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� The problem of finding the tangent line to a curve and 

the problem of finding the velocity of an object both 

involve finding the same type of limit: the limit of the 

increment in a function f(x) divided by the 

increment in the variable x

� This special type of limit is called a derivative and we 

will see that it can be interpreted as a rate of change

� This rate of change is needed in a lot of practical 

applications

Derivatives and Rates of Change



� If a curve  C has equation  y = f (x)  and we want to find 

the tangent line to C at the point  P (a, f (a)), then we 

consider a nearby point  Q (x, f (x)), where x ≠ a, and 

compute the slope of the secant line PQ:

� Then we let  Q approach  P along the curve  C by letting  

x approach  a

Tangent



� If mPQ approaches a number m, then we define the tangent  

t  to be the line through  P with slope m

� the tangent line is the “limit” of the secant line PQ as Q

approaches P

Tangent



Tangent



Example  

� Find an equation of the tangent line to the parabola 
y = x2 at the point P(1, 1)

� Solution:
� Here we have a = 1 and  f(x) = x2 so the slope is



Example  – Solution

� = 1 + 1    = 2

�Using the point-slope form of the equation of a line, we find 

that an equation of the tangent line at  (1, 1)  with slope 2 is

� y – 1 = 2(x – 1)     or     y = 2x – 1

cont’d



Zooming in toward the point (1, 1) on the parabola y = x2

� We will say that the slope of the tangent line to a curve at a given point 
is the slope of the curve at that point

� The idea is that if we zoom in far enough toward the point, the curve 

looks almost like a straight line

� In other words, the curve becomes almost indistinguishable from its 

tangent line

Tangent



� If we write  h = x – a , then  x = a + h and so the slope of the secant 
line PQ can also be written 

� The case for h > 0 is illustrated (Q is to the right of P)

� If  h < 0 , Q would be to the left of P, but the concept remains the 
same

Tangent



� Notice that as  x approaches  a,  h approaches 0 

(because h = x – a)  and so the expression for the slope 

of the tangent line in Definition 1 becomes

Tangent



�In general, suppose an object moves along a straight line 

according to an equation of motion  s = f (t), where  s is the 

displacement (directed distance) of the object from the origin 

at time t

�The function  f that describes the motion is called the 

position function of the object

Velocity



Velocity

�In the time interval from  t = a  to  t = a + h the change in 

position is  f (a + h) – f (a)



�The average velocity over this time interval is

� which is the same formula 

as the slope of the secant line 
PQ in the previous problem

Velocity



�Now suppose we compute the average velocities over 

shorter and shorter time intervals [a, a + h] 

�In other words, we let h approach 0. As in the example of the 

falling ball, we define the velocity (instantaneous velocity)  

v(a)  at time  t = a to be the limit of these average velocities:

�This means that the formula of the velocity at time  t = a is 

equal to the formula of the slope of the tangent line at  P

Velocity



�Consider again a ball dropped from a skyscraper 450 m 

above the ground

�(a) What is the velocity of the ball after 5 seconds?

�(b) How fast is the ball traveling when it hits the ground?

�Solution:

�We will need to find the velocity both when t = 5 and when 

the ball hits the ground. Let’s compute the velocity at a 

generic time  t = a

Example



Example  – Solution

�Using the equation of motion s = f (t) = 4.9t 2, we have

cont’d



Example  – Solution

�(a) The velocity after 5 s is v(5) = (9.8)(5) = 49 m/s

cont’d



Example – Solution

�(b) Since the hight is 450 m above the ground, the ball will 
hit the ground at a time that we call  t1 such that  s(t1) = 450, 
that is,

� 4.9t1
2 = 450

�

� This gives

� t1
2 = and        t1 = ≈ 9.6 s

cont’d



Example – Solution

� The velocity of the ball as it hits the ground is therefore

� v(t1) = 9.8t1

cont’d

= 9.8  x  9.6

≈ 94 m/s



�We have seen that the same type of limit arises in two 

different problems: finding the slope of a tangent line and the 

velocity of an object 

�In fact, limits of the form

arise whenever we need a “rate of change” in any of the 

sciences, such as a rate of reaction in chemistry or a marginal 

cost in economics 

�Since this type of limit occurs so widely, it is given a special

name and notation

Derivatives



�If we write  x = a + h, then we have  h = x – a and  h

approaches  0  if and only if  x approaches  a. Therefore an 

equivalent way of stating the definition of the derivative, as 

we saw in finding tangent lines, is

Derivatives



Example 

�Find the derivative of the function f(x) = x2 – 8x + 9  in 
x = a

�Solution:
�From Definition 4 we have



Example – Solution cont’d



�We defined the tangent line to the curve y = f (x) at the point 
P (a, f (a))  to be the line that passes through  P and has   
slope  m 

�Since, by Definition 4, this is the same as the derivative      
f ′(a), we can now say that

Derivatives

�If we use the point-slope form of the equation of a line, we 

can write an equation of the tangent line to the curve 

y = f(x) at the point (a, f(a)):

y – f (a) = f ′(a)(x – a)



�Suppose  y is a quantity that depends on another quantity 

x. Thus y is a function of  x and we write  y = f (x) 

�If  x changes from  x1 to x2, then the change in  x  (also 

called the increment of x) is

� ∆x = x2 – x1

and the corresponding increment in  y is

� ∆y = f (x2) – f (x1)

Rate of Change



�The ratio

is called the average rate of 

change of  y  with respect to x 

over the interval  [x1, x2]  and 

can be seen as the slope 

of the secant line PQ

average rate of change = mPQ

instantaneous rate of change = 

slope of tangent at P

Rate of Change



�Consider now the average rate of change over smaller and 

smaller intervals by letting x2 approach x1 and therefore 

letting ∆x approach 0 

�The limit of these average rates of change is called the 

(instantaneous) rate of change of y with respect to x  at  

x = x1, which is interpreted as the slope of the tangent to the 

curve  y = f (x)  at  P(x1, f (x1)):

Rate of Change

� We recognize this limit: it is the derivative f ′(x1)



�We know that one interpretation of the derivative f ′(a) is as 

the slope of the tangent line. We now have a second

interpretation:

�if we sketch the curve y = f (x), then the instantaneous rate of 

change is the slope of the tangent to this curve at the point 

where x = a, so the two interpretations are equivalent

Rate of Change



�This means that when the derivative is large (and therefore 
the curve is steep, as at the point P), the y-values  change 
rapidly

�When the derivative is small, the curve is relatively flat (as at 
point Q) and the y-values change slowly

The y-values are changing 
rapidly at P and slowly at Q

Rate of Change



�So, derivative large � the function changes rapidly,

�derivative small � the function changes slowly

�In particular, if  s = f (t)  is the position function of a particle 
that moves along a straight line, then  f ′(a)  is the rate of 

change of the displacement  s with respect to the time  t

�In other words,  f ′(a)  is the velocity of the particle at time

t = a

�and the speed of the particle is the absolute value of the 
velocity, that is, | f ′(a) |

Rate of Change



We have considered the derivative of a function f at a fixed 
number a:

Here we change our point of view and let the number a 

vary. If we replace  a  by a variable x, we obtain

Derivative as a function



� Given any value  x  for which this limit exists, we consider 

the value f ′(x) as the value in x of a function called  f ′

� hence  f ′ is a new function called the derivative of f

� We know that the value of  f ′ at  x, f ′(x), can be 

interpreted geometrically as the slope of the tangent line to 

the graph of f at the point (x, f (x))

� The function  f ′ is called the derivative of  f because it 

has been “derived” from f

� The domain of  f ′ is the set  {x | f ′(x) exists}  and may be 

smaller than the domain of  f

Derivative as a function



Example 

The graph of a function  f is given. Use it to

sketch the graph of the derivative f ′



Example – Solution

We can estimate the value of the derivative at any value of 

x by drawing the tangent at the point (x, f(x)) and 

estimating its slope. For instance, for  x = 5  we draw the 

tangent at  P and estimate its slope to be about  3/2 = 1.5, 

so  f ′(5) ≈ 1.5



Example – Solution

This allows us to plot the point  P′(5, 1.5) on the graph of f ′

directly beneath P. Repeating this procedure at several 

points, we get the graph shown here

cont’d



Example – Solution

Notice that the tangents at A, B, and C are horizontal, so 

the derivative is 0 there and the graph of  f ′ crosses the 

x-axis at the points  A′, B′, and C′, directly beneath A, B, 

and C

Between  A and  B  the tangents have positive slope, 

so f ′(x)  is positive there. But between  B  and  C the 

tangents have negative slope (the increment in the 

function is negative as x increases), so  f ′(x)  is negative 

there

cont’d



Consider f(x) = 

When x is close to 0,  f(x) is also close to 0 but rapidly 

increasing, so f ′(x), which will have expression 1/(2        ) , 

is very large

When x is large, f (x) is flattening (the tangent tend to be 

horizontal on the far right), so f ′(x) becomes small and has 

an horizontal asymptote 

Other Example



If we use the traditional notation y = f(x) to indicate that the 

independent variable is x and the dependent variable is y, 

then some common alternative notations for the derivative 

are as follows:

The symbols D and d/dx are called differentiation 

operators because they indicate the operation of 

differentiation, which is the process of calculating a 

derivative

Other Notations



The symbol dy/dx, which was introduced by Leibniz, should 

not be regarded precisely as a division; it simply refers to 

the fact that the derivative f ′(x), of which it is synonym, is 

obtained as the limit of the incremental ratio ∆y/∆x

Other Notations



If we want to indicate the value of a derivative dy/dx in 

Leibniz notation at a specific value a, we use the notation

which is a synonym for f ′(a)

Other Notations



Where is the function f(x) = |x | differentiable?

Solution:

If x > 0, then |x | = x and we can choose h small enough 

that x + h > 0 and hence |x + h | = x + h. Therefore, for 

x > 0, we have

and so f is differentiable for any  x > 0

Example 



Similarly, for x < 0 we have |x | = –x and h can be chosen 

small enough that  x + h < 0  and so |x + h | = –(x + h)

Therefore, for  x < 0,

and so f  is differentiable for any  x < 0

Example – Solution cont’d



For x = 0 we have to investigate

Let’s compute the left and right limits separately:

and 

Example – Solution cont’d



Since these limits are different, f ′(0) does not exist. Thus f

is differentiable at all  x except 0

A formula for f ′ is given by

and its graph is

Example – Solution

y = f ′(x)

cont’d



The slope of the tangent is indeed 1 for x >0 and -1 for x<0. 

The fact that f ′(0) does not exist is reflected geometrically 

in the fact that the curve y = |x | does not have a tangent 

line at (0, 0)

Example – Solution

y = f (x) = | x |

cont’d



Both continuity and differentiability are desirable properties 

for a function to have. These properties are related:

The converse is false; there are functions that are 

continuous but not differentiable!

Continuity vs Differentiability 



How Can a Function Fail to Be Differentiable? 

We saw that the function y = |x | is not differentiable at 0 

because its graph changes direction abruptly when x = 0

y = f (x) = | x |

When is a function not differentiable?

In general, even if a function f is 

continuous, if its graph has a 

“corner”, it has no tangent there, 

so f is not differentiable there. 

[In trying to compute f ′(a), we find 

that the left and right limits are 

different]



Moreover, if  f is not continuous at a, then  f is clearly not 

differentiable at a. So at any discontinuity  f fails to be 

differentiable

A third possibility of non-differentiability is that the curve 

has a vertical tangent line when  x = a;  that is, f is 

continuous at  a but

When is a function not differentiable?



This means that the tangent lines become steeper and 

steeper as x → a. Here are some examples of how this can 

happen

A vertical tangent

Vertical tangent line 



To summarize, here are 3 sample graphs representing the 

3 possible causes of not differentiability 

Three ways for  f not to be differentiable at a

Non-differentiability 



If  f is a differentiable function, then its derivative f ′ is also 

a function, so f ′ may have a derivative of its own, denoted 

by (f ′)′ = f ′′. This new function f ′′ is called the second

derivative of f because it is the derivative of the derivative 

of f

Using Leibniz notation, we write the second derivative of       

y = f(x) as

Second Derivative 



If  f(x) = x3 – x, find and interpret  f ′′(x)

Solution:

The first derivative of  f(x) = x3 – x is  f ′(x) = 3x2 – 1 

So the second derivative is

Example 



The graphs of  f,  f ′, and  f ′′ are as follows 

Example – Solution cont’d



We can interpret f ′′(x) as the slope of the curve y = f ′(x) at 

the point (x, f ′(x)). In other words, it is the rate of change of 

the slope of the original curve y = f(x) 

Notice that  f ′′(x)  is negative when  y = f ′(x)  has negative 

slope and positive when  y = f ′(x)  has positive slope. 

Example – Solution cont’d



In general, we can interpret a second derivative as a rate of 

change of a rate of change. The most familiar example of 

this is acceleration, which we define as follows.

If s = s(t) is the position function of an object that moves in 

a straight line, we know that its first derivative represents 

the velocity v(t) of the object as a function of time:

v(t) = s ′(t) =

Higher Derivatives 



The instantaneous rate of change of velocity with respect to 

time is called the acceleration a(t) of the object. Thus the 

acceleration function is the derivative of the velocity 

function and is therefore the second derivative of the 

position function:

a(t) = v ′(t) = s ′′(t)

or, in Leibniz notation,

Higher Derivatives 



The third derivative f ′′′ is the derivative of the second 

derivative: f ′′′ = (f ′′)′. So f ′′′(x) can be interpreted as the 

slope of the curve y = f ′′(x) or as the rate of change of f ′′(x)

If  y = f(x), then alternative notations for the third derivative 

are

Higher Derivatives 



The process can be continued. The fourth derivative f ′′′′ is 

usually denoted by f (4)

In general, the  n-th derivative of  f is denoted by  f (n) and 

is obtained from  f by differentiating  n  times 

If y = f(x), we write

Higher Derivatives 



We can also interpret the third derivative physically in the 

case where the function is the position function s = s(t) of 

an object that moves along a straight line

Because s′′′ = (s′′)′ = a′, the third derivative of the position 

function is the derivative of the acceleration function and is 

sometimes called the jerk:

Higher Derivatives 

Thus the jerk j is the rate of change of acceleration 



� In this section we learn how to differentiate constant 
functions, power functions, polynomials, and exponential 
functions

� Let’s start with the simplest
of all functions, the constant 
function f (x) = c

� The graph of this function is
the horizontal line y = c, 
which has slope 0, so we 
simply have f  '(x) = 0 � The graph of f (x) = c is the 

line y = c, so f ′(x) = 0

Computing the Derivatives 



� A formal proof, from the definition of a derivative, is 
also easy:

� In Leibniz notation, we write this rule as follows

Computing the Derivatives 



� We next look at the functions f (x) = xn, where n is a 

positive integer 

� If n = 1, the graph of f (x) = x is the line y = x, which has 

slope 1 

� The graph of f (x) = x is the line y = x, so f  ' (x) = 1

Power Functions 



� So

Power Functions 

� For n = 2 we find the derivative of f (x) = x2 as follows:

lim f (x+h) – f(x)   =
h�0

h

lim (x+h)2 – x2 =
h�0

h

lim (x2 +2xh +h2 – x2)  =
h�0

h

lim 2xh +h2 =
h�0

h

lim 2x+h = 2x
h�0

� So



� For n = 3 we find the derivative of f (x) = x3 as follows:

Power Functions 

lim f (x+h) – f(x)   =
h�0

h

lim (x+h)3 – x3 =
h�0

h

lim (x3 +3x2h +3xh2 +h3 – x3)  =
h�0

h

lim 3x2h +3xh2 +h3 =
h�0

h

lim 3x2 +3xh +h2 =    3x2

h�0



� Thus

� If we continue, we see that:

Power Functions 



Example 

� (a) If f(x) = x6, then f ′(x) = 6x5

� (b) If y = x1000, then y ′= 1000x999

� (c) If y = t4, then         = 4t3

� (d)              = 3r2



� Example:                 =       x½ =     1x
dx

d

Power Functions 

� Even for n not a positive integer, we still have:

2

� Example:                  =       x -1 =  - 1
x

1

dx

d

dx

d

dx

d

x2



� When functions are formed from basic functions by 

addition, subtraction, or multiplication by a constant, their 

derivatives can be calculated in terms of derivatives of the 

basic functions

� For example, the derivative of a constant times a function 

is the constant times the derivative of the function

Derivation rules 



Example



� the derivative of a sum of functions is the sum of the 

derivatives

� The Sum Rule can be extended to the sum of any number 

of functions. For instance, using this theorem twice, we get

(f + g + h)′ = [(f + g) + h)]′ = (f + g)′ + h′ = f ′ + g′ + h′

� Hence, we also have the constant multiplication rule: 

(c f )′ = c f ′

Derivation rules 



� By writing  f – g as  f + (–1)g and applying the Sum Rule 

and the Constant Multiplication Rule, we obtain

( )5610412
3458 +−+−+ xxxxx

dx

d

Derivation rules 

� We obtain                8x7 +60x4 -16x3 +30x2 -6

� Example: find



� Thus the exponential function f (x) = ex has the important property that it is its own 

derivative: the slope of a tangent line to the curve y = ex in a point p is always equal to 

the y-coordinate of the point p 

� We have already seen that in point (0,1) the tangent has slope 1

Exponential function 



Example 
� Given  f (x) = ex – x,  find the derivative

� Solution:

� Using the Difference Rule, we have



� By analogy with the Sum and Difference Rules, one might 
think that the derivative of a product is the product of the 
derivatives

� however, this can be proved wrong by looking at an 
example

� Let  f (x) = x  and  g (x) = x2. Then the Power Rule gives 
f ′(x) = 1 and g ′(x) = 2x

� but  (fg)(x) = x3,  so (fg)′(x) = 3x2 , while f ′g ′ = 2x

� Thus (fg) ′ ≠ f ′g ′

Derivative of a product  



� The correct Product Rule can be discover as follows

� Assume that  u = f(x) and  v = g(x) are both positive 

differentiable functions. Then we can interpret the product 

uv as the white area of this rectangle

� The geometry of the Product Rule

Derivative of a product  



� If  x  changes by an amount ∆x, then the corresponding 
changes in  u  and  v are

∆u = f (x + ∆x) – f (x)        ∆v = g (x + ∆x) – g (x)

� and the new value of the product, (u + ∆u)(v + ∆v), can be 
interpreted as the area of the large rectangle (provided that 
∆u and ∆v happen to be positive)

� The change in the area of the rectangle is

∆(uv) = (u + ∆u)(v + ∆v) – uv = u ∆v + v ∆u + ∆u ∆v 

= the sum of the three colored areas

Derivative of a product  



� If we divide by ∆x, we get

� If we now let ∆x → 0, we get the derivative of uv :

Derivative of a product  



� Notice that  ∆u → 0 as ∆x → 0 since  f is 
differentiable and therefore continuous

� Although we started by assuming (for the geometric 
interpretation) that all the quantities are positive, the 
rule is always true whether u, v, ∆u, ∆v are positive or 
negative

Derivative of a product  

� Hence, we have:



� In words, the Product Rule says that the derivative of a 

product of two functions is the first function times the 

derivative of the second function plus the second function 

times the derivative of the first function

Derivative of a product  



Example 

If   f (x) = xex ,  find  
• (a) the derivative f ′(x) 
� (b) the n-th derivative  f (n)(x)

� Solution:
� (a) By the Product Rule, we have



Example – Solution

� (b) Using the Product Rule a second time, we get

� cont’d



Example – Solution

� Further applications of the Product Rule give

� f ′′′(x) = (x + 3)ex          f  (4)(x) = (x + 4)ex

� In fact, each successive differentiation adds another term 
ex, so

� f   (n)(x) = (x + n)ex

� cont’d



� We find a rule for differentiating the quotient of two 
differentiable functions  u = f (x)  and  v = g (x)  in the same 
way that we found the Product Rule

� If  x, u, and v change by amounts  ∆x, ∆u, and ∆v,  then 
the corresponding change in the quotient  u/v is

Derivative of a quotient  



� so

� As ∆x → 0, ∆v → 0 also, because v = g (x) is differentiable 
and therefore continuous

� Thus, using the Limit Laws, we get

Derivative of a quotient  



� In words, the Quotient Rule says that the derivative of a 

quotient is the denominator times the derivative of the 

numerator minus the numerator times the derivative of the 

denominator, all divided by the square of the denominator

Derivative of a quotient  



Example 

� Let                            Then



� We can summarize all in this Table of Differentiation Formulas

Differentiation rules  



� These are the differentiation formulas for trigonometric 

functions. Remember that they are valid only when x  is 

measured in radians

xx
dx

d
cossin =

xx
dx

d
sincos −=

x
x

dx

d
2

cos

1
tan =

Derivatives of trigonometric functions



� If we want to differentiate the function

the differentiation formulas seen up to now are not enough

� Observe that F is a composite function. In fact, if we let 

y = f (u) = and let u = g(x) = x2 + 1, 

then we can write      y = F (x) = f (g (x)), that is, F = f ° g

� We know how to differentiate both f and g, so it would be useful to 

have a rule that tells us how to find the derivative of F = f ° g using the 

derivatives of f and g

Derivatives of composite functions  



� The derivative of the composite function  f ° g is the 

product of the derivatives of  f  and  g. This is called the 

Chain Rule

The Chain Rule  



Example

� Find F '(x)  if  F (x) = 

� Solution :

� We have expressed F as 
F (x) = (f ° g)(x) = f (g(x)) where f (u) =         and g (x) = x2 + 1 

� Since and   g′(x) = 2x

� we have F ′(x) = f ′(g (x)) � g′ (x)



� Let’s see the special case of the Chain Rule where the outer 

function  f is a power function 

� If  y = [g(x)]n, then we can write  y = f(u) = un where  u = g(x). 

By using the Chain Rule and then the Power Rule, we get

Chain Rule with Power Rule



Example 

� Differentiate y = (x3 – 1)100

� Solution:

� Taking  u = g(x) = x3 – 1  and  y = f(u) = u100 , we have

� = 100(x3 – 1)99  (x3 – 1)

� = 100(x3 – 1)99 � 3x2

� = 300x2(x3 – 1)99



� We can use the Chain Rule to differentiate an exponential function with 
any base a > 0. Recall that a = eln a. So

� ax = (eln a)x = e(ln a)x

� and the Chain Rule gives

� (e(ln a)x) = e(ln a)x (ln a)x

� = e(ln a)x � ln a  = ax ln a 

� because ln a is a constant. So we have the formula

Chain Rule for Exp. functions



Example

� For example, if a = 2, we get

� (2x) =  2x ln 2



� We now see the derivatives of the logarithmic functions  y = logax

and, in particular, the natural logarithmic function  y = ln x

� It can be proved that logarithmic functions are differentiable; this is 

also visible from their graphs

Derivatives of logarithmic functions 



� If the function is composite we can use the Chain Rule

Derivatives of logarithmic functions 

� and d/dx (logax )  =     1

� We have

x ln a



Example 

�Find        ln(sin x)

�Solution: we have



� We know that if  y = f (x),  then the derivative  dy/dx can 
be interpreted as the rate of change of  y with respect to x

� We have seen that, if x changes from x1 to x2, then the 
change in x is

� ∆x = x2  – x1

� and the corresponding change in y is

� ∆y = f (x2) – f (x1)

Derivatives in Sciences 



� The difference quotient

� is the average rate of change of y with respect to x over 
the interval [x1, x2] (the slope of the secant line PQ)

mPQ = average rate of change            
m = f ′(x1) = instantaneous rate 
of change

Derivatives in Sciences 

� Its limit as ∆x → 0 is the 
derivative f ′(x1), the 
instantaneous rate of 

change of y with respect to x 

or the slope of the tangent line 
at P (x1, f (x1))



� If s = f (t) is the position function of a particle that is moving 

in a straight line, then ∆s/∆t represents the average 

velocity over a time period ∆t, and v = ds/dt represents the 

instantaneous velocity (the rate of change of 

displacement with respect to time)

� The instantaneous rate of change of velocity with respect 

to time is acceleration: a (t) = v ′(t) = s″ (t)

Derivatives in Physics



Example 1

�The position of a particle is given by the equation

� s = f (t) = t 3 – 6t 2 + 9t

�where t is measured in seconds and s in meters

�(a) Find the velocity at time t

�(b) What is the velocity after 2 s? After 4 s?

�(c) When is the particle at rest?

�(d) When is the particle moving forward (that is, in the 
positive direction)?



Example 1

�(e) Draw a diagram to represent the motion of the particle

�(f) Find the total distance traveled by the particle during the 
first five seconds

�(g) Find the acceleration at time t and after 4 s

�(h) Graph the position, velocity, and acceleration functions   
for 0 ≤ t ≤ 5

�(i) When is the particle speeding up? When is it slowing 
down?

cont’d



Example 1– Solution

�(a) The velocity function is the derivative of the position 
function

� s = f (t) = t 3 – 6t 2 + 9t

� v (t) =        = 3t 2 – 12t + 9



Example 1– Solution
�(b) The velocity after 2 s means the instantaneous velocity 

when t = 2, that is,

� v (2) =            = 3(2)2 – 12(2) + 9

� = –3 m/s

� The velocity after 4 s is

� v (4) = 3(4)2 – 12(4) + 9

� = 9 m/s

cont’d



Example 1– Solution

�(c) The particle is at rest when v (t) = 0, that is,

� 3t 2 – 12t + 9 = 3(t 2 – 4t + 3)

� = 3(t – 1)(t – 3)

� = 0

� and this is true when t = 1 or t = 3

� Thus the particle is at rest after 1 s and after 3 s

cont’d



Example 1– Solution
�(d) The particle moves in the positive direction when           

v (t) >0, that is

� 3t 2 – 12t + 9 = 3(t – 1)(t – 3) > 0

� This inequality is true when both factors are positive 
(t > 3) or when both factors are negative (t < 1)

� Thus the particle moves in the positive direction in the 
time intervals t < 1 and t > 3

� It moves backward (in the negative direction) 
when 1 < t < 3

cont’d



Example 1– Solution

�(e) Using the information from part (d) we make a  

schematic sketch of the motion of the  

particle back and forth along a line (the s-axis)

cont’d



Example 1– Solution

�(f)  Since it moves back and forth, we need to find separately 

the distances traveled in the time intervals [0, 1], [1, 3], [3, 5]

� The distance traveled in the first second is

� | f (1) – f (0) | = | 4 – 0 | = 4 m

� From t = 1 to t = 3 the distance traveled is

� | f (3) – f (1) | = | 0 – 4 | = 4 m

� From t = 3 to t = 5 the distance traveled is

� | f (5) – f (3) | = | 20 – 0 | = 20 m

� The total distance is 4 + 4 + 20 = 28 m

cont’d



Example 1– Solution

�(g) The acceleration is the derivative of the velocity:

� a (t) =          

� =

� = 6t – 12

� a (4) = 6 (4) – 12

� = 12 m/s2

cont’d



Example 1– Solution

�(h) the graphs of s, v, and a

cont’d



Example 1– Solution

�(i) The particle speeds up when the velocity is positive and    

increasing (v and a are both positive) and also when the    

velocity is negative and decreasing (v and a are both  

negative)

� In other words, the particle speeds up when the velocity    

and acceleration have the same sign

� From the previous figure (blue and green lines) we see 

that this happens when 1 < t < 2  and when t > 3

cont’d



Example 1– Solution

� The particle slows down when v and a have opposite 
signs, that is, when 0 ≤ t < 1 and when 2 < t < 3

cont’d



Example 2

�If a rod or piece of wire is homogeneous, then its linear  

density is uniform and is defined as the mass per unit length 

(ρ = m / l ) and measured in kilograms per meter

�Suppose, however, that the rod is not homogeneous but that 

its mass measured from its left end to a point  x is m = f (x)



Example 2

�The mass of the part of the rod that lies between x = x1 and x

= x2 is given by ∆m = f (x2) – f (x1), so the average density of 

that part of the rod is

�If we now let ∆x → 0 (that is, x2 → x1), we are computing the 

average density over smaller and smaller intervals

�The linear density ρ at x1  is the limit of these average 

densities as  ∆x → 0; that is, the linear density is the rate of 

change (= the derivative) of mass with respect to length

cont’d



Example 2
�Symbolically,

�For instance, if m = f (x) =          where x is measured in 
meters and m in kilograms, then the average density of the 
part of the rod given by  1 ≤ x ≤ 1.2 is

cont’d

� ≈ 0.48 kg/m

�while the linear density right at x = 1 is



Example 3

�A current exists whenever electric charges move. Consider 

electrons moving through a plane surface, shaded red

�If ∆Q is the net charge that passes through this surface 

during a time period ∆t, then the average current during this 

time interval is defined as



�If we take the limit of this average current over smaller and 
smaller time intervals, we get what is called the current  I  at 
a given time t1:

�Thus the current is the rate at which charge flows through a 
surface. It is measured in units of charge per unit time (often 
coulombs per second, called amperes)

Example 3 cont’d



Example 4

� A chemical reaction results in the formation of one or more 
substances (called products) from one or more starting 
materials (called reactants). For instance, the “equation”

2H2 + O2 → 2H2O

means that two molecules of hydrogen and one molecule 
of oxygen form two molecules of water 

� Let’s consider a generic reaction   A + B → C

where A and B are the reactants and C is the product



Example 4

� The concentration of a reactant A is the number of moles 

(1 mole = 6.022 × 1023 molecules) per liter and is denoted 

by [A]

� The concentration varies during a reaction, so [A], [B], 

and [C] are all functions of time (t)

� The average rate of reaction of the product C over a time 

interval  t1 ≤ t ≤ t2 is

cont’d



Example 4

� But chemists are more interested in the instantaneous 

rate of reaction, which is obtained by taking the limit of 

the average rate of reaction as the time interval ∆t 

approaches 0:

� Since the concentration of the product increases as the 

reaction proceeds, the derivative d [C] /dt will be positive, 

and so the rate of reaction of C is positive

cont’d



Example 4

� The concentrations of the reactants, however, decrease 

during the reaction, so their rates of reaction (= the 

derivatives) d [A] /dt and  d [B] /dt are negative

� We can put minus signs in front of these derivatives to 

make them positive numbers

� [A]  and  [B]  each decrease at the same rate that  [C] 

increases, so we have

cont’d



Example 4

� More generally, it turns out that for a reaction of the form

aA + bB → cC + dD

� we have

� The rate of reaction can be determined from data and 

graphical methods. In some cases there are explicit 

formulas for the concentrations as functions of time, which 

enable us to compute the rate of reaction

cont’d



Example 5

� One of the quantities of interest in thermodynamics is 
compressibility. If a given substance is kept at a constant 
temperature, then its volume V depends on its pressure P

� We can consider the rate of change of volume with respect 
to pressure—namely, the derivative dV/dP. As P 

increases, V decreases, so dV/dP < 0

� The compressibility is defined by introducing a minus 
sign and dividing this derivative by the volume V:



Example 5

� Thus β measures how fast, per unit volume, the volume of 

a substance decreases as the pressure on it increases at 

constant temperature

� For instance, the volume V (in cubic meters) of a sample of 

air at 25°C is related to the pressure P (in kilopascals) by 

the equation

cont’d



Example 5

� The rate of change of V with respect to P when P = 50 kPa

is given by the derivative of the function

cont’d



Example 5

� The compressibility at that pressure is

cont’d



Example 6 

� Let n = f (t) be the number of individuals in an animal or 
plant population at time t

� The change in the population size between the times t = t1
and t = t2 is  ∆n = f (t2) – f (t1),  and so the average rate of 
growth during the time period  t1 ≤ t ≤ t2  is

� The instantaneous rate of growth is obtained from this 
average rate of growth by letting the time period ∆t 

approach 0:



Example 6

� Strictly speaking, this is not quite accurate because the 

actual graph of a population function n = f (t) would be a 

step function that is discontinuous whenever a birth or 

death occurs and therefore not differentiable

� However, for a large enough 

population, we can replace the 

graph by a smooth approximating

A smooth curve approximating
a growth function

cont’d



Example 6

� To be more specific, consider a population of bacteria in a 
homogeneous nutrient medium

� Suppose that, by sampling the population at certain 
intervals, it is determined that the population doubles every 
hour

� If the initial population is n0 and the time t is measured in 
hours, then

� f (1) = 2f (0) = 2n0

� f (2) = 2f (1) = 22n0

cont’d



Example 6

� f (3) = 2f (2) = 23n0

� and, in general,

� f (t) = 2tn0

� The population function is n = n02
t

� We know that the derivative of an exponential function is

cont’d



Example 6

� So the rate of growth of the bacteria population at time t is

� For example, suppose that we start with an initial 
population of n0 = 100 bacteria. Then the rate of growth 
after 4 hours is

cont’d

� = 1600 ln 2    ≈ 1109

� This means that, after 4 hours, the bacteria population is 
growing at a rate of about 1109 bacteria per hour



Example 7

� Consider the flow of blood through a blood vessel, such as 

a vein or artery. We can model the shape of the blood 

vessel by a cylindrical tube with radius R and length l

� Because of friction at the walls of the tube, the velocity v of 

the blood is greatest along the central axis of the tube and 

decreases as the distance r from the axis increases until v 

becomes 0 at the wall

Blood flow in an artery



Example 7

� The relationship between  v  and  r  is given by the law of

laminar flow discovered by the French physician 
Jean-Louis-Marie Poiseuille in 1840

� This law states that

� where η is the viscosity of the blood and P is the pressure 
difference between the ends of the tube

� If P and l are constant, then v is a function of r with 
domain [0, R]

cont’d



Example 7

� The average rate of change of the velocity as we move 
from r = r1 outward to r = r2 is given by

� and if we let ∆r → 0, we obtain the velocity gradient, that 
is, the instantaneous rate of change of velocity with 
respect to r :

cont’d



Example 7

� Using the law, we obtain

� For one of the smaller human arteries we can take 

η = 0.027, R = 0.008 cm, l = 2 cm, and 

P = 4000 dynes/cm2, which gives

cont’d



Example 7

� ≈ 1.85 × 104(6.4 × 10–5 – r2) 

� At r = 0.02 cm the blood is flowing at a speed of

� v (0.002) ≈ 1.85 × 104(64 × 10–6 – 4 × 10–6) 

� = 1.11 cm/s

� and the velocity gradient at that point is

cont’d



Example 7

� To better view what this statement means, let’s change our 
units from centimeters to micrometers  
(1 cm = 10,000 µm). Then the radius of the artery is 80 µm

� The velocity at the central axis is 11,850 µm/s, which 
decreases to 11,110 µm/s at a distance of r = 20 µm

� The fact that dv/dr = –74 (µm/s)/µm means that, when 
r = 20 µm, the velocity is decreasing at a rate of about 
74 µm/s for each micrometer that we proceed away from the 
center

cont’d



Example 8

� Suppose C(x) is the total cost that a company incurs in 

producing x units of a certain commodity

� The function C is called a cost function. If the number of 

items produced is increased from x1 to x2, then the 

additional cost is ∆C = C (x2) – C (x1), and the average rate 

of change of the cost is



Example 8

� The limit of this quantity as ∆x → 0, that is, the 
instantaneous rate of change of cost with respect to the 
number of items produced, is called the marginal cost by 
economists:

� Note that, when x takes on only integer values (for 
example we produce cars), it may not make literal sense to 
let ∆x approach 0, but we can always replace C(x) by a 
smooth approximating function as in Example 6

cont’d



Example 8

� It is often appropriate to represent a total cost function by a 

polynomial

� C (x) = a + bx + cx2 + ,

� where a represents the overhead fixed costs (rent, heat, 

maintenance) and the other terms represent the cost of raw 

materials, labor, and so on. (The cost of raw materials may 

be proportional to x, but labor costs might sometimes 

depend partly on higher powers of x because of possible 

overtime costs and inefficiencies involved in large-scale 

operations)

cont’d



Example 8

� For instance, suppose a company has estimated that the 
cost (in dollars) of producing x items is

� C (x) = 10,000 + 5x + 0.01x2

� Then the marginal cost function is

� C ′(x) = 5 + 0.02x

� The marginal cost at the production level of 500 items is

� C ′(500) = 5 + 0.02(500)

� = $15/ item

cont’d



Example 8
� This gives the rate at which costs are increasing with 

respect to the production level when x = 500 and predicts 
the cost of the 501st item

� The actual cost of producing the 501st item is

� C (501) – C (500) = [10,000 + 5(501) + 0.01(501)2]

� – [10,000 + 5(500) + 0.01(500)2]

� = $15.01

� Notice that    C ′(500) ≈ C (501) – C (500)

� Thus the marginal cost of producing n units is 

approximately equal to the cost of producing one more unit 

[the (n +1)-st unit]



Derivatives in Other Sciences

� Rates of change occur in all the sciences. A geologist is interested in 

knowing the rate at which an intruded body of molten rock cools by 

conduction of heat into surrounding rocks

� An engineer wants to know the rate at which water flows into or out of 

a reservoir 

� An urban geographer is interested in the rate of change of the 

population density in a city as the distance from the city center 

increases

� A meteorologist is concerned with the rate of change of atmospheric 

pressure with respect to height



A Single Idea, Many uses

� Velocity, density, current, power, and temperature gradient 

in physics; rate of reaction and compressibility in 

chemistry; rate of growth and blood velocity gradient in 

biology; marginal cost and marginal profit in economics; 

rate of heat flow in geology; rate of improvement of 

performance in psychology; rate of spread of a rumor in 

sociology—these are all special cases of a single 

mathematical concept, the derivative



A Single Idea, Many uses

� A single abstract mathematical concept (such as the 
derivative) can have different uses and interpretations in 
each of the sciences

� When we develop the properties of the mathematical 
concept once and for all, we can then turn around and 
apply these results to all of the sciences

� This is much more efficient than developing properties of 
special concepts in each separate science



Examples of derivatives

� f (x) = √x

� f’ (x) =   ½ x -1/2 =
1

2√ x

� f (x) =  (2x+3)4               it is a composite function

� f’ (x) =  4(2x+3)3 2 =  8(2x+3)3

� f (x) = √ 1 + sin x       it is a composite function

� f’ (x) =          1           (0 +cos x)  =       cos x    

2√ 1 + sin x 2√ 1 + sin x



Examples of derivatives

� f (x) = e√x2+1

� f’ (x) =  e√x2+1       1          (2x)  =   x e√x2+1

cont’d

� f (x) =  (3x2+x)2 (2x-1)

� f’ (x) =  2(3x2+x)(6x+1) (2x-1) + (3x2+x)2 (2) = 

� 2(3x2+x) [(6x+1) (2x-1) + (3x2+x) ] = 

� 2x(3x+1) [12x2 +2x -6x -1 +3x2 +x] = 

� 2x (3x+1) (15x2 -3x -1) =

it is a composite of 3 functions: exponential, 
root and polynomial !

2√x2+1 √x2+1

a composite function multiplied 
by another function !



Examples of derivatives

� f (x) =   (ln x) 2

� f’ (x) =  2 ln x (1/x) (ln x +1) - (ln x)2 (1/x)  = 

� (1/x)(ln x)(2 ln x +2 - ln x)  = 

� (ln x)(ln x +2)

cont’d

(ln x)+1

a composite function divided by 
another function !

(ln x +1)2

(ln x +1)2

x(ln x +1)2



Examples of derivatives

� f (x) =   x e -3x

� f’ (x) =  e-3x (1) + x e-3x(-3)  = e-3x (1 -3x)

cont’d

a product of a function by a 
composite function !

� f (x) =  x x

� we need to rewrite it as f (x) =  e ln xx = e x ln x

� f’(x) = e x ln x [ ln x (1) + (1/x) x ] = 

� x x ( ln x + x/x ) =

� x x ( ln x + 1)

a function at the power of another function ! It is 
neither a simple power nor a simple exponential


