Integrating ontologies and rules:
semantic and computational issues

Riccardo Rosati

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

rosati@dis.uniromal.it

Abstract. We present some recent results on the definition of logic-
based systems integrating ontologies and rules. In particular, we take
into account ontologies expressed in Description Logics and rules ex-
pressed in Datalog (and its nonmonotonic extensions). We first introduce
the main issues that arise in the integration of ontologies and rules. In
particular, we focus on the following aspects: (i) from the semantic view-
point, ontologies are based on open-world semantics, while rules are typ-
ically interpreted under closed-world semantics. This semantic discrep-
ancy constitutes an important obstacle for the definition of a meaningful
combination of ontologies and rules; (ii) from the reasoning viewpoint,
the interaction between an ontology and a rule component is very hard
to handle, and does not preserve decidability and computational proper-
ties: e.g., starting from an ontology in which reasoning is decidable and
a rule base in which reasoning is decidable, reasoning in the formal sys-
tem obtained by integrating the two components may not be a decidable
problem. Then, we briefly survey the main approaches for the integration
of ontologies and rules, with special emphasis on how they deal with the
above mentioned issues, and present in detail one of such approaches, i.e.,
DL+log. Finally, we illustrate the main open problems in this research
area, pointing out what still prevents us from the development of both
effective and expressive systems able to integrate ontologies and rules.

1 Introduction

1.1 Ontologies and Description Logics

The integration of ontologies and rules has recently received considerable atten-
tion in the research on ontologies and the Semantic Web (see e.g.,[24,2]). De-
scription Logics (DLs) [6] are currently playing a central role in this field. DLs
are a family of knowledge representation formalisms based on first-order logic (in
fact, almost all DLs coincide with decidable fragments of function-free first-order
logic with equality) and exhibiting well-understood computational properties. In
the last years, a significant body of the Semantic Web research was devoted to
defining a suitable language for ontology modeling [33]. In 2004, this endeavor
resulted in the Web Ontology Language (OWL). OWL is based on Description

Logics, and has successfully been applied to numerous problems in computer
science, such as information integration or metadata management. Prototypes
of OWL reasoners, such as RACER, FaCT++, Pellet, or KAON2, have been
implemented and applied in research projects; commercial implementations and
projects using them are currently emerging.

1.2 Limitations of current ontology formalisms

However, the experience in building practical applications has revealed several
shortcomings of OWL and, in general, of Description Logics. In particular, the
typical expressiveness of DLs does not allow for addressing the following aspects:

— the possibility of defining predicates of arbitrary arity (not just unary and

binary)

the use of variable quantification beyond the tree-like structure of DL con-

cepts (many DLs actually correspond to subsets of the two-variable fragment

of first-order logic)

the possibility of formulating expressive queries over DL knowledge bases

(beyond concept subsumption and instance checking)

the possibility of formalizing various forms of closed-world reasoning over

DL knowledge bases

— more generally, the possibility of expressing forms of nonmonotonic knowl-
edge, like default rules [34]

The issue of how to overcome these limitations of OWL and DLs is currently
receiving a lot of attention in the Semantic Web community [1]. In this respect,
we observe that several of the representational abilities which are missing in DLs
require nonmonotonicity of the underlying logical formalism. This is in contrast
with the well-known monotonic nature of classical first-order logic, which cor-
responds to the following property: if a theory T entails a conclusion ¢, then,
for every formula ¢, the theory T'U {1} entails ¢. Such a property dos not hold
anymore in the presence of closed-world knowledge and default knowledge [34,
7).

This implies that the attempt to extend the expressive abilites of DLs, in
order to fully overcome the above limitations, requires to leave the realm of
classical first-order logic, and to look at nonmonotonic logic.

1.3 Rule-based knowledge representation

Almost all the kinds of knowledge that cannot be formally addressed in a clas-
sical, first-order logic setting have a “rule-like” form, i.e., can be expressed by
statements of the form “if the precondition ¢ holds then the conclusion ¢ holds”,
where the precondition and the conclusion are logical properties.

However, such a piece of knowledge cannot simply be formalized through the
standard material implication of classical logic: in other words, it is not possible

to capture the intended meaning of the above statement by an implication in
classical first-order logic of the form ¢ — ¢.

In this respect, a very relevant role is played by research in logic program-
ming. In fact, logic program rules are implications with a non-standard seman-
tics. And, in the context of ontologies, nonmonotonic extensions of logic pro-
gramming are of particular interest [7].

Therefore, rule-based formalisms grounded in logic programming have repeat-
edly been proposed as a possible solution to overcome the above limitations, so
adding a rule layer on top of OWL is nowadays seen as the most important task
in the development of the Semantic Web language stack. The Rule Interchange
Format (RIF) working group of the World Wide Web Consortium (W3C) is
currently working on standardizing such a language.

Most of the proposals in this field focus on logic programs expressed in Data-
log (and its nonmonotonic extensions) [14]. With respect to DLs, Datalog allows
for using predicates of arbitrary arity, the explicit use of variables, and the abil-
ity of expressing more powerful queries. Moreover, its nonmonotonic features
(in particular, the negation-as-failure operator not) allow for expressing default
rules and forms of closed-world reasoning.

1.4 Integrating DLs and rules: Main issues

Many semantic and computational problems have emerged in the combination
of DLs and rule-based representation formalisms. Among them, we concentrate
on the following main issues/goals:

(1) OWA vs. CWA: DLs are fragments of first-order logic (FOL), hence their
semantics is based on the Open World Assumption (OWA) of classical logic,
while rules are based on a Closed World Assumption (CWA), imposed by the
different semantics for logic programming and deductive databases (which
formalize various notions of information closure). How to integrate the OWA
of DLs and the CWA of rules in a “proper” way? i.e., how to merge monotonic
and nonmonotonic logical subsystems from a semantic viewpoint?

(2) UNA vs. non-UNA: some DLs, in particular the ones specifically tailored for
the Semantic Web, i.e., OWL and OWL-DL, are not based on the Unique
Name Assumption (UNA) (we recall that the UNA imposes that different
terms denote different objects). On the other hand, the standard semantics
of Datalog rules is based on the UNA (see e.g. [12] for a discussion on this
semantic discrepancy). How to define a non-UNA-based semantics for DLs
and rules? and most importantly, is it possible to reason under the non-UNA-
based semantics by exploiting standard (i.e., UNA-based) Datalog engines?

(3) decidability preservation: as shown by the first studies in this field [28], decid-
ability (and complexity) of reasoning is a crucial issue in systems combining
DL knowledge bases and Datalog rules. In fact, in general this combination
does not preserve decidability, i.e., starting from a DL knowledge base in
which reasoning is decidable and a set of rules in which reasoning is de-
cidable, reasoning in the knowledge base obtained by integrating these two
components may not be a decidable problem.

(4) modularity of reasoning: can reasoning in DL knowledge bases augmented
with rules be performed in a modular way, strongly separating reasoning
about the DL component and reasoning about the rule component? This is a
very desirable property, since it allows for defining reasoning techniques (and
engines) on top of deductive methods (and implemented systems) developed
separately for DLs [6] and for Datalog and its nonmonotonic extensions [16].

1.5 Structure of the paper

The paper is structured in the following way. We start by briefly introducing
Description Logics in Section 2, and Datalog and its nonmonotonic extensions
in Section 3. Then, in Section 4 we analyze the main issues that arise when inte-
grating Description Logics and rules. In Section 5 we review the main approaches
to the integration of ontologies and Datalog rules. Then, in Section 6 we present
DL +log, one of the most powerful formalisms integrating Descritpion Logics and
Datalog rules: in particular, we show how DL+log deals with the main issues
previously discussed. Finally, in Section 7 we briefly illustate some of the main
open problems towards the integration of Description Logics and Datalog rules.

2 Description Logics

We start by introducing Description Logics. For a more detailed introduction to
this topic, we refer the reader to [6].

Description Logics (DLs) are logics that represent the domain of interest in
terms of concepts, denoting sets of objects, and roles, denoting binary relations
between (instances of) concepts. Complex concept and role expressions are con-
structed starting from a set of atomic concepts and roles by applying suitable
constructs.

Different DLs allow for different constructs. Properties of concepts and roles
are specified through inclusion assertions, stating that every instance of a concept
(respectively, role) is also an instance of another concept (respectively, role).

As an example of a DL, in the following we formally introduce ALC, which
actually constitutes a subset of the DLs of the OWL family defined as ontology
languages.

2.1 Syntax

In ALC, concepts and roles are formed according to the following syntax:
C:=T|L|A|CiNCy|CLUCy | =C|3P.C|VP.C

where A denotes an atomic concept, P denotes an atomic role, and C, Cy denote
general concept expressions.

A DL knowledge base (KB) KL = (7, A) represents the domain of interest in
terms of two components, a TBox 7, specifying the intensional knowledge, and
an ABozx A, specifying extensional knowledge.

A TBox is formed by a set of inclusion assertions of the form
C1 ECy

where C; and Cy are general concepts. As we said before, such an inclusion
assertion expresses that all instances of concept C; are also instances of concept
Cs.

An ABox is formed by a set of membership assertions on atomic concepts
and on atomic roles, of the form

C(a), P(a,b)

stating respectively that the object denoted by the constant a is an instance of
the concept C' and that the pair of objects denoted by the pair of constants (a, b)
is an instance of the role P.

2.2 Semantics

The semantics of a DL is given in terms of standard first-order interpretations.
Formally, a DL-interpretation T = (A%, -T) consists of an interpretation domain
AT and an interpretation function T defined as follows. First, T assigns to each
atomic concept A a subset AT of AT, and to each role P a binary relation P
over AZ:

T = A%
1 =0
AT C At
PT C AT x AT
Based on the above interpretation of atomic predicates, Z assigns a subset of

AT to general concept expression. For the constructs of ALC, the interpretation
of general concepts is defined inductively as follows:

-CT = AT\ ¢t
c,nci=ctnct
c,uct=ctuct
IP.CT ={d e AT |3d'.(d,d') € PT and d' € C*}
VP.CT = {d € AT |Vd'.(d,d") € PT implies d’ € C*}

A concept C'is satisfiable if there exists an interpretation Z such that CT # (),
otherwise C' is unsatisfiable. An interpretation Z is a model of a concept C if T
satisfies C.

A DL-interpretation Z is a model of an inclusion assertion C; C Cs, if
ct cct.

To specify the semantics of membership assertions, we extend the interpreta-
tion function to constants, by assigning to each constant a an object a” € AT.1 A
DL-interpretation Z is a model of a membership assertion C(a), (resp., P(a,b))
if a € C7 (resp., (aZ,b?) € PT).

Given an (inclusion, or membership) assertion «, and a DL-interpretation Z,
we denote by Z |= « the fact that Z is a model of a. A model of a KB K = (7, A)
is a DL-interpretation Z that is a model of all assertions in 7 and A. A KB is
satisfiable if it has at least one model. A KB K entails an assertion «, written
K [a, if all models of K are also models of a. Analogously, a TBox 7 entails
an assertion «, written 7 |= «, if all models of 7 are also models of a.

Observe that ALC (and, in practice, every DL) is actually a fragment of
function-free first-order logic, with a special syntax which avoids the explicit use
of variable symbols. In fact, it is immediate to verify that a DL knowledge base
K is semantically equivalent to a FOL theory FO(K) in which each assertion in
the knowledge base is expressed by a first-order sentence (for details on such a
translation see [6]). For instance, the TBox inclusion assertion

Al 1 3P1.A2 C VPQ.Ag (] _\A4
is equivalent to the first-order sentence

Va. A (x) A (Jy.Pi(x,y) A As(y)) — (V. Pa(x,2) — As(2)) V —Ay(x)

Finally, we remark that, due to the above FOL semantics, DLs are interpreted
over an unbound (possibly infinite) domain. Moreover, unique names are not
always assumed?.

3 Disjunctive Datalog

In this section be briefy recall disjunctive Datalog [14], denoted by Datalog™",
which is the well-known nonmonotonic extension of Datalog with negation as
failure and disjunction.

3.1 Syntax

We start from a predicate alphabet, a constant alphabet, and a variable alphabet.
An atom is an expression of the form p(X), where p is a predicate of arity n

1 We recall that, if we enforce the unique name assumption on constants, then the
interpretation a” of each constant @ must be such that, for each constant b different
from a, b* # a” [6].

2 Even though some DLs are based on the UNA, the most expressive ones, like the
ones in the OWL family, are not.

and X is a n-tuple of variables and constants. If no variable symbol occurs in
X, then p(X) is called a ground atom (or fact).
A Datalog " rule R is an expression of the form

p1(X)) V... Vpu(Xy) — (Y1), ..., rm(Ym), not s1(W1), ..., not sp(Wg)

such that n > 0, m > 0, k > 0, each p;(X;), m:(Y:), s;(W;) is an atom
and every variable occurring in R must appear in at least one of the atoms
r1(Y1), ..., 7m(Yy). This last condition is known as the Datalog safeness condi-
tion for variables. The variables occurring in the atoms p1(X1),...,pn(X,) are
called the head variables of R. If n =0, we call R a constraint.

A a Datalog™" program is a set of Datalog™" rules. If, for all R€ P, n < 1,
P is called a Datalog™ program. If, for all R € P, k = 0, P is called a positive
disjunctive Datalog program. If, for all R € P, n < 1 and k = 0, P is called a
positive Datalog program. If there are no occurrences of variable symbols in a
rule R, then R is called a ground rule. A ground program is a program containing
only ground rules.

3.2 Semantics

The semantics of disjunctive Datalog is given in terms of stable models of a
program P, which we recall below.

The ground instantiation of P, denoted by G(P), is the program obtained
from P by replacing every rule R in P with the set of ground rules obtained by
applying all possible substitutions of variables in R with constants occurring in
P (such a set of constants is called the Herbrand universe of P).

We denote by HB(P) the Herbrand base of P, i.e. the set of all ground
instantiations of predicates occurring in P over the Herbrand universe of P.

A Datalog interpretation I of P is a subset of HB(P). I satisfies a positive
ground rule

PLV .. NVDp T,y Tm (1)

if the following condition holds: if each atom in {r1,...,r,} belongs to I, then
at least one atom p; belongs to I.

I is a model of P if I satisfies each rule in G(P). A model of P is minimal if
it does not properly contain any other model of P.

Given a Datalog interpretation I C HB(P), the GL-reduct of P with respect
to I (denoted as GL(P,I)) is the program obtained from G(P) by removing all
clauses of the form (1) such that there exists s; € I for some j € {1,...,k},
and by removing all negated predicates of the form not s; from the remaining
clauses.

A Datalog interpretation I C HB(P) is a stable model of P if I is a minimal
model of GL(G(P),I).

We say that a program P entails a ground query (i.e., a ground literal pred-
icate) ¢(@), denoted as P |= ¢(a@), if ¢(@) belongs to all stable models of P.

We remark that, based on the above semantics, every disjunctive Datalog
program is interpreted over a finite domain, which coincides with the set of con-
stants occurring in the program. Moreover, every Datalog interpretation enforces
the unique name assumption (different constants are interpreted as different ob-
jects).

4 Integrating DLs and rules: Main issues

In this section we address the main issues arising when trying to combine DLs
and (disjunctive) Datalog in a single formalism.

Syntax From the syntactic viewpoint, integrating a DL with (disjunctive) Data-
log simply means the possibility of writing a “hybrid” knowledge base containing
a TBox, an ABox, and a set of Datalog rules.

Semantics From the semantic viewpoint, the meaning of such an integrated
knowledge base can be provided in two ways:

1. the whole knowledge base is considered as a first-order theory, by interpret-
ing Datalog rules as first-order implications. More specifically, let R be the
following Datalog ™" rule:

p1(X1,c1) V.. Vo (Xn,cn) —
T'l(Yl, dl), e ,Tm(Ym,dm),
s1(Z1,e1)y. .., sk(Zk,),
not uy(Wh, f1), ..., not up(Wh, fr)

where each X, Y;, Z;, W, is a set of variables and each ¢;, d;, e;, f; is a set
of constants. Then, we denote by FO(R) the first-order sentence

Vfl,...,Tn,yl,...,@m,il,...,ik,ﬁl,...,wh.
Tl(yladl) VAN /\rm(ymvdm)/\
s1(Z1,e1) A v A sk (Zr, ex)A
—uy (W, f1) Ao A=un (@, fr) = p1(Tr,c1) VooV pu(Tn, cn)

and, given a Datalog " program P, we denote by FO(P) the set of first-order
sentences { FO(R) | R € P}.

Finally, the semantics of a knowledge base (K, P) composed of a DL-KB K
and a Datalog program P is given by the first-order theory corresponding to
the union of FO(P) and the first-order translation FO(K) of K.

While the above semantic account has the advantage of being clear and
easy to define, it has the drawback of not being conservative with respect
to the semantics of Datalog rules. In other words, the meaning of a Datalog
program P in the new semantics is different from its meaning according to
the standard Datalog semantics (the CWA of Datalog is missing in the new
semantics).

2. the semantics is defined in a way such that it is a “conservative extension”
of both the DL and Datalog. However, this is not as immediate as the above
semantic account, due to the different semantic nature of the two formalisms:
in fact, one has to simultaneously deal with two semantic discrepancies: the
OWA of DLs and the CWA of Datalog on the one side, and the UNA of
Datalog and the absence of the UNA of (some) DLs on the other side. In
Section 6 we will define such a semantics.

Reasoning From the reasoning perspective, an important aspect is the “degree
of integration” of the two components (the DL-KB and the Datalog program).
Indeed, as we will explain in Section 5, the complexity of reasoning in systems
combining DLs and rules is directly related to such a degree of integration.
In particular, it is well-known that the “full” interaction between a DL-KB
and a Datalog program leads to undecidability of reasoning under the above
presented FOL semantics, even for extremely simple DLs [28]. On the other side
of the spectrum, rules may not interact at all with the DL-KB, and of course
this kind of (uninteresting) integration is not problematic at all with respect to
the reasoning task, since the two components can be processed separately by
standard (DL and Datalog) reasoners.

Obviously, in order to represent some kind of significant interaction, the DL
KB and the rules have to share some predicate symbols. A measure of the degree
of interaction between the two components depends on these shared predicates,
and on how they can be used within DL statements and rules.

More specifically, the alphabet of predicates is divided into DL predicates
and Datalog predicates, where Datalog predicates are the ones that do not occur
in the DL-KB, while DL predicates may occur both in the DL-KB and in rules.
Then:

— the full interaction does not make any assumption on the form of rules based
on the above classification of predicates;

— the loose interaction imposes some limitations on the use of DL predicates
in rules.

For instance, as we will illustrate in Section 5, a common approach to the
loose integration of DLs and rules is realized through the so-called DL-safeness
condition for Datalog rules. This is a syntactic condition that can be expressed
as follows: every variable occurring in an atom with a DL predicate must occur
in a atom with a Datalog predicate in the body of the rule. Such a condition
is sufficient to allow for a nice computational behaviour of reasoning, but has
the drawback of restricting the expressiveness of the combined language thus
defined. E.g., DL-safe rules are not able to express arbitrary conjunctive queries
to the DL-KB. Conjunctive queries correspond to a simple form of non-recursive
Datalog rules, are computable in many DLs, and there are known algorithms for
conjunctive query algorithms in many DLs [9, 32]. Therefore, DL-safeness seems
to imply a too severe limitation in the expressiveness of rules.

Finally, another measure of the degree of integration lies in the direction of
the information flow between DL-KB and rules, which may be either bidirec-
tional (from the DL-KB to the rules and vice versa), or unidirectional (only from
the DL-KB to the rules). In the latter case, the presence of rules does not affect
the semantics of DL predicates. Often, the restriction to the unidirectional flow
is realized through the syntactic restriction that DL predicates may not occur
in the head of rules (they can only occur in the body of rules).

We conclude this section with two examples of knowledge bases combining
DLs and rules.

PERSONC 3FATHER™ .MALE
MALEC PERSON

FEMALE C PERSON
FEMALEC -MALE
MALE(Bob)

PERSON(Mary)
PERSON(Paul)

(a) DL-KB K (ontology about persons)

boy(X) < enrolled(X, cl), PERSON(X), not girl(X) [R1]
girl(X) «— enrolled(X, c2), PERSON(X) [R2]

boy(X) V girl(X) < enrolled(X, c3), PERSON(X) [R3]
FEMALE(X) « girl(X) [RA]

MALE(X) — boy(X) [R5]

enrolled(Paul, c1)

enrolled(Mary, c1)

enrolled(Mary, c2)

enrolled(Bob, c3)

(b) disjunctive Datalog program P (rules about students)

Fig. 1. Knowledge base B = (K, P) of Example 1

Ezample 1. Let B = (K, P) be the knowledge base reported in Figure 1, where
the DL-KB K defines an ontology about persons, and the disjunctive Datalog
program P defines nonmonotonic rules about students. For the sake of readabil-
ity, we denote DL predicates by uppercase names, and denote Datalog predicates
by lowercase names.

It is immediate to verify that B satisfies the DL-safe condition described
above. L]

RICHM UNMARRIED C AWANTS-TO-MARRY™.T
UNMARRIED(Mary)
UNMARRIED(Joe)

(a) DL-KB K

happy(X) — famous(X), WANTS-TO-MARRY(Y, X) [R1]
RICH(X) « famous(X), not scientist(X) [R2]
famous(Mary)

famous(Paul)

famous(Joe)

scientist(Joe)

(b) disjunctive Datalog program P

Fig. 2. Knowledge base B = (K, P) of Example 2

Ezample 2. Let B = (K, P) be the knowledge base reported in Figure 2.

Again, DL predicates are denoted by uppercase names, while Datalog predi-
cates are denoted by lowercase names. In this case, the rules in P (in particular,
rule R1) do not satisfy the DL-safeness condition. L]

5 A brief state of the art

In this section we briefly survey recent work in integrating ontologies and rules.?
We divide such studies in two main streams: (i) approaches dealing with forms
of DL-safe (and, more generally, loose) interaction between DL-KBs and rules;
(ii) approaches concerning forms of “non-DL-safe” (or tight) interaction.

5.1 Loose integration

The first formal proposal for the integration of Description Logics and rules
is AL-log [13]. AL-log is a framework which integrates KBs expressed in the
description logic ALC and positive Datalog programs. Then, disjunctive AL-log
was proposed in [35] as an extension of AL-log, based on the use of Datalog ™’
instead of positive Datalog, and on the possibility of using binary predicates
(roles) besides unary predicates (concepts) in rules. Such approaches realize a
form of loose integration between DLs and Datalog that precisely corresponds
to the DL-safeness condition described in the previous section. Moreover, both
in AL-log and in disjunctive AL-log DL predicates can occur only in the bodies
of rules, which forces the information flow to be unidirectional.

3 For other surveys on this topic see, e.g., [5,15].

The framework of AL-log has been extended in a different way in [30]. There,
the problem of extending OWL-DL with positive Datalog programs is analyzed.
Again, the interaction between OWL-DL and rules is restricted through the DL-
safeness condition. With respect to disjunctive AL-log, in [30] a more expressive
DL and a less expressive rule language (interpreted under first-order semantics)
are adopted: moreover, the information flow is bidirectional, i.e., DL predicates
may appear in the head of rules.

All the above approaches based on DL-safeness have been generalized in
[36] to the integration of arbitrary, decidable, first-order theories and disjunc-
tive Datalog rules. This paper establishes an important computational result,
which states that the DL-safe based integration preserves (under very general
conditions) decidability of reasoning.

The work presented in [21] can also be seen as an approach based on a form of
safe interaction between the DL-KB and the rules: in particular, a rule language
is defined such that it is possible to encode a set of rules into a semantically
equivalent DL-KB. As a consequence, such a rule language is very restricted.

A different approach is presented in [23, 22], which proposes Conceptual Logic
Programming (CLP), an extension of answer set programming (i.e., Datalog™")
towards infinite domains. In order to keep reasoning decidable, a syntactic re-
striction on CLP program rules is imposed. This approach is related to integrat-
ing DLs and rules, since the authors also show that CLPs can embed expressive
DL-KBs, which in turn implies decidability of adding CLP rules to such DLs.
However, the syntactic restriction on CLP rules, whose purpose is to impose a
“forest-like” structure to the models of the program, is different from the safeness
conditions analyzed so far, which makes it impossible to compare this approach
with the studies previously mentioned.

Another approach for extending DLs with Datalog ™ rules is presented in
[17,18]. Differently from the other approaches above described, this proposal
allows for specifying, in rule bodies, queries to the DL component, where every
query also allows for specifying an input from the rule component, and thus
for an information flow from the rule component to the DL-KB. The meaning
of such queries in rule bodies is given at the meta-level, through the notion of
skeptical entailment in the DL-KB. Thus, from the semantic viewpoint, this form
of interaction-via-entailment between the two components is more restricted than
in the approaches previously mentioned; on the other hand, such an increased
separation in principle allows for more modular reasoning methods, which are
able to completely separate reasoning about the DL-KB and reasoning about
the Datalog program. For a more detailed description of this approach see [15].

Finally, [3,2,4] present approaches for the combination of defeasible rea-
soning with Description Logics, under a safe interaction-via-entailment scheme
which is semantically analogous to the one proposed in [17]. Besides the dif-
ferences with the studies on nonmonotonic extensions of DL-KBs previously
mentioned due to the semantics of nonmonotonic rules, a main characteristic of
these proposals consists in the fact the information flow is unidirectional, i.e., it
only goes from the DL-KB to the rules.

5.2 Tight integration

Research in non-safe interaction of DLs and rules actually started with the work
on CARIN [26-28], which established very important decidability and undecidabil-
ity results concerning the integration of DL-KBs and rules. Roughly speaking,
such results clearly indicate that, in case of unrestricted interaction between a
DL-KB and a set of rules, decidability of reasoning holds only if at least one
of the two components has very limited expressive power: e.g., in order to re-
tain decidability of reasoning, allowing recursion in rules imposes very severe
restrictions on the expressiveness of DL-KB.

Then, we remark that query answering over a knowledge base can be seen as a
problem of reasoning in a DL-KB augmented with rules which encode the query.
In this respect, an important undecidability result concerning query answering
over databases with integrity constraints is reported in [10]. More precisely, it
is shown that answering recursive Datalog queries over a database with simple
integrity constraints (keys and foreign keys), interpreted as a knowledge base,
i.e., under an open-world assumption, is undecidable. This setting also can be
viewed as a DL-KB with non-DL-safe interaction between a knowledge base
(database with integrity constraints) and a rule component (the query).

As already observed, it is difficult to provide a good semantic account for non-
safe interaction between DL-KBs and nonmonotonic rules, due to the classical,
open-world semantics of DL-KBs, and the closed-world assumption underlying
nonmonotonic systems. For instance, [29] illustrates the problems in providing a
semantic account for non-safe interaction of ontologies and Datalog ™" programs.

Finally, another recent proposals in this field is SWRL [24], a non-safe ap-
proach to the integration of rules and DL-KBs in which rules are interpreted
under the classical FOL semantics. The addition of this kind of rules to DLs
leads to undecidability of reasoning.

5.3 Loose vs. tight integration

Summarizing, what emerges from the studies in the integration of DL-KBs and
rules is that while, on the one hand, a safe form of interaction between DLs and
rules generally allows for decidable reasoning and nice computational properties,
on the other hand, the results concerning non-safe interaction indicate that a
tight connection between the two components can only be obtained at the price
of severely restricting the expressive power of either the DL-KB or the rules.

In the next section we present in detail DL +log, which is currently one of the
most expressive and decidable combinations of Description Logics and disjunc-
tive Datalog. DL+log overcomes the DL-safeness condition to obtain a tighter
form of interaction between DLs and rules.

6 The DL +log approach

In this section we introduce DL +log (we refer to [38] for more details).

6.1 Syntax
We start from three mutually disjoint predicate alphabets:

— an alphabet of concept names X¢;
— an alphabet of role names Xg;
— an alphabet of Datalog predicates X'p.

We call a predicate p a DL predicate if either p € X or p € Yr.* Then, we
denote by C a countably infinite alphabet of constant names.

An atom is an expression of the form p(X), where p is a predicate of arity
n and X is a n-tuple of variables and constants.® If no variable symbol occurs
in X, then p(X) is called a ground atom (or fact). If p € Yo U X', the atom is
called a DL-atom, while if p € X'p, it is called a Datalog atom.

To define a DL +log knowledge base, we can start from any description logic
DL: in other words, the construction defined in the following is parametric with
respect to the description logic used to express the DL-KB.

Definition 1. Given a description logic DL, a DL+logknowledge base B is a
pair (IC,P), where:

— K is a DL-KB, i.e., a pair (T, A) where T is the TBox and A is the ABox;
— P is a set of Datalog™ rules, where each rule R has the form

pl(Xl) V... \/pn(Xn) «— Tl(Yl), v ,Tm(Ym), Sl(Zl), ey Sk(Zk),
notuy(Wh), ..., not up(Wp)

such that n >0, m >0, k>0, h >0, each p;(X;), r:(Y3), $:(Z;), ui(W;) is

an atom and:

each p; is either a DL predicate or a Datalog predicate;

each r;, u; is a Datalog predicate;

each s; is a DL predicate;

(Datalog safeness) every variable occurring in R must appear in at least

one of the atoms 11 (Y1), ..., "m(Yim),$1(Z1), ..., 8k(Zk);

o (weak safeness) every head variable of R must appear in at least one of
the atoms r1(Y1),...,rm(Ym).

We remark that the above notion of weak safeness allows for the presence of
variables that only occur in DL-atoms in the body of R. On the other hand, the
notion of DL-safeness of variables adopted in previous approaches [35, 31, 36]
can be expressed as follows: every variable of R must appear in at least one of
the atoms r1(Y1),...,7m(Ym). Therefore, DL-safeness forces every variable of R
to occur also in the Datalog atoms in the body of R, while weak safeness allows
for the presence of variables that only occur in DL-atoms in the body of R.

Without loss of generality, in the rest of the paper we assume that in a
DL+logKB (K, P) all constants occurring in K also occur in P.

4 For DLs which allow for using equality, we assume that the equality predicate is a
DL predicate.
5 As usual, atoms involving equalities are written using the infix notation t; = ta.

6.2 Semantics

We now define a semantics for DL +log-KBs which is a “conservative extension”
of both the open-world semantics of DLs and the closed-world semantics of
disjunctive Datalog.

Given an interpretation Z and a predicate alphabet Y, we denote by Ty
the projection of Z to X, i.e., Ty is obtained from Z by restricting it to the
interpretation of the predicates in X.

Given a set of constants C, the ground instantiation of P with respect to C,
denoted by gr(P,C), is the program obtained from P by replacing every rule
R in P with the set of rules obtained by applying all possible substitutions of
variables in R with constants in C.

Given an interpretation Z of an alphabet of predicates X’ C X, and a ground
program P, over the predicates in X, the projection of P, with respect to Z,
denoted by II1(Pg4,T), is the ground program obtained from P, as follows. For
each rule R € Pg:

— delete R if there exists an atom r(¢) in the head of R such that r € X’ and
tf e rI;

— delete each atom 7(t) in the head of R such that r € X’ and t* ¢ r7Z;

— delete R if there exists an atom r(¢) in the body of R such that r € X’ and
tr & rt;

— delete each atom 7(t) in the body of R such that r € X’ and t € rZ;

Informally, the projection of P, with respect to Z corresponds to evaluating
Py with respect to Z, thus eliminating from P, every atom whose predicate is
interpreted in Z. Thus, when Y’ = Yo U X, all occurrences of DL predicates are
eliminated in the projection of P, with respect to Z, according to the evaluation
in Z of the atoms with DL predicates occurring in P,.

Then, we introduce the notions of minimal model and stable model for
Datalog™" in the absence of the UNA.S

Given two interpretations 77, Zs of the set of predicates X and the set of
constants C, we write Z; Cx ¢ Zy if (i) for each p € X and for each tuple ¢ of
constants from C, if t7+ € p?t then t¥2 € p?2, and (ii) there exist p € X and
tuple t of constants from C such that t71 ¢ p”* and t2 € p’2.

Given a positive ground Datalog™" program P over an alphabet of predicates
XY and an interpretation Z, we say that Z is a minimal model of P if: (i) T
satisfies the first-order translation FO(P) of P (defined in Section 4); (ii) there
is no interpretation Z’ such that Z’ satisfies FO(P) and Z' Cx ¢ Z.

Given a ground Datalog™" program P and an interpretation Z for P, the GL-
reduct [19] of P with respect to Z, denoted by GL(P,Z), is the positive ground
program obtained from P as follows. For each rule R € P:

5 Observe that the notions of minimal model and stable model presented here slightly
differs from the standard ones for Datalog™" presented in Section 3, since they are
expressed in a more general framework in which unique names are not assumed.
Consequently, the interpretation of constants must be considered in the definition of
minimal and stable model.

1. delete R if there exists a negated atom notr(t) in the body of R such that
trer? ;
2. delete each negated atom not r(t) in the body of R such that t* & rZ.

Given a ground Datalog™’ program P and an interpretation Z, Z is a stable
model for P iff 7 is a minimal model of GL(P,T).

Definition 2. An interpretation T of X U Xr U Xp is a model for B = (K, P)
if the following conditions hold:

1. Iy, ux, satisfies K;
2. Iyx, is a stable model for II(gr(P,C),Zs.usy)-

B is called satisfiable if B has at least a model.

We say that a ground atom p(c) is entailed by B iff, for each model 7 of B,
T satisfies p(c).

According to the above semantics, DL predicates are interpreted under the
open-world assumption, while Datalog predicates are interpreted under the
closed-world assumption of disjunctive Datalog (see [37] for a detailed discussion
of this aspect).

Notice that, under the above semantics, entailment can be reduced to satis-
fiability, since it is possible to express constraints in the Datalog program. More
precisely, it is immediate to verify that (C, P) entails p(c) ift (K, P U {« p(c)})
is unsatisfiable. In a similar way, it can be seen that conjunctive query answer-
ing can be reduced to satisfiability in DL+log (see [38]). Consequently, in the
following we concentrate on the satisfiability problem in DL +log-KBs.

Ezample 1.(contd.) Let us consider again the knowledge base B = (K, P) re-
ported in Figure 1, where the DL-KB K defines an ontology about persons, and
the disjunctive Datalog program P defines nonmonotonic rules about students.
First, since all rules in P are DL-safe, the rules in P also satisfy the weak
safeness condition of Definition 1: consequently, B is a DL +log-KB.
Then, it can be easily verified that all models for B satisfy the following
ground atoms:

— boy(Paul) (since rule R1 is always applicable for X = Paul and R1 acts like a
default rule, which can be read as follows: if X is a person enrolled in course
cl, then X is a boy, unless we know for sure that X is a girl);

— girl(Mary) (since rule R2 is always applicable for X = Mary)

— boy(Bob) (since rule R3 is always applicable for X = Bob, and, by rule R4,
the conclusion girl(Bob) is inconsistent with K);

— MALE(Paul) (due to rule R5);

— FEMALE(Mary) (due to rule R4).

Notice that B = FEMALE(Mary), while K & FEMALE(Mary). In other
words, adding rules has indeed an effect on the conclusions one can draw about
DL predicates. u

Ezample 2.(contd.) Let us consider again the knowledge base B = (K, P) re-
ported in Figure 2.

First, observe that B is a DL+log-KB: in particular, the variable Y in rule
R1 is weakly-safe according to Definition 1 (we also recall that rule Rl is not
DL-safe, since Y does not occur in any Datalog predicate in rule R1).

Then, it can be easily verified that all models for B satisfy the following
formulas:

— RICH(Paul) and RICH(Mary), since the default rule R2 is always appli-
cable for X = Paul and X = Mary, but not for X = Joe, since the fact
scientist(Joe) holds in every model for B;

— AWANTS-TO-MARRY™ . T(Mary), due to the first axiom of the DL-KB and
to the fact that both RICH(Mary) and UNMARRIED(Mary) hold in ev-
ery model of the DL+log-KB B (while 3WANTS-TO-MARRY . T (Paul)
is not forced by such axiom to hold in every model of B, because
UNMARRIED(Paul) is not forced to hold in every such model);

— happy(Mary), due to the above conclusions and to the rule R1. In-
deed, since AWANTS-TO-MARRY .T(Mary) holds in every model of
B, it follows that in every model there exists a constant z such that
WANTS-TO-MARRY(x, Mary) holds in the model, consequently from rule
R1 it follows that happy(Mary) also holds in the model.

6.3 Reasoning

In this section we study reasoning in DL +log. In particular, we study satisfiabil-
ity for finite DL +log-KBs (as mentioned above, entailment can be easily reduced
to satisfiability in DL+log).

For ease of exposition, in the following we deal with the case when the DL
is interpreted under the UNA: however, the algorithm can be easily extended to
the case when unique names are not assumed in the DL (in a way analogous to
the technique reported in [37] in the case of DL-safe rules).

We start by introducing Boolean conjunctive queries (CQs) and Boolean
unions of conjunctive queries (UCQs), and the containment problem for such
queries. A Boolean UCQ over a predicate alphabet X is a first-order sentence of
the form Jzx.cong, (x) V...V conj,(x), where x is a tuple of variable symbols and
each cong;(x) is a set of atoms whose predicates are in X' and whose arguments
are either constants or variables from x. A Boolean CQ corresponds to a Boolean
UCQ in the case when n = 1.

Given a DL-TBox 7, a Boolean CQ @7 and a Boolean UCQ @2 over the
alphabet Yo U Xg, Q1 is contained in Qo with respect to T, denoted by 7 =
Q1 C Qo, iff, for every model Z of 7, if) is satisfied in Z then Q- is satisfied in
Z. In the following, we call the problem of deciding 7 = Q1 C Q2 the Boolean
CQ/UCQ containment problem.”

" This problem was called ezistential entailment in [28].

Algorithm Given a program P, we denote by Cp the set of constants occurring
in P.

In the following definition, we assume that a rule R in P has the form
ar(x) «— Pr(x,y,w),vr(x,y, 2), where yg(x,y, z) is the set of DL-atoms oc-
curring in the body of R (and, of course, Br(x, y, w) is the set of Datalog atoms
in the body of R), « are the head variables in R, y are the existential variables
occurring both in DL-atoms and in Datalog atoms in R, and z (respectively,
w) are the existential variables of R that only occur in DL-atoms (respectively,
Datalog atoms) in R.

Definition 3. Let B = (K,P) be a DL+log-KB. The DL-grounding of P, de-
noted by gr,(P), is the following set of Boolean CQs:

g7,(P) = {vr(c1/x,c2/y,2) | R € P and c1,cz are tuples of constants in Cp}
U
{p(e/x) | p is a DL predicate occurring in a rule head in P
and ¢ is a tuple of constants in Cp}

Notice that gr,(P) constitutes a partial grounding of the conjunctions of DL-
atoms that occur in P with respect to the constants in Cp, since the variables
that only occur in DL-atoms in the body of rules are not replaced by constants
in gr,(P).

Let G be a set of Boolean CQs. Then, we denote by CQ(G) the Boolean CQ
corresponding to the conjunction of all the Boolean CQs in G, i.e., CQ(G) =
/\WEG'Y' We also denote by UCQ(G) the Boolean UCQ corresponding to the
disjunction of all the Boolean CQs in G, namely UCQ(G) = \/%G 7.8

Similarly to gr(P,Cp), we define the partial grounding of P on Cp (denoted
by pgr(P,Cp)) as the program obtained from P by grounding with the constants
in Cp all variables except the existential variables of R that only occur in DL-
atoms.

Finally, given a partition (Gp,Gn) of gr,(P), we denote by P(Gp,Gy) the
ground Datalog™" program obtained from pgr(P,Cp) by:

— deleting all occurrences of the conjunction 7 from the body of the rules, for

each v € Gp;

deleting each rule in which v occurs in the body, for each v € G ;

deleting each rule in which « occurs in the head, for each v € Gp;

— deleting all occurrences of the conjunction - from the head of the rules, for
each v € Gy.

Notice that P(Gp,Gy) is a ground Datalog " program over Yp, i.e., no DL
predicate occurs in such a program.

8 Without loss of generality, we assume that each v in G uses different existential
variable symbols, so that the expression /\%G’y can be immediately turned into
a Boolean CQ by factoring out all existential quantifications (an analogous simple
transformation is needed for turning UCQ(G) into a Boolean UCQ).

We are now ready to present the algorithm DL +log-SAT for deciding sat-
isfiability of DL+log-KBs. The algorithm is shown in Figure 3. The algorithm
has a very simple structure, since it decides satisfiability by looking for a guess
(Gp,GN) of the Boolean CQs in gr,(P) that is consistent with the DL-KB K
and such that the Datalog™" program P(Gp,Gy) has a stable model.

Algorithm DL +log-SAT(B)
Input: DL+log-KB B = (K, P) with K = (7, A)
Output: true if B is satisfiable, false otherwise
begin
if there exists partition (Gp, Gn) of gr,(P)
such that
(a) P(Gp,Gn) has a stable model and
(b) T = CQ(AUGP) CUCQ(GnN)
then return true
else return false
end

Fig. 3. The algorithm DL+log-SAT

Correctness of the algorithm is based on the following property, which relates
consistency of a guess (G p, G) of Boolean CQs with the problem of containment
of a Boolean CQ in a Boolean UCQ with respect to a DL-TBox.

Lemma 1. There exists a model M for K = (T, A) such that every Boolean
CQ in Gp is satisfied in M and every Boolean CQ in Gy is not satisfied in M
if and only if T = CQ(AUGP) CUCQ(GN).

Based on the above lemma, we are able to prove correctness of the algorthm
DL+log-SAT.

Theorem 1. Let B be a DL+log-KB. Then, B is satisfiable iff DL +log-SAT(B)
returns true.

Decidability and complexity First, from the analysis of the algorithm
DL+Ilog-SAT presented above, we are able to prove a very general property
that states decidability of reasoning in DL +log whenever the Boolean CQ/UCQ
containment problem is decidable in DL.

Theorem 2. For every description logic DL, satisfiability of DL +log-KBs is
decidable iff Boolean CQ/UCQ containment is decidable in DL.

From the above theorem and from previous results on query answering and
query containment in DLs, we are able to state decidability of reasoning in

DL +log in the case when DL corresponds to several known DLs. In particular,
in the following we briefly analyze the description logics ALCN'R, SHZQ, and
DL-Lite.

First, we observe that, for the description logic ALCNR it is known
that Boolean CQ/UCQ containment is decidable [28], hence reasoning in
ALCNR +log-KBs is decidable.

Theorem 3. Satisfiability of ALCNR+log-KBs is decidable.

Of course, this result implies decidability of adding weakly-safe Datalog™"
rules to all the DLs that are subsets of ALCNR.

For (alarge fragment of) the description logic SHZ Q [25], it is known that an-
swering conjunctive queries is decidable (see [32,20]), but decidability of Boolean
CQ/UCQ containment in SHZQ has not been established yet, therefore satis-
fiability in SHZQ+log is still an open problem: however, we conjecture that
Boolean CQ/UCQ containment in SHZQ is decidable as well, and hence that
reasoning in SHZQ+log is decidable.

Finally, for the description logic DL-Lite [8], there are known results about
the complexity of query answering, which allow us to establish the computational
complexity of reasoning in DL-Lite+log for different classes of Datalog programs.
More precisely, the following theorem refers to data complexity of satisfiability,
which in the framework of DL +log corresponds to the analysis of the computa-
tional complexity of the problem when we only consider the size of the ABox A
and of the EDB of P, i.e., the set of facts contained in P. In other words, data
complexity considers the TBox 7 and the rules not corresponding to facts (i.e.,
the IDB) in P as fixed, hence they are not part of the input. Data complexity
is a very significant measure when the size of the data, i.e., the ABox and the
EDB of P, is much larger than the size of the intensional knowledge, i.e., the
TBox and the IDB of P.

The following results are based on the analysis of the previous algorithms
and on the fact that conjunctive query answering in DL-Lite is in PTIME in
data complexity (actually it is in LOGSPACE) [8].

Theorem 4. Let B = (K, P) be a DL-Lite+log-KB. Then:

— if P is a positive Datalog program, then deciding satisfiability of B is PTIME-
complete with respect to data complexity;

— if P is a positive disjunctive Datalog program, then deciding satisfiability of
B is NP-complete with respect to data complexity;

— if P is an arbitrary Datalog”" program, then deciding satisfiability of B is
X8 -complete with respect to data complexity.

Therefore, in DL-lite, under both semantics, the data complexity does not
increase with respect to the data complexity of the Datalog program alone [11].
In other words, connecting a DL-Lite-KB to a Datalog program does not increase
complexity of reasoning in the size of the data. We also point out that DL-Lite
with arbitrary, non-weakly-safe recursive Datalog rules is undecidable (which
follows from the results in [28, 10]).

7 Open problems

We conclude the paper by pointing out some of the most interesting open prob-
lems in the integration of DLs and rules.

Semantics A first and crucial issue concerns the semantic account for logical
systems integrating Description Logics and rules. In the paper, we have illus-
trated the technical problems due to the OWA of DLs and the CWA of non-
monotonic Datalog. However, there is also an orthogonal problem which can be
summarized as follows: what is the “intended” semantics of a system combin-
ing DLs and rules? Research in this field is still far from providing an ultimate
answer to the above question. With respect to this issue, in this paper we have
only claimed that a minimal requirement that an appropriate semantics for such
systems should satisfy is to constitute a “conservative extension” of both the
semantics of DLs and the semantics of disjunctive Datalog.

Expressiveness Another important problem (which is directly related to the
previous issue) concerns the expressiveness of a language integrating DLs and
rules. In fact, the representational abilities that a system combining DLs and
rules should provide to match “practical” needs are not completely clear.

In this respect, we believe that one of the most important expressive limita-
tions of many of the current approaches to the integration of DLs and rules is the
rigid separation between DL predicates and Datalog predicates. For instance, in
DL+log, since DL predicates have an open interpretation while Datalog predi-
cates have a closed interpretation, it is not possible to express complex pieces
of information in which the same predicate is interpreted in different ways (i.e.,
both under an open-world assumption and under a closed-world assumption) in
different parts of the same knowledge base.

Reasoning As we have explained in the paper, decidability (and complexity) of
reasoning is a crucial issue in systems combining DLs and rules. In this respect,
there are numerous computational open problems, and the results obtained so far
can be seen as the first, preliminary results towards the identification of general
computational properties for systems combining DLs and rules.

One important general goal in this direction concerns the identification of
the frontier between decidability and undecidability of reasoning with respect
to the semantics and the expressiveness (in particular, the “degree of integra-
tion”) of the formalism combining DLs and rules. In more abstract terms, this
corresponds to analyze the trade-off between the expressiveness and the compu-
tational properties of such formalism, as usual in Knowledge Representation.

With respect to the above general goal, examples of more specific open prob-
lems are the following: (i) it is possible to identify tighter forms of decidable
interaction between DL-KBs and rules, which are able to overcome the limita-
tions of DL+log? (ii) within the interaction between DLs and rules imposed by

the DL+log framework, is it possible to establish more general computational
properties? for instance, is it possible to establish decidability of DL+log for
very expressive DLs (like OWL-DL)?

Implementation There is still a considerable distance between the current
state of the art in the integration of DLs and rules and the implementation
of effective systems. In many approaches, reasoning techniques have not been
defined yet, and even in the approaches which have addressed the reasoning
problem, the proposed techniques for reasoning in DLs combined with rules have
the main goal of establishing general computational properties (decidability and
worst-case complexity) of the combined language. Therefore, the problem of
turning such techniques into effective and implementable algorithms is still open
and mainly unexplored.

As we have explained in the introduction, an important property towards
this goal is modularity, i.e., the possibility of reducing reasoning in a system
combining a DL component and a rule component to reasoning as “locally” as
possible in the single components. On the other hand, it is clear that this mod-
ularity is in contrast with the representational goal of increasing the interaction
between the DL component and the rule component. So, again, it is necessary
to identify suitable trade-offs between such desiderata.”

Relationship between rules and queries Finally, the relationship between
the integration of DLs and rules and query answering in DLs has not been
fully explored yet. As described in the paper, the two problems are very strictly
related, since queries can in principle be expressed in terms of rules. Therefore,
the known results concerning query answering in DLs could be profitably used
towards the design of an expressive and computationally attractive rule language
for DLs (and vice versa). The DL +log approach presented above constitutes a
first step in this direction.

Acknowledgments

The author is grateful to a lot of people for many stimulating discussions on
the subject of this paper. In particular, the author wishes to warmly thank En-
rico Franconi, Ian Horrocks, Boris Motik, Marie-Christine Rousset, and Sergio
Tessaris. A special acknowledgment goes to some of the (present and former)
members of the Artificial Intelligence research group and the Data and Knowl-
edge Bases research group at the Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza”, for introducing the author to this research
topic, for their continuous help and for their pioneering work in this topic: Diego
Calvanese, Giuseppe De Giacomo, Francesco Donini, Maurizio Lenzerini, Daniele
Nardi, Andrea Schaerf.

9 Modular techniques for dealing with the DL-safe integration of DLs and rules are
described in [36, 37].

References

10.

11.

12.

13.

14.

15.

Rule interchange format working group charter. http://www.w3.org/2005/rules/
wg/charter.

Grigoris Antoniou. A nonmonotonic rule system using ontologies. In Proc. of
the First International Workshop on Rules and Rule Markup Languages for the
Semantic Web (RuleML 2002), volume 60 of CEUR Workshop Proceedings, 2002.
Grigoris Antoniou. Nonmonotonic rule systems on top of ontology layers. In Proc.
of the 2002 International Semantic Web Conference (ISWC 2002), pages 394-398,
2002.

Grigoris Antoniou, A. Bikakis, and Gerd Wagner. A system for nonmonotonic
rules on the web. In Proc. of the Third International Workshop on Rules and Rule
Markup Languages for the Semantic Web (RuleML 2004), pages 23-36, 2004.
Grigoris Antoniou, Carlos Viegas Damsio, Benjamin Grosof, Ian Horrocks, Michael
Kifer, Jan Maluszynski, and Peter F. Patel-Schneider. Combining rules and on-
tologies. A survey. REWERSE Deliverable, http://rewerse.net/publications#
REWERSE-DEL-2005-I3-D3.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, 2003.

Chitta Baral and Michael Gelfond. Logic programming and knowledge represen-
tation. J. of Logic Programming, 19-20:73-148, 1994.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. DL-Lite: Tractable description logics for ontologies. In Proc.
of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pages 602—-607, 2005.
Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decid-
ability of query containment under constraints. In Proc. of the 17th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), pages
149-158, 1998.

Diego Calvanese and Riccardo Rosati. Answering recursive queries under keys
and foreign keys is undecidable. In Proc. of the 10th Int. Workshop on Knowl-
edge Representation meets Databases (KRDB 2003). CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/Vol-79/, 2003.

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity
and expressive power of logic programming. ACM Computing Surveys, 33(3):374—
425, 2001.

Jos de Bruijn, Ruben Lara, Axel Polleres, and Dieter Fensel. OWL DL vs. OWL
flight: conceptual modeling and reasoning for the semantic web. In Proc. of the
14th international conference on World Wide Web (WWW 2005), pages 623-632,
2005.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. AL-
log: Integrating Datalog and description logics. J. of Intelligent Information Sys-
tems, 10(3):227-252, 1998.

Thomas Eiter, Georg Gottlob, and Heikki Mannilla. Disjunctive Datalog. ACM
Trans. on Database Systems, 22(3):364-418, 1997.

Thomas Eiter, Giovambattista Ianni, Axel Polleres, Roman Schindlauer, and Hans
Tompits. Reasoning with rules and ontologies. In Pedro Barahona, Frangois Bry,
Enrico Franconi, Ulrike Sattler, and Nicola Henze, editors, Reasoning Web, Second
International Summer School 2005, Tutorial Lectures, Lecture Notes in Computer
Science. Springer, 2006.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. The KR system dlv: Progress report, comparison and benchmarks. In Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), pages 636-647, 1998.

Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Com-
bining answer set programming with description logics for the semantic web. In
Proc. of the 9th Int. Conf. on Principles of Knowledge Representation and Rea-
soning (KR 2004), pages 141-151, 2004.

Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Well-
founded semantics for description logic programs in the semantic web. In Proc. of
the Third International Workshop on Rules and Rule Markup Languages for the
Semantic Web (RuleML 2004), pages 81-97, 2004.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9:365-385, 1991.

Birte Glimm, Tan Horrocks, and Ulrike Sattler. Conjunctive query answering for
description logics with transitive roles. In Proc. of the 2006 Description Logic
Workshop (DL 2006), 2006.

Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description
logic programs: Combining logic programs with description logic. In Proc. of the
12th Int. World Wide Web Conf. (WWW 2003), pages 48-57, 2003.

Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir. Semantic web reason-
ing with conceptual logic programs. In Proc. of the Third International Workshop
on Rules and Rule Markup Languages for the Semantic Web (RuleML 2004), pages
113-127, 2004.

Stijn Heymans and Dirk Vermeir. Integrating description logics and answer set
programming. In Proc. of the 2003 International Workshop on Principles and
Practice of Semantic Web Reasoning (PPSWR 2003), pages 146-159, 2003.

Tan Horrocks and Peter F. Patel-Schneider. A proposal for an OWL rules language.
In Proc. of the 13th international conference on World Wide Web (WWW 2004),
pages 723-731, 2004.

Tan Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role inclusion
axioms. Artificial Intelligence, 160(1-2):79-104, 2004.

Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language
combining Horn rules and description logics. In Proc. of the 12th Eur. Conf. on
Artificial Intelligence (ECAI’96), pages 323-327, 1996.

Alon Y. Levy and Marie-Christine Rousset. The limits on combining recursive
Horn rules with description logics. In Proc. of the 13th Nat. Conf. on Artificial
Intelligence (AAAI’96), pages 577-584, 1996.

Alon Y. Levy and Marie-Christine Rousset. Combining Horn rules and description
logics in CARIN. Artificial Intelligence, 104(1-2):165-209, 1998.

Jing Mei, Shengping Liu, Anbu Yue, and Zuoquan Lin. An extension to OWL
with general rules. In Proc. of the Third International Workshop on Rules and
Rule Markup Languages for the Semantic Web (RuleML 2004), pages 155-169,
2004.

Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-DL with
rules. In Proc. of the 2004 International Semantic Web Conference (ISWC' 2004),
pages 549-563, 2004.

Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-DL with
rules. Web Semantics, 3(1):41-60, 2005.

32.

33.

34.

35.

36.

37.

38.

Maria Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Characterizing data
complexity for conjunctive query answering in expressive description logics. In
Proc. of the 21th Nat. Conf. on Artificial Intelligence (AAAI 2006), 2006.

Peter F. Patel-Schneider, Patrick J. Hayes, Ian Horrocks, and Frank van Harme-
len. OWL web ontology language; semantics and abstract syntax. W3C candidate
recommendation, http://www.w3.org/tr/owl-semantics/, november 2002.
Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132,
1980.

Riccardo Rosati. Towards expressive KR systems integrating Datalog and descrip-
tion logics: Preliminary report. In Proc. of the 1999 Description Logic Work-
shop (DL’99), pages 160-164. CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/Vol-22/, 1999.

Riccardo Rosati. On the decidability and complexity of integrating ontologies and
rules. Web Semantics, 3(1):61-73, 2005.

Riccardo Rosati. Semantic and computational advantages of the safe integration
of ontologies and rules. In Proc. of the 2005 International Workshop on Principles
and Practice of Semantic Web Reasoning (PPSWR 2005), volume 3703 of Lecture
Notes in Computer Science, pages 50—-64. Springer, 2005.

Riccardo Rosati. DL-+log: Tight integration of description logics and disjunctive
datalog. In Proc. of the 10th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2006), 2006. To appear.

