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Two-Dimensional
Transformations
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Two-Dimensional
Transformations

■ Transforming a point

■ Transforming an object
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Types of Transformation

■ Translation

x' x tx+=

y' y ty+=
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Types of Transformation

■ Scaling

x' x sx⋅=

y' y sy⋅=
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Symmetric vs asymmetric
scaling

■ Symmetric scaling: sx = sy

■ Asymmetric scaling: sx > sy or sx < sy
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Scaling to achieve
reflection

■ Reflection in y axis: sx < 0

■ Reflection in x axis: sy < 0
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Scaling to achieve
reflection

■ Reflection in x and y axes:

sy < 0 and sx < 0
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Types of Transformation

■ Rotation
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Rotation

x R βcos⋅=

y R βsin⋅=

x' R α β+( )cos⋅=

y' R α β+( )sin⋅=
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Rotation

Expanding the formulae for cos(α+β)
and sin(α+β):

Substituting for and :

x' R α β+( )cos⋅=

y' R α β+( )sin⋅=

x' R αcos βcos R– αsin βsin⋅ ⋅ ⋅ ⋅=

y' R αsin βcos R+ βsin αcos⋅ ⋅ ⋅ ⋅=

R βcos⋅ R βsin⋅

x' x αcos y– αsin⋅ ⋅=

y' x αsin y+ αcos⋅ ⋅=

Copyright  University of Manchester 1995 Geometry: 11

Types of Transformation

■ Shearing

❏ Shear in x: a ≠ 0

❏ Shear in y: b ≠ 0

❏ Shear in x and y: a ≠ 0 and b ≠ 0

x' x y a⋅+=

y' y x b⋅+=
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Matrix Representation of
Transformations

■ Translate:

■ Scale:

■ Rotate:

x' x tx+=

y' y ty+=

x' x sx⋅=

y' y sy⋅=

x' x αcos y– αsin⋅ ⋅=

y' x αsin y+ αcos⋅ ⋅=
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Matrix Representation of
Transformation

■ Shear:

■ In general:

x' x y a⋅+=

y' y x b⋅+=

x' a x b+ y c+⋅ ⋅=

y' d x e+ y f+⋅ ⋅=
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Matrix Representation of
Transformations

Using matrices:

Include a - f in one matrix:

x' a x b+ y c+⋅ ⋅=

y' d x e+ y f+⋅ ⋅=

x'

y'
a b
d e

x
y

c
f

+•=

x'

y'

a b c
d e f

x
y
1

•=
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Matrix Representation of
Transformations

Using a square matrix:

x' a x b+ y c+⋅ ⋅=

y' d x e+ y f+⋅ ⋅=

x'

y'

w'

a b c
d e f
g h i

x
y
1

•=
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Matrix Representation of
Transformations

■ Translate:

■ Scale:

■ Rotate:

1 0 tx

0 1 ty

0 0 1

sx 0 0

0 sy 0

0 0 1

αcos αsin– 0
αsin αcos 0

0 0 1
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Matrix Representation of
Transformations

■ Shear:

■ Identity matrix:

1 a 0
b 1 0
0 0 1

x'

y'

w'

1 0 0
0 1 0
0 0 1

x
y
1

•=

x' x=

y' y=

w' 1=
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Combining
Transformations

Can perform complex transformations
by combining simple ones.

For example, rotating an object about
its centre:
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Combining
Transformations

1. Translate by (-xc, -yc)

2. Rotate about the origin

3. Translate by (xc, yc)

1 2 3
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Combining
Transformations

Rotating an object about its centre:

1. Translate by (-xc,-yc):

2. Rotate about the origin:

x1

y1

1

1 0 xc–

0 1 yc–

0 0 1

x
y
1

•=

x2

y2

1

αcos αsin– 0
αsin αcos 0

0 0 1

x1

y1

1

•=
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Combining
Transformations

3. Translate by (xc, yc):

Total transformation is:

x3

y3

1

1 0 xc

0 1 yc

0 0 1

x2

y2

1

•=

1 0 xc

0 1 yc

0 0 1

αcos αsin– 0
αsin αcos 0

0 0 1

•
1 0 xc–

0 1 yc–

0 0 1

•
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Ordering Transformations

■ Matrix multiplication is NOT
commutative,

■ Order of transformations is important

M1 M2 M2≠• M1•
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Ordering Transformations

■ Rotate then translate

■ Translate then rotate
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Ordering Transformations

■ POSTCONCATENATE M2 with M1:
 (M1 applied first)

■ PRECONCATENATE M2 with M1:
 (M2 applied first)

■ Premultiply ≡ Postconcatenate

■ Postmultiply ≡ Preconcatenate

p' M2 M1• p•=

p' M1 M2• p•=
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Homogeneous
Coordinates

■ Point in 2D space expressed in
3D homogeneous coordinates

■ If bottom row of matrix is [0 0 1],

■ If project point  onto
plane w =1 by homogeneous
division (using the origin as the
centre of projection )

x'

y'

w'

a b c
d e f
g h i

x
y
1

•=

w' 1=

w' 1≠ x' y', w'( , )
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Homogeneous
Coordinates

■ Real world coordinates are and
 where

x''
y''

x'' x' w'⁄=

y'' y' w'⁄=
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Homogeneous
Coordinates

Perform homogeneous division to get
“real world” coordinates:

Effect is OVERALL scaling.

x'

y'

w'

1 0 0
0 1 0
0 0 4

x
y
1

•=

x'' x' w'⁄ x 4⁄= =

y'' y' w'⁄ y 4⁄= =
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Object vs Axis
Transformation

Object transformation

■ Object transformed

■ Axes fixed
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Object vs Axis
Transformation

Axis transformation

■ Object fixed in space

■ Axes transformed
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Object vs Axis
Transformation

■ Object translation by (dx, dy)

≡ Axis translation by (-dx, -dy)

■ Object scale by (sx, sy)

≡ Axis scale by (1/sx, 1/sy)

■ Object rotation by α

≡ Axis rotation by -α
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Normalization
Transformation in GKS

1. Translate bottom left hand corner of
window to origin:

x1

y1

1

1 0 wxmin–

0 1 wymin–

0 0 1

x
y
1

•=
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Normalization
Transformation in GKS

2. Scale window to size of viewport:

where

x2

y2

1

sx 0 0

0 sy 0

0 0 1

x1

y1

1

•=

sx

vxmax vxmin–

wxmax wxmin–
---------------------------------------=

sy

vymax vymin–

wymax wymin–
----------------------------------------=
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Normalization
Transformation in GKS

3. Translate to bottom left hand corner
of viewport:

Normalization transformation is:

x3

y3

1

1 0 vxmin

0 1 vymin

0 0 1

x2

y2

1

•=

1 0 vxmin

0 1 vymin

0 0 1

sx 0 0

0 sy 0

0 0 1

1 0 wxmin–

0 1 wymin–

0 0 1

••
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Two-Dimensional
Transformations

■ Different types: translation, scaling,
rotation, shearing.

■ Object vs axis transformations

■ Matrix representation

■ Combine transformations by
multiplying matrices

■ Homogeneous division to get “real
world” coordinates

x'

y'

w'

a b c
d e f
g h i

x
y
1

•=

x'' x' w'⁄ y'', y' w'⁄= =
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Three-Dimensional
Transformations
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Three-Dimensional
Transformations

■ For manipulating pictures (as in 2D)

■ Help us to understand 3D shape

■ Right-handed coordinate system
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Homogeneous
Coordinates

Obtain “real world” coordinates by
homogeneous division:

x'

y'

z'

w'

a b c d
e f g h
i j k l

m n o p

x
y
z
w

•=

x'' x' w'⁄=

y'' y' w'⁄=

z'' z' w'⁄=

Copyright  University of Manchester 1995 Geometry: 38

Types of
Three-Dimensional

Transformation

■ Translate:

■ Scale:

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1
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Types of
Three-Dimensional

Transformation

■ Shear:

1 b c 0
e 1 g 0
i j 1 0
0 0 0 1
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Types of
Three-Dimensional

Transformation

■ Rotation:

■ Rotation about x-axis:

a b c 0
e f g 0
i j k 0
0 0 0 1

1 0 0 0
0 αcos αsin– 0
0 αsin αcos 0
0 0 0 1
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Types of
Three-Dimensional

Transformation

■ Rotation about y-axis:

■ Rotation about z-axis:

αcos 0 αsin 0
0 1 0 0

αsin– 0 αcos 0
0 0 0 1

αcos αsin– 0 0
αsin αcos 0 0

0 0 1 0
0 0 0 1

Copyright  University of Manchester 1995 Geometry: 42

Rotation about
an arbitrary axis

1. Translate so axis of rotation passes
through origin

2. Rotate so that axis of rotation
coincides with one of the
coordinate axes

3. Perform specified rotation about
coordinate axis

4. Apply inverse rotation from (2)

5. Apply inverse translation from (1)
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Perspective
Transformations

x'

y'

z'

w'

1 0 0 0
0 1 0 0
0 0 1 0
0 0 γ 1

x
y
z
1

•=

x
y
z

γ z⋅ 1+

=
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Perspective
Transformations

After homogeneous division

As z → ∞

x'' x
γ z⋅ 1+
-------------------=

y'' y
γ z⋅ 1+
-------------------=

z'' z
γ z⋅ 1+
-------------------=

x'' 0→
y'' 0→
z'' 1 γ⁄→
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Perspective
Transformations

■ BEFORE transformation lines parallel
to z-axis

■ AFTER transformation lines pass
through point (0, 0, 1/γ)

■ Vanishing point is (0, 0, 1/γ)

■ Eye point/centre of projection is
(0, 0, -1/γ)

■ One point perspective
transformation
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Perspective
Transformations

■ One point:

1 0 0 0
0 1 0 0
0 0 1 0
α 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 β 0 1
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Perspective
Transformations

■ Two point:

■ Three point:

1 0 0 0
0 1 0 0
0 0 1 0
α 0 γ 1

1 0 0 0
0 1 0 0
0 0 1 0
α β γ 1
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Perspective
Transformations

Points behind the Eye Point
Perspective transformation with eye
point at (0, 0, c):

x'

y'

z'

w'

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 c⁄– 1

x
y
z
1

•=

x
y
z

c z–( ) c⁄

=
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Perspective
Transformations

Points behind the Eye Point
■ w’ > 0 for z < c

■ w’ = 0 for z = c

■ w’ < 0 for z > c
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Perspective
Transformations

Points behind the Eye Point
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Perspective
Transformations

Points behind the Eye Point
■ Want to simulate what eye would

see

■ Clip BEFORE perspective
transformation (z ≥ c)
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Perspective
Transformations

Points behind the Eye Point
■ Clip after perspective

transformation but BEFORE
homogeneous division (w ≤ 0)
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Projections

■ Translation, rotation etc. all 3D→3D

■ Projection is 3D→2D

■ Similar to casting shadows
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Perspective Projections

■ Produces realistic images
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Perspective Projections

■ To calculate new x and y coordi-
nates use similar triangles:

similarly

■ Like perspective transformation

x'
c
---

x' x–
z

------------ x' x
1 z c⁄–
-------------------=→=

y' y
1 z c⁄–
-------------------=
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Parallel Projections

■ Perspective projection with centre
of projection at ∞

■ Less realistic

■ Retains size information for
measurements
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Classification of
Projections
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Transformations
and Viewing in

GKS-3D and PHIGS
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GKS Output Pipeline
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GKS Output Pipeline

■ Converts user-defined graphical
information to device coordinates
for display.

■ GKS-3D and PHIGS need also to
perform viewing transformations.
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GKS-3D Output Pipeline

pd = W • Vm • Vo • S • N • pw
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Normalization
Transformations in GKS-3D
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Segment Transformation
and Normalization Clip
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Possible Implementation
of the GKS-3D Pipeline
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PHIGS Output Pipeline

pd = W • Vm • Vo • G • L • pm
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Modelling Clip

■ Clipping limits are affected by mod-
elling transformation
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Possible Implementation
of the PHIGS Pipeline
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Different Views on
Different Workstations
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The Viewing Pipeline
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The Viewing Pipeline

■ View orientation and mapping
transformations specified as
matrices

■ Gives maximum flexibility to the user

■ Hard to set the matrices!

■ Viewing utility routines

■ EVALUATE VIEW ORIENTATION MATRIX

■ EVALUATE VIEW MAPPING MATRIX

■ Viewing model

4 4×
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Model for View
Orientation

■ View orientation transformation
maps from NDC3 to VRC

■ VRC is an intermediate coordinate
system

■ VRC defined so that view plane is
parallel to the VRC xy-plane
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View Orientation
Transformation

AXIS transformation
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EVALUATE VIEW
ORIENTATION MATRIX

■ Parameters define position and
orientation of VRC with respect to
NDC3

■ View reference point (VRP) - origin
of VRC

■ View plane normal (VPN) - defines
n-axis of VRC

■ View up vector (VUV) - defines
v-axis of VRC
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EVALUATE VIEW
ORIENTATION MATRIX
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Deriving the View
Orientation Matrix

■ Inverse of axis transformation =
equivalent object transformation

■ Inverse view orientation
transformation maps unit vectors on
NDC3 axes onto VRC axes

■ Rotate vectors to align with VRC
axes (R)

■ Translate by VRP, T

1 0 0 VPRx

0 1 0 VPRy

0 0 1 VPRz

0 0 0 1

=
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Deriving the View
Orientation Matrix

It can be shown that

where  are the components
of  in world-coordinates and similarly
for  and

R

ux vx nx 0

uy vy ny 0

uz vz nz 0

0 0 0 1

=

ux uy uz, ,( )
u
v n
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Deriving the View
Orientation Matrix

■ Inverse view orientation
transformation =

■ View orientation transformation

T R•

R=
1– T 1–•

ux uy uz 0

vx vy vz 0

nx ny nz 0

0 0 0 1

1 0 0 V– PRx

0 1 0 VPRy–

0 0 1 VPRz–

0 0 0 1

•=
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Model for View Mapping

■ Creates view required

■ Parallel or perspective projection
retaining third dimension for HLHSR

■ Maps contents of view volume onto
projection viewport in NPC
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EVALUATE VIEW MAPPING
MATRIX

Parameters describe:

■ View volume in VRC

■ View plane distance (VPD)

■ Front plane distance (FPD)

■ Back plane distance (BPD)

■ View window limits

■ Projection reference point (PRP)

■ Projection type: PARALLEL or
PERSPECTIVE

■ Projection viewport in NPC

Umin Umax Vmin Vmax, , ,( )
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EVALUATE VIEW MAPPING
MATRIX

■ Creating the view

■ Parallel or perspective projection on
x and y (defined by PRP and view
plane)

■ Maintains relative z information for
HLHSR

■ Mapping contents of view volume
to projection viewport

■ After viewing transformation, view
volume is a cuboid

■ Window to viewport mapping
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Using the Viewing Model

Orthographic parallel
projections

■ Projectors perpendicular to view
plane

■ Projector direction defined by
vector from PRP to centre of view
window

PRPx Umin Umax+( ) 2⁄– 0=

PRPy Vmin Vmax+( ) 2⁄– 0=
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Using the Viewing Model

Perspective projections
■ Lines not parallel to the view plane

converge to a vanishing point

■ One point

❏ 1 vanishing point → 1 axis not
parallel to view plane

❏ view plane normal is one of
(a, 0, 0), (0, b, 0), (0, 0, c)

■ Two point

❏ 2 vanishing points → 2 axes not
parallel to view plane

❏ view plane normal is one of
(a, b, 0), (0, b, c), (a, 0, c)
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Using the Viewing Model

Perspective projections
■ Three point

❏ 3 vanishing points → all 3 axes not
parallel to view plane

❏ view plane normal is (a, b, c)
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