Lecture Outline
Part 1: Syntax, Informal Semantics, Examples
Part 2: Formal Semantics

After Holidays: Implementation

High-le vel programming
In the Situation Calculus:
Golog and ConGolog

Yves Lespérance

Department of Computer Science
York University
Toronto, Canada

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Roma, Italy

High-le vel programming in the Situation Calculus —
The Approach

Plan synthesis is often too hard; need to script some behaviors in ad-
vance.

Instead of planning, agent’s task is executing a high-level plan/program.
But allow nondeterministic programs.
Then, can direct interpreter to search for a way to execute the program.

So can still do planning/deliberation.

References

G. De Giacomo, Y. Lespérance, and H.J. Levesque, ConGolog, a Con-
current Programming Language Based on the Situation Calculus, Arti-
ficial Intelligence, 121, 109-169, 2000.

H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin and R. Scherl, GOLOG:
A Logic Programming Language for Dynamic Domains. Journal of
Logic Programming, 31, 59-84, 1997.

Chapter 6 of R. Reiter, Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press, 2001.

H.R. Nielson and F. Nielson, Semantics with Applications: A Formal
Introduction. Wiley Professional Computing, Wiley, 1992.

Golog [LRLLS97]

AIGOl in LOGic

Constructs:
Q, primitive action
¢?, test a condition
(61; 02), sequence
if ¢ then 61 else §- endlf, conditional
while ¢ do é endWhile loop
proc B(&) é endProc, procedure definition
B(1), procedure call
(61 | 62), nondeterministic choice of action
7 ¥ [6], nondeterministic choice of arguments
0%, nondeterministic iteration

5

The Approach (cont.)
Programs are high-level.
Use primitive actions and test conditions that are domain dependent.
Programmer specifies preconditions and effects of primitive actions
and what is known about initial situation in a logical theory, a basic

action theory in the situation calculus.

Interpreter uses this in search/lookahead and in updating world model.

Nondeterminism

A nondeterministic program may have several possible executions.
E.g.

ndp; = (a | b); ¢

Assuming actions are always possible, we have:

Do(ndpl, 5078) =8s= dO([CI,, C]7SO) Vs = dO([b, C]7 SO)

Above uses abbreviation do([a1,a2,...,a,_1,ar],s) meaning
do(a,n, do(an—la SR dO(CIQ, dO(a]_, 3))))

Interpreter searches all the way to a final situation of the program, and
only then starts executing corresponding sequence of actions.

Golog Semantics
High-level program execution task is a special case of planning:

Program Execution: Given domain theory D and program ¢, the exe-
cution task is to find a sequence of actions a@ such that:

D |: D0(57 SOa dO(C_i, SO))

where Do(4, s, s’) means that program § when executed starting in
situation s has s’ as a legal terminating situation.

Since Golog programs can be nondeterministic, may be several termi-
nating situations s’.

Will see how Do can be defined later.

Using Nondeterminism: A Simple Example

A program to clear blocks from table:

(7 b [OnTable(b)?; put Away(b)])*; =3b OnTable(b)?

Interpreter will find way to unstack all blocks (put Away(b) is only pos-
sible if b is clear).

Nondeterminism (cont.)

When condition of a test action or action precondition is false, back-
track and try different nondeterministic choices. E.g.:

ndp> = (a | b);c; P?

If P is true initially, but becomes false iff a is performed, then

DO(’I’Ldp2, SO) 3) = s§= dO([b, C], SO)

and interpreter will find it by backtracking.

Elevator Example (cont.)

e Action Precondition Axioms (cont.):

Poss(close, s) = True.
Poss(turnof f(n),s) = on(n,s).

Poss(no_op, s) = True.

e Successor State Axioms:

floor(do(a,s)) = m =
a = up(m) V a = down(m) V
floor(s) = m A —-Ina = up(n) A ~Ina = down(n).

on(m,do(a,s)) =
a = push(m) V on(m, s) A a % turnof f(m).

11

Example: Controlling an Elevator

Primitive actions: up(n), down(n), turnof f(n), open, close.

Fluents: floor(s) = n, on(n,s).

Fluent abbreviation: next_floor(n, s).

e Action Precondition Axioms:
Poss(up(n), s) = floor(s) < n.
Poss(down(n), s) = floor(s) > n.
Poss(open, s) = True.

10

Elevator Example (cont.)

Golog Procedures (cont.):

proc serve_a_floor
7w n [next_floor(n)7?; serve(n)]
endProc

proc control
while 3non(n) do serve_a_floor endWhile ;
park

endProc

13

Elevator Example (cont.)

Fluent abbreviation:

next_floor(n, s) det on(n,s) A
Vm.on(m, s) D |m — floor(s)| > |n — floor(s)|.

Golog Procedures:

proc serve(n)
go_floor(n); turnof f(n); open; close
endProc

proc go_floor(n)
[current_floor = n? | up(n) | down(n)]
endProc

12

Elevator Example (cont.)

e Querying the theory:

Axioms = Is Do(control, Sy, s).

e Successful proof might return

s = do(open, do(down(0), do(close, do(open,
do(turnof f(5), do(up(5), do(close, do(open,
do(turnof f(3), do(down(3), 50))))))))))-

15

Elevator Example (cont.)

e Golog Procedures (cont.):

proc park
if current_floor = O then
open
else
down(0); open
endlf
endProc

e Initial situation:
current_floor(Sg) = 4, on(5,Sgp), on(3,Sp).

14

A Control Program that Plans (cont.)

proc serve_all_clients_within(distance)
—3c Client_to_serve(c)? % if no clients to serve, we're done
| % or
e, d [(Client_to_serve(c) A % choose a client
d = distance_to(c) A d < distance?);
go_to(c); % and serve him
serve_client(c);
serve_all_clients_within(distance — d)]
endProc

17

Using Nondeterminism to Do Planning:
A Mail Delivery Example

This control program searches to find a schedule/route that serves all
clients and minimizes distance traveled:

proc control
search(minimize_distance(0))
endProc

proc minimize_distance(distance)
serve_all_clients_within(distance)
| % or
minimize_distance(distance + Increment)
endProc

mimimize_distance does iterative deepening search.

16

Concurrenc y

We model concurrent processes as interleavings of the primitive ac-
tions in the component processes. E.g.:

cp1 = (a;b) |l c

Assuming actions are always possible, we have:

Do(cp1,S0,8) =
s = dO([CL, b, C]a SO) Vs = do([a, C, b], SO) Vs = dO([C, a, b]a SO)

19

Concurrent Processes and ConGolog:
Motiv ation

A key limitation of Golog is its lack of support for concurrent processes.
Can’t program several agents within a single Golog program.

Can't specify an agent’s behavior using concurrent processes. Incon-
venient when you want to program reactive or event-driven behaviors.

Address this by developing ConGolog (Concurrent Golog) which han-
dles:

e concurrent processes with possibly different priorities,
e high-level interrupts,

e arbitrary exogenous actions.

18

New ConGolog Constructs

(61 || 62), concurrent execution
(01) 62), concurrent execution

with different priorities
sl concurrent iteration
<P — 6>, interrupt.

In (61)) d2), 61 has higher priority than d>. d, executes only when §4
is done or blocked.

sl is like nondeterministic iteration 6%, but the instances of § are exe-
cuted concurrently rather than in sequence.

An interrupt < ¢ — d > has trigger condition ¢ and body ¢. If interrupt
gets control from higher priority processes and condition ¢ is true, it
triggers and body is executed. Once body completes execution, may
trigger again.

21

Concurrenc y (cont.)

Important notion: process becoming blocked. Happens when a pro-
cess ¢ reaches a primitive action whose preconditions are false or a
test action ¢? and ¢ is false.

Then execution need not fail as in Golog. May continue provided an-
other process executes next. The process is blocked. E.g.:

cp> = (a; P?;b) || c

If @ makes P false, b does not affect it, and ¢ makes it true, then we
have

DO(Cp27SO73) = §= dO([CL,C, b],SO)

If no other process can execute, then backtrack. Interpreter still searches
all the way to a final situation of the program before executing any ac-

tions.
20

Exog enous Actions
One may also specify exogenous actions that can occur at random.
This is useful for simulation. It is done by defining the Exo predicate:

Ezxo(a) =a=a1V...Va=an

Executing a program ¢ with the above amounts to executing
Sllapll--- Il an

The current implementation also allows the programmer to specify
probability distributions.

23

ConGolog Constructs (cont.)

In Golog:
if ¢ then 67 else 65 endlf = (47;61)[(—d7; 62)
In ConGolog:
if ¢ then §1 else é> endlf, synchronized conditional
while ¢ do é endWhile , synchronized loop.

if ¢ then §1 else d§, endIf differs from (¢7?; 61)|(—¢7; d2) in that no
action (or test) from an other process can occur between the test and
the first action (or test) in the if branch selected (61 or §-).

Similarly for while .
22

E.g. 2 Robots Lifting Table (cont.)

e Successor state axioms:
Holding(r,e,do(a,s)) = a = grab(r,e) V
Holding(r,e,s) N\ a # release(r,e)
vpos(e,do(a,s)) = p =
3r, z(a = vmove(r, z) A Holding(r,e,s) Ap = vpos(e,s) + z) V
Ira = release(r,e) Ap=0V
p = vpos(e,s) AVra # release(r,e) A
=(3r, za = vmove(r,z) A\ Holding(r,e,s))

Goal is to get the table up, but keep it sufficiently level so that nothing
falls off.

TableUp(s) def vpos(End1,s) > H Awvpos(Endp,s) > H
(both ends of table are higher than some threshold H)

d
Level(s) 2 |lvpos(Endq,s) — vpos(Ends,s)| < T
(both ends are at same height to within a tolerance T')

d
Goal(s) lef TableUp(s) N Vs* < s Level(s™)
25

E.g. Two Robots Lifting a Table

e Objects:
Two agents: Vr Robot(r) =r = Rob1 V r = Robs.
Two table ends: Ve T'ableEnd(e) =e = Endi V e = Endo.

e Primitive actions:
grab(rob, end)
release(rob, end)
vmove(rob, z) move robot arm up or down by z units.

e Primitive fluents:
Holding(rob, end)
vpos(end) = z height of the table end

e Initial state:
VrVe —-Holding(r,e, So)
Ve vpos(e, Sp) = 0

e Preconditions:
Poss(grab(r,e),s) = Vr* —Holding(r*,e,s) A Ve* =Holding(r, e*, s)
Poss(release(r,e),s) = Holding(r,e, s)
Poss(vmove(r, z),s) = True

24

E.g. A Reactive

e ordinary primitive actions:
goDown(e)
goUp(e)
button Reset(n)
toggleFan(e)
ringAlarm

e exogenous primitive actions:
reqElevator(n)
changeTemp(e)
detectSmoke
reset Alarm

e primitive fluents:
floor(e,s) =n
temp(e,s) =t
FanOn(e, s)
ButtonOn(n, s)
Smoke(s)

Elevator Controller

move elevator down one floor
move elevator up one floor

turn off call button of floor n
change the state of elevator fan
ring the smoke alarm

call button on floor n is pushed

the elevator temperature changes

the smoke detector first senses smoke
the smoke alarm is reset

the elevatorisonfloorn, 1 <n < 6
the elevator temperature is ¢

the elevator fan is on

call button on floor n is on

smoke has been detected

27

E.g. 2 Robots Lifting Table (cont.)

Claim that goal can be achieved by having Rob; and Rob, each inde-
pendently execute the same procedure ctrl(r) defined as:

proc ctri(r)

e [TableEnd(e)?; grab(r,e)];

while —=T'ableUp do

SafeToLift(r)?; vmove(r, A)

endWhile
endProc

where A is some constant suchthat0 < A < T and

d
SafeToLift(r,s) lef Jde, e’ e = e/ A TableEnd(e) A TableEnd(e') A
Holding(r,e,s) Avpos(e) < vpos(e) +T — A

Proposition

Az = Vs.Do(ctrl(Rob1) || ctrl(Robs), Sg,s) D Goal(s)

26

E.g. Reactive Elevator (cont.)

e successor state axioms:
floor(e,do(a,s)) = n=
(a = goDown(e) An = floor(e,s) —1) V
(a = goUp(e) An = floor(e,s) +1) V
(n = floor(e,s) Aa # goDown(e) A a #= goUp(e))
temp(e,do(a,s)) = t=
(a = changeTemp(e) A FanOn(e,s) At = temp(e,s) — 1) V
(a = changeTemp(e) AN ~FanOn(e,s) ANt = temp(e,s) +1) V
(t = temp(e, s) A a # changeTemp(e))
FanOn(e,do(a,s))=
(a = toggleFan(e) AN ~FanOn(e,s)) V
(a # toggleFan(e) A FanOn(e, s))
ButtonOn(n,do(a, s))=
a = reqElevator(n) V ButtonOn(n,s) A a # buttonReset(n)
Smoke(do(a, s))=
a = detectSmoke V Smoke(s) N\ a #= resetAlarm

29

E.g. Reactive Elevator (cont.)

e defined fluentsl;l
TooHot (e, s) kf temp(e,s) > 3
TooCold(e, s) X temp(e,s) < —3

e initial state:
floor(e,S0) =1 —FanOn(e,So) temp(e,So) =20
ButtonOn(3,Sp) ButtonOn(6,Sp)

e exogenous actions:
Va.Ezxo(a) = a = detectSmoke V a = reset Alarm V
Jea = changeTemp(e) V Ina = reqElevator(n)

e precondition axioms:
Poss(goDown(e),s)=floor(e,s) = 1
Poss(goUp(e),s)=floor(e,s) # 6
Poss(button Reset(n),s)=True
Poss(toggleFan(e),s)=True
Poss(ringAlarm)=True
Poss(reqElevator(n),s)=(1 <n < 6) A ~ButtonOn(n, s)
Poss(changeTemp, s)=True
Poss(detectSmoke, s)=-Smoke(s)
Poss(reset Alarm, s)=Smoke(s)

28

E.g. Reactive Elevator (cont.)
Using this controller, get execution traces like:

Az = Do(controlG(e), S,
dO([’U,, u, r3,u,u,u,Te, da da d7 d’ d]’ SO))

where uv = goUp(e), d = goDown(e), rn, = buttonReset(n) (N0 ex-
ogenous actions in this run).

Problem with this: at end, elevator goes to ground floor and stops even
if buttons are pushed.

31

E.g. Reactive Elevator (cont.)
In Golog, might write elevator controller as follows:

proc controlG(e)
while 3n.ButtonOn(n) do
7w n [BestButton(n)?; serveFloor(e,n)];
endWhile

while floor(e) # 1 do goDown(e) endWhile
endProc

proc serveFloor(e,n)
while floor(e) < n do goUp(e) endWhile ;
while floor(e) > n do goDown(e) endWhile ;

buttonReset(n)
endProc

30

E.g. Reactive Elevator (cont.)

If we also want to control the fan, as well as ring the alarm and only
serve emergency requests when there is smoke, we write:

proc control(e)

(<TooHot(e) N =FanOn(e) — toggleFan(e) > ||
<TooCold(e) N FanOn(e) — toggleFan(e)>))
< 3dn EButtonOn(n) —

7w n [EButtonOn(n)7?; serveE Floor(e,n)] >))
< Smoke — ringAlarm >)
< 3dn ButtonOn(n) —
7 n [BestButton(n)?; serveFloor(e,n)] >))
< floor(e) # 1 — goDown(e) >
endProc

33

E.g. Reactive Elevator (cont.)
Better solution in ConGolog, use interrupts:

< 3n ButtonOn(n) —
7, n [Best Button(n)?; serveFloor(e,n)] >

)

< floor(e) # 1 — goDown(e) >

Easy to extend to handle emergency requests. Add following at higher
priority:

< 3n EButtonOn(n) —
mn [EButtonOn(n)?; serveE Floor(e,n)] >

32

E.g. Reactive Elevator (cont.)
To control a single elevator E1, we write control(Eq).

To control n elevators, we can simply write:

control(Eq) || ... || control(Ey)
Note that priority ordering over processes is only a partial order.
In some cases, want unbounded number of instances of a process

running in parallel. E.g. FTP server with a manager process for each
active FTP session. Can be programmed using concurrent iteration sl

34

