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Sequences
� Some functions with domain N (the set of natural numbers) are 

f : N → R

n → f (n)

� Example: f(n) =     1

n 

� When we increase  n  to infinity, we want “the limit of the sequence  

an as  n  goes to infinity” and use the notation

� its values are: 1, 1/2, 1/3, 1/4, 1/5, etc.

lim
n → ∞

� They are called sequences, the generic element is often written an

and the whole sequence is often written {an }

an

� Example: lim 1
n → ∞ n 

is 0  (it gets smaller as n increases)



Limits of a Sequence

� Formal Definition of Limits The sequence {an} has limit L, written as

n → ∞
or  {an} L

if, for every ε > 0, there exists an integer N (depending on ε) such 

that  |an − L | < ε whenever n > N

lim an = L →

� If the limit exists, the sequence is called convergent and we say that 

an converges to L as  n  tends to infinity. If the sequence has no limit, 

it is called divergent

In other words, if we have a value over which the sequence “stabilizes”, 

we say that it converges to that value, otherwise it does not converge

This structure of formal definition, with minor changes, can be used for all

other limits



Limits of a Sequence

� A sequence {an} converges to -∞, or diverges to -∞, or goes to -∞, written

n → ∞
or  {an} -∞

if, for every M > 0, there exists an integer N (depending on M) such that  

an < -M whenever n > N

lim an = -∞ →

� A sequence {an} converges to +∞, or diverges to +∞, or goes to +∞, written

n → ∞
or  {an} +∞

if, for every M > 0, there exists an integer N (depending on M) such that  

an > M whenever n > N

lim an = +∞ →

We will now see limits for generic functions



The Tangent Problems
� A tangent to a curve is a line that touches the curve

� For a circle, we could simply follow Euclid and say that a 
tangent is a line that intersects the circle once and only once

� However, for more complicated curves, this definition may be 
inadequate



The Tangent Problems

� Consider two lines l and t passing through a point P on a 

curve C

� The line l intersects 

C  only once, but it

certainly does not 

look like what we 

think of as a tangent

� The line  t, on the other hand, looks like a tangent but it 

intersects  C twice



Example 

�Find an equation of the tangent line to the parabola   
y = x2    at the point P(1, 1)

Solution:
�We can find an equation of the tangent line t as soon 
as we know its slope m

�The difficulty is that we know only one point, P, on t, 
whereas we need two points to compute the slope



Example  – Solution
� We can compute an approximation to m by choosing a 
nearby point Q(x, x2) on the parabola and computing the 
slope  mPQ of the secant line PQ

� A secant line is a line that intersects a curve more 
than once

cont’d



Example  – Solution
�We choose x ≠ 1 so that Q ≠ P . Then

�For instance, for the point Q(1.5, 2.25) we have

cont’d

yQ -yP

xQ- xP

mPQ =



Example  – Solution
The following tables show the values of mPQ for several 
values of x close to 1
The closer Q is to P, the closer x is to 1 and, it appears 

from the tables, the closer mPQ is to 2

cont’d



Example  – Solution
� This suggests that the slope of the tangent line  t should be  m = 2

� We say that the slope of the tangent line is the limit of the slopes of the 

secant lines, and we express this symbolically by writing

� Assuming that the slope of the tangent line is indeed 2, we use the 

point-slope form of the equation of a line to write the equation of the 

tangent line through (1, 1) as

y – 1 = 2(x – 1) or      y = 2x – 1

cont’d



Example  – Solution cont’d

Q approaches P from the right



Example  – Solution

� As Q approaches P along the parabola, the corresponding secant 

lines rotate about P and approach the tangent line t

cont’d

Q approaches P from the left



Example: velocity

�Suppose that a ball is dropped from a very high building. Find the 
velocity of the ball after 5 seconds

�Solution:
Through experiments carried out four centuries ago, Galileo 
discovered that the distance fallen by any freely falling body is 
proportional to the square of the time it has been falling (by 
neglecting air resistance!)



Example velocity – Solution

� If the distance fallen after t seconds is denoted by s (t) and 

measured in meters, then Galileo’s law is expressed by the 

equation

s (t) = 4.9t 2

� But this rule give us the distance, we want the velocity which is 

distance/time

� The velocity is clearly not constant, since the ball is accelerating. 

We need the instantaneous velocity

cont’d



Example velocity – Solution

� However, we can approximate the desired quantity by 
computing the average velocity over the brief time interval of a
tenth of a second from t = 5 to t = 5.1

cont’d



Example velocity – Solution

� The following table shows the results of similar calculations of 
the average velocity over successively smaller time periods

cont’d



Example velocity – Solution

� It appears that as we shorten the time period, the 
average velocity is becoming closer to 49 m/s

� The instantaneous velocity when t = 5 is defined to 
be the limiting value of these average velocities over 
shorter and shorter time periods that start at t = 5

� Thus the (instantaneous) velocity after 5 s is 

v = 49 m/s

cont’d



� Let’s investigate the behavior of an example function f defined by  

f (x) = x2 – x + 2  for values of x near 2

� for values of x close to 2 (but not equal to 2) we have

What is the limit of a function? 



� From the table and the graph of f (a parabola) we see that, when x is close to 

2 (on either side of 2), f (x) is close to 4

What is the limit of a function? 



� In fact, it appears that we can make the values of f (x) as close as we 
like to 4 by taking x sufficiently close to 2.

� We express this by saying “the limit of the function 
� f (x) = x2 – x + 2   as x approaches  2  is equal to 4”

� The notation for this is

What is the limit of a function? 



Limit of a function



� An alternative notation for

is    f (x) → L    as x → a

which is usually read “f (x) approaches L as x approaches a”

� Notice “but x ≠ a” in the definition of limit. This means that in finding the 

limit of f (x) as x approaches a, we never consider x = a. In fact, f (x) 

need not even be defined when x = a. The only thing that matters is 

how f is defined near  a

Limit of a function



� The graphs of three functions. Note that in part (c), f (a) is not defined and in 

part (b), f (a) ≠ L

� But in each case, regardless of what happens at a, it is true that limx→a f (x) = L

in all three cases

Limit of a function



Example

� Guess the value of

� Solution:

Notice that the function f(x) = (x – 1)/(x2 – 1) is not 

defined when x = 1, but that doesn’t matter because 

the definition of limx→a f(x) says that we consider 

values of x that are close to a but NOT equal to a



Example – Solution

� The tables below give values of f (x) (correct to six decimal places) for values 
of x that approach 1 (but are not equal to 1)

� On the basis of the values in the tables, we make the guess that

cont’d



� Now let’s change f slightly by giving it the value 2 when

x = 1 and calling the resulting function g:

Example – Solution



� This new function g still has the same limit as x approaches 1

Example – Solution



� Consider a function  H defined by

.

� H (t) approaches 0 as t approaches 0 from the left and H (t) approaches 1 as t

approaches 0 from the right.

� We indicate this situation symbolically by writing              

One-sided limits

� “t → 0–” means that we consider only values of t that are less than 0

� “t → 0+” means that we consider only values of t that are greater than 0



Limit from right

� Given a function f : (x’,b) → R we say that its limit when x tends to x’

from right is L (or that  f tends to L when x tends to x’ from the right), 

written

x → x’+

or  f(x) L

if, for every ε > 0, there exists a δ > 0 (depending on ε) such that   

|f(x) − L | < ε whenever   x ∈ [x’, x’+ δ)

lim f(x) = L →

� In other words, we approach x’ only from the right, what happens on x’

or on its left doesn’t matter

x → x’+



Limit from left

� Given a function f : (a, x’) → R we say that its limit when x tends to x’

from left is L (or that  f tends to L when x tends to x’ from the left), 

written

x → x’-

or  f(x) L

if, for every ε > 0, there exists a δ > 0 (depending on ε) such that   

|f(x) − L | < ε whenever   x ∈ (x’- δ, x’]

lim f(x) = L →

� Here we approach x’ only from the left, what happens on x’ or on its

right doesn’t matter

x → x’-



� Approching from left or from right is illustrated below

One-sided limits



� By comparing the definition of limit of a function with the 

definitions of one-sided limits, we see that

Limit vs. One-sided limits



Example 

� The graph of a function g is given below. Use it to find the values 

(if they exist) of the following:



Example  – Solution
� From the graph we see that the values of g(x) approach 3 as x

approaches 2 from the left, but they approach 1 as

x approaches 2 from the right.

� Therefore       

� (c) Since the left and right limits are different, we conclude  

that limx→2 g(x) does not exist



Example – Solution

� The graph also shows that

� (f) This time the left and right limits are the same and so, we 
have

� Despite this fact, notice that  g(5) ≠ 2

cont’d



� Another notation for limx→a f(x) = ∞ is

f(x) → ∞ as  x → a

Infinite limits



� Again, the symbol ∞ is not a number, but the expression  

limx→a f(x) = ∞ is often read as

� “the limit of f(x), as  x approaches  a, is infinity”

� or     “f(x) becomes infinite as  x approaches  a”

� or “f(x) increases without bound as  x approaches a”

Infinite limits



� This definition can be illustrated graphically as

Infinite limits



� A similar sort of limit, for functions that become large 
negative as x gets close to a, is

Infinite limits



� The symbol limx→a f (x) = – ∞ can be read as “the limit of f (x), 
as x approaches a, is negative infinity” or “f (x) decreases 
without bound as x approaches a.” As an example we have

Infinite limits



� Similar definitions can be given for the one-sided infinite limits

� remembering that “x → a – ” means that we consider only 
values of x that are less than a, and similarly “x → a+ ” means 
that we consider only x > a

Infinite limits



� Illustrations of those four cases are given here

Infinite limits



Vertical Asymptotes



Limits at infinity

� Given a function f : [a,+∞) → R we say that its limit when x tends to 

+infinity is L (or that  f tends to L when x tends to +infinity), written

x → + ∞

or  f(x) L

if, for every ε > 0, there exists a ∆ > 0 (depending on ε) such that   

|f(x) − L | < ε whenever   x > ∆

lim f(x) = L →

x → + ∞



Limits at infinity

� Given a function f : [a,+∞) → R we say that its limit when x tends to + ∞

is + ∞ (or that  f tends to + ∞ when x tends to + ∞), written

x → + ∞

or  f(x) + ∞

if, for every M > 0, there exists a ∆ > 0 (depending on M) such that   

f(x) > M whenever   x > ∆

lim f(x) = + ∞ →

x → + ∞



Limits at infinity

� Given a function f : [a,+∞) → R we say that its limit when x tends to + ∞

is -∞ (or that  f tends to -∞ when x tends to + ∞), written

x → + ∞

or  f(x) - ∞

if, for every M > 0, there exists a ∆ > 0 (depending on M) such that   

f(x) < -M whenever   x > ∆

lim f(x) = - ∞ →

x → + ∞



Limits at infinity

� Given a function f : (-∞, b] → R we say that its limit when x tends to -∞

is L (or that  f tends to L when x tends to -∞), written

x → -∞

or  f(x) L

if, for every ε > 0, there exists a ∆ > 0 (depending on ε) such that   

|f(x) − L | < ε whenever   x < -∆

lim f(x) = L →

x → -∞



Limits at infinity

� Given a function f : (-∞, b] → R we say that its limit when x tends to -∞

is + ∞ (or that  f tends to + ∞ when x tends to -∞), written

x → -∞

or  f(x) + ∞

if, for every M > 0, there exists a ∆ > 0 (depending on M) such that   

f(x) > M whenever   x < -∆

lim f(x) = + ∞ →

x → -∞



Limits at infinity

� Given a function f : (-∞, b] → R we say that its limit when x tends to -∞

is -∞ (or that  f tends to -∞ when x tends to -∞), written

x → -∞

or  f(x) - ∞

if, for every M > 0, there exists a ∆ > 0 (depending on M) such that   

f(x) < -M whenever   x < -∆

lim f(x) = - ∞ →

x → -∞



� Find the vertical asymptotes of f (x) = tan x

� Solution:

Since

� there are potential vertical asymptotes where cos x = 0 

� In fact, since cos x → 0+ as x → (π /2)– and cos x → 0– as 

x → (π /2)+, whereas sin x is positive when x is near π /2, we have

Example



� This shows that the line x = π /2 is a vertical asymptote. Similar 

reasoning shows that the lines x = (2n + 1)π /2, where n is an 

integer, are all vertical asymptotes of   f (x) = tan x

Example – Solution

y = tan x

cont’d



� we use the following properties of limits, called the 
Limit Laws, to calculate limits

Limits Laws to compute limits



These five laws can be stated verbally as follows:

� Sum Law

1. The limit of a sum is the sum of the limits

� Difference Law

2. The limit of a difference is the difference of the limits

� Constant Multiple Law

3. The limit of a constant times a function is the constant times the 
limit of the function

� Product Law

4. The limit of a product is the product of the limits

� Quotient Law

5. The limit of a quotient is the quotient of the limits (provided that the limit of 
the denominator is not 0)

Limits Laws to compute limits



Example

� Use the Limit Laws and the graphs of  f and  g given here to 
evaluate the following limits, if they exist



Example – Solution (A)

� From the graphs of f and g we see that

� and

� Therefore we have

(by Law 1)

(by Law 3)



Example – Solution (B)

� We see that limx →1 f(x) = 2. But limx → 1 g(x) does not 
exist because the left and right limits are different:

� So we can’t use Law 4 for the desired limit. But we can 
use Law 4 for the one-sided limits:

� The left and right limits aren’t equal, so limx → 1 [f(x)g
(x)] does not exist.

cont’d



Example – Solution (C)

� The graphs show that

� and

� Since the limit of the denominator

is 0, we can’t use Law 5. 

� The given limit does not exist because the denominator 

approaches 0 and the sign is different if from right or from 

left, while the numerator approaches a nonzero number. 

We can only consider the limits from right or from left.

cont’d



� If we use the Product Law repeatedly with g(x) = f  (x), we obtain 
the following law

� In applying these six limit laws, we also need to use two basic 
limits:

� These limits are obvious from an intuitive point of view (state 
them in words or draw graphs of y = c and y = x)

Power Law

Limits Laws to compute limits



� If we now put f(x) = x in Law 6 and use Law 8, we get 
another useful special limit

� A similar limit holds for roots as follows

� More generally, we have the following law

Root Law

Limits Laws to compute limits



� Functions with the Direct Substitution Property are called 
continuous at a

� We can also use the following property

Limits Laws to compute limits

� Another way to compute limits is by computing both left and 
right limits and see if they are equal. Limits laws also hold for 
one-sided limits



The next two theorems give two additional properties of 

limits

Limits Laws to compute limits



� The Squeeze Theorem, which is sometimes called the 
Sandwich Theorem or the Pinching Theorem, is 
illustrated here 

� It says that if g(x) is squeezed between f(x) and h(x) 
near a, and if  f and  h have the same limit  L  at  a, 
then g is forced to have the same limit  L  at a

Limits Laws to compute limits



Using the Precise Definition of Limit

To motivate the precise definition of a limit, let’s consider the 

function

It is intuitively clear that, when  x is close to 3 but  x ≠ 3, then  

f (x) is close to 5, and so  limx → 3f (x) = 5

To obtain more detailed information about how f (x) varies 

when x is close to 3, we ask the following question: 

How close to  3  does  x have to be so that  f (x) differs from  

5  by less than  0.1 ?



The distance from  x to  3  is  |x – 3|  and the distance from 

f(x)  to  5  is  | f(x) – 5|, so our problem is to find a number δ

such that 

| f(x) – 5| < 0.1   if    |x – 3| < δ (but x ≠ 3)

If  |x – 3| > 0, then  x ≠ 3, so an equivalent formulation of our 

problem is to find a number  δ such that

| f(x) – 5| < 0.1   if   0 < |x – 3| < δ

Using the Precise Definition of Limit



If  0 < | x – 3 | < (0.1)/2 = 0.05  then

| f (x) – 5 | = | (2x – 1) – 5 | = | 2x – 6 | 

= 2| x – 3 | < 2(0.05) = 0.1

that is,

| f (x) – 5 | < 0.1          if         0 < | x – 3 | < 0.05

Thus an answer to the problem is given by  δ = 0.05 :  

if  x is within a distance of  0.05  from  3, then  f (x) will be 

within a distance of 0.1 from 5

Using the Precise Definition of Limit



If we ask for 0.01 instead of 0.1 in our problem, then by using 

the same method we find that f (x) will differ from 5 by less 

than 0.01  if x differs from 3 by less than  (0.01)/2 = 0.005:

| f (x) – 5 | < 0.01         if        0 < | x – 3 | < 0.005 

Similarly, 

| f (x) – 5 | < 0.001        if       0 < | x – 3 | < 0.0005 

The numbers 0.1, 0.01 and 0.001 that we have considered 

may be seen as error tolerances that we might allow

Using the Precise Definition of Limit



For 5 to be the precise limit of  f (x)  as  x approaches 3, we 

must not only be able to bring the difference between f (x) 

and 5 below each of these three numbers; we must be able 

to bring it below any positive number 

And, by the same reasoning, we can! We write  ε to denote 

an arbitrary positive number, then we find as before that

| f ( x) – 5 | < ε if      0 < | x – 3 | < δ = 

Using the Precise Definition of Limit



This says that f (x) is close to 5 when x is close to 3 because      

it says that we can make the values of f (x) within an arbitrary 

distance  ε from 5 by taking the values of  x within a 

distance ε/2  from 3 (but x ≠ 3)

This can also be rewritten as: 

If 3 – δ < x < 3 + δ (x ≠ 3)

Then 5 – ε < f ( x) < 5 + ε

Using the Precise Definition of Limit



The statement “By taking the value of x (≠ 3) in the interval 

(3 – δ, 3 + δ ) we can make the value of f (x) lie in the interval 

(5 – ε, 5 + ε)”

exactly corresponds to the precise definition of limit already 

seen

Using the Precise Definition of Limit



In other words, 

limx → a f (x) = L

means that the values of f (x) can be made as close as we 

please to L by taking x close enough to a (but not equal to a)

Using the Precise Definition of Limit



We can also reformulate the precise definition of limit in terms of 
intervals by observing that the inequality  | x – a | < δ is equivalent 
to  –δ < x – a < δ,  which in turn can be written as 
a – δ < x < a + δ
Also  0 < | x – a |  is true if and only if  x – a ≠ 0, that is,   x ≠ a

Interval view of Limit Definition

Similarly, the inequality  | f ( x) – L | < ε is equivalent to the pair of  
inequalities  L – ε < f ( x) < L + ε. Therefore, in terms of intervals, 
the definition means that for every  ε > 0 (no matter how small ε
is) we can find  δ > 0  such that if  x lies in the open interval 
(a – δ, a + δ) and x ≠ a, then f (x) lies in the open interval 
(L – ε, L + ε)



We can view this geometrically by using the following 
arrow diagram of f

Geometric view of Limit Definition



The definition of limit says that if any small interval 

(L – ε, L + ε)  is given around  L, then we can find an interval 

(a – δ, a + δ )  around  a such that  f maps all the points in 

(a – δ, a + δ )  (except possibly a) into the interval 

(L – ε, L + ε)

Geometric view of Limit Definition



We can also view this on the graph of  f.  Given ε > 0,  we 

draw the horizontal lines  y = L + ε and y = L – ε on the 

graph of f

Geometric view of Limit Definition



If  limx → a f (x) = L, then we can find a number  δ > 0 such that, 

if we take  x in the interval  (a – δ, a + δ ) (but x ≠ a), then the 

curve  y = f (x)  lies between the lines  y = L – ε and  y = L + ε

Note that, when δ has been found, then any smaller δ will also 

work

Geometric view of Limit Definition



The process must work for every positive number ε, no 

matter how small it is:  if a smaller ε is chosen, we may 

simply need a smaller δ

Geometric view of Limit Definition



Example

Use the graph to find a number δ such that 

if | x – 1 | < δ then     | (x3 – 5x + 6) – 2 | < 0.2

In other words, find a number δ that corresponds to  ε = 0.2  

in the definition of a limit for the function   f (x) = x3 – 5x + 6

with  a = 1 and  L = 2



Example – Solution

The graph of  f is here; we are interested in the region 
near the point (1, 2)

Notice that we can rewrite the inequality

|(x3 – 5x + 6) – 2| < 0.2

as                        1.8 < x3 – 5x + 6 < 2.2



Example – Solution
So we need to determine the values of  x for which the 
curve  y = x3 – 5x + 6  lies between the horizontal lines 
y = 1.8  and  y = 2.2

Therefore we graph the curve y = x3 – 5x + 6 and the 
two lines  y = 1.8  and y = 2.2  near the point (1,2)

cont’d



Example – Solution

Then we estimate that the x-coordinate of the point of 
intersection of the line y = 2.2 and the curve   y = x3 – 5x
+ 6 is about 0.92 

Similarly, y = x3 – 5x + 6 intersects the line y = 1.8 when 
x ≈ 1.12. So, we can say that

if     0.92 < x < 1.12     then    1.8 < x3 – 5x + 6 < 2.2  

This interval (0.92, 1.12) is not symmetric about x = 1. 
The distance from x = 1 to the left endpoint is 1 – 0.92 = 
0.08 and the distance to the right endpoint is 0.12

cont’d



Example – Solution

We choose δ as the smaller of these numbers: δ = 0.08

Then we can rewrite our inequalities in terms of 
distances as follows:

if    | x – 1 | < 0.08     then    | (x3 – 5x + 6) – 2 | < 0.2  

This just says that by keeping  x within 0.08 of 1, we are 
able to keep  f(x)  within  0.2  of 2

We chose δ = 0.08, but any smaller positive value of δ
would also have worked

cont’d



Example 2

Prove that 

Solution:
1. Preliminary analysis of the problem (guessing a value  

for δ)

Let ε be a given positive number. We want to find  
a number δ such that

if    0 < |x – 3| < δ then      | (4x – 5) – 7| < ε

But | (4x – 5) – 7| = |4x – 12| = |4(x – 3)| = 4|x – 3|



Example 2 – Solution

Therefore we want  δ such that

if    0 < |x – 3| < δ then      4|x – 3| < ε

that is,      if    0 < |x – 3| < δ then     |x – 3| < 

This suggests that we should choose δ = ε/4

cont’d



Example 2 – Solution
2. Proof (showing that this δ works). Given  ε > 0, choose         
δ = ε/4.   If  0 < |x – 3| < δ,  then

|(4x – 5) – 7| = |4x – 12| = 4|x – 3| < 4δ =            = ε

Thus

if    0 < |x – 3| < δ then       | (4x – 5) – 7| < ε

cont’d



Example 2 – Solution

Therefore, by the definition of a limit,

This example is illustrated as follows 

cont’d



Example 3

Prove that



Example 3 – Solution

1. Guessing a value for δ. Let ε be a given positive number.  
Here a = 0 and L = 0, so we want to find a number δ
such that

if    0 < x < δ then      |      – 0| < ε

that is,

if   0 < x < δ then           < ε

or, squaring both sides of the inequality      < ε, we get

if   0 < x < δ then      x < ε2

This suggests that we should choose δ = ε2



Example 3 – Solution

2. Showing that this δ works. Given ε > 0, let δ = ε2. If             

0 < x < δ, then 

so       |      – 0| < ε

this shows that

cont’d



Geometric view of Infinite Limits



This says that the values of f (x) can be made arbitrarily 

large (larger than any given number M) by taking x close 

enough to a (within a distance δ, where δ depends on M, but 

with x ≠ a)

Geometric view of Infinite Limits

Given any M, we can find a  δ > 0  such that if  x is in the 
interval  (a – δ, a + δ )  but  x ≠ a, then the curve  y = f (x)  
lies above the line  y = M

If a larger  M is chosen, then we may need a smaller δ



Example 

Prove that

Solution:
Let M be a given positive number. We want to find a 
number δ such that

if    0 < |x| < δ then      1/x2 > M

But 

So if we choose δ = and  0 < |x| < δ = , then      

1/x2 > M. This shows that  1/x2 → as x → 0



�Graphically it says that by choosing x large enough 
(larger than some number N) we can make the graph 
of f lie between the given horizontal lines  y = L – ε

and y = L + ε

Geometric view of Limits at infinity



�This must be true no matter how small we choose ε. 
If a smaller value of ε is chosen, then a larger value of 
N may be required

Geometric view of Limits at infinity



Example
�Prove that             = 0 

�Solution:
Given ε > 0, we want to find N such that

if    x > N     then

In computing the limit we may assume that x > 0

Then 1/x < ε x > 1/ε



Example – Solution

�Let’s choose N = 1/ε.  So

If                            then

�Therefore      
=  0

cont’d



Example – Solution

�The figure shows some values of ε and the 
corresponding values of N

cont’d



�Finally we note that an infinite limit at infinity can be 
seen as follows 

Geometric view of infinite limits at infinity



� In some cases the limit of a function as x approaches a is 

simply the value of the function at a. Functions with this 

property are called continuous at a

� Physical phenomena are continuous more often than not

� Geometrically, you can think of a continuous function as a 

function whose graph has no break in it. The graph can be 

drawn without removing your pen from the paper

Continuity



� This definition of continuity requires three things:

1. f(a) is defined (that is, a is in the domain of f )

2. exists

3.

� The definition says that  f is continuous at  a if  f(x) approaches  
f(a)  as  x  approaches  a. Thus a continuous function  f has the 
property that a small change in  x produces only a small change in  
f(x)

Continuity



� In fact, the change in f(x) can be kept as small as we 

please by keeping the change in x sufficiently small

� If  f is defined near a (in other words,  f is defined on 

an open interval containing a, except perhaps at a), we 

say that  f is discontinuous at a (or f has a 

discontinuity at a) if  f is not continuous at a

Continuity



Example 

� We have the graph of a function f. At which values is f
discontinuous? Why?

� Solution:
� It looks as if there is a discontinuity when a = 1
because the graph has a break there. The reason is that 
f(1) is not defined



Example  – Solution
�The graph also has a break when a = 3, but the reason 
for the discontinuity is different. Here, f(3) is defined, but 
limx→3 f(x) does not exist (because the left and right 
limits are different). So f is discontinuous at 3 

�What about a = 5? Here, f(5) is defined and limx→5 f(x) 
exists (because the left and right limits are the same) 

�But

So f is discontinuous at 5

cont’d



Example 
� Where are each of the following functions 
discontinuous?

� Solution:

� (a) Notice that f(2) is not defined, so f is discontinuous 
at 2. Later we’ll see why  f is continuous at all other 
values



Example – Solution
� (b) Here f(0) = 1 is defined but

is not finite. So f is discontinuous at 0

�(c) Here f(2) = 1 is defined and

cont’d

= 3 exists

� But

� so f is not continuous at 2



�Here are the graphs of these functions

Example – Solution



�In each case the graph can’t be drawn without lifting 
the pen from the paper because a hole or break or 
jump occurs in the graph.

�The kind of discontinuity illustrated in parts (a) and (c) 
is called removable because we could remove the 
discontinuity by redefining f at just the single number 2. 
[The function g(x) = x + 1 is continuous]

�The discontinuity in part (b) is called an infinite 
discontinuity

Example – Solution



Continuity



� Instead of always using Definitions 1, 2, and 3 to verify 
the continuity of a function, it is often convenient to use 
the next theorem, which shows how to build up 
complicated continuous functions from simple ones

Continuity



Continuity



Continuity



� The Intermediate Value Theorem states that a 
continuous function takes on every intermediate value 
between the function values f(a) and f(b). 

� Note that the value N can be taken on once [as in part 
(a)]  or more than once [as in part (b)]

Continuity



� If we think of a continuous function as a function 
whose graph has no hole or break, then it is easy to 
see that the Intermediate Value Theorem is true 

� In geometric terms it says that if any horizontal line y = 
N is given between y = f(a) and y = f(b), then the graph 
of  f can’t jump over the line. It must intersect y = N
somewhere

Continuity



� A simple consequence of the Intermediate Value theorem 

is the following Bolzano's Theorem

� Bolzano's theorem: Given a continuous function f such that 

f(a) and f(b) have opposite sign (i.e. either f(a) < 0 and  f(b)

> 0  or  f(a) > 0  and  f(b) < 0) then there is a point c∈[a; b] 

such that f(c) = 0

� Proof. If  f(a) and  f(b) have opposite sign, then  0  is a 

value between f(a) and  f(b) and so, by the Intermediate 

Value theorem, there exists a point  c∈[a; b]  such that    

f(c) = 0

Continuity



�Study the behavior of 
this f as x becomes large

Horizontal Asymptotes

�As x grows larger f(x) gets closer to 1. We can make f
(x) as close as we like to 1 by taking x sufficiently large

�So on both sides it tends 
to the horizontal line y=1



Horizontal Asymptotes

There are many ways for a graph to approach a line y = L 
(which is called a horizontal asymptote) as x increases



�

Horizontal Asymptotes



Example 

�Find           and

�Solution:
Observe that when x is large, 1/x is small. For instance,

�In fact, by taking x large enough, we can make 1/x as 
close to 0 as we please



Example – Solution

� Therefore, we have

� = 0

� Similar reasoning shows that when x is large negative,1/x
is small negative, so we also have

� = 0

cont’d



Example – Solution

� It follows that the line y = 0 (the x-axis) is a horizontal 
asymptote of the curve y = 1/x. (This is an equilateral 
hyperbola; also x=0 (the y-axis) is a vertical asymptote 

cont’d



Example 2

� Evaluate

� Solution:
As x becomes large, both numerator and denominator 
become large, so it isn’t obvious what happens to their 
ratio. We need to do some preliminary algebra 

� To evaluate the limit at infinity of any rational function, 
we first divide both the numerator and denominator by 
the highest power of x that occurs in the denominator. 
(We may assume that x ≠ 0, since we are interested 
only in large values of x) 



Example 2 – Solution

� In this case the highest power of x in the denominator 
is x2, so we have

cont’d



Example 2 – Solution cont’d

(by Limit Law 5)

(by 1, 2, and 3)

(by 7)



Example 2 – Solution

� A similar calculation shows 
that the limit as x → –
is also 3/5         

� We can observe the graph of 
this function approaches 
the horizontal asymptote y =3/5 

cont’d



Example 3
� Find the horizontal and vertical asymptotes of the 
graph of the function

� Solution:
Dividing both numerator and denominator by x and using 
the properties of limits, we have

(since         = x  for x > 0)  



Example 3 – Solution cont’d



Example 3 – Solution

� Therefore the line y =          is a horizontal asymptote 
of the graph of f

� In computing the limit as x → – , we must remember 
that for x < 0, we have        = |x | = –x

cont’d



Example 3 – Solution

�So when we divide the numerator by x, for x < 0 we get

cont’d



Example 3 – Solution

�Therefore

cont’d



Example 3 – Solution

� Thus the line y = – is also a horizontal asymptote

� A vertical asymptote is likely to occur when the 
denominator, 3x – 5, is 0, that is, when x = 5/3

� If x is close to 5/3 and x > 5/3  , then the denominator 
is close to 0 and 3x – 5 is positive. The numerator                
is always positive, so f(x) is positive.

� Therefore

cont’d



Example 3 – Solution

� If is close to 5/3  but x < 5/3, then 3x – 5 < 0 and so f
(x) is large negative. Thus

� The vertical asymptote is x = 5/3 
So in the end we have 

� three asymptotes

cont’d


