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High-le vel programming in the Situation Calculus —
The Approach

Plan synthesis is often too hard; need to script some behaviors in ad-
vance.

Instead of planning, agent’s task is executing a high-level plan/program.
But allow nondeterministic programs.
Then, can direct interpreter to search for a way to execute the program.

So can still do planning/deliberation.
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Golog [LRLLS97]

AIGOl in LOGic

Constructs:
Q, primitive action
¢?, test a condition
(61; 02), sequence
if ¢ then 61 else §- endlf, conditional
while ¢ do é endWhile loop
proc B(&) é endProc, procedure definition
B(1), procedure call
(61 | 62), nondeterministic choice of action
7 ¥ [6], nondeterministic choice of arguments
0%, nondeterministic iteration
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The Approach (cont.)
Programs are high-level.
Use primitive actions and test conditions that are domain dependent.
Programmer specifies preconditions and effects of primitive actions
and what is known about initial situation in a logical theory, a basic

action theory in the situation calculus.

Interpreter uses this in search/lookahead and in updating world model.



Nondeterminism

A nondeterministic program may have several possible executions.
E.g.

ndp; = (a | b); ¢

Assuming actions are always possible, we have:

Do(ndpl, 5078) =8s= dO([CI,, C]7SO) Vs = dO([b, C]7 SO)

Above uses abbreviation do([a1,a2,...,a,_1,ar],s) meaning
do(a,n, do(an—la SR dO(CIQ, dO(a]_, 3))))

Interpreter searches all the way to a final situation of the program, and
only then starts executing corresponding sequence of actions.

Golog Semantics
High-level program execution task is a special case of planning:

Program Execution: Given domain theory D and program ¢, the exe-
cution task is to find a sequence of actions a@ such that:

D |: D0(57 SOa dO(C_i, SO))

where Do(4, s, s’) means that program § when executed starting in
situation s has s’ as a legal terminating situation.

Since Golog programs can be nondeterministic, may be several termi-
nating situations s’.

Will see how Do can be defined later.



Using Nondeterminism: A Simple Example

A program to clear blocks from table:

(7 b [OnTable(b)?; put Away(b)])*; =3b OnTable(b)?

Interpreter will find way to unstack all blocks (put Away(b) is only pos-
sible if b is clear).

Nondeterminism (cont.)

When condition of a test action or action precondition is false, back-
track and try different nondeterministic choices. E.g.:

ndp> = (a | b);c; P?

If P is true initially, but becomes false iff a is performed, then

DO(’I’Ldp2, SO) 3) = s§= dO([b, C], SO)

and interpreter will find it by backtracking.



Elevator Example (cont.)

e Action Precondition Axioms (cont.):

Poss(close, s) = True.
Poss(turnof f(n),s) = on(n,s).

Poss(no_op, s) = True.

e Successor State Axioms:

floor(do(a,s)) = m =
a = up(m) V a = down(m) V
floor(s) = m A —-Ina = up(n) A ~Ina = down(n).

on(m,do(a,s)) =
a = push(m) V on(m, s) A a % turnof f(m).
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Example: Controlling an Elevator

Primitive actions: up(n), down(n), turnof f(n), open, close.

Fluents: floor(s) = n, on(n,s).

Fluent abbreviation: next_floor(n, s).

e Action Precondition Axioms:
Poss(up(n), s) = floor(s) < n.
Poss(down(n), s) = floor(s) > n.
Poss(open, s) = True.
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Elevator Example (cont.)

Golog Procedures (cont.):

proc serve_a_floor
7w n [next_floor(n)7?; serve(n)]
endProc

proc control
while 3non(n) do serve_a_floor endWhile ;
park

endProc
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Elevator Example (cont.)

Fluent abbreviation:

next_floor(n, s) det on(n,s) A
Vm.on(m, s) D |m — floor(s)| > |n — floor(s)|.

Golog Procedures:

proc serve(n)
go_floor(n); turnof f(n); open; close
endProc

proc go_floor(n)
[current_floor = n? | up(n) | down(n)]
endProc
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Elevator Example (cont.)

e Querying the theory:

Axioms = Is Do(control, Sy, s).

e Successful proof might return

s = do(open, do(down(0), do(close, do(open,
do(turnof f(5), do(up(5), do(close, do(open,
do(turnof f(3), do(down(3), 50))))))))))-
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Elevator Example (cont.)

e Golog Procedures (cont.):

proc park
if current_floor = O then
open
else
down(0); open
endlf
endProc

e Initial situation:
current_floor(Sg) = 4, on(5,Sgp), on(3,Sp).

14



A Control Program that Plans (cont.)

proc serve_all_clients_within(distance)
—3c Client_to_serve(c)? % if no clients to serve, we're done
| % or
e, d [(Client_to_serve(c) A % choose a client
d = distance_to(c) A d < distance?);
go_to(c); % and serve him
serve_client(c);
serve_all_clients_within(distance — d)]
endProc
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Using Nondeterminism to Do Planning:
A Mail Delivery Example

This control program searches to find a schedule/route that serves all
clients and minimizes distance traveled:

proc control
search(minimize_distance(0))
endProc

proc minimize_distance(distance)
serve_all_clients_within(distance)
| % or
minimize_distance(distance + Increment)
endProc

mimimize_distance does iterative deepening search.

16



Concurrenc y

We model concurrent processes as interleavings of the primitive ac-
tions in the component processes. E.g.:

cp1 = (a;b) |l c

Assuming actions are always possible, we have:

Do(cp1,S0,8) =
s = dO([CL, b, C]a SO) Vs = do([a, C, b], SO) Vs = dO([C, a, b]a SO)
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Concurrent Processes and ConGolog:
Motiv ation

A key limitation of Golog is its lack of support for concurrent processes.
Can’t program several agents within a single Golog program.

Can't specify an agent’s behavior using concurrent processes. Incon-
venient when you want to program reactive or event-driven behaviors.

Address this by developing ConGolog (Concurrent Golog) which han-
dles:

e concurrent processes with possibly different priorities,
e high-level interrupts,

e arbitrary exogenous actions.

18



New ConGolog Constructs

(61 || 62), concurrent execution
(01 ) 62), concurrent execution

with different priorities
sl concurrent iteration
<P — 6>, interrupt.

In (61 )) d2), 61 has higher priority than d>. d, executes only when §4
is done or blocked.

sl is like nondeterministic iteration 6%, but the instances of § are exe-
cuted concurrently rather than in sequence.

An interrupt < ¢ — d > has trigger condition ¢ and body ¢. If interrupt
gets control from higher priority processes and condition ¢ is true, it
triggers and body is executed. Once body completes execution, may
trigger again.
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Concurrenc y (cont.)

Important notion: process becoming blocked. Happens when a pro-
cess ¢ reaches a primitive action whose preconditions are false or a
test action ¢? and ¢ is false.

Then execution need not fail as in Golog. May continue provided an-
other process executes next. The process is blocked. E.g.:

cp> = (a; P?;b) || c

If @ makes P false, b does not affect it, and ¢ makes it true, then we
have

DO(Cp27SO73) = §= dO([CL,C, b],SO)

If no other process can execute, then backtrack. Interpreter still searches
all the way to a final situation of the program before executing any ac-

tions.
20



Exog enous Actions
One may also specify exogenous actions that can occur at random.
This is useful for simulation. It is done by defining the Exo predicate:

Ezxo(a) =a=a1V...Va=an

Executing a program ¢ with the above amounts to executing
Sllapll--- Il an

The current implementation also allows the programmer to specify
probability distributions.
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ConGolog Constructs (cont.)

In Golog:
if ¢ then 67 else 65 endlf = (47;61)[(—d7; 62)
In ConGolog:
if ¢ then §1 else é> endlf, synchronized conditional
while ¢ do é endWhile , synchronized loop.

if ¢ then §1 else d§, endIf differs from (¢7?; 61)|(—¢7; d2) in that no
action (or test) from an other process can occur between the test and
the first action (or test) in the if branch selected (61 or §-).

Similarly for while .
22



E.g. 2 Robots Lifting Table (cont.)

e Successor state axioms:
Holding(r,e,do(a,s)) = a = grab(r,e) V
Holding(r,e,s) N\ a # release(r,e)
vpos(e,do(a,s)) = p =
3r, z(a = vmove(r, z) A Holding(r,e,s) Ap = vpos(e,s) + z) V
Ira = release(r,e) Ap=0V
p = vpos(e,s) AVra # release(r,e) A
=(3r, za = vmove(r,z) A\ Holding(r,e,s))

Goal is to get the table up, but keep it sufficiently level so that nothing
falls off.

TableUp(s) def vpos(End1,s) > H Awvpos(Endp,s) > H
(both ends of table are higher than some threshold H)

d
Level(s) 2 |lvpos(Endq,s) — vpos(Ends,s)| < T
(both ends are at same height to within a tolerance T')

d
Goal(s) lef TableUp(s) N Vs* < s Level(s™)
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E.g. Two Robots Lifting a Table

e Objects:
Two agents: Vr Robot(r) =r = Rob1 V r = Robs.
Two table ends: Ve T'ableEnd(e) =e = Endi V e = Endo.

e Primitive actions:
grab(rob, end)
release(rob, end)
vmove(rob, z) move robot arm up or down by z units.

e Primitive fluents:
Holding(rob, end)
vpos(end) = z height of the table end

e Initial state:
VrVe —-Holding(r,e, So)
Ve vpos(e, Sp) = 0

e Preconditions:
Poss(grab(r,e),s) = Vr* —Holding(r*,e,s) A Ve* =Holding(r, e*, s)
Poss(release(r,e),s) = Holding(r,e, s)
Poss(vmove(r, z),s) = True
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E.g. A Reactive

e ordinary primitive actions:
goDown(e)
goUp(e)
button Reset(n)
toggleFan(e)
ringAlarm

e exogenous primitive actions:
reqElevator(n)
changeTemp(e)
detectSmoke
reset Alarm

e primitive fluents:
floor(e,s) =n
temp(e,s) =t
FanOn(e, s)
ButtonOn(n, s)
Smoke(s)

Elevator Controller

move elevator down one floor
move elevator up one floor

turn off call button of floor n
change the state of elevator fan
ring the smoke alarm

call button on floor n is pushed

the elevator temperature changes

the smoke detector first senses smoke
the smoke alarm is reset

the elevatorisonfloorn, 1 <n < 6
the elevator temperature is ¢

the elevator fan is on

call button on floor n is on

smoke has been detected
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E.g. 2 Robots Lifting Table (cont.)

Claim that goal can be achieved by having Rob; and Rob, each inde-
pendently execute the same procedure ctrl(r) defined as:

proc ctri(r)

e [TableEnd(e)?; grab(r,e)];

while —=T'ableUp do

SafeToLift(r)?; vmove(r, A)

endWhile
endProc

where A is some constant suchthat0 < A < T and

d
SafeToLift(r,s) lef Jde, e’ e = e/ A TableEnd(e) A TableEnd(e') A
Holding(r,e,s) Avpos(e) < vpos(e) +T — A

Proposition

Az = Vs.Do(ctrl(Rob1) || ctrl(Robs), Sg,s) D Goal(s)

26



E.g. Reactive Elevator (cont.)

e successor state axioms:
floor(e,do(a,s)) = n=
(a = goDown(e) An = floor(e,s) —1) V
(a = goUp(e) An = floor(e,s) +1) V
(n = floor(e,s) Aa # goDown(e) A a #= goUp(e))
temp(e,do(a,s)) = t=
(a = changeTemp(e) A FanOn(e,s) At = temp(e,s) — 1) V
(a = changeTemp(e) AN ~FanOn(e,s) ANt = temp(e,s) +1) V
(t = temp(e, s) A a # changeTemp(e))
FanOn(e,do(a,s))=
(a = toggleFan(e) AN ~FanOn(e,s)) V
(a # toggleFan(e) A FanOn(e, s))
ButtonOn(n,do(a, s))=
a = reqElevator(n) V ButtonOn(n,s) A a # buttonReset(n)
Smoke(do(a, s))=
a = detectSmoke V Smoke(s) N\ a #= resetAlarm
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E.g. Reactive Elevator (cont.)

e defined fluentsl;l
TooHot (e, s) kf temp(e,s) > 3
TooCold(e, s) X temp(e,s) < —3

e initial state:
floor(e,S0) =1 —FanOn(e,So) temp(e,So) =20
ButtonOn(3,Sp) ButtonOn(6,Sp)

e exogenous actions:
Va.Ezxo(a) = a = detectSmoke V a = reset Alarm V
Jea = changeTemp(e) V Ina = reqElevator(n)

e precondition axioms:
Poss(goDown(e),s)=floor(e,s) = 1
Poss(goUp(e),s)=floor(e,s) # 6
Poss(button Reset(n),s)=True
Poss(toggleFan(e),s)=True
Poss(ringAlarm)=True
Poss(reqElevator(n),s)=(1 <n < 6) A ~ButtonOn(n, s)
Poss(changeTemp, s)=True
Poss(detectSmoke, s)=-Smoke(s)
Poss(reset Alarm, s)=Smoke(s)
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E.g. Reactive Elevator (cont.)
Using this controller, get execution traces like:

Az = Do(controlG(e), S,
dO([’U,, u, r3,u,u,u,Te, da da d7 d’ d]’ SO))

where uv = goUp(e), d = goDown(e), rn, = buttonReset(n) (N0 ex-
ogenous actions in this run).

Problem with this: at end, elevator goes to ground floor and stops even
if buttons are pushed.
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E.g. Reactive Elevator (cont.)
In Golog, might write elevator controller as follows:

proc controlG(e)
while 3n.ButtonOn(n) do
7w n [BestButton(n)?; serveFloor(e,n)];
endWhile

while floor(e) # 1 do goDown(e) endWhile
endProc

proc serveFloor(e,n)
while floor(e) < n do goUp(e) endWhile ;
while floor(e) > n do goDown(e) endWhile ;

buttonReset(n)
endProc
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E.g. Reactive Elevator (cont.)

If we also want to control the fan, as well as ring the alarm and only
serve emergency requests when there is smoke, we write:

proc control(e)

(<TooHot(e) N =FanOn(e) — toggleFan(e) > ||
<TooCold(e) N FanOn(e) — toggleFan(e)>) )
< 3dn EButtonOn(n) —

7w n [EButtonOn(n)7?; serveE Floor(e,n)] >))
< Smoke — ringAlarm > )
< 3dn ButtonOn(n) —
7 n [BestButton(n)?; serveFloor(e,n)] >))
< floor(e) # 1 — goDown(e) >
endProc
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E.g. Reactive Elevator (cont.)
Better solution in ConGolog, use interrupts:

< 3n ButtonOn(n) —
7, n [Best Button(n)?; serveFloor(e,n)] >

)

< floor(e) # 1 — goDown(e) >

Easy to extend to handle emergency requests. Add following at higher
priority:

< 3n EButtonOn(n) —
mn [EButtonOn(n)?; serveE Floor(e,n)] >
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E.g. Reactive Elevator (cont.)
To control a single elevator E1, we write control(Eq).

To control n elevators, we can simply write:

control(Eq) || ... || control(Ey)
Note that priority ordering over processes is only a partial order.
In some cases, want unbounded number of instances of a process

running in parallel. E.g. FTP server with a manager process for each
active FTP session. Can be programmed using concurrent iteration sl
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