
Error Correction for Massive Data Sets∗

Renato Bruni
Università di Roma “La Sapienza” - D.I.S.
Via M. Buonarroti 12, Roma, Italy, 00185.

E-mail: bruni@dis.uniroma1.it

September 16, 2003

Abstract

The paper is concerned with the problem of automatic detection and cor-
rection of errors into massive data sets. As customary, erroneous data
records are detected by formulating a set of rules. Such rules are here
encoded into linear inequalities. This allows to check the set of rules
for inconsistencies and redundancies by using a polyhedral mathematics
approach. Moreover, it allows to correct erroneous data records by in-
troducing the minimum changes through an integer linear programming
approach. Results of a particularization of the proposed procedure to a
real-world case of census data correction are reported.

Keywords: Data correction, Inconsistency localization, Massive data
sets.

1 Introduction

In the past, for several fields, an automatic information processing have often
been prevented by the scarcity of available data. Nowadays data have become
more and more abundant, but the problem that frequently arises is that such
data may contain errors. This again makes an automatic processing not appli-
cable, since the result is not reliable. Data correctness is indeed a crucial aspect
of data quality. The relevant problems of error detection and correction should
therefore be solved. When dealing with massive data sets, such problems are
particularly difficult to formalize and very computationally demanding to solve.

As customary for structured information, data are organized into records. A
record has the formal structure of a set of fields, or attributes. Giving a value to
each field, a record instance, or, simply, a record, is obtained [29]. The problem
of error detection is generally approached by formulating a set of rules that each

∗Work developed during the research collaboration between the University of Roma “La
Sapienza” and the Italian Statistic Office (Istat).

1



record must respect in order to be declared correct. A record not respecting all
the rules is declared erroneous. In the field of database theory, rules are also
called integrity constraints [29], whereas in the field of statistics, rules are also
called edits [13], and express the error condition. The automatic extraction of
such rules, or in general of patterns, from a given data-set, constitutes a central
problem for the areas of data mining and data analysis, particularly in their
description aspects [5, 12, 22, 23].

The problem of error correction is usually tackled by changing some of the
values of an erroneous record, in order to obtain a corrected record which satis-
fies the above rules but preserves as much as possible the information contained
in the erroneous record. This is deemed to produce a record which should be
as close as possible to the (unknown) original record (the record that would be
present in absence of errors). Because of its relevance and spread, the above
problem have been extensively studied in a variety of scientific communities. In
the field of statistics, the correction process is often subdivided into an error
localization phase, in which the set of erroneous values within each record is
determined, and a data imputation phase, in which the correct values for the
erroneous fields are imputed. Several different rules encoding and solution al-
gorithm have been proposed (e.g. [3, 11, 27, 35]). A very well-known approach
to the problem, which implies the generation of all rules logically implied by
the initial set of rules, is due to Fellegi and Holt [13]. In practical case, how-
ever, such methods suffer from severe computational limitations [27, 35], with
consequent heavy limitations on the number of rules and records that can be
considered. In the field of computer science, on the other hand, the correc-
tion process is also called data cleaning. Such problem is tackled by extracting
patterns from data in [19]. Errors may also be detected as inconsistencies in
knowledge representation, and corrected with many consistency restoring tech-
niques [2, 25, 30]. Another approach to error correction, in database theory,
consists in performing a cross validation among multiple sources of the same in-
formation [29]. This involves relevant linkage problems. Recently, a declarative
semantics for the imputation problem has been proposed in [14], as an attempt
to give an unambiguous formalization of the meaning of imputation.

In particular, previous approaches to data correction problems by using
mathematical programming techniques have been used. By requiring to change
at least one of the values involved in each violated rule, a (mainly) set covering
model of the error localization problem have been considered by many authors.
Such model have been solved by means of cutting plane algorithms in [15] for
the case of categorical data, and in [16, 28] for the case of continuous data.
The above procedures have been adapted to the case of a mix of categorical
and continuous data in [11], were a branch-and-bound approach to the problem
is also considered. Such model, however, does not represent all the problem’s
features, in the sense that the solution to such model may fail to be a solution
to the localization problem, the separation of the error localization phase from
the imputation phase may originate artificial restrictions during the latter one,
and computational limitations still hold.

An automatic procedure for generic data correction by using new discrete

2



mathematical models of the problem is here presented. A similar but more lim-
ited procedure, which uses only a propositional logic encoding, was described
in an earlier paper [7]. Our rules, obtained from several sources (e.g. human
expertise, machine learning), are accepted according to a specific syntax and
automatically encoded into linear inequalities, as explained in Sect. 2. Such set
of rules should obviously be free from inconsistencies (i.e. rules contradicting
other rules) and, preferably, from redundancies (i.e. rules which are logically
implied by other rules). As a first relevant point, the set of rules itself is checked
for inconsistencies and redundancies by using the polyhedral mathematics ap-
proaches shown in Sect. 3. Inconsistencies are selected by selecting irreducible
infeasible subsystems (IIS, see also [1, 9, 10, 32]) by using a variant of Farkas’
lemma (see e.g. [31]), while redundancies are detected by finding implied in-
equalities. This allows the use of a set of rules much more numerous than other
procedures, with consequent increased detection power, and allows moreover a
much easier merging and updating of existing sets of rules, with consequent in-
creased flexibility. After this validation phase, rules are used to detect erroneous
records. Such records are then corrected, hence changed in order to satisfy the
above rules. As a second relevant point, the correction problem is modeled as the
problem of minimizing the weighted sum of the changes subject to constraints
given by the rules, by using the integer programming formulations described
in Sect. 4. This allows the use of very efficient solution techniques, besides of
having the maximum degree of flexibility with respect to data meaning. The
proposed procedure is tested by executing the process of error detection and cor-
rection in the case of real world census data, as clarified in Sect. 5. The above
depicted models are solved by means of a state-of-the-art integer programming
solver (ILOG Cplex [21]). The practical behavior of the proposed procedure is
evaluated both from the computational and from the data quality point of view.
The latter analysis is carried out by means of recognized statistical indicators
[24]. The overall software system developed for the census application, called
DIESIS (Data Imputation Editing System - Italian Software) is described in [6].

2 Encoding Rules into Linear Inequalities

In Database theory, a record schema is a set of fields fi, with i = 1 . . .m, and a
record instance is a set of values vi, one for each of the above fields. In order to
help exposition, we will focus on records representing persons. Note, however,
that the proposed procedure is completely general, because it is not influenced
by the meaning of processed data. The record scheme will be denoted by P ,
whereas a generic record instance corresponding to P will be denoted by p.

P = {f1, . . . , fm} p = {v1, . . . , vm}
Example 2.1. For records representing persons, fields are for instance age or
maritalstatus, and corresponding examples of values are 18 or single.

Each field fi, with i = 1 . . .m, has its domain Di, which is the set of every pos-

3



sible value for that field. Since we are dealing with errors, the domains include
all values that can be found in data, even the erroneous ones. A distinction
is usually made between quantitative, or numerical, fields, and qualitative, or
categorical fields. A quantitative field is a field on whose values are applied (at
least some) mathematical operators (e.g. >, +), hence such operators should
be defined on its domain. Examples of quantitative fields are numbers, or even
the elements of an ordered set. Quantitative fields can be either continuous
(e.g. real numbers) or discrete (e.g. integer numbers) ones. A qualitative field
simply requires its domain to be a discrete set with finite number of elements.
We are not interested here in considering fields ranging over domains having a
non-finite number of non-ordered values. The proposed approach is able to deal
with both qualitative and quantitative values.

Example 2.2. For the qualitative field marital status, answer can vary on
a discrete set of possibilities in mutual exclusion, or, due to errors, be missing
or not meaningful (blank).

Dmarital status = {single, married, separate, divorced, widow,blank}

For the quantitative field age, due to errors, the domain is

Dage = Z ∪ {blank}

A record instance, and in particular a person instance p, is declared correct if
and only if it respects a set of rules denoted by R = {r1, . . . , ru}. Each rule
can be seen as a mathematical function rk from the Cartesian product of all the
domains to the Boolean set {0,1}, as follows.

rk : D1 × . . . × Dm → {0, 1}
p �→ 0, 1

Rules are such that p is a correct record if and only if rk(p) = 1 for all k = 1 . . . u.
Rules should be expressed according to some syntax. In our case, each rule is
expressed as a disjunction (∨) of elementary statements called conditions (αh).
Conditions can also be negated (¬αh). Therefore, rules have the structure of
clauses (which are disjunctions of possibly negated propositions). By introduc-
ing, for each rule rk, the set πk of the indices of its positive conditions and the
set νk of the indices of its negative conditions, rk can be written as follows.

∨
h∈πk

αh ∨
∨

h∈νk

¬αh (1)

Since all rules must be respected, a conjunction (∧) of conditions is simply
expressed using a set of different rules, each made of a single condition. As
known, all other logic relations between conditions (implication ⇒, etc.) can be
expressed by using only the above operators (∨, ∧, ¬). Conditions have here
an internal structure, and we need to distinguish between two different kind of

4



structures. A condition involving values of a single field is here called a logical
condition. A condition involving mathematical operations between values of
fields is here called mathematical condition.

Example 2.3. A logical condition can be, for instance, (age < 14) , or
(marital status = married). A mathematical conditions can be, for instance:
(age - years married ≥ 14).

We call logical rules the rules expressed only with logical conditions, mathe-
matical rules the rules expressed only with mathematical conditions, and logic-
mathematical rules the rules expressed using both type of conditions.

Very often, some values of a domain Di are not acceptable, regardless of
values of all other fields. Such values are called out-of-range values. By removing
the out-of-range values from a domain Di, we obtain the feasible domain

◦
Di ⊆

Di. Feasible domains are delimited by using logical rules.

Example 2.4. A logical rule expressing that all people declaring to be married
should be at least 14 years old is:

¬(marital status = married) ∨ ¬(age < 14)

Logical rules delimiting the feasible domain for the field age are for instance:

(age ≥ 0), (age ≤ 110)

One can observe that small modifications of some value vi may have no influence
on the value returned by a rule rk. Formally, we say that two values v′i and v′′i
are equivalent with respect to rule rk and write v′i

rk� v′′i when, for every couple
of records p′ and p′′ having all values identical except for field fi, as below, rk

has the same value on p′ and p′′:

v′i
rk� v′′i ⇐⇒ rk({v1, . . . , v

′
i, . . . , vm}) = rk({v1, . . . , v

′′
i, . . . , vm})

In other words, when considering only rule rk, records p′ and p′′ are either both
correct or both erroneous. It is easy to see that the above is an equivalence
relationship, since it is reflexive (v′i

rk� v′i), symmetrical (v′i
rk� v′′i ⇒ v′′i

rk� v′i) and
transitive (v′i

rk� v′′i and v′′i
rk� v′′′i ⇒ v′i

rk� v′′′i ). A straightforward generalization
is the notion of equivalence with respect to a set of rules. A key point is the
following lemma.

Lemma 2.1. Each domain Di can always be partitioned into ni subsets

Di = Si 1 ∪ . . . ∪ Si ni

in such a way that all values belonging to the same Sij are equivalent with
respect to the logical rules (i.e. considering all and only the logical rules). Such
subsets are the equivalence classes for the equivalence relationship introduced.

5



Such partition is obtained as follows. Values of the domains explicitly appearing
in the rules are called breakpoints, or cut-points, for the domains. All breakpoints
concerning domain Di represent logical watersheds among the values of Di.
Their set will be denoted by Bi, while the single breakpoints by βij . We have

Bi = {βi 1, . . . , βi n′
i
}

Domain Di can now be cut in correspondence of each breakpoint in order to
obtain subsets (which are intervals for continuous fields, sequences of values for
discrete fields, sets of values for qualitative fields). Note that n′

i may be different
from ni. By furthermore merging possibly equivalent subsets, we obtain the
above mentioned ni subsets {Si 1, . . . , Si ni} for each field fi. A subset for the
out-of-range values is always present. Moreover, the value for some field can
be the missing value. Such value is called blank, or null and, depending on
the field, can belong or not to the feasible domain. Typically, the blank value
belongs to a feasible domain

◦
Di when there exist situations in which the value

of field fi becomes non-existent (e.g. date of marriage for unmarried people). If
the blank answer belongs to the feasible domain a subset for blank is also used.
Otherwise, the blank answer belongs to the out-of-range subset.

In all the examples, subsets Sij will be denoted by simply writing the name
of the field (e.g. age) as the field index i, and the condition (e.g. ∈ {0...13},
etc.) as the subset index j.

Example 2.5. Suppose that, by scanning a given set of rules R, the following
set of breakpoints Bage is obtained for the field age of a person.

Bage = {0, 14, 18, 26, 110, blank}
Therefore, by using Bage and R, the following subsets are obtained. The last
subset is the out-of-range one.

Sage∈{0...13} = {0, . . . , 13}, Sage∈{14...17} = {14, . . . , 17},
Sage∈{18...25} = {18, . . . , 25}, Sage∈{26...110} = {26, . . . , 110},

Sage = out of range = {. . . ,−1} ∪ {111, . . .} ∪ {blank}

Now, the variables for the announced linear inequalities can be introduced: a
set of m integer variables zi ∈ {0, . . . , U}, one for each domain Di, and a set of
n = n1 + . . . + nm binary variables xij ∈ {0, 1}, one for each subset Sij . We
represent each value vi of p with an integer variable zi, by defining a mapping
ϕ between values of the domain and integer numbers between 0 and an upper
value U . U is the same for all fields, and is such that no elements of any feasible
domain maps to U .

ϕi : Di → {0, . . . , U}
vi �→ zi

Mapping for integer and rational domains is straightforward. We approximate
real domains with rational domains (there is no difference in computer represen-
tation) and then map them on the set of integer numbers {0, . . . , U}. Qualitative

6



domains also are mapped on {0, . . . , U} by choosing an arbitrary ordering. Note
that, in the case of the considered application, values were wanted to be integer.
However, variables zi are not structurally forced to be integer, and the proposed
models are easily modifiable in case of zi being continuous variables. All the
out-of-range values map to the greater number used U . The blank value,
when belonging to the feasible domain, maps to an integer value ηi immediately
consecutive to the greater numerical value of the feasible domain

◦
Di. Note that

ηi < U is always required.

Example 2.6. For the field years married, if the domain is Z∪{blank} and
the feasible domain is {0, ..., 91} ∪ {blank}, the mapping ϕyears married is

vyears married =

zyears married =

. . . ,−1︸ ︷︷ ︸↓
U

0
↓
0

. . .

. . .

91
↓
91

blank
↓
92

92, . . .︸ ︷︷ ︸↓
U

The membership of a value vi to the subset Sij is encoded by using the binary
variables xij .

xij =
{

1 when vi ∈ Sij

0 when vi �∈ Sij

Integer and binary variables are linked by using a set of linear inequalities called
bridge constraints. They impose that, when zi has a value such that vi be-
longs to subset Sij , the corresponding xij is 1 and all others binary variables
{xi1, . . . , xij−1, xij+1, . . . , xini} of field fi are 0.

By using these variables, all the above rules can be expressed. A logic
condition αh identifies a part of a certain domain Di, hence it corresponds to a
certain subset Sij (or to a union of such subsets). Therefore, each logic condition
αh is simply substituted by the corresponding binary variable xij (or by a sum
of such variables), while each mathematical condition αh is expressed by using
the integer variables zi. By doing so, each logical rule rk having the structure
(1) of a clause can be written as the following linear inequality

∑
(i,j)∈πk

xij +
∑

(i,j)∈νk

(1 − xij) ≥ 1

When mathematical conditions are present, the only difference is that they do
not correspond to binary variables but to operations between the integer vari-
ables. In order to obtain linear inequalities, we limit mathematical rules to
those which are linear or linearizable. For a digression on linearizable inequali-
ties, see for instance [34]. Occasionally, further binary variables are introduced,
for instance to encode disjunctions of mathematical conditions. Note, moreover,
that a very precise syntax for rules was developed for the case described in [6].
Therefore, encoding could be performed by means of an automatic procedure,
which reads the list of the fields and the rules written using such syntax, deter-
mines all the breakpoints βij and consequently the subsets Sij , generates the

7



suitable variables xij and zi, re-reads each rule and generates the corresponding
linear inequality (or inequalities) as in the following example.

Example 2.7. Consider the following logical rule introduced in Example 2.4.

¬(marital status = married) ∨ ¬(age < 14)

By substituting the logical conditions, it becomes the linear inequality:

(1 − xmarital status = married) + (1 − xage∈{0...13}) ≥ 1

Consider, instead, the following logic-mathematical rule.

¬(marital status = married) ∨ (age− years married ≥ 14)

By substituting the logical and mathematical conditions, we have

(1 − xmarital status = married) ∨ (zage − zyears married ≥ 14)

which becomes the following linear inequality

U(1 − xmarital status = married) + zage − zyears married ≥ 14

Altogether, from the set of rules R, a set of linear inequalities is obtained. Each
record p determines an assignment of values for the introduced variables xij

and zi. By construction, all and only the variable assignments corresponding
to correct records satisfy all the linear inequalities. By denoting with x and
z the vectors respectively made of all the components xij and zi, i = 1 . . .m,
j = 1 . . . ni, as follows,

x = (x11, . . . , x1n1 , . . . , xm1, . . . , xmnm)T z = (z1, . . . , zm)T

the set of rules R becomes a system of linear inequalities, expressed in compact
notation as follows. 


B

[
x
z

]
≥ b

x ∈ {0, 1}n

z ∈ {0, . . . , U}m

(2)

Since x has n = n1 + ...+nm components and z has m components, and letting
l be the total number of inequalities, B is in general a l × (n + m) real matrix,
and b a real l-vector. Briefly, even if slightly improperly, a record p must satisfy
(2) to be correct.

8



3 Validation of the Set of Rules

However, due to several reasons, the set of rules R may be affected by the pres-
ence of inconsistencies or redundancies. When every possible record p is incor-
rectly declared erroneous because of a rule inconsistency, we have the situation
called complete inconsistency of the set of rules. When the rules’ inconsistency
appears only for particular values of particular fields, we have the (even more
insidious) situation of partial inconsistency.

Example 3.1. A very simple complete inconsistency, with rules meaning: (a)
everybody must have a seaside house, (b) everybody must have a mountain
house, (c) it is not allowed to have both seaside and mountain house. Note that
more complex inconsistencies are not so easily visible.


xseaside house = yes ≥ 1 (a)
xmountain house = yes ≥ 1 (b)
(1 − xseaside house = yes) + (1 − xmountain house = yes) ≥ 1 (c)

Example 3.2. A very simple partial inconsistency, with edits meaning: (a)
one must have a seaside house if and only if annual income is greater than or
equal to 1000, (b) one must have a mountain house if and only if annual income
is greater than or equal to 2000, (c) it is not allowed to have both seaside and
mountain house. For annual income< 2000, this partial inconsistency does not
show any effect, but every person having an annual income ≥ 2000 is declared
erroneous, even if it should not. We have a partial inconsistency with respect
to the subset annual income ≥ 2000.


(1 − xannual income ≥ 1000) + (xseaside house = yes) ≥ 1 (a)
(1 − xannual income ≥ 2000) + (xmountain house = yes) ≥ 1 (b)
(1 − xseaside house = yes) + (1 − xmountain house = yes) ≥ 1 (c)

In large sets of rules, or after rule updating, inconsistencies may easily occur.
Such inconsistencies corresponds to structural properties of the system (2).

Theorem 3.1. By encoding the set of rules as the system of linear inequalities
(2), a complete inconsistency occurs if and only if (2) is infeasible, i.e. has no
integer solutions. A partial inconsistency with respect to a subset Sij occurs if
and only if the system obtained by adding xij = 1 to (2) is infeasible, i.e. has
no integer solutions.

Proof: In the first case, by definition of complete inconsistency, the set of
rules does not admit any correct record. Therefore, the corresponding system
of linear inequalities (2) does not admit any solution, hence is infeasible. In the
second case, instead, by definition of partial inconsistency, every record having
a value belonging to a certain subset S†

ij is declared erroneous. Therefore, the
corresponding system of linear inequalities (2) does not admit any solution with
x†

ij = 1. Hence, by adding such constraint to (2), we obtain an infeasible system.

9



Moreover, in the case of inconsistency, we are interested in restoring consistency.
The approach of deleting rules corresponding to inequalities that could not be
satisfied is not useful. This because every specific rule allows to detect a specific
data error, and cannot be deleted. On the contrary, all the conflicting rules
should be located. The selection of the set of conflicting rules guides the rule
repair process, during which such rules are modified by their original source
(typically the human expert who writes the rules). Postinfeasibility analysis, in
fact, “requires the cooperation of algorithmic engine and human intelligence”
[10]. The selection of such set of conflicting rules corresponds to selecting a part
of system (2) causing the infeasibility. An irreducible infeasible subsystem (IIS)
is a subset of the inequalities of an infeasible system that is itself infeasible,
but for which any proper subset is feasible. Note that, since we are interested
in integer solutions, we actually look for an integer IIS, that is an irreducible
subset of inequalities having no integer solutions [18]. Therefore, checking the
rules for inconsistencies produces a series of integer IIS selection problems.

In the case of systems of linear inequalities were we are interested in real-
valued solutions, the following result on infeasibility holds:

Theorem 3.2 (Farkas’ lemma) Let A be an s × t real matrix and let a be a
real s-vector. Then there exists a real t-vector x ≥ 0 with Ax = a if and only if
yT a ≥ 0 for each real s-vector y with yT A ≥ 0.

A proof is for instance in [31]. Geometrically, this means that if an s-vector γ
does not belong to the cone generated by the s-vectors a1, . . . , at (columns of A),
there exists a linear hyperplane separating γ from a1, . . . , at. There are several
equivalent forms of Farkas’ lemma. The following variant is more suitable to our
purposes. Given a matrix A ∈ R

s×t and a vector a ∈ R
s, consider the system:{

Ax ≤ a
x ∈ R

t (3)

and the new system of linear inequalities obtained from the former one:


yT A = 0
yT a < 0

y ≥ 0
y ∈ R

s

(4)

We have that exactly one of the two following possibilities holds:

• (1) is feasible, i.e. there exists x ∈ R
t verifying all its inequalities.

• (2) is feasible, i.e. there exists y ∈ R
s verifying all its inequalities.

An IIS can be selected within (3) by solving the following new system [17]:


yT A = 0
yT a ≤ −1

y ≥ 0
y ∈ R

s

(5)

10



The support of a vertex denotes the indices of its non-zero components; 0, 1 and
U respectively denote vectors of zeroes, ones and Us of appropriate dimension.

Theorem 3.3. (Gleeson and Ryan) Consider two systems of linear inequal-
ities respectively in form (3) and (5). If (5) is infeasible, (3) is feasible. On
the contrary, if (5) is feasible, (3) is infeasible, and, moreover, each IIS of (3) is
given by the support of each vertex of the polyhedron (5).

The proof is based on polyhedral arguments using properties of extreme rays,
see [17]. Therefore, checking the feasibility of (3), and, if infeasible, identifying
one of its IIS, becomes the problem of finding a vertex of a polyhedron.

However, in the case of (2), we have a systems of linear inequalities were
we are interested in integer solutions. In order to use the results given for the
linear case, let us consider the linear relaxation of such system (2).




−B

[
x
z

]
≤ −b[

x
z

]
≤

[
1
U

]

−
[

x
z

]
≤ 0[

x
z

]
∈ R

n+m

(6)

The above system (6) is now in the form of (3). The l inequalities from the first
group will be called rules inequalities, even if, for some of them, there can be
no one-to-one correspondence with rules (see Sect. 2). By denoting with I the
identity matrix, the [l + 2(n + m)] × (n + m) matrix A and the [l + 2(n + m)]-
vector a are composed as follows. Number of rows for each block is reported on
the left.

A =


 −B

I
−I


 l

n + m
n + m

a =



−b

1
U
0




l
n
m

n + m

Therefore, a system which plays the role of (3) can now be written.



yT


 −B

I
−I


 = 0

yT



−b

1
U
0


 ≤ −1

y ≥ 0, y ∈ R
[l+2(n+m)]

(7)

11



So far, the following result on the pair of systems (2) and (7) holds. The
restriction of the support of a vertex to rules inequalities will denote the indices
of its non-zero components among those corresponding to rules inequalities.

Theorem 3.4. Consider two systems of linear inequalities respectively in form
(2) and (7). In this case, if (7) is feasible, (2) is infeasible, and the restriction of
the support of each vertex of the polyhedron (7) to rules inequalities contains
an integer IIS of (2). On the contrary, if (7) is infeasible, (6) is feasible, but it
cannot be decided whether (2) is feasible or not.

Proof: We first prove that the restriction of the support of a vertex of (7) to
rule inequalities contains an integer IIS of (2). Assume (7) is feasible, and let
v1 be the vertex found. Therefore, (6) is infeasible (from Theorem 3.2), and
an IIS in (6), called here IIS1, is given by the support of v1. Such IIS1 is in
general composed by a set RI 1 of rules inequalities and a set BC1 (possibly
empty) of box constraints (the ones imposing 0 ≤ xij ≤ 1, 0 ≤ zi ≤ U). The
set of inequalities RI 1 has no integer solutions, since removing the BC 1 from
IIS1, while imposing the more strict integer constraints IC 1 (the ones imposing
xij ∈ {0, 1}, zi ∈ {0, ..., U}), keeps IIS1 unsatisfiable. Therefore, an integer IIS
is contained into RI1. The integer IIS may also be a subset of the inequalities of
RI1, because, though IIS 1 = RI1 ∪BC1 is minimally infeasible, RI1 ∪ IC1 may
be not minimal: we are imposing the more strict integer constraints instead of
the box constraints. Therefore, the procedure produces an integrally infeasible
subsystem containing an integer IIS for (2).

On the other hand, not all integer IIS in (2) can be obtained by such proce-
dure. This because, if (7) is infeasible, (6) is feasible (by Theorem 3.2). When
imposing the more strict integer constraints instead of the box constraints, how-
ever, nothing can be said on the feasibility of (2).

Example 3.3. Consider a set of rules R on two conditions α1, α2, as follows.
One may not note that R contains an inconsistency of the type of Example 3.1.

r1 = (α1), r2 = (α2), r3 = (¬α1 ∨ ¬α2), r4 = (α1 ∨ ¬α2)

In this case, n = 2 and m can be considered 0, since no z variables are needed
to express the above rules. A and a can easily be obtained, as follows.

A =




−1 0
0 −1
1 1

−1 1
1 0
0 1

−1 0
0 −1




a =




−1
−1

1
0
1
1
0
0




Therefore, the system to be solved, in the form of (7), is the following.

12






−y1 + y3 − y4 + y5 − y7 = 0
−y2 + y3 + y4 + y6 − y8 = 0
−y1 − y2 + y3 + y5 + y6 ≤ −1

y1, y2, y3, y4, y5, y6, y7, y8 ≥ 0
y ∈ R

8

Solving such system yields the vertex (1, 1, 1, 0, 0, 0, 0, 0). Therefore, R
contains an inconsistency, and the set of conflicting rules is {r1, r2, r3}.

More than one IIS can be contained in an infeasible system. Some of them can
overlap, in the sense that they can share some inequalities, although they cannot
be fully contained one in another. Formally, the collection of all IIS of a given
infeasible system is a clutter (see e.g. [1]). However, from the practical point of
view, we are interested in IIS composed by a small number of rules inequalities.
Moreover, it may happen that not all of them are equally preferable for the
composition of the IIS that we are selecting. Hence, a cost ck for taking each of
the [l+2(n+m)] inequalities into our IIS can be assigned. Such costs ck for the
inequalities of (6) corresponds to costs for the variables of system (7). A cost
[l + 2(n + m)]-vector c is therefore computed, and the solution of the following
linear program produces now an IIS having the desired inequality composition.




min cT y

yT


 −B

I
−I


 = 0

yT



−b
1
U
0


 ≤ −1

y ≥ 0, y ∈ R
[l+2(n+m)]

(8)

The result of Theorem 3.2 is not completely analogous to the linear case. In
order to obtain more analogy, let us define the following property.

Integral-point property. A class of polyhedra which, if non-empty, contain
at least one integral point, has the integral-point (IP) property.

Theorem 3.5. If the polyhedron (6), which is the linear relaxation of (2),
has the integral-point property, the following holds. If (7) is infeasible, (2) is
feasible. On the contrary, if (7) is feasible, (2) is infeasible and each integer IIS
is given by the restriction of the support of each vertex of polyhedron (7) to
rules inequalities.

Proof: If (7) is infeasible, (6) is feasible by Theorem 3.2. Since we assumed
that the IP-property holds for (6), it contains at least one integral point. Since

13



the box constraints hold for (6), this integer point must be such that x ∈
{0, 1}n, z ∈ {0, ..., U}m, hence (2) is feasible. On the contrary, if (7) is feasible,
the restriction of the support of a vertex in (7) to rule inequalities, that is a
set of inequalities denoted by RI1, has no integer solutions by Theorem 3.4.
We now prove by contradiction that RI1 is minimally infeasible, hence it is an
integer IIS. Suppose RI1 not minimal; then there exists a smaller set RI ′1 such
that RI ′1 ∪ IC1 has no integer solutions. On the other hand, by Theorem 3.3,
RI ′1∪BC1 is feasible, and since it has the IP-property, it has an integer solution,
which is the contradiction. The thesis follows.

So far, when the IP property holds, solving a linear programming problem solves
our inconsistency selection problem. There are several cases in which the linear
relaxation (6) defines a polyhedron having the integral-point property (see e.g.
[26]). Note that, imposing some syntactic restrictions, rules could be written in
order to obtain one of such cases (e.g. logical rules can be extended Horn [8]).

When a rule is logically implied by other rules, such rule is said to be redun-
dant. It is preferable to remove redundant rules, because decreasing the number
of rules while maintaining the same power of error detection can speed up the
whole process and make it less error prone.

Example 3.4. A very simple redundancy, with rules’ meaning: (a) head of
the house must have an annual income greater than or equal to 100, (b) every-
body must have an annual income greater than or equal to 100. (a) is clearly
redundant.{

(1 − xrole = head of the house) + xannual income≥100 ≥ 1 (a)
xannual income≥100 ≥ 1 (b)

Lemma 3.6. A rule is redundant if and only if its inequality representation is
implied by the inequality representation of all other rules.

Due to the above easy lemma, redundancy can be detected with a standard pro-
cedure to detect implied inequalities in a linear system. Given a feasible linear
system S and a single linear inequality s≥, s≥ is implied (i.e. the polyhedron
described by S and the polyhedron described by S \s≥ are the same) if and only
if adding its negation s< (opportunely modified if necessary) to S produces an
infeasible system. See also [4] for details. Redundancy of every rule is checked
by iterating the above operation.

4 Correction of the Data Records

After the phase of rules validation, were the system (2) is checked to be feasible
and to have more than one solution, detection of erroneous records pe trivially
becomes the problem of testing if the variable assignment that each record p
determines for x and z satisfies the system (2). This operation can be performed

14



with an extremely small computational effort, hence it is suitable to check even
a very large number of records. When an erroneous record pe is detected, the
correction process consists in changing some of its values, obtaining a corrected
record pc which satisfies the system (2) and is as close as possible to the (un-
known) original record po, that is the one that would be present in absence of
errors. In order to reach this purpose, two general principles should be followed
during the imputation process: to apply the minimum changes to erroneous
data, and to modify as less as possible the original frequency distribution of the
data [13]. A cost for each change that we introduce in pe is given, based on the
reliability of each value. It is assumed that, when error is something uninten-
tional and less probable than the correct value, the erroneous information is the
minimum-cost set of values that, if changed, allows to satisfy system (2). Each
record pe corresponds to a variable assignment. In particular, we have a set of
n binary values eij for the xij and a set of m integer values gi for the zi. We
therefore have a cost ĉij ∈ R+ for changing each eij , and a cost či ∈ R+ for
changing each gi.

The problem of error localization is to find a set H of fields of minimum total
cost such that pc can be obtained from pe by changing (only and all) the values
of H . Imputation of actual values of H can then be performed in a deterministic
or probabilistic way. This causes the minimum changes to erroneous data, but
may have little respect for the original frequency distributions.

A donor record pd is a correct record which should be as similar as possible
to po. This is obtained by selecting pd being as close as possible to pe, according
to a suitable function δ giving a value v called the distance between pe and pd.

δ : (D1 × . . . × Dm) × (D1 × . . . × Dm) → R+

(pe, pd) �→ v

Also pd corresponds to a variable assignment. In particular, we have a set of
n binary values dij for the xij and a set of m integer values fi for the zi. The
problem of imputation through a donor is to find a set K of fields of minimum
total cost such that pc can be obtained from pe by copying from the donor
pd (only and all) the values of K. This is generally recognized to cause low
alteration of the original frequency distributions, although changes caused to
erroneous data may be not minimum. The correction by means of a donor is
also referred to as data driven approach. We are interested in solving both of
the above problems, and in choosing for each record the solution having the
best quality.

Note that, generally, not all values involved in failed rules need to be changed,
and that there are several alternative sets of values that, if changed, can make
pc such as to satisfy F .

Example 4.1. Suppose that the following record pe is declared erroneous using
the two following rules: i) it is impossible that anybody not having a car lives
in city A and works in city B; ii) the minimum age for driving is 18.

{... age = 17, car = no, city of residence = A, city of work = B ...}

15



Values involved in failed rules are here those of fields {car, city of residence,
city of work}. Nevertheless, the record could be corrected either by changing
values of the set {city of residence}, or by changing those of the set {city
of work}, or by changing those of the set {age, car}. By supposing that all
these fields have the same cost, the solution of error localization may be in this
case H1 = {city of residence} or H2 = {city of work}. However, suppose
that the best donor available is the following pd.

{... age = 18, car = yes, city of residence = A, city of work = B ...}
The solution of imputation through a donor would in this case be the set K=
{age, car}, having higher cost than H1 and H2.

In order to model the two above problems, let us introduce n binary variables
yij ∈ {0, 1} representing the changes we need to introduce in eij .

yij =
{

1 if we change eij

0 if we keep eij

Furthermore, only in the case of imputation through a donor, let us introduce
m binary variables wi ∈ {0, 1} for the changes we need to introduce in gi.

wi =
{

1 if we change gi

0 if we keep gi

We now compose two integer linear programming models, whose optimal solu-
tion gives the solution to the two introduced variants of error correction prob-
lems. Denote by ĉ, č, y, w the vectors respectively made of all the components
ĉij , či, yij , wi, for all i = 1, . . . , m, j = 1, . . . , ni, as follows.

ĉ = (ĉ11, . . . , ĉ1n1 , . . . , ĉm1, . . . , ĉmnm)T č = (č1, . . . , čm)T

y = (y11, . . . , y1n1 , . . . , ym1, . . . , ymnm)T w = (w1, . . . , wm)T

The minimization of the total cost of the changes can be expressed with the fol-
lowing objective functions. Objective (9) holds for the case of error localization,
while objective (10) holds for the case of imputation through a donor.

min
y∈{0,1}n

ĉT y (9)

min
y∈{0,1}n

w∈{0,1}m

ĉT y + čT w (10)

However, the constraints (2) are expressed by means of variables x and z. A
key issue is that there is a relation between variables in (2) and variables in (9)
and (10). In the case of error localization, this depends on the values of eij , as
follows:

yij =
{

xij if eij = 0
1 − xij if eij = 1

16



In fact, when eij = 0, to keep it unchanged means to put xij = 0. Since we
do not change, yij = 0. On the contrary, to change it means to put xij = 1.
Since we change, yij = 1. Altogether, yij = xij . When, instead, eij = 1, to
keep it unchanged means to put xij = 1. Since we do not change, yij = 0. On
the contrary, to change it means to put xij = 0. Since we change, yij = 1.
Altogether, yij = 1 − xij . By using the above results, we can rewrite the
objective function (9) by splitting the case of eij = 0 from the case of eij = 1.
Denote with E ∈ {0, 1}n×n the following diagonal matrix.

E = diag{e11, . . . , e1n1 , . . . , em1, . . . , emnm}
The problem of error localization can now be modeled as follows,



min ((I − E)ĉ)T x + (Eĉ)T (1 − x)

B

[
x
z

]
≥ b

x ∈ {0, 1}n

z ∈ {0, . . . , U}m

(11)

Conversely, in the case of imputation through a donor, relation between xij and
yij depends on the values of eij and dij , as follows.

yij =




xij if eij = 0 and dij = 1
1 − xij if eij = 1 and dij = 0
0 if eij = dij

In fact, when eij = 0 and dij = 1, not to copy the element means to put xij = 0.
Since we do not change, yij = 0. On the contrary, to copy the element means
to put xij = 1. Since we change, yij = 1. Altogether, yij = xij . When, instead,
eij = 1 and dij = 0, not to copy the element means to put xij = 1. Since we do
not change, yij = 0. On the contrary, to copy the element means to put xij = 0.
Since we change, yij = 1. Altogether, yij = 1 − xij . Finally, when eij = dij , we
cannot change eij , hence yij = 0. By using the above results, we can rewrite
the objective function (10) by splitting the case of eij = 0 and dij = 1 from the
case of eij = 1 and dij = 0.

Note, however, that even when xij does not change from eij to dij , zi could
still need to change from gi to fi in order to reach a feasible solution. For
instance, this could help in satisfying mathematical rules. The choice of values
for zi affects the value of wi, as follows.

zi = gi(1 − wi) + fiwi

For simplicity’s sake, we do not substitute the w variables in (10), but add to
our model the above constraints linking the w to the z variables. Denote now
with g and f the m-vectors respectively made with all the components gi and fi,
for i = 1 . . .m. Denote also with D ∈ {0, 1}n×n the following diagonal matrix,

D = diag{d11, . . . , d1n1 , . . . , dm1, . . . , dmnm}

17



The problem of imputation through a donor can now be modeled as follows.



min ((I − E)Dĉ)T x + (E(I − D)ĉ)T (1− x) + čT w

B

[
x
z

]
≥ b

z = gT (1 − w) + fT w

x ∈ {0, 1}n

z ∈ {0, . . . , U}m

(12)

5 Implementation and Computational Results

The procedure have been particularized to the case of a Census of population,
where each record q is obtained through a compiled questionnaire, and de-
scribes a household, that is a set of individuals, as reported in [6]. The whole
methodology was implemented in C++, using ILOG Concert Technology [20] in
order to express the above illustrated optimization models. The overall software
system developed for the census application, called DIESIS (Data Imputation
Editing System - Italian Software) is currently used for correcting data from the
Italian Census of Population 2001. A Census correction is known to be a very
relevant and difficult proving ground for a data correction procedure [33]. Ex-
tensive tests have therefore been performed, and we report here only the most
representative ones. Data used for the reported experimentation arise from the
Italian Census of Population 1991. Three large data sets representing correct
questionnaires were initially perturbed by introducing errors. They consist in
60,455 two-person households, 45,716 four-person households, and 20,306 six-
person households. Data perturbation consists in randomly introducing non
responses or other valid responses. Each data set was perturbed at four differ-
ent increasing error levels, called 50, 100, 150, 200. Twelve different data sets
are therefore obtained (2 050, 2 100, 2 150, 2 200, 4 050, 4 100, 4 150, 4 200,
6 050, 6 100, 6 150, 6 200). The set of rules used for experimentation are real
rules, written by the Census experts of the Italian Statistic Office according to
the specific syntax developed.

An initial routine reads the list of fields and rules to deal with, and automati-
cally converts the rules into linear inequalities, thus generating the linear system
(2). Such system is then checked for complete and partial inconsistencies. A
sequence of the above shown matrix A and vector a, as in (7), are therefore gen-
erated from (2), those for the partial inconsistencies checking by adding to (2)
the opportune xij = 1. By adding a suitable objective function, each problem
in the form (8) is then solved by means of a state-of-the-art implementation of
the simplex algorithm (ILOG Cplex [21]). When a vertex is found, its support
is used to produce the IIS corresponding to the set of conflicting rules which is
given in output. When the problem in form (8) is infeasible, either we check
if it is a case were the IP-property holds (such check depending on the prob-
lem), and in such case no IIS exist, or we need to solve the integer feasibility

18



problem for the system (2), by means of a state-of-the-art implementation of
a branch-and-cut procedure (again ILOG Cplex). However, for all considered
real problems, when (8) is infeasible, (2) turn out to be feasible. Table 1 re-
ports number of variables (# of var) and number of constraints (# of const)
both for the system of linear inequalities being checked, and for the selected
IIS, in addition to computational times (in seconds) on a Pentium IV 1.7GHz
PC. We report only the (more interesting) cases corresponding to partial incon-
sistencies, hence to systems of type (2) containing an integer IIS. Those results
are intended to give an example of application, rather than exploring all the
computational possibilities of the proposed procedure.

Original system Selected IIS
Problem # of var # of const # of var # of const Time (sec.)
EditPartIncons0 3,000 15,003 2 3 1.0
EditPartIncons1 3,000 15,002 21 22 4.1
EditPartIncons2 3,000 15,003 4 5 8.3
EditPartIncons3 3,000 15,003 3 4 6.5
EditPartIncons4 3,000 15,015 30 31 4.2
EditPartIncons5 3,000 15,002 1 2 0.9
EditPartIncons6 3,000 15,005 16 17 4.1
EditPartIncons7 3,000 15,003 6 7 6.5
EditPartIncons8 3,000 14,998 2 3 3.2
EditPartIncons9 3,000 15,003 2 3 1.6

Table 1: Cases of partial inconsistencies in the set of rules.

After inconsistencies repair, the system (2) is checked for redundancies by in-
verting the sense of each inequality, one at a time, and checking if the obtained
system becomes infeasible. A sequence of integer feasibility problems is there-
fore solved, again by means of a branch-and-cut procedure (ILOG Cplex). The
whole procedure, according to human experts having the charge of writing the
rules, turn out to be a very satisfactory tool for the design of a contradiction-free
and non-redundant set of rules.

Subsequently, the procedure detects erroneous records qe by trivially check-
ing if the variable assignment corresponding to each record (questionnaire) q
satisfies the above validated system of linear inequalities (2) representing the
rules. So far, the said datasets are each divided into a correct set and an erro-
neous set.

As for the phase of error correction, the practical behavior of the proposed
procedure is evaluated both from the computational and from the data quality
points of view, as follows. For each erroneous questionnaire record qe, the error
localization problem (11) is solved at first. After this, a number σ of donor ques-
tionnaires {qd

1 , . . . , qd
σ} for each qe are selected in the above mentioned correct

set, by choosing the nearest ones according to our distance function δ. There-
fore, σ problems of imputation through a donor (12) are solved. For each qe,
the number σ of used donors increases when the imputation quality (given by
the value of the cost function (10) compared to the one of the error localization
(9)) is not satisfactory. Hence, for each erroneous questionnaire qe, a number
σ + 1 of integer linear programming problems are solved, again by means of

19



a branch-and-cut procedure (ILOG Cplex). The corrected questionnaire qc is
finally obtained by choosing the solution corresponding to the best value of our
objective function (10) among the σ donors. Computational times in minutes
for solving each entire data set on a Pentium III 800MHz PC are reported in
Table 2. Number of households in each dataset (# of households) and total
number of integer linear programming problems solved for each dataset (# of
problems solved) are also reported. As observable, each single correction prob-
lem is solved in extremely short time. Therefore, large data sets are corrected
in very reasonable times.

Data set # of households # of problems solved Total time (min.)
2 050 60,455 420,613 34.1
2 100 60,455 448,879 60.4
2 150 60,455 484,680 85.8
2 200 60,455 532,490 102.0
4 050 45,716 320,656 53.0
4 100 45,716 346,223 96.4
4 150 45,716 385,680 130.5
4 200 45,716 416,074 157.9
6 050 20,306 145,322 85.8
6 100 20,306 160,371 139.8
6 150 20,306 186,434 174.5
6 200 20,306 198,121 202.6

Table 2: Correction times for 2 persons, 4 persons and 6 persons households.

The statistical performances of the proposed methodology has also been strictly
evaluated and compared with the performance of the Canadian Nearest-neighbor
Imputation Methodology (CANCEIS) [3] by a simulation study [24] also based
on real data from the 1991 Italian Population Census. CANCEIS has been se-
lected for the comparative statistical evaluation because nowadays it is deemed
to be the best specific methodology for automatically handling hierarchical de-
mographic data. Results of such comparison, in [24], are very encouraging: the
quality of the imputation performed by the proposed procedure is generally com-
parable, and sometimes better, than CANCEIS. The quality of imputed data
was evaluated by comparing the original questionnaires (here known) with the
corrected ones. We report in Table 3 the value of some particularly meaningful
statistical indicators:

- the percentage of not modified values erroneously imputed by the proce-
dure (Etrue);

- the percentage of modified values not recognized and therefore not im-
puted by the procedure (Emod);

- the percentage of cases when the value imputed by the procedure does not
match the original value here known (Iimp).

Therefore, lower values correspond to a better data quality. Reported value
is computed as average on the demographic fields relation to head of the
house, sex, marital status, age, years married.

20



Data set Etrue Emod Iimp

2 050 0.06 21.30 15.31
2 100 0.09 22.01 16.34
2 150 0.11 22.78 16.90
2 200 0.26 22.12 17.42
4 050 0.04 24.61 15.02
4 100 0.09 26.02 15.48
4 150 0.13 26.32 16.20
4 200 0.20 27.25 17.10
6 050 0.08 31.20 20.47
6 100 0.16 31.44 20.29
6 150 0.25 32.83 21.45
6 200 0.35 33.01 21.88

Table 3: Evaluation of the statistical quality of the correction.

The procedure introduces surprisingly few changes in fields that were not per-
turbed, is able to discover more than two times out of three the values which
were modified, and imputes values which are generally correct. Note that, when
randomly modifying values, the record can still appear correct, in the sense
that it still satisfies the rules, so detection of perturbed values inherently has
no possibility of being always exact. Note, moreover, that for fields having
many values, as the case of age, the correct imputation is extremely difficult.
Therefore, the imputation quality turns out to be of very high level.

6 Conclusions

Data correction problems are of great relevance in almost every field were an
automatic data processing is used. A typical application consists in cleaning
databases which can contain errors. Data correction problems have been tack-
led in several different manners, but satisfactory data quality and computational
efficiency appear to be at odds. A new discrete mathematics modelization of
the whole correction process allows the implementation of an automatic proce-
dure for data correction. A linear inequalities representation of the set of rules
makes the difficult problem of the logical validation of such set a treatable task.
Detection of erroneous records can be performed with an inexpensive procedure.
After this, the proposed procedure repairs the data using donors, ensuring so
that the marginal and joint distribution within the data are, as far as it is pos-
sible, preserved. The sequence of arisen mathematical programming problems
can be solved to optimality by using state-of-the-art MIP solving procedures.
Computational limits of a data correction process are therefore pushed much
further. Each single data record can be corrected in an extremely short time
(always less than 1 second for the case of Census records). The statistical per-
formances of the proposed general procedure has been strictly evaluated and
compared with the performance of the Canadian Nearest-neighbor Imputation
Methodology, which is nowadays deemed to be the best specific methodology
for automatically handling hierarchical demographic data. Test results are very
encouraging.

21



Acknowledgments The author wishes to thank Dr. S. Anselmi and Dr. M.
Casaroli for helping the implementation work, and Dr. A. Reale and Dr. R.
Torelli for providing edit rules.

References

[1] E. Amaldi, M.E. Pfetsch, L. Trotter, Jr. On the maximum feasible subsystem problem,
IISs and IIS-hypergraphs. To appear in Mathematical Programming.

[2] M. Ayel and J.P. Laurent (eds.). Validation, Verification and Testing of Knowledge-
Based Systems. John Wiley & Sons Ltd., Chichester, England, 1991.

[3] M. Bankier. Canadian Census Minimum change Donor imputation methodology. In Pro-
ceedings of the Workshop on Data Editing, UN/ECE, Cardiff, UK, 2000.

[4] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
Belmont, Massachusetts, 1997.

[5] E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan. Logical analysis of numerical data.
Mathematical Programming, 79, 163-190, 1997.

[6] R. Bruni, A. Reale, R. Torelli. Optimization Techniques for Edit Validation and Data
Imputation. In Proceedings of Statistics Canada Symposium: Achieving Data Quality
in a Statistical Agency, Ottawa, Canada, 2001.

[7] R. Bruni and A. Sassano. Error Detection and Correction in Large Scale Data Collecting.
In Advances in Intelligent Data Analysis, Lecture Notes in Computer Science 2189, 84-
94, Springer, 2001.

[8] V. Chandru and J.N. Hooker. Optimization Methods for Logical Inference. Wiley, New
York, 1999.

[9] J.W. Chinneck. Fast Heuristics for the Maximum Feasible Subsystem Problem. IN-
FORMS Journal on Computing 13(3), 210-223, 2001.

[10] J.W. Chinneck and E.W. Dravnieks. Locating Minimal Infeasible Constraint Sets in
Linear Programs. ORSA Journal on Computing 3, 157-168, 1991.

[11] T. De Waal. Processing of Erroneous and Unsafe Data. Ph.D. Thesis, ERIM PhD series
in Research Management, 2003.

[12] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.) Advances in
Knowledge Discovery and Data Mining. AAAI Press / The MIT Press, Menlo Park,
CA, 1996.

[13] P. Fellegi and D. Holt. A Systematic Approach to Automatic Edit and Imputation.
Journal of the American Statistical Association, 71(353), 17-35, 1976.

[14] E. Franconi, A. Laureti Palma, N. Leone, S. Perri, F. Scarcello. Census Data Repair: a
challenging application of Disjunctive Logic Programming. In Proceedings of 8th Inter-
national Conference on Logic for Programming, Artificial Intelligence and Reasoning,
(LPAR-2001) Lecture Notes in Artificial Intelligence 2250, Springer, 2001.

[15] R.S. Garfinkel, A.S. Kunnathur, G.E. Liepins. Optimal Imputation of Erroneous Data:
Categorical Data, General Edits. Operations Research 34, 744-751, 1986.

[16] R.S. Garfinkel, A.S. Kunnathur, G.E. Liepins. Error Localization for Erroneous Data:
Continuous Data, Linear Constraints. SIAM Journal on Scientific and Statistical Com-
puting 9, 922-931, 1988.

22



[17] J. Gleeson and J. Ryan. Identifying Minimally Infeasible Subsystems of Inequalities.
ORSA Journal on Computing 2(1), 61-63, 1990.

[18] O. Guieu and J.W. Chinneck. Analyzing Infeasible Mixed-Integer and Integer Linear
Programs INFORMS Journal on Computing 11(1), 1999.

[19] I. Guyon, N. Matic, V. Vapnik. Discovering Informative Patterns and Data Cleaning. In
[12].

[20] ILOG Concert Technology 1.0. Reference Manual. ILOG, 2000.

[21] ILOG Cplex 7.0. Reference Manual. ILOG, 2000.

[22] D.J. Hand, H. Mannila, P. Smyth. Principles of Data Mining. MIT Press, London,
2001.

[23] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning. Springer-
Verlag, New York, Berlin, Heidelberg, 2002.

[24] A. Manzari and A. Reale. Towards a new system for edit and imputation of the 2001
Italian Population Census data: a comparison with the Canadian Nearest-neighbour
Imputation Methodology. in Proc. of the 53rd Session of the International Statistical
Institute, Seoul, South Korea, 2001.

[25] T. Menzies. Knowledge Maintenance: The State of the Art. Knowledge Engineering
Review, 14(1), 1-46, 1999.

[26] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. J. Wiley,
New York, 1988.

[27] C. Poirier. A Functional Evaluation of Edit and Imputation Tools. UN/ECE Work
Session on Statistical Data Editing, Working Paper n.12, Rome, Italy, 1999.

[28] C.T. Ragsdale P.G. McKeown. On Solving the Continuous Data Editing Problem. Com-
puters and Operations Research 23, 263-273, 1996.

[29] R. Ramakrishnan and J. Gehrke. Database Management System. McGraw Hill, 2000.

[30] N. Rescher and R. Brandom. The Logic of Inconsistency. Basil Blackwell, Oxford, 1980.

[31] A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York, 1986.

[32] M. Tamiz, S.J. Mardle, and D.F. Jones. Detecting IIS in Infeasible Linear Programs
using Techniques from Goal Programming. Computers and Operations Research 23,
113-191, 1996.

[33] United Nations Economic Commission for Europe and the Statistical Office of the Euro-
pean Communities. Recommendations for the 2000 censuses of population and housing
in the ECE region. Technical Report Statistical Standards and Studies No. 49, UN/ECE
Statistical Division, 1998.

[34] H.P. Williams. Model Building in Mathematical Programming. J. Wiley, Chichester,
1993.

[35] W.E. Winkler. State of Statistical Data Editing and current Research Problems.
UN/ECE Work Session on Statistical Data Editing, Working Paper n.29, Rome, Italy,
1999.

23


