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We now want to solve the area problem: Find the area of the 

region  S that lies under the curve y = f(x)  from  a to  b

S is bounded by the graph of a continuous function  f

[where f(x) ≥ 0], the vertical lines  x = a and  x = b, and the 

x-axis

S = {(x, y) | a ≤ x ≤ b, 0 ≤ y ≤ f (x)}

The Area Problem
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It is not easy to find the area of a region with curved sides. 

We all have an intuitive idea of what the area of a region is, 

but now we try to give an exact definition of area 

Recall that in defining a tangent we first approximated the 

slope of the tangent line by slopes of secant lines and then 

we took the limit of these approximations

We use a similar technique for areas. We first approximate 

the region  S by rectangles and then we take the limit of 

the areas of these rectangles as we increase the number of 

rectangles

The Area Problem
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Example 

Use rectangles to estimate the area under the parabola 

y = x2 from  0  to 1 (the parabolic region S)
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Example – Solution

We first notice that the area of S must be somewhere 

between 0 and 1 because  S is contained in a square with 

side length 1

Suppose we divide  S  into four strips  S1, S2, S3, S4 by 

drawing the vertical lines  x =1/4,  x =1/2, and  x =3/4
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Example – Solution

We can approximate each strip by a rectangle that has the 

same base as the strip and whose height is the same as 

the right edge of the strip

In other words, the heights of

these rectangles are the values 

of the function f(x) = x2 at the right 

endpoints of the subintervals

Each rectangle has width 1/4 and 

the heights are                     12

cont’d
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Example – Solution

If we let R4 be the sum of the areas of these approximating 

rectangles, we get

We see that the real area  A  of  S  is a bit smaller than R4, 

so

A < 0.46875

cont’d
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Example – Solution

Instead of using the rectangles on the left we could use the 

smaller rectangles on the right, whose heights are the 

values of  f at the left endpoints of the subintervals (the  

leftmost rectangle has collapsed because its height is 0)

cont’d
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Example – Solution

The sum of the areas of these approximating rectangles is

We see that the area of  S  is larger than  L4, so we now 

have lower and upper estimates for A:

0.21875 < A < 0.46875

We can repeat this procedure with a larger number of strips

cont’d
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Example – Solution

Here is what happens when we divide the region S into 

eight strips of equal width

Approximating S with eight rectangles

cont’d

(a) Using left endpoints (b) Using right endpoints
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Example – Solution

By computing the sum of the areas of the smaller rectangles 

(L8) and the sum of the areas of the larger rectangles (R8), 

we obtain better lower and upper estimates for A:

0.2734375 < A < 0.3984375

So one possible answer to the question is to say that the 

true area of  S  lies somewhere between 0.2734375 and 

0.3984375

We could obtain better estimates by increasing the number 

of strips

cont’d
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Example – Solution

The table at the right shows the 

results of similar calculations 

using  n  rectangles whose heights

are found with left endpoints (Ln) or 

right endpoints (Rn)

In particular, we see by using 50 strips that the area lies 

between 0.3234 and 0.3434. With 1000 strips we narrow it 

down even more:  A  lies between 0.3328335 and 

0.3338335

A good estimate is obtained by averaging these numbers: 

A ≈ 0.3333335

cont’d
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Therefore, as n increases, both Ln and Rn become better 

and better approximations to the area of  S

Right endpoints produce upper sums because f (x) = x2 is increasing

Approximating the Area
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Therefore we define the area  A  to be the limit of the sums 

of the areas of the approximating rectangles, that is,

Left endpoints produce lower sums because f (x) = x2 is increasing

Approximating the Area
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Hence, in order to evaluate the area  S under a generic 

function  f(x) ≥0, we divide  S into n stripes Si , each of 

equal width  ∆x = (b-a)/n

So, interval [a, b] is divided into n subintervals, with x0 = a

and xn = b

[x0, x1],   [x1, x2],   [x2, x3],   . . . ,   [xn–1, xn]

The right endpoints of the subintervals are

x1 = a + ∆x,

x2 = a + 2 ∆x,

x3 = a + 3 ∆x,

General case of area
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Now we approximate the i-th strip Si by a rectangle with 

width ∆x and height  f(xi), which is the value of  f at the 

right endpoint

Then the area of the i-th rectangle is  f(xi) ∆x. The area of S

is approximated by the sum of the areas of these 

rectangles, which is

Rn = f(x1) ∆x + f(x2) ∆x + C + f(xn) ∆x

General case of area
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This approximation improves as the number of strips 

increases, see for example the cases of n = 2, 4, 8, and 12

So, we take the value for n → ∞

General case of area
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Therefore we define the area A of the region S in the 
following way.

It can be proved that this limit always exists, since we are 
assuming that  f is continuous. 

Moreover, it can be shown that we get the same value if 
we use left endpoints:

General case of area



1919

In fact, instead of using left endpoints or right endpoints, we 

could take the height of the i-th rectangle to be the value of 

f  at any number xi∗ in the i-th subinterval [xi–1, xi]. We call 

the numbers x1∗, x2∗, . . . , xn∗ the sample points

Approximating rectangles 

when the sample points 

are not chosen to be 

endpoints: 

So a more general expression for the area of S is

General case of area
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We have seen that a limit of this form is used to solve the 

area problem

It turns out that this same type of limit occurs in a wide 

variety of situations even when  f is not necessarily a 

positive function

So, we give a name to this special type of limit, too

The Definite Integral
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The Definite Integral
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In the notation                  the function f(x) is called the 

integrand and  a and  b  are called the limits of 

integration (a is the lower limit and b is the upper limit)

The procedure of calculating an integral is called  

integration

The symbol dx has no meaning by itself; it simply indicates 

that the independent variable is x

Notation

The symbol ∫ was introduced by Leibniz and is called an 

integral sign

It is an elongated S and was chosen because an integral is 

a limit of sums
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Note: The definite integral                    is a number; it does 

not depend on x. In fact, we could use any letter in place of 

x without changing the value of the integral:

Note: The sum

is called a Riemann sum after the German mathematician 

Bernhard Riemann

Notation
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If f(x)≥0, we have seen that the definite integral can be 

interpreted as the area under the curve y =f(x)  

If f(x) takes both positive and negative values, then the 

Riemann sum is the sum of the areas of the rectangles that 

lie above the x-axis and the negatives of the areas of the 

rectangles that lie below the x-axis  

Σ f (xi*) ∆x is an approximation to the net area

The Definite Integral
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When we take the limit of such Riemann sums, we get the 

situation illustrated here. A definite integral can be 

interpreted as a net area, that is, a difference of areas:

where A1 is the area of the 

region above the x-axis 

and below the graph of  f,

and A2 is the area of the 

region below the x-axis and 

above the graph of  f is the net area

The Definite Integral
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Note: We have defined the definite integral for an 

integrable function, but not all functions are integrable. 

However, the most commonly occurring functions are in 

fact integrable: 

If  f is integrable on [a, b], then the limit in Definition 2 

exists and gives the same value no matter how we choose 

the sample points 

Integrability
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When Leibniz chose the notation for an integral, he chose 

the ingredients as reminders of the limiting process

In general, when we write

we replace  lim Σ by  ∫, by x, and  ∆x  by  dx

More on Notation
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When we defined the definite integral                 , we 

implicitly assumed that a < b

But the definition as a limit of Riemann sums makes sense 

even if a > b

Notice that if we reverse  a and b, then ∆x changes from 

(b – a)/n to  (a – b)/n.  Therefore

Properties of Definite Integrals
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If  a = b, then ∆x = 0 and so

We now develop some basic properties of integrals that are 

useful to evaluate integrals in a simple manner. We 

assume that  f  and  g are continuous functions

Properties of Definite Integrals
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Property 1 says that the integral of a constant function        

f(x) = c is the constant times the length of the interval

If  c > 0  and  a < b, this 

is to be expected because 

c(b – a) is the area of the 

shaded rectangle

Properties of Definite Integrals
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Property 2 says that the integral of a sum is the sum of the 

integrals

For positive functions it 

says that the area under 

f + g is the area under  f

plus the area under  g

We can see why this is true 

from the geometrical view 

Properties of Definite Integrals
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In general, Property 2 follows from the fact that the limit of a

sum is the sum of the limits:

Properties of Definite Integrals
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Property 3 can be proved in a similar manner and says that 

the integral of a constant times a function is the constant 

times the integral of the function

In other words, a constant (but only a constant) can be 

taken in front of an integral sign

Property 4 is proved by writing f – g = f + (–g) and using 

Properties 2 and 3 with c = –1

Properties of Definite Integrals
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Example 

Use the properties of integrals to evaluate

Solution:

Using Properties 2 and 3 of integrals, we have
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Example  – Solution

We know from Property 1 that

and we have seen (when introducing the area problem)  

that

So

cont’d
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The next property tells us how to combine integrals of the 

same function over adjacent intervals:

Properties of Definite Integrals



3737

For the case where f(x) ≥ 0 and a < c < b  Property 5 can 

be seen from the geometric view: the area under  y = f(x)  

from a to c plus the area from c  to b  is equal to the total 

area from a to b

Properties of Definite Integrals
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Properties 1–5 are true whether a < b, a = b, or a > b. The 

following properties, in which we compare sizes of 

functions and sizes of integrals, are true only if a ≤ b

Properties of Definite Integrals
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If  f(x) ≥ 0, then                   represents the area under the 

graph of  f, so the geometric interpretation of Property 6 is 

simply that areas are positive (It also follows directly from

the definition because all the quantities involved are 

positive)

Property 7 says that a bigger function has a bigger integral

It follows from Properties 6 and 4 because f – g ≥ 0

Properties of Definite Integrals
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Property 8 is illustrated for the case where f(x) ≥ 0

If  f is continuous we could take  m and  M to be for example 

the absolute minimum and maximum values of  f on [a, b]

Properties of Definite Integrals

In this case, it says that the area under the graph of  f is 

greater than the area of the rectangle with height m and 

smaller than the area of the rectangle with height M

This is useful when we want a rough estimate of an integral
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Now we will introduce the Fundamental Theorem of 

Calculus. It establishes a connection between the  two 

branches of calculus: differential calculus and integral 

calculus

It gives the precise inverse relationship between the

derivative and the integral

The Fundamental Theorem of Calculus
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Consider a function g defined as follows

where  f  is a continuous function on [a, b] and  x  varies 

between a and b. Observe that  g  depends only on x, 

which appears as the variable upper limit in the integral

When x is a fixed number, then the integral               is a 

definite number

But if we then let  x  vary, the number               also varies 

and defines a function of  x  denoted by  g(x)

The Integral as a Function
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If  f  happens to be a positive function, then  g(x)  can be 

interpreted as the area under the graph of  f  from  a to x, 

where x can vary from a to b (think of g as the “area so far”

function)

The Integral as a Function
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Example 1

If  f  is the function whose graph is this, and 

find the values of g(0), g(1), g(2), g(3), g(4),

and g(5), then sketch a rough graph of g
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Example 1 – Solution

First we notice that 

We see that g(1) is the area 

of a triangle: 

=    (1 � 2) = 1

To find g(2) we add to g(1) the area of a rectangle:

= 1 + (1 � 2) = 3
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Example 1 – Solution

If we estimate that the area under  f from 2 to 3 is about 

1.3, then

For t > 3, f(t) is negative and so we start subtracting areas:

cont’d

≈ 3 + 1.3 = 4.3

≈ 4.3 + (–1.3) = 3.0
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Example 1 – Solution

We use these values to sketch the 

graph of  g

Notice that, because f(t) is positive 

for t < 3, we keep adding area for 

t < 3 and so g is increasing up to 

x = 3, where it attains a maximum 

value. For x > 3, g decreases because 

f(t) is negative

cont’d

≈ 3 + (–1.3) = 1.7
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Now we want to find what is the relationship between f(t) 

and g(x). If we take for example  f(t) = t and a = 0, then we 

have:

The Integral as an Antiderivative

In other words, if g is defined as the integral of  f , then g

turns out to be an antiderivative of f, at least in this case 

t=x

area = x2

f(t) = t

Therefore g′(x) = x, that is, g′ = f
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The fact that this is true, even when f is not necessarily positive, 

is the first part of the Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus

Using Leibniz notation for derivatives, we can write this 

theorem as

Roughly speaking, this equation says that if we first 

integrate f and then differentiate the result, we get back to 

the original function f
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Example 2

Find the derivative of the function

Solution:

Since is continuous, Part 1 of the 

Fundamental Theorem of Calculus gives
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The second part of the Fundamental Theorem of Calculus 

provides a much simpler method to evaluate integrals

The Fundamental Theorem of Calculus

Example:

1011lnln
1

1
=−=−=∫

e

edx
x
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Bringing together the two parts of the Fundamental 

Theorem we have

We noted that Part 1 can be rewritten as

which says that if  f  is integrated and then the result is 

differentiated, we arrive back at the original function f

Integral and Derivative as inverses  
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Since F′ (x) = f(x), Part 2 can be rewritten as

This version says that if we take a function F, first 

differentiate it, and then integrate the result, we arrive back 

at the original function F, but in the form F(b) – F(a)

Taken together, the two parts of the Fundamental Theorem 

of Calculus say that differentiation and integration are 

inverse processes: each undoes what the other does

Integral and Derivative as inverses  
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It is easy to see that                              is a function of x, but 

why g’(x) = f(x)? 

Why the fundamental theorem holds?

Lets compute the derivative of g
∫=

x
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So g’(x) is between m and M, and for ∆x � 0 it is f(x)
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Both parts of the Fundamental Theorem establish 

connections between antiderivatives and definite integrals. 

Part 1 says that if  f is continuous, then          dt is an 

antiderivative of f.  Part 2 says that                 can be found 

by evaluating F(b) – F(a), where  F  is an antiderivative of  f

Because of the relation given by the Fundamental Theorem 

between antiderivatives and integrals, the notation 

is traditionally used for an antiderivative of  f  and is called 

an indefinite integral

Always remember: a definite integral is a value (e.g. 3), an 

indefinite integral is a function (e.g. x2)

Indefinite Integrals
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Indefinite Integrals

The indefinite integral is the family of functions (all with the

same behavior but vertically translated) which are anti-

derivatives of a given function, or in other words the most 

general antiderivative of the given function

∫ f(x)dx = g(x)+C with g’(x)=f(x)

For example, the indefinite integral of x2 is
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Those formulas are valid on intervals where f is defined and continuous

Table of Indefinite Integrals
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It is a mistake to write

Because                is not continuous on [-1,3]

Thus we write 

with the understanding that it is valid on the interval (0,∞) 

or on the interval (-∞, 0) 

3

4
1

3

111
3

1

3

1 2
−=−−=−=

−
−∫ x

dx
x

2)( xxf =

Pay attention to the integration interval
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Example 

Evaluate 

Solution:

First we need to write the integrand in a simpler form by 

carrying out the division:
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Example  – Solution
cont’d
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Because of the Fundamental Theorem, to evaluate 

integrals we need to compute antiderivatives

But our antidifferentiation formulas don’t tell us how to 

evaluate integrals such as

To find this integral we need to work on it: we change from 

the variable  x  to a new variable u

The Substitution Rule
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The Substitution Rule
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Observe that if F ′ = f, then 

∫F ′(g(x)) g ′(x) dx = F(g(x)) + C

because, by the Chain Rule,

[F(g(x))] = F′(g(x))g′(x) 

If we make the “change of variable” or “substitution” u = 

g(x), then we have

∫F ′(g(x))g ′(x) dx = F(g(x)) + C = F(u) + C = ∫F′(u) du

or, writing F′ = f, we get 

∫f(g(x))g ′(x) dx = ∫f(u) du

The Substitution Rule
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Thus we have proved the following rule

Notice that the Substitution Rule for integration was proved 

using the Chain Rule for differentiation

Notice also that, if u = g(x), then du = g ′(x) dx, so a way to 

remember the Substitution Rule is to think of dx and du

as differentials

The Substitution Rule
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The Substitution Rule
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Example 

Find ∫ x3 cos(x4 + 2) dx

Solution:

We make the substitution u = x4 + 2 because its differential 

is du = 4x3 dx, which, apart from the constant factor 4, 

occurs in the integral 

Thus, using  x3 dx = du and the Substitution Rule, we have

∫x3 cos(x4 + 2) dx = ∫cos u � du

=   ∫cos u du
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Example  – Solution

=    sin u + C

=    sin(x4 + 2) + C

Notice that at the final stage we had to return to the original 

variable x

cont’d
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∫ √2x + 1 dx =  ∫ √2x + 1 dx ]   =

Definite integrals by substitution

When evaluating a definite integral by substitution, two methods are 

possible. One method is to evaluate the indefinite integral first and then 

use the Fundamental Theorem. For example

0

4

0

4

½ ∫ 2√2x + 1 dx ] = ½ ∫ √u 2 dx ] =  ½ ∫ u½ du ] =
0

4

0

4

0

4

u3/2 ] = u3/2 ] =  u3/2 ] =      (2x + 1)3/2 ]  =
3/2

30

4
2

2

1

3

1

0

4

0

4

3

1

0

4

Another method is to change the limits of integration when the 

variable is changed

2

1
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Definite integrals by substitution
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Example 

Evaluate                        

Solution:

Let u = 2x + 1. Then du = 2 dx, so dx =   du

To find the new limits of integration we note that

when x = 0, u = 2(0) + 1 = 1

and 

when x = 4, u = 2(4) + 1 = 9 
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Example – Solution

Therefore

Observe that when using     we do not return to the variable 

x after integrating. We simply evaluate the expression in u 

between the appropriate values of u

cont’d
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The following theorem uses the Substitution Rule for 

Definite Integrals      to simplify the calculation of integrals

of functions that possess symmetry properties

Integration of symmetric funct.
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From the graphical point of view:

Part (a) says that the area under y = f(x)  from –a to  a  is 

twice the area from  0 to  a because of symmetry

Integration of symmetric funct.

Part (b) says the integral is 0, because it is the area above 

x-axis and below the curve minus the area below the axis 

and above the curve, so the areas cancel
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Example 1

Since f(x) = x6 + 1 satisfies f(–x) = f(x), it is even and so
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Example 2

Since f(x) = (tan x)/(1 + x2 + x4) satisfies f(–x) = –f(x), it is 

odd and so
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Consider the region S that lies between two curves 

y = f(x) and y = g(x) and between the vertical lines x = a

and x = b, where f and g are continuous functions and         

f(x) ≥ g(x) for all x in [a, b]

S = {(x, y) | a ≤ x ≤ b, g(x) ≤ y ≤ ƒ(x)}

Area between curves
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We divide S into n strips of equal width and then we 

approximate the ith strip by a rectangle with base ∆x and 

height f(xi∗) – g(xi∗)

Area between curves
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The Riemann sum

is therefore an approximation to the area of S

This approximation appears to become better and better as 

n →∞ . Therefore we define the area A of the region S

as the limiting value of the sum of the areas of these 

approximating rectangles

Area between curves
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We recognize this limit as the definite integral of f – g

Therefore we have the following formula for area

Notice that in the special case where g(x) = 0, S is just the 

region under the graph of  f, as seen

Area between curves
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In the case where both f and g are positive, we can 

visualize the situation

A = [area under y = f(x)] – [area under y = g(x)]

Area between curves
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Example 
Find the area of the region bounded above by y = ex, 

bounded below by y = x, and bounded on the sides by         

x = 0 and x = 1

Solution:

This is the region

we use the formula with f(x) = 

ex, g(x) = x, a = 0, and b = 1:
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If we want to find the area 

between the curves y = f (x) and

y = g (x) where f (x) ≥ g (x) for 

some values x of but g (x) ≥ f (x) 

for other values of x, then we split

the region S into several regions S1, S2 , . . . with areas A1, 

A2 , . . . We then compute the area of the region S as the 

sum of the areas of  S1, S2 , . . . that is A = A1 + A2 + . . .

Since

f (x) – g (x)   when f (x) ≥ g (x)

| f (x) – g (x) | =          

g (x) – f (x)   when g (x) ≥ f (x) 

Area between curves
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Therefore in the general case the area between curves is 

When evaluating this integral, however, we must still split it 

into integrals corresponding to A1, A2,CC

Area between curves
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Example 

Find the area of the region bounded by the curves y = sin x, 

y = cos x, x = 0, and x = π /2

Solution:

The points of intersection occur when sin x = cos x, that is, 

when x = π /4 (since 0 ≤ x ≤ π /2). The region is sketched 

here. Observe that cos x ≥ sin x when 0 ≤ x ≤ π /4 but sin x 

≥ cos x when π /4 ≤ x ≤ π /2. 
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Example – Solution

Therefore the required area is
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Example – Solution

In this particular example we could have saved some work 

by noticing that the region is symmetric about x = π /4 and 

so
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Some regions are best treated by regarding x as a function 

of y. If a region is bounded by curves with equations           

x = f(y), x = g(y), y = c, and y = d, where f and g are 

continuous and  f(y) ≥ g(y)  for c ≤ y ≤ d  then its area is

Area between curves
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Every differentiation rule has a corresponding integration 

rule. For instance, the Substitution Rule for integration 

corresponds to the Chain Rule for differentiation. The rule 

that corresponds to the Product Rule for differentiation is 

called the rule for integration by parts 

The Product Rule states that if f and g are differentiable 

functions, then 

[f(x)g(x)] = f(x)g ′(x) + g(x)f ′(x)

Integration by Parts
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In the notation for indefinite integrals this equation 

becomes

∫ [f(x)g ′(x) + g(x)f ′(x)] dx = f(x)g(x)

or ∫ f(x)g ′(x) dx + ∫ g(x)f ′(x) dx = f(x)g(x)

We can rearrange this equation as

Formula 1 is called the formula for integration by parts

Integration by Parts
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It is perhaps easier to remember in the following notation 

Let u = f(x) and v = g(x). Then the differentials are              

du = f ′(x)dx and dv = g ′(x)dx, so, by the Substitution Rule, 

the formula for integration by parts becomes 

Integration by Parts
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Example 

Find ∫ x sin x dx

Solution Using Formula 1:

Suppose we choose f(x) = x and g ′(x) = sin x. Then 

f ′(x) = 1 and g(x) = –cos x.(For g we can choose any 

antiderivative of g ′.) Thus, using Formula 1, we have

∫ x sin x dx = f(x)g(x) – ∫ g(x)f ′(x) dx

= x(–cos x) – ∫ (–cos x) dx

= –x cos x + ∫ cos x dx

= –x cos x + sin x + C
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Example  – Solution

It’s wise to check the answer by differentiating it. If we do 

so, we get x sin x, as expected

Solution Using Formula 2:

Let

u = x dv = sin x dx

Then du = dx v = –cos x

cont’d
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Example  – Solution

and so

∫ x sin x dx = ∫ x sin x dx

= x (–cos x) – ∫ (–cos x) dx

= –x cos x + ∫ cos x dx

= –x cos x + sin x + C

u v v du

cont’d

u dv
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If we combine the formula for integration by parts with Part 

2 of Fundamental Theorem of Calculus, we can evaluate 

definite integrals by parts 

Evaluating both sides of Formula 1 between a and b, 

assuming f ′ and g′ are continuous, and using the 

Fundamental Theorem, we obtain

Integration by Parts of definite Integrals
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The functions that we have been studied here are called 

elementary functions

These are the polynomials, rational functions, power 

functions (xa), exponential functions (ax), logarithmic 

functions, trigonometric and inverse trigonometric 

functions, hyperbolic and inverse hyperbolic functions, and 

all functions that can be obtained from these by the five 

operations of addition, subtraction, multiplication, division, 

and composition 

Can we integrate all elementary functions?
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For instance, the function

is quite complex but still an elementary function

If f is an elementary function, then f ′ is an elementary

function. However, ∫ f(x) dx may not be an elementary

function. 

Consider for example f(x) =      

Can we integrate all elementary functions?
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Since f is continuous, its integral exists, and if we define

the function F by

then we know from Part 1 of the Fundamental Theorem of 

Calculus that

Thus f(x) =     has an antiderivative F, but which is? It has

been proved that F is not an elementary function

This means that no matter how hard we try, we will never

succeed in evaluating ∫ dx in terms of the functions we

know

Can we integrate all elementary functions?
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The same can be said of the following integrals:

In fact, the majority of elementary functions don’t have

elementary antiderivatives

You may be assured, though, that the integrals in the 

exercises are all elementary functions

Can we integrate all elementary functions?


