
Knowledge-Based Systems xxx (xxxx) xxx

a

b

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Imputation techniques for the reconstruction ofmissing
interconnected data from higher Educational Institutions
Renato Bruni a,∗, Cinzia Daraio a, Davide Aureli b
Department of Computer Control and Management Engineering, ‘‘Sapienza" University of Rome, Rome, Italy
Department of Information Engineering, Electronics and Telecommunications, ‘‘Sapienza" University of Rome, Rome, Italy

a r t i c l e i n f o

Article history:
Received 19 June 2020
Received in revised form10 September 2020
Accepted 6 October 2020
Available online xxxx

Keywords:
Data imputation
Information reconstruction
Machine learning
Educational Institutions

a b s t r a c t

Educational Institutions data constitute the basis for several important analyses on the educational
systems; however they often contain not negligible shares of missing values, for several reasons. We
consider in this work the relevant case of the European Tertiary Education Register (ETER), describing
the Educational Institutions of Europe. The presence of missing values prevents the full exploitation
of this database, since several types of analyses that could be performed are currently impracticable.
The imputation of artificial data, reconstructed with the aim of being statistically equivalent to the
(unknown) missing data, would allow to overcome these problems. A main complication in the
imputation of this type of data is given by the correlations that exist among all the variables. We
propose several imputation techniques designed to deal with the different types of missing values
appearing in these interconnected data. We use these techniques to impute the database. Moreover,
we evaluate the accuracy of the proposed approach by artificially introducing missing data, by imputing
them, and by comparing imputed and original values. Results show that the information reconstruction
does not introduce statistically significant changes in the data and that the imputed values are close
enough to the original values.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Organizations providing higher level education, such as tradi-
tional universities, universities of applied sciences, polytechnics,
community colleges, liberal arts colleges, etc. are collectively
called Higher Education Institutions (HEIs). The data describing
each individual HEI (for instance number of students, number
of graduates, etc.) are called HEI microdata. Their availability
is essential to support an empirical-oriented and robust policy
making in the dynamic landscape of educational systems [1].
A pioneer research project called Aquameth [2] was the first
attempt to gather microdata about European HEIs. Since this first
experience, the presence of missing or noisy data and the lack
of comparability among data appeared to be the most critical
obstacles to an appropriate usage of the collected data [3]. After
the Aquameth project, a large scale study called EUMIDA was
commissioned by the European Union from 2009 to 2011, and
showed the feasibility of a European-level data collection on
individual HEIs [1]. Since then, it has been underlined the need
to build a register of Higher Education Institutions in Europe.

The code (and data) in this article has been certified as Reproducible
by Code Ocean:https://help.codeocean.com/en/articles/1120151-code-ocean-s-
verification-process-for-computational-reproducibility. More information on the
Reproducibility Badge Initiative isavailable at www.elsevier.com/locate/knosys.
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At present, the European Tertiary Education Register (ETER) is
a database collecting information on European HEIs, concerning
their basic characteristics and geographical position, number of
students, graduates, doctorates, staff, fields of education, income,
expenditure and research activities. The main feature of ETER is
providing data at the level of individual institutions, being there-
fore complementary to the educational statistics at the country
and regional level provided by EUROSTAT. ETER is a European
Commission initiative, and constitutes an Erasmus+ project fully
financed by the European Commission. This project is managed
by the Joint Research Centre and by the Directorate General for
Education and Culture of the European Commission, in cooper-
ation with EUROSTAT and the National Statistical Authorities of
the participating Countries. ETER covers EU-27 countries (Austria,
Belgium, Bulgaria, Croatia, Republic of Cyprus, Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands,
Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden),
as well as Albania, Iceland, Liechtenstein, Montenegro, Norway,
Serbia, Switzerland, Turkey, United Kingdom and the Republic of
North Macedonia. At the time of writing, data have been collected
from the year 2011 (academic year 2011/2012) until 2016 or,
occasionally, 2017.

The data are gathered through the National Statistical Au-
thorities of the different Countries, and not directly collected by
the project consortium. Notwithstanding the considerable effort
econstructionofmissing interconnecteddata fromhigher Educational Institutions,
12.
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n the data collection, the current ETER database includes many
cattered missing values in the variables and this creates prob-
ems for the usage of those variables. In particular, it clearly
oes not allow the micro analysis of the institutions containing
he missing values, and also prevents the macro analysis (at the
ggregate level) of many categories of institutions, whenever they
nclude the incomplete ones. Thus, the main goal of this work is
o propose a methodology to reconstruct those missing values for
he key variables of the institutions.

Imputation techniques have been studied in many fields to
ackle the widespread problem of missing data, see e.g. [4–
]. Consequently, many approaches to the problem have been
roposed, based on several different techniques, including: k-
earest neighbors [7] or other forms of proximity search [8], fuzzy
lustering [9,10], bagging algorithms [11], ensemble of neural
etworks [12], autoencoders neural networks [13], denoising
utoencoders [14], other deep neural networks [15], Bayesian
etworks [16,17], integer linear programming [18], pattern se-
uence forecasting [19], use of a knowledge base [20], similarity
ules [21], each of which possibly combined or hybridized with
dditional techniques. Existing methods to deal with missing
ata can be organized according to different perspectives. For
xample, one may discriminate on the basis of the source of
he imputed information, which can be: (a) the other variables
f the same unit under imputation, taking advantage of some
xisting relations among the variables; (b) other units similar
o the treated one, which are often called donors; (c) other
ources, external to the dataset under imputation, but storing the
ame information, e.g. statistical ledgers. Donors are generally
omplete units [22,23], though even incomplete ones could be
sed if necessary [24], and their use often requires the solution
f optimization problems [25]. Another discrimination sometimes
dopted is between statistical methods and machine learning
pproaches [8].
Currently, there is no evidence of a single ‘‘best’’ imputation

ethod. Rather, it appears that the performance of each method
epends in large measure on the dataset characteristics, as also
uggested in [26]. The imputation of missing data in time series
s a particularly difficult task [27], and many general techniques
re not able to satisfactory deal with this case. And the subcase of
ultivariate time series stays at the core of the most challenging

asks, as observed in [16,28].
Educational data have important peculiarities. To begin with,

hey contain multivariate time series (number of students, num-
er of graduates, etc.). Furthermore, it can be observed that
lmost all data of an institution are interconnected. The number
f graduates is not independent from the number of students,
he expenditure is not independent from the staff, just to make
ome easy examples. Thus, the imputation becomes particularly
ifficult: imputed values must belong to time series and each
f them may impact on the situation of the whole institution.
herefore, imputation techniques for this type of data should be
pecifically designed. An approach to improve the data quality
or the same ETER dataset, not dealing with missing data and so
omplementing the present work, has been developed in [29].
The proposed imputation methodology combines an interdis-

iplinary set of tools coming from information management, ma-
hine learning and statistics with an investigation of the relations
xisting among the variables and of the types of missing patterns
ctually contained in the data. The proposed methodology works
t the formal level, with a data driven approach, i.e., learning from
he data many aspects of the imputation techniques. Therefore,
t could also be used to impute datasets with educational data
rom other origins, or even datasets with different meaning but
haring the features of time series and interconnection among the

ariables. We validate our approach by comparing the statistical

2

features of the data before and after imputation. Moreover, we
evaluate its reconstruction accuracy by means of the following
experiments: (1) we take a set of complete records and artificially
introduce in them missing values; (2) we use the proposed impu-
tation techniques to impute those missing values; (3) we compare
the imputed values with the original known values, and we study
the occurrence of significant differences.

The work is organized as follows. Section 2 explains the vari-
ables and the different types of missing values that appear in the
current version of ETER. Sections 3 and 4 introduce the proposed
imputation techniques, distinguishing between those based on
functions of the available values of the same institution and those
based on other institutions (donors). Section 5 shows the results
of the application of the proposed methodology to reconstruct the
selected ETER variables. Section 6 describes the tests of accuracy
carried out to further evaluate the performance of the proposed
methodology. Section 7 draws conclusions.

2. Distribution of the missing values

ETER database is composed of 3208 units, each representing
a single European HEI over a number of years. Each institution Ij
contains a number of values sjvk, where v ∈ V is the index of the
variable (e.g., students), k ∈ T that of the year (e.g., 2011) and
j ∈ J that of the institution (e.g., Sapienza University). The target
of our imputation is constituted of the following 8 variables:

• Total number of students enrolled (called in ETER ‘‘Total
Students Enrolled at ISCED 5-7’’)

• Total number of graduates (in ETER ‘‘Tot. Stud. Grad. at
ISCED 5-7’’)

• Total number of Ph.D. students (in ETER ‘‘Tot. Stud. Enr. at
ISCED 8’’)

• Total number of Ph.D. graduates (in ETER ‘‘Tot. Stud. Gr. at
ISCED 8’’)

• Total academic staff (researchers and professors, measured
in ETER either in ‘‘Full Time Equivalent - FTE’’ or in ‘‘Head
Count - HC’’).

• Total non-academic staff (technical and administrative staff,
measured in ETER either in ‘‘Full Time Equivalent - FTE’’ or
in ‘‘Head Count - HC’’).

• Total current expenditure (measured in ETER in Euro).
• Total current revenues (measured in ETER in Euro).

These variables are selected because they are very relevant in
many types of analyses. Moreover they are the main descrip-
tors of the size of an institution. The importance of size in the
characterization of the HEIs, and its connection to their overall
performance, is well known in the specialized literature, see
e.g. [30]. Each of the above variables takes a value for each year
of the time horizon, which at present goes from 2011 to 2016
for the majority of the institutions (even if some may have less
years, or some may have also 2017). To lighten the notation,
when there is no ambiguity, we will denote the values of the
time series for one generic variable v simply with v1, v2, . . . , vt
(without reference to the index j of the institution), and the set of
years indices of the time series simply with {1, 2, . . . , t} = T . For
example, the values of Total graduates for the years 2011–2016
in an institution called‘‘AAA’’, which in full notation are

{vAAA
graduates2011, vAAA

graduates2012, . . . , vAAA
graduates2016},

may be simply denoted by {grad1, grad2, grad3, grad4, grad5,
grad6}.

A specificity of these data, with respect to other imputation
cases, is given by the relations connecting all the above values.
Indeed, the different values of each single time series are obvi-
ously related. For example, the number of students enrolled in
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Table 1
Missing values in current ETER database.

Institutions without
missing in that variable

% on the total of
institutions

Total number of missing
in that variable

Total Students Enrolled 2206 69% 3075
Total Graduates 1963 61% 3891
Total PhD Students 891 28% 10349
Total PhD Graduates 844 26% 10741
Total Academic staff FTE 1629 51% 7915
Total Academic staff HC 1595 50% 7284
Total Non-academic staff FTE 1455 45% 8807
Total Non-academic staff HC 1341 42% 9145
Total Expenditure 987 31% 10041
Total Revenues 1021 32% 10252
T
d
y

F

w

T
d

Table 2
Missing values before and after the imputation for the variables Total Students
and Total Graduates.
Variable Total students Total graduates

Before or after imputation Before After Before After

Institutions without missing 2206 3153 1963 3108
% on the total 69% 98% 61% 97%

One isolated internal missing 98 0 157 0
One isolated extreme missing 68 14 259 29
Missing sequence of length 2 392 12 256 17
Missing sequence of length 3 212 3 339 6
Missing sequence of length 4 7 0 22 3
Missing sequence of length 5 37 26 44 27
Missing sequence of length 6 152 1 196 15
Missing sequence of length 7 52 0 66 6

Total number of missing 3075 183 3891 360

2011 is necessarily related to the number of students enrolled in
2012, in 2013, and so on, and in most of the cases the time series
exhibits a trend, in the sense that, if some values are for instance
increasing, it can be expected that the next value will be likely
still increasing. However, trend may also change direction during
the time series. Moreover, all the above variables are positively
correlated. For example, the number of graduates is generally a
certain proportion of the number of students, because they were
indeed students in the previous year; the staff tends to increase
or decrease in some measure with the number students, and so
do the expenditures and the revenues.

We will denote the missing value with ‘‘⊔’’. We are interested
n distinguishing the following types of missing values:

• Isolated Internal Missing: this type of missing occurs when
vi = ⊔ for 2 ≤ i ≤ t − 1 and both vi−1 ̸= ⊔ and vi+1 ̸= ⊔.

• Isolated Extreme Missing: this type of missing occurs when
vi = ⊔ for i = 1 or i = t and respectively v2 ̸= ⊔ or
vt−1 ̸= ⊔.

• Missing Sequence of length L: this type of missing occurs
when vi = · · · = vi+L = ⊔ for i ≤ t − L with t − L ≥ 1
and vi+L+1 ̸= ⊔ (the missing sequence does not cover the
whole time series).

• Full Sequence Missing: this type of missing occurs when v1 =

· · · = vt = ⊔ (the missing sequence covers the whole time
series).

The current situation of missing values is reported in Table 1.
More details on the types of missing data are in Tables 2–6 in
Section 5. Note that the most common type of missing values are
those contained in the full sequence missing.

3. Imputation based on the available values of the sequence

This Section describes a category of imputation techniques
based on functions of the available values in the sequence un-
der imputation (i.e., the values which are not missing), starting
3

with the very simple approaches based on average and linear
regression that will be used as building blocks for the proposed
Trend Smoothing technique. We also discuss, for each imputation
technique, the type of missing for which it should be used.

3.1. Imputation based on weighted average

Very intuitive imputation techniques are based on averages
of the values already available in the sequence. This approach
relies on the assumption that the values in the time series are
related, and not independent [31]. In general, there exist several
mathematical types of averages. In our case, it appears reasonable
to assume that, generally speaking, the closer the data are on
the time scale, the most related their values are. Therefore, we
propose to impute a value vi for an isolated internal missing by
using a weighted arithmetic mean of the surrounding values which
are available, as follows.

vi =

∑
h∈T ,
h̸=i

whvh, with
∑
h∈T ,
h̸=i

wh = 1

he weights wh should progressively decrease with the time
istance between h and the instant i under imputation. We define
early decrement d a positive value < 1 such that

wh = dwh+1 ∀h = 1, . . . , i − 1
wh+1 = dwh ∀h = i + 1, . . . , t.

or instance, if d = 0.5, i = 4 and we denote the value of w3 by
α, we have w1 = 1/2 w2 = 1/4 α, w2 = 1/2 α, w3 = α, w5 = α,

6 = 1/2 α, and so on.
However, this condition alone is not enough to find the wh.

hus, we propose to determine their values by using the following
ata-driven approach: for each value vi of each institution j, with

i ∈ {T \ 1}, we compute the variation δij with respect to the
preceding value vi−1 as follows:

δij =
(vi − vi−1)

vi−1
.

The set of these variations can now be studied to find its average
value δ̄ by using the arithmetic mean, and two extreme values
e1, e2 such that they contain 90% of the values of the variations.
Then, we search for the yearly decrement d that better fits the
average variation δ̄. By defining the set D of the indices of the
institutions containing isolated missing values, and by assuming,
with a slight abuse of notation, that i always represents the index
of that missing value, this is obtained by solving the following
optimization problem,

min
d∈(0,1)

(
∑
j∈D

(vj
i(d) − δ̄v

j
i−1)

2
+

∑
∀i, j

(vj
i+1 − δ̄v

j
i(d))

2),

where each (vj
i(d)− δ̄v

j
i−1) represents the difference between the

j
imputed value vi(d), for which the dependence on d is made
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Table 3
Missing values before and after the imputation for the variables Total PhD Students and Total PhD
Graduates.
Variable Total PhD students Total PhD graduates

Before or after imputation Before After Before After

Institutions without missing 891 2977 844 2980
% on the total 28% 93% 26% 93%

One isolated internal missing 86 41 121 44
One isolated extreme missing 118 55 114 51
Missing sequence of length 2 386 26 376 24
Missing sequence of length 3 333 24 151 24
Missing sequence of length 4 78 1 260 0
Missing sequence of length 5 117 28 119 28
Missing sequence of length 6 1014 5 1028 5
Missing sequence of length 7 199 54 214 54

Total number of missing 10349 772 10741 763
Table 4
Missing values before and after the imputation for the variable Total Academic staff FTE and HC.
Variable Academic staff FTE Academic staff HC

Before or after imputation Before After Before After

Institutions without missing 1629 2921 1595 2977
% on the total 51% 91% 50% 93%

One isolated internal missing 59 17 66 1
One isolated extreme missing 61 81 93 64

Missing sequence of length 2 204 64 387 55
Missing sequence of length 3 119 8 318 19
Missing sequence of length 4 48 6 80 4
Missing sequence of length 5 155 34 102 33
Missing sequence of length 6 650 58 529 58
Missing sequence of length 7 309 21 199 6

Total number of missing 7915 939 7284 803
Table 5
Missing values before and after the imputation for the variable Total Non-academic staff FTE and
HC.
Variable Non-acad. staff FTE Non-acad. staff HC

Before or after imputation Before After Before After

Institutions without missing 1455 2886 1341 2815
% on the total 45% 90% 42% 88%

One isolated internal missing 59 1 105 1
One isolated extreme missing 66 103 122 122

Missing sequence of length 2 241 71 244 71
Missing sequence of length 3 125 11 93 17
Missing sequence of length 4 62 8 67 10
Missing sequence of length 5 88 13 102 16
Missing sequence of length 6 829 95 870 134

Missing sequence of length 7 309 23 309 26

Total number of missing 8807 1107 9145 1422
explicit, and the value δ̄v
j
i−1, which is the value obtainable for v

j
i

when assuming the average variation δ̄ from the preceding value
v
j
i−1, and each (vj

i+1 − δ̄v
j
i(d)) represents the difference between

the following value v
j
i+1 and the value δ̄v

j
i(d) obtainable for v

j
i+1

from the imputed value v
j
i(d) when assuming again the average

variation δ̄. Note that v
j
i−1 and v

j
i+1 could be such that the average

variation δ̄ cannot hold for v
j
i(d), however the minimization of the

above squared sums aims at providing the value of d that better
shares the differences.

The described Weighted Average Imputation appears feasible
to impute isolated missing values, in particular when they are
internal. It can be adapted to the external case, by considering
only one side of the former case, however it may fail to capture
the data trend when there is a distinct increase or decrease of
the values over the years. In any case, the Weighted Average
approach could be used as a building block to develop more
sophisticated imputation techniques for missing sequences.
4

3.2. Imputation based on linear regression

Another basic technique that can be used to reconstruct values
in a time series is linear regression. The missing value vi is approx-
imated with the value given by the straight line interpolating the
available values vh, with h ∈ T , h ̸= i. This approach relies on the
assumption that the values in the time series are not only related
but also subject to a temporal evolution, which often exhibits a
trend. See [31] for further discussion of the field of application of
this approach. This approach does not need to compute weights
or other parameters. It appears feasible to impute isolated miss-
ing values, in particular extreme ones, because it is able to capture
the data trend.

However, when there is a sharp increase or decrease in the
available values, it may predict negative values, which are clearly
infeasible. For example, if we have the following sequence ⊔, 100,
250, 410, 550, 690, the Linear Regression Imputation would pro-
vide -44 for the value of the first period. Clearly, negative values
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re not acceptable, and even replacing them with 0 would not
e a good solution. In similar cases, we propose to smoothen the
rend by computing a value v1 ∈ (0, v2). In particular, v1 can
e computed with the exponentiation operation as (v2)c , with
∈ (0, 1). For instance, using c = 0.5 gives the square root, which

n the example above would produce v1 =
√
100 = 10, which is

more reasonable value.
To select the value of the exponent c , we propose to use

gain a data-driven approach. When focusing on the case of initial
solated missing, we define the set E of the institutions which
ould have a negative initial value v1 if approximated with linear
egression, and we compute a new average variation δ̄E limited
o the institutions in E. Now, we search for the value of c that
etter fits this new average variation δ̄E by solving the following
ptimization problem,

min
∈(0,1)

∑
j∈E

(vj
2 − δ̄E v

j
1(c))

2,

here each (vj
2 − δ̄E v

j
1(c)) represents the difference between

he available value v
j
2 and the value δ̄E v

j
1(c), which is the value

btainable for v
j
2 when assuming v

j
1(c) = (vj

2)
c and the average

ariation δ̄E .
Specularly, when focusing on the case of final isolated missing,

e define the set F of the institutions which would have a nega-
ive final value vt if approximated with linear regression, and we
ompute another average variation δ̄F limited to the institutions
n F . In this case, we search for the value of c that better fits this
ew average variation δ̄F by solving the following optimization
roblem,

min
∈(0,1)

∑
j∈F

(vj
t − δ̄F v

j
t−1(c))

2,

here each (vj
t (c) − δ̄F v

j
t−1) represents the difference between

he imputed value v
j
t (c) and the value δ̄F v

j
t−1, which is the value

btainable for v
j
t when assuming v

j
t (c) = (vj

t−1)
c and the average

ariation δ̄F .
The described Linear Regression Imputation, possibly inte-

rating the described exponentiation technique, appears feasible
o impute isolated missing values, in particular when they are
xtreme. Moreover, similarly to the approach described in the
revious Section, it can be used as a building block to develop
ore sophisticated imputation techniques for missing sequences.

.3. Trend smoothing imputation

To be able to capture a trend in the series, but at the same
ime to be not excessively (mis)lead by it, we propose to combine
he two simple approaches described above by means of the
ollowing technique. By denoting with WAi the value given for
nstant i by the weighted average approach, and by LRi the value
iven for instant i by the linear regression approach, the actual
alue imputed for vi would be obtained as a combination of the
wo, as follows.

i =
a2

a2 + 1
WAi +

1
a2 + 1

LRi

ote that the value LRi is intended to be already smoothened
y means of the exponentiation operation explained above. Co-
fficient a should give more importance to the contribution of

the linear regression when the slope of the interpolating straight
line is nearly flat, and more importance to the contribution of
the weighted average when the same slope is too vertical. This
transition from one extreme to the other should be without
discontinuities. Therefore, by denoting with m the angular coeffi-
ient of the interpolating straight line, with T ′

⊂ T the set of the
5

Table 6
Missing values before and after the imputation for the variables Total
Expenditure and Total Revenues.
Variable Total expenditure Total revenues

Before or after imputation Before After Before After

Institutions without missing 987 3003 1021 3001
% on the total 31% 94% 32% 94%

One isolated internal missing 81 0 103 0
One isolated extreme missing 450 36 359 36

Missing sequence of length 2 429 64 222 63
Missing sequence of length 3 287 15 248 13
Missing sequence of length 4 83 6 88 7
Missing sequence of length 5 75 11 106 13
Missing sequence of length 6 945 71 1051 72

Missing sequence of length 7 202 7 202 7

Total number of missing 10041 763 10252 775

available values, and with s a constant value usually set at 2, we
use

a =
s|m|

min
τ∈T ′

{vτ }
.

n other words, we follow the trend given by the available values
hen it is reasonably increasing or decreasing; we progressively
onsider the trend less reliable when the available values make it
oo steep. The absolute value of the angular coefficient is divided
y the smaller available value in order to ‘‘normalize’’ it, because
n increase for example from 1000 to 1500 is more reasonable
han an increase from 1 to 501, which will produce the same
alue of m.
The technique proposed in this Section is called Trend Smooth-

ng Imputation, since it does follow the trend, however it progres-
ively smoothen it when needed, without discontinuities. This
echnique appears feasible for isolated missing, but also for miss-
ng sequence of length L ≤ t − 2. In particular, we will use it for
his last case in our experiments. The case of missing sequences
f length t−1 actually contain only one non-missing value, hence
o trend exists. Hence, these cases are better assimilated to the
ases of full sequence missing.
Finally, in the case of interconnected variables, for example

umber of students and number of graduates, we may compute
n average ratio between the values available year by year for that
ouple of variables, and impose that the imputed values remains
‘not too far’’ from that ratio. This request can be practically
mplemented according to the peculiarities of the specific case.

. Imputation techniques based on donors

The techniques described in the previous Sections basically
ely on some type of prolongation of the values available in
he sequence. When the full sequence of values is missing, or
ven when there is only one available value and the rest of
he sequence is missing, those techniques are clearly inapplica-
le. However, unfortunately, the case of full sequence missing
s the most common type of missing. Note, indeed, that a full
equence missing generally corresponds to 6 missing values with
he current time horizon.

Therefore, it is important to deal with such type of miss-
ng, even if this happens to be the most difficult case. Thus,
e need to recur to a different imputation technique, which is
lso well established in the field [6]. This technique is called
onor imputation, and is based on the search for a complete (and
orrect) record (i.e., institution) being as similar as possible to
he incomplete records under imputation. Similarity is judged by
efining a distance function among records, and thus minimum
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istance corresponds to maximum similarity. When this complete
ecord at minimum distance is found, it is used as a donor:
he missing values of the incomplete record are replaced by the
orresponding values of the complete records. The incomplete
ecord under imputation is also called the recipient. A possible
ariant is to search for a small set of records at minimum distance
e.g., 3) and not just one, and then select the donor randomly
mong them For this reason, this technique is sometimes called
-nearest neighbor imputation. Of course, this approach is easily
pplied when the set of possible donors is large enough to have
onors in the vicinity of each incomplete record that must be
reated. A recognized statistical advantage of the donor imputa-
ion with respect to other imputation techniques is that it does
ot create artificial and possibly unlikely values; rather, it takes
alues already appearing in the dataset, and they are selected
ith higher probability whenever they are more frequent, see
lso [18]. Hence, donor imputation tends to preserve the data
roperties and their frequency distributions without hypothesis
n the distribution of the data, which may be questionable [12].
The similarity criterion is fundamental and must be defined

n the specific case. In the case of educational institutions, we
dentify a number of variables under which institutions should
e considered similar. They are essentially variables describing
he size, the type and the geographical location of the institution.
or each of these variables, a difference in the values may give a
ertain contribution to the total distance or directly lead to the
xclusion of the record as possible donor. In the specific case of
he ETER database, containing European institutions, we set up
he following distance calculation scheme.

1. Variable: ‘‘Institution Category standardized’’, whose value
can be 1 = University, 2 = University of Applied Science,
0= Other. For this variable we accept only donors from the
same category.

2. Variable: ‘‘Distance education institution’’, which tells
whether the institution is essentially telematic or tradi-
tional. The difference in this variable gives a contribution to
the distance denoted by p1, which should be set at a value
corresponding to a strong penalization.

3. Variable: ‘‘Institution Category’’, which reports the category
of the institution with more granularity than the former
‘‘Institution Category standardized’’. The difference in this
variable gives again a contribution to the distance of p1.

4. Variables: ‘‘Total Current expenditure’’, ‘‘Total Current rev-
enues’’, ‘‘Total academic staff’’ (which can be measured
either in Full Time Equivalent or in Headcount). These vari-
ables basically describe the size of the institution. For these
numerical variables, each difference between two values v′

and v′′ gives a contribution to the distance computed as
follows

p1
|v′

− v′′
|

max{v′, v′′}
.

In other words, the contribution is between p1 and 0, de-
pending on the absolute difference between the two values
normalized by dividing it by the largest value. Hence, the
maximum contribution to the total distance given by these
three variables is 3p1. Size indicators are very important for
the selection of a donor; unfortunately these variables are
often missing in the ETER database, so their use is limited
in practice.

5. Variable: ‘‘Country’’, reporting the country of the institu-
tion. We define similarity according to geographical areas
reported below.

• Area 1: Belgium, Liechten., Luxembourg, Netherlands,
Switzerland.
6

• Area 2: Austria, Germany.
• Area 3: Greece, Italy, Portugal, Spain.
• Area 4: Czech Republic, Slovakia, Estonia, Lithuania,

Latvia, Hungary, Poland.
• Area 5: Albania, Bulgaria, Croatia, North Macedonia,

Romania, Serbia, Slovenia, Montenegro.
• Area 6: Finland, Norway, Denmark, Iceland, Sweden.
• Area 7: Ireland, Malta, United Kingdom.
• Area 8: France.
• Area 9: Cyprus, Turkey.

The same country gives a contribution of 0 to the distance.
Different countries in the same area gives a contribution
to the distance denoted by p2, which should be set at a
value providing a light penalization. Different areas give a
contribution to the distance of p1 (strong penalization).

6. Variable: ‘‘Legal status’’, reporting whether the institution
is public or private. Difference in this variable gives a
contribution of p2 to distance.

Unfortunately, in the case of ETER, the number of possible donors
is not large enough to guarantee the presence of suitable donors
for each HEI. In particular, some types of institutions or some
Countries have very few complete institutions. And even exploit-
ing also the incomplete institutions, used as sets of partial donors
for the same recipient, the problem remains unsolved. Hence, to
avoid using donors too different from the recipient, which will
produce unacceptable data, we need to impose filters on accept-
able donors, i.e., criteria to recognize and exclude unacceptable
donors. For this reason, for some of the incomplete HEIs it is not
possible to obtain donors, and so they remain not imputed.

A first filter for donors is implemented by comparing the
average values of donor and recipient on a number of size-related
variables, such as: Total Current Expenditures; Total Current Rev-
enues; Total Students Enrolled; Total Graduates; Total Academic
Staff. When the two corresponding average values of donor and
recipient are both available, and their difference is larger than a
threshold (e.g., 30%), the donor is considered not acceptable. This
filter also uses values of the variable under imputation that may
possibly be available in the recipient (e.g., recipient has only 1
value and the rest of the sequence is missing), again by comparing
the average values of donor and recipient.

Moreover, some HEIs may be not suitable to donate because,
even if they are complete, their values are too uncommon, and it
is not advisable to replicate them. We select some of them by
computing, for each institution, the ratios between all pairs of
variables (e.g., graduates/student, Ph.D. students/ graduates, ex-
penditure/students, etc.) and by excluding those having extreme
values of ratios (e.g., top and bottom 2%). Some other are selected
by computing the volatility of the sequences, and by excluding
those having too volatile values (e.g., top 2%).

Another technique which we introduce to deal with the rel-
ative scarcity of donors is scaling. When the recipient has a
missing sequence containing one non-missing value, for instance
v2, and the sequence of the donor’s values is (w1, w2, . . . , wt ),
we learn from v2 and w2 a size ratio r = v2/w2 between the two
institutions, and scale the donor’s values by making the recipient
sequence become (rw1, v2, rw3, . . . , rwt ). On the other hand,
when the recipient has a full sequence missing, scaling can be
done by using another recipient’s variable strongly related to the
variable under imputation. For example, if the recipient has val-
ues (s1, s2, . . . , st ) for students and all missing for graduates, and
the donor has (t1, t2, . . . , tt ) for students and (g1, g2, . . . , gt ) for
graduates, we learn the sequence of size ratios (r1 = s1/t1, r2 =

2/t2, . . . , rt = st/tt ), and scale the donor’s values by making the
ecipient graduates become (r g , r g , . . . , r g ). This allows the
1 1 2 2 t t
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mputation of values suitable for the recipient’s size even if that
iffers from the donor’s size.
Furthermore, similarly to case of Trend Smoothing imputation,

or the couples of variables which are practically linked, such as
umber of students and number of graduates, we use the trend of
he variable available in the recipient to improve the selection of
he donor. For example, if we are imputing the whole sequence
f number of students and the number of graduates is available
n the recipient and is increasing, we accept only donors with
ncreasing number of graduates, or, if that is missing in the donor,
ith increasing number of students. On the other hand, when the
ecipient misses both the sequences of number of students and
umber of graduates, the imputations of both variables should
ither be done by the same donor or by two partial donors with
equences compatible for size, ratio and trend. Finally, we set a
imit on the number of times an institution can be used as donor,
o avoid any risk of replicating the same values too often.

. Results on the real missing values of ETER database

We report in this section the result of the imputation of all
he ETER missing values. Therefore, the original values (i.e., those
ost due to the missing) are not available for a direct check. While
he techniques described in Sections 3.1, 3.2, 3.3 always provide
value, the donor imputation described in Section 4 may leave
nimputed institutions when no acceptable donor is available
or them. More specifically, Tables 2–6 describe the types of
issing appearing in the database before and after the imputation
perations, respectively for: Total Students and Total Graduates;
otal Ph.D. Students and Total Ph.D. Graduates; Total Academic
taff FTE and HC; Total Non-academic staff FTE and HC; Total
xpenditure and Total Revenues. All the implementation codes
f our methodology are available in [32].
As observable, the percentage or institutions without missing

oes from being often lower than 50% before imputation to being
enerally over 90% after imputation. The non imputed cases are
ll due to the unavailability of acceptable donors for some insti-
utions; they may be short sequences because those institutions
ften contain less than 6 years in their time horizon. Clearly,
hey could be imputed by further relaxing the filters used on the
onors, however the quality of the imputed values would worsen.
hus, we prefer to pursue this compromise between coverage and
uality of the imputation. The results of our methodology on ETER
atabase are available in [33].
Since the original values are not available, the quality of the

mputation cannot be evaluated by matching original and im-
uted values. Hence, we evaluate it by comparing, for the dataset
efore imputation and after imputation:

• the frequency distribution of each variable;
• the ratios between selected couple of variables. This type

of measure is particularly informative for interconnected
variables.

We do this by using the so called violin plots juxtaposing
he frequency distributions of the variables in Figs. 1–10, and
he box plots juxtaposing the statistical description of the ra-
ios in Figs. 11–13. We consider informative the following ra-
ios: Graduates/Students; Ph.D. Graduates/Ph.D. Students, Ex-
enditure/Revenues, Expenditure/All Students, Revenues/All Stu-
ents; Academic Staff FTE/All Students; Academic Staff HC/All
tudents; Non-academic Staff FTE/All Students; Non-academic
taff HC/All Students. With ‘‘All Students’’ we denote the sum of
tudents and Ph.D. Students; this quantity have been introduced
o evaluate fairly the institutions focused on producing Ph.D., for
hich a ratio over Students would be misleading.
7

Fig. 1. Violin plot comparing the distributions before and after imputation for
Students.

Fig. 2. Violin plot comparing the distributions before and after imputation for
Graduates.

Fig. 3. Violin plot of the distrib. before and after imputation for Ph.D. Students.

Fig. 4. Violin plot of the distrib. before and after imputation for Ph.D. Graduates.

Note that we chose to compare the ratios of the data before
imputation to those of the imputed data only (and not to those
of all data after imputation), because, with the second choice,
possible differences would be too ‘‘diluted’’ to be evident. Note,
moreover, that the missing values are not equally distributed over
the institutions, but sometimes more concentrated on small insti-
tutions, especially for expenditure and revenues. Thus, when the
small institutions are imputed, small values would appear more
frequently in the distribution, and this behavior is correct. On the
contrary, imputing the small institutions with values similar to
those of the larger institutions would not be correct. Therefore,
the ‘‘ideal’’ imputation does not necessarily correspond to the
exact replication of the data distribution in the left side of the
violin plots.



R. Bruni, C. Daraio and D. Aureli Knowledge-Based Systems xxx (xxxx) xxx

S

S

Fig. 5. Violin plot of the distrib. before and after imputation for Academic Staff
FTE.

Fig. 6. Violin plot of the distrib. before and after imputation for Academic Staff
HC.

Fig. 7. Violin plot of the distrib. before and after imputation for Non-academic
taff FTE.

Fig. 8. Violin plot of the distrib. before and after imputation for Non-academic
taff HC.

Fig. 9. Violin plot of the distrib. before and after imputation for Total
Expenditure.
8

Fig. 10. Violin plot of the distrib. before and after imputation for Total Revenues.

From these analyses, we can observe that: (1) the imputation
increased considerably the coverage of the database; some miss-
ing are still present due to relative scarcity of donors, however
the usability has greatly improved; (2) the distributions of the
data have been generally preserved, however in some cases,
mainly Expenditure and Revenues (Figs. 9 and 10), the number of
small values correctly increased, because the missing were local-
ized mainly on small institutions; (3) the ratios of the imputed
data show that they maintain very well the relations between
the interconnected variables, so the data quality appears very
satisfactory.

6. Performance and accuracy evaluation

To evaluate the accuracy of the proposed methodology, we
set up the following experiments using 4 particularly relevant
variables: Total Students, Total Graduates, Total Academic Staff
FTE, Total Expenditure.

1. We identify a dataset composed by the institutions having
all the values for the variable in analysis, and artificially
introduce in this variable random missing values according
to perturbation schemes described below.

2. For each type of such missing values, we impute the values
using the technique developed for that type of missing
among the proposed ones.

3. We compare the imputed values with the original values,
which in these experiments are known, and we study the
occurrence of significant differences.

6.1. Perturbation scheme

We use the following perturbation scheme. For each single
variable of the 4 in analysis, we perturb the dataset in 3 alterna-
tive manners. We introduce in a first case isolated missing values,
in a second case missing sequences of length L, and in a third case
full (or almost full) sequences missing, as explained below.

• Perturbation 1. Each record is perturbed with one isolated
missing value randomly located over the time horizon T .

• Perturbation 2. Each record is perturbed with one missing
sequence randomly located over the horizon T . The length
of the sequence is 2 with probability 0.5, 3 with probability
0.35, and 4 with probability 0.15.

• Perturbation 3. The dataset is randomly partitioned in two,
taking care of keeping, in each partition, representatives of
all countries and types of Institutions. This is obtained by
splitting each country and type of institution independently.
Then, one partition is perturbed, and the other partition
is used as set of possible donors. Hence, the set of pos-
sible donors does not include any of the Institutions that
undergo perturbation. The perturbation introduces full se-
quence missing with probability 0.5, and missing sequence
of length 5 (i.e., only 1 value is available in the time horizon)
randomly located over the time horizon with probability 0.5.
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Fig. 11. Box plot comparing the ratios reported near to each plot of the data before imputation to those of imputed data only. All Students means Students + Ph.D.
Students.
Therefore, in the first two tests, every record is perturbed and will
undergo imputation, while in the third test this happens for half
of the records. Note that such a situation is quite worse than the
standard situation in real databases. Therefore, the results on the
occurrences of significant differences can be seen as a worst-case
bound over the results of a real application.

For the first perturbation case, we apply the Weighted Average
mputation technique described in Section 3.1 to the internal
solated missing values, and Linear Regression imputation, in-
egrated with the exponentiation technique described in Sec-
ion 3.2, to the external isolated missing values. Results on this
ase are reported in Table 7 and Fig. 14. For the second pertur-
ation case, we apply the Trend Smoothing imputation described
n Section 3.3, and results are reported in Table 8 and Fig. 15.
or the third perturbation case, we apply Donor Imputation with
he distance function and filter admissible donors as described in
ection 4. Distance parameters p1 and p2 are set respectively at 3
nd 1. Note that, in this experiment, each institutions received a
onor, so no missing values remains after the imputation. Results
or this third case are reported in Table 9 and Fig. 16.

.2. Evaluation of the reconstruction accuracy

This Section aims at evaluating the accuracy in the reconstruc-
ion of the imputed values, i.e., how similar to the original value is
he imputed value. For each imputed value vi of each institution
, with i ∈ T , we compute the difference ηij with respect to the
riginal value v⋆

i :

ij =
(vi − v⋆

i )
v⋆
i

n ‘‘ideal’’ imputation would provide very ‘‘small’’ values for ηij,
with 0 being the limit. However, 0 is not a realistic target, and
we need a scale to determine which values are actually ‘‘small’’.
To do so, we use again a data-driven measure and we consider
the two extreme values e1 and e2, defining a so called Interval of
Moderate Variations (IMV ), containing 90% of the values of the
variations δij, as explained in Section 3.1 . Now, we study the
frequency of the imputations whose corresponding ηij lay within
or outside the IMV = [e1, e2]. We define ‘‘significant’’ a difference
for which ηij ̸∈ [e1, e2]. Moreover, to consider also a data-
independent measure, we study the frequency of the imputations
whose corresponding ηij lay within or outside a Fixed Interval
(FI) defined as FI = [−10%, 10%], which is more restrictive than
the previous interval in the analyzed cases. The outcome of these
analyses is in Tables 7–9.

As a general observation, we note that the imputed values lay
quite near to the original ones in the majority of the cases, both
in data-driven and in absolute measurements. Since the range of
possible value is very wide, this is a very positive result.

Moreover, even when the imputed values are not so near,
we hypothesize that the positive and negative errors should
9

Fig. 12. Box plot comparing the ratios reported near to each plot of the data
before imputation to those of imputed data only. All Students means Students
+ Ph.D. Students.

Fig. 13. Box plot comparing the ratios reported near to each plot of the data
before imputation to those of imputed data only.

statistically compensate each other. To test this hypothesis, we
consider ‘‘global’’ descriptors of the data, providing in Figs. 14,
15, 16 the box plots for: (1) the original data suppressed by the
perturbation; and (2) the new data imputed by our methodology.
Note that this is a very selective analysis, aimed at magnifying
possible differences in the data values, and it is possible only in
this case, because we actually know the original data suppressed
in the perturbation. As observable, our hypothesis appears to be
confirmed, since the imputed data appear statistically equivalent
to the suppressed data to a considerable extent.

7. Conclusions

Data describing the situation of Educational Institutions are
currently used for a wide variety of analyses, even to support im-
portant economic and political decisions. However, similar data
often contain non negligible shares of missing values, also due to
the structure of the gathering process, and this may invalidate the
above operations. The missing information should therefore be
optimally reconstructed, by imputing data as similar as possible
to the unknown original ones. This is a very difficult task. We
develop imputation techniques for the reconstruction of partial
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Table 7
Analysis of the values imputed to deal with Perturbation 1.

Total students Total graduates Total acad. staff T. Expenditure

IMV [ −18.93, 29.13 ] [ −30.76 , 53.28] [ −17.65 , 22.72] [ −10.28 , 21.24]
Imputations laying in IMV 97.56% 96.48% 95.93% 90.24%

FI [-10%, 10%] [-10%, 10%] [-10%, 10%] [-10%, 10%]
Imputations laying in FI 88.35% 73.18% 89.70% 83.19%
Table 8
Analysis of the values imputed to deal with Perturbation 2.

Total students Total graduates Total acad. staff T. Expenditure

IMV [ −18.93, 29.13 ] [ −30.76 , 53.28] [ −17.65 , 22.72] [ −10.28 , 21.24]
Imputations laying in IMV 95.18% 93.74% 93.64% 81.12%

FI [-10%, 10%] [-10%, 10%] [-10%, 10%] [-10%, 10%]
Imputations laying in FI 79.69% 60.31% 80.62% 73.34%
Table 9
Analysis of the values imputed to deal with Perturbation 3.

Total students Total graduates Total acad. staff T. Expenditure

IMV [ −18.93, 29.13 ] [ −30.76 , 53.28] [ −17.65 , 22.72] [ −10.28 , 21.24]
Imputations laying in IMV 52.85% 64.88% 49.78% 43.64%

FI [-10%, 10%] [-10%, 10%] [-10%, 10%] [-10%, 10%]
Imputations laying in FI 31.94% 24.66% 33.75% 34.43%
Fig. 14. Box plot of the data removed by Perturbation 1 and the data imputed by the procedure.
Fig. 15. Box plot of the data removed by Perturbation 2 and the data imputed by the procedure.
Fig. 16. Box plot of the data removed by Perturbation 3 and the data imputed by the procedure.
10
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umerical sequences based on the combination of weighted av-
rage and linear regression, and techniques for the reconstruction
f full numerical sequences based on the use of donors. We search
or data-driven optimal solutions in the sense that we aim at
aximizing the conservation of the global data features. Experi-
ents on real-world data containing real missing values confirm

hat the imputation process is practically feasible and very useful.
xperiments on real-world data artificially perturbed by inserting
everal types of missing values show that the reconstructed data
re satisfactory similar to the original data.
One additional important advantage of the proposed proce-

ure is that it works at the formal level, with a data driven
pproach. Hence, it could be adapted to impute different datasets
ontaining educational data from other origins, or even datasets
ith different meaning but sharing the feature of interconnection
mong the variables. Future work includes the integration in
he proposed methodology with the web scraping techniques
escribed in [34,35] by using the Universities’ websites, or with
he Logic-based techniques described in [36,37] to extract data-
upported logic descriptions of the Institutions.
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