
Cognitive Robotics: An Overview

Yves Lespérance

Department of Computer Science
York University

Toronto, Canada

http://www.dis.uniroma1.it/˜degiacomo/Co gRobCourse01

http://www.cs.yorku.ca/˜lesperan

http://www.cs.toronto.edu/˜cogrobo

What is Cognitive Robotics?

According to [Reiter01b]:

Cognitive robotics is the theory and implementation of robots/agents
that reason, act and perceive in a changing, incompletely known, un-
predictable environment.
Reasoning about:

� goals,

� actions,

� when to perceive and what to look for,

� the cognitive states of other agents.

Cognitive robotics is concerned with integrating reasoning, perception
and action within a uniform theoretical and implementation framework.

1

Histor y of Robot/Ag ent Architectures [WooJen95]

� Mainstream robotics:
– focus on sensing, path planning, and low-level control;
– task-level controller = C program or user.

� Deliberative architectures:
– task-level controller = planner + simple executor;
– use logic-based representations;
– e.g. Shakey.

� Reactive architectures:
– decomposition according to behavior;
– each behavior responsible for sensor data interpretation;
– no representation;
– e.g. Brooks’s subsumption architecture [Brooks91].

2

Histor y of Robot/Ag ent Architectures (cont.)

� Hybrid architectures:

– use both deliberative and reactive layers;

– between planner/plan library and low-level controller, have so-
phisticated executor, e.g. RAP [Firby87], PRS [RaoGeo92].

� High-level programming:

– between using a planner and writing a normal program;

– task-level controller is program in very high-level language that
uses a model/theory of application domain;

– can write detailed plans;

– can also write nondeterministic programs that require the inter-
preter to search, a form of planning;

– e.g. Golog [LRLLS97].

3

The Toronto Cognitive Robotics Framework

Uses:

� domain theory expressed in situation calculus;

� high-level programming languages that extend theory and allow
complex actions/processes to be specified:

– Golog = Algol + nondeterminism,

– ConGolog = Golog + concurrency,

– IndiGolog = ConGolog + incremental execution,

– etc.

� implemented in Prolog.

4

Situation Calculus [McCar thy63]

A language of predicate logic for representing dynamically changing
worlds.

The constant
� �

represents the initial situation.

The term � � � � � � 	 represents the situation that results from primitive
action � being performed in situation � .

Predicates and functions whose value varies from situation to situation
are called fluents.

e.g.

 � � � � � � � � � � � � � 	
� � � 	 � � � 	 	

5

Specifying a Domain in the Situation Calculus

Use a theory that includes:
� Action precondition axioms, one for each primitive action � , which

characterizes � � � � � � � � 	 , e.g.

� 	 � � 	 �� � � � � � � � � � � � � � 	 � � � � � � � � !� � " � � � � � � � � 	 � � � � " � # � � � � � � � � � � � 	 	 $
� Successor state axioms, one for each fluent % , which characterize

the conditions under which % � &# � � � � � � � 	 	 holds in terms of what
holds in situation � ; these axioms may be compiled from effects
axioms, but provide a solution to the frame problem [Reiter91],
e.g.

� � " � � ' � � � � � � � � � � � � � � � � � 	 	 � � �� � � � � � � (� � � �)� � � � " � � ' � � � � � � � � � � � � 	 !
 � � *� � � � � � (� � � � 	
6

Specifying a Domain in the Situation Calculus (cont.)

� Axioms describing the initial situation,
� �

, e.g.

� � " � � � � � � � � � 	 � + � � � � � � , , � � � $
� Unique names axioms for the primitive actions.

� Some foundational, domain independent axioms [LinRei94].

This is called a basic action theory [Reiter01b].

7

Example Application: Robot Mail Deliver y

Task-level controller must produce and execute delivery plans.

Must react to events such as:

� new shipment orders,

� navigation failures.

Planning useful for:

� finding optimal route,

� dealing with failures,

� dealing with unexpected requests.

8

Golog [LRLLS97]

AlGOl in LOGic

Constructs:

� , primitive action-
?, test a condition

� . � / . 0 	 , sequence
if

-
then . � else . 0 endIf , conditional

while
-

do . endWhile , loop
proc 1 � &# 	 . endProc , procedure definition

1 � &� 	 , procedure call

� . � 2 . 0 	 , nondeterministic choice of action3 &# 4 . 5 , nondeterministic choice of arguments
. 6 , nondeterministic iteration

9

Golog (cont.)

Programmer provides a basic action theory to specify primitive actions
and what is true initially.

Semantics: ' � � . � � � � 7 	 , meaning that program . starting in situation
� may terminate in situation � 7 ; because of nondeterminism, can be
many � 7 ; ' � defined in sit. calc.

Interpreter searches for a final situation � 7 for program; sequence of
actions in � 7 is a possible execution.

Can be executed for real if programmer provides implementation for
primitive actions.

10

A Very Simple Golog Robot Contr ol Program

Does mail delivery. Serves orders randomly.

proc � � � � � �
while 8 � � � � � � � � � � � 9 � � � 	 do3 � 4 � � � � � � � � � � 9 � � � 	 : / % choose an order

� � � 9 � � � � � � � � 	 5 % and serve it
endWhile

endProc

proc � � � 9 � � � � � � � � 	
� � � � � � � � � � � � � 	 	 / � � � � � � � � 	 /
� � � � � � � � � � � � � � � � 	 	 / � � � � � , , � � 	

endProc

11

Using Nondeterminism: A Simple Example

A program to clear blocks from table:

� 3 " 4 � � � " � � " 	 : / � ; � < = � > � " 	 5 	 6 / � 8 " � � � " � � " 	 :

When condition of a test action or action precondition is false, back-
track and try different nondeterministic choices.

Interpreter will find way to unstack all blocks (� ; � < = � > � " 	 is only pos-
sible if " is clear).

Interpreter searches all the way to a final situation of the program, and
only then starts executing corresponding sequence of actions.

12

Using Nondeterminism to Do Planning:
A Mail Deliver y Example

This control program searches to find a schedule/route that serves all
clients and minimizes distance traveled:

proc � � � � � �
� � � � � � ? � � � � � � � � � � @ 	

endProc

proc � � � � � � ? � � � � � � � � � � � � � � � � � � 	
� � � 9 � � � � � � � � = � � � � � � � � � � � � � � 	

2 % or
� � � � � � ? � � � � � � � � � � � � � � � � � � A B � � � � � � � � 	

endProc

� � � � � � ? � � � � � � � � � does iterative deepening search.

13

A Contr ol Program that Plans (cont.)

proc � � � 9 � � � � � � � � = � � � � � � � � � � � � � � 	
� 8 � + � � � � � � � � � 9 � � � 	 :

% if no clients to serve, we’re done
2 % or3 � � � 4 � + � � � � � � � � � 9 � � � 	 ! % choose a client

� � � � � � � � � � � � � � 	 ! � C � � � � � � � � : 	 /
� � � � � � 	 / % and serve him

� � � 9 � � � � � � � � 	 /
� � � 9 � � � � � � � � = � � � � � � � � � � � � � � D � 	 5

endProc

14

ConGolog [DLL00]

Extends Golog with constructs to support concurent programming:

� . � E . 0 	 , concurrent execution
� . � F F . 0 	 , concurrency with priorities

. G G , concurrent iterationH &# I - J . F , interrupt

Concurrency makes it easy to write more reactive controllers.

15

Simple ConGolog Example:
Reactive Robot Mail Deliver y

proc � � � 9 � � � � � � � � 	
� � � � � � � � � � � � 	 	 / � � � � � � � � 	 /
� � � � � � � � � � � � � � � 	 	 / � � � � � , , � � 	

endProc ;H � I � � � � � � � � � 9 � � � 	 J � � � 9 � � � � � � � � 	 FK H � � " � � � � � � *� � � � � J � � � � � � � � 	 F
Always execute highest priority process that is not blocked.

When interrupt gets control and its condition is true, it triggers and
body is executed.

Once execution is completed, interrupt can trigger again.

16

ConGolog (cont.)

Test action
- : now interpreted as “wait for condition

-
”.

When condition of wait action or action precondition is false, process
blocks and other processes can execute.

If no process can execute and not done, backtrack.

Interpreter still searches all the way to final situation/end of program,
before executing any actions. Not practical for long programs. May
lack knowledge to find a plan.

17

IndiGolog [DegLev00]

Variant of ConGolog for incompletely known, dynamic environments.

Supports controllers that interleave sensing, planning, and plan execu-
tion.

By default, no search/lookahead.

But, programmer can request interpreter to search over block of code
using new construct:

L . search block

Search is done on-line!
18

IndiGolog (cont.)

Program can include sensing actions that acquire new information:

� result of sensing added to basic action theory,

� programmer must provide method to get sensing result.

Changes in environment can be detected as exogenous actions:

� interpreter monitors for them and adds to history,

� programmer must provide method to check occurrence.

19

IndiGolog Replanning

When an unexpected exogenous action happens while executing a
search block, may need to replan.

E.g. when running mail delivery program that minimizes distance trav-
elled and new shipment order is made.

Then, IndiGolog checks if the sequence of actions found earlier is still
an execution of the program in the search block; otherwise, it redoes
the search.

Original IndiGolog of [DegLev00] can’t find a plan for this e.g. because
it restarts search from current program.

IndiGolog of [LesNg00] restarts search from original program, so it
does find a new plan.

Only committed to the actions it has performed.

20

Reactivity and Search

May need to react quickly to exogenous actions.

E.g. acknowledging new orders.

[LesNg00]’s extensions allow combining reactive threads & planning
threads that do search:

proc � � � � � � M � I N � = � � � � � � � 	 J � � � � � � � � � � 	 OF FL � � � � � � � ? � � � � � � � � � � @ 	 	
end

Acknowledgement will be done before replanning!

Limitation: planning will not be interrupted.

Need to keep track of actions that come from inside search block.

21

Relying on Exog enous Actions
E.g. Coping with Navigation Failures

Suppose controller is notified of success by � � � � � ' � � � exogenous ac-
tion and of failure by � � � � � ; � � exogenous action:

proc � � � 9 � � � � � � � � = � � � � � � � � � � � � � � 	� 8 � + � � � � � � � � � 9 � � � 	 : 23 � � � 4 � + � � � � � � � � � 9 � � � 	 !� � � � � � � � � � � � � � 	 ! � C � � � � � � � � 	 : /� � � � � � � � � � � 	 / % start to navigate to client� � " � � � � � � � *� P � 9 � � � : / % wait until robot stops
if � � " � � � � � � � � Q � � � � � � then� � � 9 � � � � � � � � 	 /
else� � � � � � � � 9 � � � , � � ; � � � � 	 /
endIf� � � 9 � � � � � � � � = � � � � � � � � � � � � � � D � 	 5

endProc

22

Relying on Exog enous Actions
E.g. Coping with Navigation Failures (cont.)

[LesNg00]’s extended IndiGolog supports this.

During planning, use simulated environment modeled as program:

proc � � � � � � L � � � � � � � ? � � � � � � � � � � @ 	 E � � 9 � � � ; � � � � 	
endProc

proc � � 9 � � � ; � � � �M � � " � � � � � � � � P � 9 � � � J R S T � � � � � � � � � � 	 O
endProc

Simulator and planning process assumes navigation will always suc-
ceed.

If navigation fails, replanning occurs.

23

Relying on Exog enous Actions
E.g. Coping with Navigation Failures (cont.)

During planning, treat simulated actions as real actions.

But simulated actions are never executed. Interpreter waits for a real
exogenous action to occur.

If exogenous action is as expected then continue, else replan.

But so far, simple deterministic environment simulators only!

24

York’ s Hierarchical Contr ol Architecture

User

Hardware World

Module
Navigation

Low-Level

Module
Control

Indigolog
High-Level
Control
Module

path planning pose maintenance map editing

path following collision avoidance

Indigolog
Control
Program

Indigolog
Interpreter

robot status
sensor data

Interface

primitive actions exogenous events

path to be followed
sensor control instructions

25

Interfacing High-Le vel Contr oller
with Rest of Architecture

One approach: view rest of architecture as another agent; primitive
actions are commands to it and signals it sends back are exogenous
actions.

In high-level controller, use model of rest architecture.

Simple version of this in [LTJ99].

Other work on this problem: [FinPir01], and [GroLak00] on cc-Golog
for continuous control.

26

Interfacing H-L Contr oller , E.g. model of [LTJ99]

From navigation point of view, model robot as being in a state � � " � � � � � � � � � 	
which can change as a result of actions by the high-level controller and
exogenous events:

UV WX UV WX UV WXY YZ Z Z Z Z Z Z Z Z Z Z Z [UV WX

\ \ \ \ \ \ \ \ \] UV WX

^ _ ` a b c d e c f g h g i j k l g m n o p e a d q r s a b c t a d q r a _

u c v q w
p a c u c v q w

x e g y a o
z e a a y a t g { g c

Also action � � � � � Q � " � � that returns robot to B � � state; can be per-
formed in any state. Also fluents � � " � � ' � � � � � � � � � � � � 	 and � � " � � � � � � � � 	 .

So treat “going to a location” as an “activity” in the sense [Gat92]; the
primitive actions are not the activity; only initiate and terminate it.

27

Implementation and Experimentation

Controllers written in situation calculus-based high-level programming
languages tested on real robots at York, U. of Toronto, and U. of Bonn;
Bonn group created very successful “museum guide” application [Bur+98].

At York: high-Level controllers that do mail delivery and handle new or-
ders and navigation failures; run on RWI B12 and Nomad Super Scout.

Use low-level control and navigation modules based on software de-
veloped for ARK project [Nic+98]. Modules run in separate processes
that communicate via TCP/IP sockets.

In [LesNg00], system using extended IndiGolog tested on scenarios
that require planning to optimize delivery route, reacting/replanning
when new order arrives or navigation fails.

28

E.g. [LesNg00] Test Scenario 1: Planning Optimal
Route

29

E.g. [LesNg00] Test Scenario 2: Replanning to Serve
Urgent Order

30

Recap

High-level programming in situation calculus is promising approach to
cognitive robotics

IndiGolog high-level programming language supports:

� complex behaviors: loops, concurrency, etc.,

� reactive behaviors: interrupts,

� on-line planning,

� execution in dynamic & incompletely known environments.

31

Recap (cont.)

Logical foundations support:

� formal specification and verification,

� reasoning with incomplete information.

Tested in simple but real robotics applications.

Also high-level programming in event calculus [ShaWit00] and fluent
calculus [Thielscher00], and related work on Model-Based Program-
ming [WCG01] and structured-reactive controllers [Beetz01].

32

Current Issues in Cognitive Robotics Research

Representing and reasoning about action’s effects and preconditions,
ramification and qualification problems [Reiter01b].

High-level programming with temporal constraints [Reiter98].

Modeling & interfacing with non-symbolic processes, continuous con-
trol [GroLak00], [Sandewall97].

Representing and reasoning with incomplete knowledge [BacPet98],
[DemDel00].

Accounts of sensing and knowledge change [Iocchi99], [ShaWit00],
[MciSch00], on-line sensors and just-in-time programs [DLS01], noisy
sensors [BHL95], models of vision, anchoring [CorSaf01].

33

Current Issues in Cognitive Robotics Research (cont.)

Planning with incomplete information, conformant, conditional [BacPet98],
[FPR00], [Sardina01], knowledge-based programs [Reiter01a].

Contingent planning.

Agent architecture, integrating sensing, planning, and plan execution,
execution monitoring [DRS98].

Probabilistic modeling [FinPir01], [GroLak01], [BHL95].

Decision-theoretic modeling [BRST00], [WCG01].

Practical use of planning as nondeterministic programming.

34

Current Issues in Cognitive Robotics Research (cont.)

Richer accounts of mental states, belief, goals, etc. [SPLL00], [ShaLes01],
ability [Levesque96], [LLLS01].

Representing and reasoning about other agents/robots [ShaLes01].

Infrastructure for multirobot/agent systems.

Coordination protocols.

Coordination planning.

Adversarial planning.

Development methodologies.

Verification.

Emotions, Personality, etc.

35

