
Journal of Optimization Theory and Applications
https://doi.org/10.1007/s10957-021-01834-x

Minimum-Time Spacecraft Attitude Motion Planning Using
Objective Alternation in Derivative-Free Optimization

Fabio Celani1 · Renato Bruni1

Received: 31 March 2020 / Accepted: 13 February 2021
© The Author(s) 2021

Abstract
This work presents an approach to spacecraft attitude motion planning which
guarantees rest-to-restmaneuverswhile satisfying pointing constraints.Attitude is rep-
resented on the group of three dimensional rotations. The angular velocity is expressed
as weighted sum of some basis functions, and the weights are obtained by solving a
constrained minimization problem in which the objective is the maneuvering time.
However, the analytic expressions of objective and constraints of this minimization
problem are not available. To solve the problem despite this obstacle, we propose to
use a derivative-free approach based on sequential penalty. Moreover, to avoid local
minima traps during the search, we propose to alternate phases in which two different
objective functions are pursued. The control torque derived from the spacecraft inverse
dynamics is continuously differentiable and vanishes at its endpoints. Results on prac-
tical cases taken from the literature demonstrate advantages over existing approaches.

Keywords Attitude motion planning · Pointing constraints · Derivative-free
optimization · Objective perturbation · Slepian functions

Mathematics Subject Classification 49M37 · 90C26 · 90C90

1 Introduction

Attitude motion planning is necessary in mission scenarios in which a spacecraft
must perform large angle maneuvers with the additional requirement that sensitive
instruments must not point to bright celestial objects. These so-called keep-out cones
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define constraints that must be satisfied along the instrument trajectory. This research
presents a control synthesis method for constructing an appropriate control torque
that achieves the desired rest-to-rest maneuver and ensures that the keep-out cones are
avoided. The angular velocity is expressed as weighted sum of some basis functions,
and the weights are obtained by solving a constrained minimization problem in which
the objective is the maneuvering time.

Most of existing methods for attitude motion planning with keep-out cones can be
classified into the following four main groups, see also [24,27]. One group uses path
planningmethods to search for a path from the initial attitude to the final attitude avoid-
ing the keep-out cones. Path planning is performed by first operating a discretization,
and then by searching for a feasible path by employing either a graph search algorithm
[14,33,34] or a random search method [11]. Both search methods can become compu-
tationally demanding. A different group ofmethods is based on trajectory optimization
algorithms in which the constrained attitude motion planning problem is formulated
as an optimal control problem. The obtained optimization problems are nonconvex,
and their solution is determined either by indirect methods [16], or by gradient-based
techniques [9], or by global optimizers [4,21,29,30,32], or by employing a convexifi-
cation method [13]. This second group of methods might have a high computational
cost, too. In the third group, geometric relations are used to determine trajectories that
avoid the keep-out cones [2,12]. These methods are simpler but can be used effectively
only with a small number of keep-out cones. The last group of techniques is based
on potential functions that have a minimum at the desired attitude and large values
around the exclusion cones. The potential function is employed to design a control
law based either on Lyapunov theory [1,15,20,22,24,26,27] or on optimal control [31].
Those methods are less computationally demanding. However, the spacecraft might
get trapped into local minima of the potential function or other critical points.

In some of the cited works, attitude is represented using Euler angles [12,20,22]
which are defined only locally and exhibit kinematic singularities which can limit the
width of the maneuvers. In most of them [1,4,13,14,21,24,26,29,32,34], quaternions
are employed. Quaternions are free of singularities but present ambiguity in repre-
senting attitude. Thus, boundary conditions for the spacecraft attitude do not have a
unique representation in quaternions. Consequently, a quaternion-based motion plan-
ning may exhibit the undesired unwinding behavior [10]. In other works, attitude is
represented bymodifiedRodrigues parameters [26,27,30], which are both singular and
nonunique. It is possible to employ modified Rodrigues parameters avoiding singular-
ities by taking advantage of the nonuniqueness, and also overcoming the unwinding
phenomenon. However, using those methods makes the attitude representation quite
complex. In some works, including this one, attitude is represented on the special
orthogonal group SO(3) [2,9,11,15,16,31,33] which is a global, unique, nonsingular,
but nonminimal parametrization. However, nonminimality does not represent an issue
when open-loop control torques are designed as in the present research.

In this work, spacecraft attitude motion planning is performed on SO(3) by min-
imizing the maneuvering-time after having expressed the angular velocity as linear
combination of some appropriate basis functions. The correspondingweights are deter-
mined through a derivative-free optimization method. The approach of expressing
kinematic magnitudes as linear combination of some basis functions has been widely
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adopted in motion planning methods [3,4,8,23,35]. The main benefit of adopting in
this work a basis function expansion for the angular velocity is the possibility of deter-
mining a control torque that is continuously differentiable and that vanishes at initial
and final time. This propertymakes the torque easier to implement than control torques
obtained with other methods that do not vanish at their endpoints and are sometimes
discontinuous during the maneuver [4,21,29]. Indeed, the available torque actuators
might not be able to generate control torques that change too rapidly. On the other
hand, since the angular velocity is constrained to be the linear combination of certain
basis functions, the maneuvering time achieved with the proposed method is likely to
be longer than with methods [4,21,29] where such constraint is not enforced.

An important aspect of derivative-free optimization techniques is that first order
information on the objective function and on the constraints are not needed. For this
reason, different derivative-free methods have already been used to successfully solve
other attitude control problems [5,6]. In practice, derivative-free techniques do not even
need the analytical expression of objective function or constraints; they only need to
compute them in a number of points by using simulations. Thus, the method presented
in this work represents an improvement of the one in [9] for the following aspects. In
[9] a gradient-based optimization was employed to find the weights. However, since it
was not possible to determine expressions for the gradients of the objective and of the
constraints, both the objective and the constraints were replaced by approximations for
which it was possible to compute the corresponding gradients. Since in this work the
gradients are not needed, the objective and constraints are considered in their original
exact form.

However, the optimization of this exact problem turns out to be particularly demand-
ing, since there is a large number of local minima, and the problem is very numerically
sensitive. To overcome these issues, we propose a new optimization technique based
on the alternation of two objective functions during the search. Objective perturbation
techniques have been often used in global optimization to escape local minima, see
for example tunneling [17] or filled functions [19]. The basic idea is to temporar-
ily modify the objective function until the local minimum is escaped, or to slightly
change it so to have less local minima. In our case, we have both the original objective
(maneuvering time) and the approximating differentiable objective proposed in [9]
(sum of the squared weights). Hence, we can think of temporarily switching from the
first objective to the second one to escape the local minima, still within the framework
of the same derivative-free algorithm. This operation is able to completely change the
optimization “landscape” without the need of explicitly computing a gradient even for
the second objective.

The remaining of this work is organized as follows. Section 2 describes the attitude
motionplanningproblem;Sect. 3 presents the proposedoptimization technique; Sect. 4
provides numerical results on two interesting case studies already considered in the
literature.
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2 Problem Statement

In the spacecraft attitude motion planning problem on SO(3), the initial attitude Ri ∈
SO(3) and the desired final attitude Rf ∈ SO(3) are given, and both the initial angular
velocity and the desired final angular velocity must be zero (rest-to-rest maneuver).
The attitude R(t) ∈ SO(3) is subject to the attitude kinematics Ṙ = Rω× where
ω× = ω1A1 + ω2A2 + ω3A3 in which ω1, ω2, and ω3 are the components of the
spacecraft angular velocity along body axes and

A1 =
⎡
⎣
0 0 0
0 0 −1
0 1 0

⎤
⎦ A2 =

⎡
⎣

0 0 1
0 0 0

−1 0 0

⎤
⎦ A3 =

⎡
⎣
0 −1 0
1 0 0
0 0 0

⎤
⎦ .

The relation betweenω = [ω1 ω2 ω3]T and the control torque resolved in body frameT
is given by the attitude dynamics Jω̇+ω×Jω = T, in which J is the spacecraft inertia
matrix. Disturbance torques are neglected. Denote with T̄ the maximum amplitude
of Tj for j = 1, 2, 3 due to actuator constraints. The spacecraft is equipped with
an on-board sensor whose pointing direction in body coordinates is given by unit
vector r. There are C undesired pointing directions for the sensor which are specified
in inertial coordinates by unit vectors wi i = 1, . . . ,C . For example, r can be the
pointing direction in body coordinates of an on-board optical sensor, and wi is the
inertial direction of a bright celestial object. It is required that the boresight of the
sensor avoids inertial direction wi with a minimum offset angle 0 < θi < 90◦. Thus,
the following constraints are introduced

rTR(t)Twi ≤ cos θi i = 1, . . . ,C . (1)

Given the initial conditions R(0) = Ri ω(0) = 0, we search for a control torque T(t)
defined over a finite interval [0 t f ] that fulfills the amplitude constraints

|Tj (t)| ≤ T̄ j = 1, 2, 3 0 ≤ t ≤ t f (2)

and is such that attitude R(t) and angular velocity ω(t) satisfy the final conditions
R(t f ) = Rf ω(t f ) = 0 and the pointing constraints (1). In addition, the control
torque must be continuously differentiable, must vanish at t = 0 and t = t f , and must
minimize the maneuvering time t f .

3 AttitudeMotion Planning Using Derivative-Free Optimization

In the initial phase of our approachwe use normalized time τ = t/t f , as in [2]. Clearly,
0 ≤ τ ≤ 1. Afterwards, when t f is obtained, we can switch to actual time to obtain the
control torque. The angular velocity in normalized time ω∗(τ ) is expressed as follows
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for a set of M continuously differentiable basis functions vk(τ ) k = 1, . . . , M .

ω∗
j (τ ) =

M∑
k=1

α jkvk(τ ) j = 1, 2, 3 (3)

Thebasis functionsmust fulfill the following end-point conditions:vk(0) = vk(1) = 0,
so that we have ω∗(0) = ω(1)∗ = 0 as required. The basis functions must also fulfill

the additional end-point conditions
dvk

dτ
(0) = dvk

dτ
(1) = 0, so that ω∗(τ ) satisfies

dω∗

dτ
(0) = dω∗

dτ
(1) = 0. This will ensure that the control torque T(t) has the property

T(0) = T(t f ) = 0, as it will be clear later on.
The weights α jk in Eq. (3) must be chosen so that the following constraints are

fulfilled. Denote the attitude in normalized time by R∗(τ ) which is obtained from
ω∗(τ ) through the following kinematics equation in normalized time

dR∗

dτ
(τ ) = R∗(τ )(ω∗×(τ )) (4)

with initial condition R∗(0) = Ri, where ω∗× is defined analogously to ω×. Thus,
achieving the desired final attitude is enforced by the following equality constraint

tr
[
RT

f R
∗(1)

]
= 3 (5)

where tr denotes the trace of a matrix. In addition, exclusion cones are avoided by
adding the following inequality constraints [see Eq. (1)]

rTR∗(τ )Twi ≤ cos θi i = 1, . . . ,C 0 ≤ τ ≤ 1. (6)

Those inequality constraints are enforced numerically by adopting the following
approach. Discretize the interval [0 1] into N equal segments defining Δτ = 1/N
and τ� = (� − 1)Δτ � = 1, . . . , N + 1. Inequality constraints are enforced only at
the discrete times τ� obtaining

rTR∗(τ�)
Twi ≤ cos θi � = 1, . . . , N + 1 i = 1, . . . ,C . (7)

For fixed weights α jk that fulfill the previous equality and inequality constraints, the
angular velocity in normalized time ω∗(τ ) is obtained. Thus, the control torque T(t)
and the maneuvering time t f are determined as follows. As in [2], from the angular
velocity in normalized time, the control torque in normalized time can be obtained
from the attitude dynamics as

T∗(τ ) = J
dω∗

dτ
(τ ) + ω∗(τ ) × Jω∗(τ ) 0 ≤ τ ≤ 1. (8)
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From the control torque in normalized time T∗(τ ), the maneuvering time t f can be
determined as follows. Compute T ∗ = max0≤τ≤1 j=1,2,3 |T ∗

j (τ )| which numerically
is determined as follows

T ∗ = max
�=1,...,N j=1,2,3

|T ∗
j (τ�)| (9)

and set

t f =
√
T ∗/T̄ . (10)

The latter value of t f enforces the fulfillment of the amplitude constraints in Eq. (2).
In fact, consider the actual time t = τ t f , consequently R(t) = R∗(t/t f ) 0 ≤ t ≤ t f .
It is immediate to see that the angular velocity is given by ω(t) = 1/t f ω∗(t/t f ) 0 ≤
t ≤ t f . Moreover, it is easy to obtain that the control torque is equal to T(t) =
1
t2f
T∗

(
t
t f

)
0 ≤ t ≤ t f . Consequently, from the equation above it follows that the

value of t f in Eq. (10) guarantees the fulfillment of the amplitude constraints on the
control torque.

The goal is minimizing the maneuvering time t f . This can be achieved by solving
a minimization problem in which the decision variables are the weights α jk in Eq. (3),
the objective function is the maneuvering time t f in Eq. (10), and α jk are subject to
the equality constraint in Eq. (5) and the inequality constraints in Eq. (7). The relation
between R∗(τ ) and ω∗(τ ) is given by Eq. (4) with initial condition R∗(0) = Ri. By
writing the set of the α jk weights as α, the structure of this constrained optimization
problem, denoted by CP, can be represented with the following model (11). The
dependency on the set α is only indicated implicitly. The equality constraint is briefly
denoted as EC, whereas the inequality constraints are IC�,i with � = 1, . . . , N + 1
and i = 1, . . . ,C .

min t f (α)

EC(α)

IC�,i (α) � = 1, . . . , N + 1, i = 1, . . . ,C
(11)

However, the above problem has amain difficulty. Both in the objective function and in
the constraints EQ and IC�,i , the dependency on the optimization variables α cannot
be expressed in analytical form. Hence, an explicit optimization model cannot be
written for CP. To solve it despite this issue, a derivative-free optimization approach
is adopted. This solution approach needs no gradient expression of objective function
or constraints. In practice, this type of algorithms does not even need the analytical
expression of the optimizationmodel, they only need to be able to evaluate the objective
function and the constraints of the optimization problemover a number of points. Since
in our case the analytical expression of the model are not available, those evaluations
can be obtained by using simulations which take as input a set of values ᾱ and provide
the numerical evaluations of t f (ᾱ), EC(ᾱ), and IC�,i (ᾱ) for � = 1, . . . , N + 1 and
i = 1, . . . ,C .

Due to the constrained nature of CP and its size and features, we select as solution
algorithm the derivative-free sequential penalty method proposed in [18]. In standard
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nonlinear optimization, a sequential penalty approach consists in solving the original
constrained problem by a sequence of approximate minimizations of an unconstrained
merit function where the violation of the original constraints is penalized, and this
penalization is progressively increased in order to end upwith a solutionwhich is feasi-
ble for the original constrained problem. The selected algorithm extends the described
sequential penalty approach to the derivative-free context. In particular, such an algo-
rithm is able to guarantee convergence to a stationary point of the constrained problem,
by locally exploring the behavior of the merit function corresponding to variations
in the optimization variables. This is obtained in practice by means of an iterative
algorithm evaluating the merit function over a sequence of points (ᾱ1, ᾱ2, . . . ). The
iterations are interrupted either when the improvements become numerically negligi-
ble or when the maximum number of iterations is reached.

Unfortunately, problemCP has anothermain difficulty. The feasible region contains
a very large number of local minima, and the sequence of points obtained by the
solution algorithm may very likely be attracted and subsequently get stuck in one of
them. However, in the practical application, we are only interested in aiming at an
optimal or suboptimal solution. Note, moreover, that CP is also very sensitive from
the numerical point of view, in the sense that small variations in the optimization
variables α may determine huge variations in the value of the cost function.

To overcome these problems, we propose a new optimization technique based on
an alternation of two objective functions. Objective perturbation techniques have been
often used in global optimization to escape localminima, because a perturbation is able
to change the function “landscape”. In the case of problem CP, besides the original
objective given by the maneuvering time t f , reported in (11), we can consider an
approximating objective given by the sum of the squared alphas:

3∑
j=1

M∑
k=1

α2
jk (12)

Indeed, small values for the alphas will approximatively decrease t f , as already noted
in [9]. Hence, when the optimization algorithm gets stuck in a local minimum of the
objective t f in (11), we temporarily switch from this objective to objective (12), and
this can be done while continuing with the iterations of the selected derivative-free
algorithm. Note that the constraints remain the same, so the parts of the merit function
given by them remains constant. However, this operation will in general completely
change the optimization “landscape”, and a local minimum for the first objective will
not, very likely, be a local minimum for the second objective. Hence, the sequence of
points evaluated by the optimization algorithm will escape from the local minimum
of the objective t f . Maintaining the derivative-free framework while pursuing the
second objective has also the advantage of not needing an explicit computation of
the gradient even for the second objective, making it less attracted by local minima.
After some iterations with the second objective (either a fixed number of iterations or
until a condition on the values of the α jk is reached), our algorithm switches back to
the first objective, and so on. The alternation of the two objectives is repeated until a
satisfactory solution is obtained.
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The described technique can also be seen as an evolution of the well known multi-
start approach, since the optimization with one objective is performed by starting
from several different points (the ending points of the phases with the other objective).
However, differently from classical multi-start techniques, those starting points are
selected by applying some “intelligence” and not simply at random or with other
predetermined schemes.

4 Numerical Results

We apply the derivative-free solution strategy described above to solve two difficult
case studies already considered in the literature.

4.1 Case Study 1

Thefirst case studyhas beenpresented in [29].Consider a satellite forEarth observation
in low Earth orbit. A typical maneuver for the satellite to perform Earth observation is
switching between pointing to one side of the ground-track to pointing to its opposite
side. Such maneuver corresponds to a roll rotation. Assume that the required roll
rotation is 135 degwide. Thus, setting the initial attitude asRi = I3×3, the desired final
attitude is equal toRf = exp(3/4πA1). The satellite is equippedwith a start tracker that
must avoid sun andmoon directionswith prescribed offset angles during themaneuver.
The pointing direction of the star tracker sensor is expressed in body coordinates by
the following unit vector r = [0 1 0]T . The two keep-out cones are specified as
follows: 1) sun cone with inertial direction w1 = [−0.18 0.56 0.81]T and minimum
offset angle θ1 = 47 deg; 2) moon cone with inertial direction w2 = [0.95 0 0.31]T
and minimum offset angle θ2 = 36 deg. 1 The satellite inertia matrix is given by
J = diag[3000 4500 6000] kg m2. The maximum torque along each body axis is
equal to T̄= 0.25 N m.

As done in [9], in this case study the basis functions vk(τ ) have been defined
only at the discrete times τ� � = 1, . . . , N and have been chosen as the so-called
Slepian sequences [28]. These sequences are parameterized by their length N and the
half-bandwidth parameter W ∈ ]0 0.5[. In this case study, the first M = 4 Slepian
sequences with N = 500 and W = 0.015 have been considered. The values of M ,
N , and W have been determined by a trial-and-error approach based on the following
considerations. The larger M , the larger the number of basis functions for ω∗

j (τ ) j =
1, 2, 3 [see Eq. (3)]. Consequently, increasing M expands the possible time behaviors
for ω∗

j (τ ) j = 1, 2, 3, and this could in theory allow to obtain smaller values of
the minimum maneuvering time t f . On the other hand, since the number of decision
variables α jk is equal to 3M , the larger M , the larger the number of dimensions of the
feasible set of the optimization problem (11). As a result, computational load could
greatly increase. Moreover, as the dimensionality increases, the numerical accuracy
can only be reduced, and since this problem is particularly numerically sensitive, this

1 The indicated values of r, θ1 and θ2 do not coincide with those in [29] because the latter are incorrect
(personal communication by Dr. D. Spliller).
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Fig. 1 Samples of basis functions vk (τ�) k = 1, . . . , 4 � = 1, . . . , 500

behavior should be avoided. In conclusion, numerical experiments show that the value
M = 4 represents a good trade-off between those conflicting demands. Regarding
parameter N , clearly the larger N , the more accurate the approximation in Eq. (7) of
the original inequality constraints in Eq. (6). On the other hand, if N increases, so
does the number of inequality constraints of the optimization problem (11), which
leads again to an increase in the computational burden. It turns out that, for the current
case study, N = 500 provides a good balance. Finally, W ∈ ]0 0.5[ has been selected
as follows. If W is close to 0, the Slepian sequences do not vanish at the endpoints.
Consequently, selecting W too close to 0 would lead to angular velocities that do not
vanish at the initial and final time, and the maneuver would not be rest-to-rest. IfW is
close to 0.5, the Slepian sequences quickly become approximately equal to 0 and keep
such values for long intervals after τ = 0 and before τ = 1. Thus, ifW is close to 0.5,
there are intervals after τ = 0 and before τ = 1 during which the spacecraft angular
velocity, angular acceleration, and control torque are all approximately equal to zero
leading to higher maneuvering times. A good compromise is given by W = 0.015.

The time behaviors of the Slepian sequences corresponding to the selected values

are reported in Fig. 1 and show that vk(0) � 0,
dvk

dτ
(0) � 0, vk(1) � 0,

dvk

dτ
(1) � 0.

As a result, by Eq. (3), the following holds ω∗(0) � 0,
dω∗

dτ
(0) � 0, ω∗(1) �
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Table 1 Comparison of the proposed derivative-free approach with the gradient-based approach used in
[9] in the solution of Case 1

Derivative-free solution Gradient-based solution

α11 66.15814 −75.5279

α12 −16.17299 14.7844

α13 24.80873 75.9984

α14 −9.246422 98.1702

α21 19.46087 −31.0538

α22 −8.161767 36.2844

α23 22.06794 −19.1590

α24 −11.16253 259.6314

α31 −11.55793 −67.9957

α32 −26.06371 −96.9455

α33 −2.374886 −88.9992

α34 −9.680573 −150.1000

t f (sec) 755 2.73 103

0,
dω∗

dτ
(1) � 0 ensuring that a rest-to-rest maneuver is obtained and that the resulting

control torque T(t) will vanish at t = 0 and t = t f . Since only vk(τ�) are known, then
for fixed α jk only the values ω∗(τ�) are determined [see Eq (3)]. Thus, to integrate
Eq. (4), the continuous-time behavior ω∗(τ ) 0 ≤ τ ≤ 1 is obtained from ω∗(τ�) using
the zero-order hold interpolation. Moreover, samples T∗(τ�) are determined through

Eq. (8) employing a finite difference approximation for computing
dω∗

dτ
(τ ).

The values of the weights α jk for j = 1, 2, 3, k = 1, 2, 3, 4, minimizing t f are
obtained by solving the described optimization problemCP corresponding to this case.
As explained, it is not possible to provide the analytic expressionofCP.However, given
numerical values for the α jk , we use a MATLAB simulation to compute the selected
objective function, the equality and the inequality constraints. This simulation is called
within the derivative-free algorithm to evaluate each point tested by the algorithm. The
algorithm itself is implemented in MATLAB and proceeds by alternating phases of
Minimization of the Maneuvering Time (MMT) and phases of Minimization of the
Sum of the Squared Alphas (MSSA). To compute the solution reported in Table 1,
the algorithm uses 5 phases: the first pursuing MMT, the second pursuing MSSA ,
and so on, until the last one pursuing MMT. For the first 4 phases, 10,000 iterations
per phase were enough to numerically reach a local minimum, while the last phase
required 30,000 iterations. If the iterations are protracted beyond such values, there
are no numerically appreciable improvements. The total computing time to obtain this
solution was 136 min on a PC with i9 processor and 128Gb of RAM. The obtained
maneuvering time is t f = 755 sec. The corresponding control torque is reported in
Fig. 2, showing that from a practical point of view it is continuously differentiable
and vanishes at its endpoints. To validate the effectiveness of the obtained control
torque, the attitude kinematics and dynamics with the appropriate initial conditions
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Fig. 2 Case study 1—Control torque obtained using the proposed method

R(0) = I3×3 ω(0) = 0 are integrated numerically using a method that preserves
orthonormality ofR, and the following results are obtained. The obtained final attitude
R(t f ) satisfies 3 − tr

[
Rf

TR(t f )
] = 9.21 10−5 and ‖ω(t f )‖ = 4.58 10−6. The time

behaviors of ci (t) = rTR(t)Twi − cos θi i = 1, 2 are shown in Fig. 3 confirming
that the two pointing constraints are fulfilled. The path of the sensitive direction is
displayed in Fig. 4.

This case study has been also solved for comparison with the method proposed in
[9]. That method also uses the expansion in Eq. (3) to obtain a control torque that is
continuously differentiable and vanishes at its endpoints. However, it differs in the
following aspects: (1) the weights are selected only as those that minimize the sum of
the squared alphas (in other words, pursuing only the approximate objective MSSA);
(2) approximate expressions for the constraints are used. Both aspects are needed
to be able to compute the gradient of cost function and constraints, and therefore
solve this approximate CP using a gradient-based method, in particular the interior
point method described in [7]. Slepian sequences have been selected again as basis
functions, and many tests have been performed with different values for M , N , W
and for the configuration parameters of the gradient-based interior point method. The
lowest maneuvering time is achieved with N = 500, M = 4, W = 0.015 and it
is equal to t f = 2.73 103 sec. The corresponding path of the sensitive direction is
reported in Fig. 5. Clearly, the solution obtained with the approach proposed in this
work is superior and much more useful from a practical point of view.
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Fig. 3 Case study 1—Pointing constraints obtained using the proposed method

Fig. 4 Case study 1—Path of sensitive direction (black curve) obtained using the proposed method, exclu-
sion cones, initial sensitive direction (green arrow), desired final sensitive direction (blue arrow)

The maneuvering time achieved in [29] is t f = 405 sec, which is significantly
shorter than t f = 755 sec obtained with the approach proposed here. However, the
method in [29] does not guarantee that the corresponding control torque, which is not
displayed in that work, is continuously differentiable and vanishes at its endpoints.
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Fig. 5 Case study 1—Path of sensitive direction (black curve) obtained using the method in [9], exclusion
cones, initial sensitive direction (green arrow), desired final sensitive direction (blue arrow)

Thus, it is very likely that its implementation will require a faster, and consequently
costly, torque actuator.

4.2 Case Study 2

The second case study has been formulated in [25] and again in [21], and it is inspired
by the following maneuver performed by the Swift spacecraft. The satellite must
perform a fast reorientation maneuver to point two telescopes at a desired gamma-ray
burst. The spacecraft is equipped with a Burst Alert Telescope that first senses the
gamma-ray burst, and the satellite then must perform a slew to allow the x-ray and
UV/optical instruments to capture the afterglow of the event which quickly fades. To
prevent damage to the telescopes, their common axis must not enter three keep-out
cones with central axes pointing to the sun, the Earth, and the moon and appropriate
offset angles. As an example, assume that the spacecraft has to perform a rotation of
135 deg about its z-axis. Thus, setting the initial attitude as Ri = I3×3, the desired
final attitude is equal to Rf = exp(3/4πA3). The telescopes axis has coordinates
r = [1 0 0]T in body frame. The three keep-out cones are specified ad follows: (1) sun
cone with inertial direction w1 = [0.5 0.866 0]T and minimum offset angle θ1 = 47
deg; (2) Earth cone with inertial directionw2 = [0 0 −1]T and minimum offset angle
θ2 = 33 deg; 3) moon cone with inertial direction w3 = [0.1795 0.3109 0.9333]T
and minimum offset angle θ3 = 23 deg. There is a gap of 10 deg between the sun and
Earth cones but no gap between the sun and moon cones (see Fig. 6).

The basis functions have been selected following the same guidelines used in case
study 1. Specifically they are defined only at the discrete times τ� � = 1, . . . , N and
have been chosen as the first M = 4 Slepian sequences with N = 500 andW = 0.015
[28] (see Fig. 1). Consider an isoinertial spacecraft so that J = J0I3×3 and introduce
time unit TU =

√
J0/T̄ . It is immediate to see that the maneuvering time in Eq. (10)
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Fig. 6 Case study 2—Path of sensitive direction (black curve) obtained using the proposed method, exclu-
sion cones, initial sensitive direction (green arrow), desired final sensitive direction (blue arrow)

can be expressed as follows t f = TU
√
T ∗/J0 where T ∗ was defined in Eq. (9) Thus,

for fixed weights α jk , the maneuvering time expressed in TU units can be computed
using the previous expression.

Again, the values of the weights α jk for j = 1, 2, 3, k = 1, 2, 3, 4 minimizing
t f are obtained by solving the optimization problem CP corresponding to this case.
To compute the solution reported in Table 2, the algorithm uses 3 phases: the first
pursuing MMT, the second pursuing MSSA, the last one pursuing MMT. The number
of iterations per phase was 10,000, and this was large enough to numerically reach a
local minimum. The total computing time to obtain this solution was 55min on a PC
with i9 processor and 128Gb of RAM. The obtained maneuvering time is t f = 5.90
TU. The corresponding control torque is reported in Fig. 7, showing that from a
practical point of view it is continuously differentiable and vanishes at its endpoints.
To validate the effectiveness of the obtained control torque, the attitude kinematics and
dynamics with the appropriate initial conditionsR(0) = I3×3 ω(0) = 0 are integrated
numerically using a method that preserves orthonormality of R, and the following
results are obtained. The obtained final attitude R(t f ) satisfies 3 − tr

[
Rf

TR(t f )
] =

4.59 10−5 and ‖ω(t f )‖ = 6.82 10−7. The time behaviors of ci (t) = rTR(t)Twi −
cos θi i = 1, 2, 3 are shown in Fig. 8 confirming that the three pointing constraints
are fulfilled. The path of the sensitive direction is displayed in Fig. 6.

We compare our solution to those reported in [9] and [21] for the same case study.
The solution in [9] is obtained by expressing the angular velocity as weighted sum
of the same Slepian functions. Hence, the obtained control torque is continuously
differentiable and vanishes at its endpoints (figure 3 of [9]). The weights, computed
in that case by means of a gradient-descent optimization, are not explicitly reported
in [9] but are known to the first author and are reported in Table 2. The resulting
maneuvering time is t f = 6.26 TU, which is longer compared to the t f = 5.90 TU
achieved here, and the obtained control torque leads to a less accurate fulfillment of
the pointing constraints (compare figure 5 of [9] with Fig. 8).
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Table 2 Comparison of the proposed derivative-free approach with the gradient-based approach used in
[9] in the solution of Case 2

Derivative-free solution Gradient-based solution

α11 −33.87500 −29.7024

α12 0.1114988 0.2577

α13 −20.875 −22.2883

α14 1.875 0.1886

α21 0.04954694 −0.9694

α22 38.875 39.2897

α23 3.75 1.0679

α24 15.5 20.7469

α31 66.01855 54.2429

α32 0.04477432 −1.8439

α33 18.0 34.7325

α34 0.0203125 −8.3545

t f (TU) 5.90 6.26

Fig. 7 Case study 2—Control torque obtained using the proposed method
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Fig. 8 Case study 2—Pointing constraints obtained using the proposed method

The solution in [21] is obtained by using a completely different approach in which
the angular velocity is not constrained to be the a linear combination of fixed basis
functions. The control torque obtained in that work leads to a maneuvering time t f
of about 3.5 TU, which is significantly shorter than the value t f = 5.90 TU obtained
here. However, the control torque in [21] does not vanish at its endpoints, and it has
a very steep behavior in some parts (see figure 26 of [21]). As a result, compared to
the control torque obtained here (see Fig. 7), it requires much faster, and consequently
costly, torque actuators to be implemented on a real spacecraft.

5 Conclusions

The spacecraft attitude motion planning approach presented in this work provides a
systematic method for performing minimum-time rest-to-rest maneuvers taking into
account multiple pointing constraints and with the additional requirement of obtaining
control torques that are continuously differentiable and vanish at their endpoints. The
latter requirement is important from a practical point of view, since that type of control
torques are simpler to implement than those determined through other methods which
do not guarantee such properties. Our approach requires the solution of a difficult
constrained optimization problemwhich is pursued by using a derivative-free solution
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strategy with the alternation of two objective functions. In the analysis of two case
studies taken from the literature, the proposed approach leads to solutions which are
better than those obtained with a similar existing method relying on gradient-based
optimization.
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