

endProc

6 H 6 H 6 H I * � H � � � � � *
does iterative deepening search.

16

A Contr ol Program that Plans (cont.)

proc
� * 2 A * �)) �) H * � � � - H � 8 H � � � H � � � � � * �

/ 0 � L) H * � � � � � * 2 A * � � � &
% if no clients to serve, we’re done�

% or
 � � � � � L) H * � � � � � * 2 A * � � � 7
% choose a client� � � H � � � � � * � � � � � 7 � M � H � � � � � * & � �

B � � � � � � �
% and serve him� * 2 A * �) H * � � � � � �

� * 2 A * �)) �) H * � � � - H � 8 H � � � H � � � � � * ? � � �
endProc

17

Concurrent Processes and ConGolog:
Motiv ation

A key limitation of Golog is its lack of support for concurrent processes.

Can’t program several agents within a single Golog program.

Can’t specify an agent’s behavior using concurrent processes. Incon-
venient when you want to program reactive or event-driven behaviors.

Address this by developing ConGolog (Concurrent Golog) which han-
dles:

1 concurrent processes with possibly different priorities,

1 high-level interrupts,

1 arbitrary exogenous actions.

18

Concurrenc y

We model concurrent processes as interleavings of the primitive ac-
tions in the component processes. E.g.:

� � � � � � � � � N �

Assuming actions are always possible, we have:
� � � � � � � � � � � �

� � � � � � � � � � � � � � � � ! � � � � � � � � � � � � � � � � ! � � � � � � � � � � � � � � � �

19

Concurrenc y (cont.)

Important notion: process becoming blocked. Happens when a pro-
cess

�
reaches a primitive action whose preconditions are false or a

test action
�

? and
�

is false.

Then execution need not fail as in Golog. May continue provided an-
other process executes next. The process is blocked. E.g.:

� � � � � � � % & � � � N �

If � makes
%

false,
�

does not affect it, and
�

makes it true, then we
have � � � � � � � � � � � � � � � � � � � � � � � � � � � � "

If no other process can execute, then backtrack. Interpreter still searches
all the way to a final situation of the program before executing any ac-
tions.

20

New ConGolog Constructs

� � � N � � �
, concurrent execution� � � O O � � �
, concurrent execution

with different priorities� P P
, concurrent iteration4 � Q � 5

, interrupt.

In
� � � O O � � �

,
� �

has higher priority than
� �

.
� �

executes only when
� �

is done or blocked.

� P P
is like nondeterministic iteration

� �
, but the instances of

�
are exe-

cuted concurrently rather than in sequence.

An interrupt
4 � Q � 5

has trigger condition
�

and body
�
. If interrupt

gets control from higher priority processes and condition
�

is true, it
triggers and body is executed. Once body completes execution, may
trigger again.

21

ConGolog Constructs (cont.)

In Golog:

if
�

then
� �

else
� �

endIf
: ; <� � � & � � � � � � / � & � � � �

In ConGolog:

if
�

then
� �

else
� �

endIf , synchronized conditional
while

�
do

�
endWhile , synchronized loop.

if
�

then
� �

else
� �

endIf differs from
� � & � � � � � � / � & � � � �

in that no
action (or test) from an other process can occur between the test and
the first action (or test) in the if branch selected (

� �
or

� �
).

Similarly for while .

22

Exog enous Actions

One may also specify exogenous actions that can occur at random.
This is useful for simulation. It is done by defining the R
 �

predicate:

R
 � � � � � � � � ! " " " ! � � � #
Executing a program

�
with the above amounts to executing

� N � � � N " " " N � �#
The current implementation also allows the programmer to specify
probability distributions.

23

E.g. Two Robots Lifting a Table
S Objects:

Two agents: T U V W X W Y Z U [\ U] V W X ^ _ U] V W X ` a
Two table ends: T b c d X e b f # g Z b [\ b] f # g ^ _ b] f # g ` a

S Primitive actions:h U d X Z U W X i b # g [U b e b d j b Z U W X i b # g [k l W k b Z U W X i m [move robot arm up or down by m units.

S Primitive fluents:n W e g o # h Z U W X i b # g [k p W j Z b # g [] m height of the table end

S Initial state:T U T b q n W e g o # h Z U i b i r s [T b k p W j Z b i r s [] �
S Preconditions:t W j j Z h U d X Z U i b [i j [\ T U u q n W e g o # h Z U u i b i j [v T b u q n W e g o # h Z U i b u i j [t W j j Z U b e b d j b Z U i b [i j [\ n W e g o # h Z U i b i j [t W j j Z k l W k b Z U i m [i j [\ c U w b

24

E.g. 2 Robots Lifting Table (cont.)
S Successor state axioms:n W e g o # h Z U i b i g W Z d i j [[\ d] h U d X Z U i b [_n W e g o # h Z U i b i j [v d x] U b e b d j b Z U i b [k p W j Z b i g W Z d i j [[] p \y U i m Z d] k l W k b Z U i m [v n W e g o # h Z U i b i j [v p] k p W j Z b i j [z m [_y U d] U b e b d j b Z U i b [v p] � _p] k p W j Z b i j [v T U d x] U b e b d j b Z U i b [vq Z y U i m d] k l W k b Z U i m [v n W e g o # h Z U i b i j [[

Goal is to get the table up, but keep it sufficiently level so that nothing
falls off.

(� �) * { � � � � g b |� A � � � � R � � � � � � @ } 7 A � � � � R � � � � � � @ }
(both ends of table are higher than some threshold

}
)

~ * A *) � � � g b |� � A � � � � R � � � � � � ? A � � � � R � � � � � � � M (
(both ends are at same height to within a tolerance ()

� � �) � � � g b |� (� �) * { � � � � 7 = � � M � ~ * A *) � � � �
25

E.g. 2 Robots Lifting Table (cont.)

Claim that goal can be achieved by having � � � �
and � � � �

each inde-
pendently execute the same procedure

� � 2) � 2 �
defined as:

proc
� � 2) � 2 �

 * � (� �) * R � � � * � & � B 2 � � � 2 � * � � �
while

/ (� �) * { �
do� � 3 * (� ~ H 3 � � 2 � & � A 6 � A * � 2 � , �

endWhile
endProc

where
,

is some constant such that
D 4 , 4 (and

� � 3 * (� ~ H 3 � � 2 � � � g b |� 0 * � * � * 9� * � 7 (� �) * R � � � * � 7 (� �) * R � � � * � � 7
} �) � H � B � 2 � * � � � 7 A � � � � * � M A � � � � * � � J (? ,

Proposition,
 � � = � " � � � � � 2) � � � � � � N � � 2) � � � � � � � � � � � � > � � �) � � �
26

E.g. A Reactive Elevator Contr oller
S ordinary primitive actions:h W � W � # Z b [move elevator down one floorh W � p Z b [move elevator up one floorX w Y Y W # V b j b Y Z # [turn off call button of floor

#
Y W h h e b � d # Z b [change the state of elevator fanU o # h � e d U l ring the smoke alarm

S exogenous primitive actions:U b � f e b k d Y W U Z # [call button on floor
#

is pushed� � d # h b c b l p Z b [the elevator temperature changesg b Y b � Y r l W � b the smoke detector first senses smokeU b j b Y � e d U l the smoke alarm is reset

S primitive fluents:| e W W U Z b i j [] #
the elevator is on floor

#
,

� � # � �
Y b l p Z b i j [] Y the elevator temperature is Y� d # � # Z b i j [the elevator fan is on� w Y Y W # � # Z # i j [call button on floor

#
is onr l W � b Z j [smoke has been detected

27

E.g. Reactive Elevator (cont.)
S defined fluents:

c W W n W Y Z b i j [� � �] Y b l p Z b i j [� �
c W W � W e g Z b i j [� � �] Y b l p Z b i j [� $ �

S initial state:| e W W U Z b i r s [] � q � d # � # Z b i r s [Y b l p Z b i r s [] �
� w Y Y W # � # Z � i r s [� w Y Y W # � # Z � i r s [

S exogenous actions:T d a f � W Z d [\ d] g b Y b � Y r l W � b _ d] U b j b Y � e d U l _y b d] � � d # h b c b l p Z b [_ y # d] U b � f e b k d Y W U Z # [
S precondition axioms:t W j j Z h W � W � # Z b [i j [\ | e W W U Z b i j [x] �t W j j Z h W � p Z b [i j [\ | e W W U Z b i j [x] �t W j j Z X w Y Y W # V b j b Y Z # [i j [\ c U w bt W j j Z Y W h h e b � d # Z b [i j [\ c U w bt W j j Z U o # h � e d U l [\ c U w bt W j j Z U b � f e b k d Y W U Z # [i j [\ Z � � # � � [v q � w Y Y W # � # Z # i j [t W j j Z � � d # h b c b l p i j [\ c U w bt W j j Z g b Y b � Y r l W � b i j [\ q r l W � b Z j [t W j j Z U b j b Y � e d U l i j [\ r l W � b Z j [

28

E.g. Reactive Elevator (cont.)
S successor state axioms:| e W W U Z b i g W Z d i j [[] # \Z d] h W � W � # Z b [v #] | e W W U Z b i j [$ � [_Z d] h W � p Z b [v #] | e W W U Z b i j [z � [_Z #] | e W W U Z b i j [v d x] h W � W � # Z b [v d x] h W � p Z b [[Y b l p Z b i g W Z d i j [[] Y \Z d] � � d # h b c b l p Z b [v � d # � # Z b i j [v Y] Y b l p Z b i j [$ � [_Z d] � � d # h b c b l p Z b [v q � d # � # Z b i j [v Y] Y b l p Z b i j [z � [_Z Y] Y b l p Z b i j [v d x] � � d # h b c b l p Z b [[� d # � # Z b i g W Z d i j [[\Z d] Y W h h e b � d # Z b [v q � d # � # Z b i j [[_Z d x] Y W h h e b � d # Z b [v � d # � # Z b i j [[� w Y Y W # � # Z # i g W Z d i j [[\d] U b � f e b k d Y W U Z # [_ � w Y Y W # � # Z # i j [v d x] X w Y Y W # V b j b Y Z # [r l W � b Z g W Z d i j [[\d] g b Y b � Y r l W � b _ r l W � b Z j [v d x] U b j b Y � e d U l

29

E.g. Reactive Elevator (cont.)

In Golog, might write elevator controller as follows:

proc
� � � � 2 �) � � * �

while
0 � " � + � � � � ' � � � �

do
 � � � * � � � + � � � � � � � & � � * 2 A * �) � � 2 � * � � � �
;

endWhile
while

3) � � 2 � * � 9� �
do B � � � - � � * �

endWhile
endProc

proc
� * 2 A * �) � � 2 � * � � �

while
3) � � 2 � * � 4 � do B � { � � * �

endWhile ;
while

3) � � 2 � * � 5 � do B � � � - � � * �
endWhile ;� + � � � � � * � * � � � �

endProc

30

E.g. Reactive Elevator (cont.)

Using this controller, get execution traces like:

,
 � � � � � � � � � 2 �) � � * � � � � �
� � � � + � + � 2 � � + � + � + � 2 � � � � � � � � � � � � � � � � �

where
+ � B � { � � * �

,
� � B � � � - � � * �

,
2 # � � + � � � � � * � * � � � �

(no ex-
ogenous actions in this run).

Problem with this: at end, elevator goes to ground floor and stops even
if buttons are pushed.

31

E.g. Reactive Elevator (cont.)

Better solution in ConGolog, use interrupts:

4 0 � � + � � � � ' � � � � Q

 � � � � * � � � + � � � � � � � & � � * 2 A * �) � � 2 � * � � � � 5

O O
4 3) � � 2 � * � 9� � Q B � � � - � � * � 5

Easy to extend to handle emergency requests. Add following at higher
priority:

4 0 � R � + � � � � ' � � � � Q

 � � R � + � � � � ' � � � � & � � * 2 A * R �) � � 2 � * � � � � 5

32

E.g. Reactive Elevator (cont.)

If we also want to control the fan, as well as ring the alarm and only
serve emergency requests when there is smoke, we write:

proc
� � � � 2 �) � * �

� 4 (� � } � � � * � 7 / � � � ' � � * � Q � � B B) * � � � � * � 5 N
4 (� � L �) � � * � 7 � � � ' � � * � Q � � B B) * � � � � * � 5 � O O
4 0 � R � + � � � � ' � � � � Q

 � � R � + � � � � ' � � � � & � � * 2 A * R �) � � 2 � * � � � � 5 O O
4 � 6 � C * Q 2 H � B ,) � 2 6 5 O O
4 0 � � + � � � � ' � � � � Q

 � � � * � � � + � � � � � � � & � � * 2 A * �) � � 2 � * � � � � 5 O O
4 3) � � 2 � * � 9� � Q B � � � - � � * � 5

endProc

33

E.g. Reactive Elevator (cont.)

To control a single elevator R �
, we write

� � � � 2 �) � R � �
.

To control � elevators, we can simply write:

� � � � 2 �) � R � � N " " " N � � � � 2 �) � R # �

Note that priority ordering over processes is only a partial order.

In some cases, want unbounded number of instances of a process
running in parallel. E.g. FTP server with a manager process for each
active FTP session. Can be programmed using concurrent iteration

� P P
.

34

