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ABSTRACT
In this paper we study queries over relational databases with
integrity constraints (ICs). The main problem we analyze is
OWA query answering, i.e., query answering over a database
with ICs under open-world assumption. The kinds of ICs
that we consider are functional dependencies (in particu-
lar key dependencies) and inclusion dependencies; the query
languages we consider are conjunctive queries (CQs), union
of conjunctive queries (UCQs), CQs and UCQs with nega-
tion and/or inequality. We present a set of results about
the decidability and finite controllability of OWA query an-
swering under ICs. In particular: (i) we identify the de-
cidability/undecidability frontier for OWA query answering
under different combinations of the ICs allowed and the
query language allowed; (ii) we study OWA query answering
both over finite databases and over unrestricted databases,
and identify the cases in which such a problem is finitely
controllable, i.e., when OWA query answering over finite
databases coincides with OWA query answering over un-
restricted databases. Moreover, we are able to easily turn
the above results into new results about implication of ICs
and query containment under ICs, due to the deep relation-
ship between OWA query answering and these two classical
problems in database theory. In particular, we close two
long-standing open problems in query containment, since
we prove finite controllability of containment of conjunctive
queries both under arbitrary inclusion dependencies and un-
der key and foreign key dependencies. Besides their theo-
retical interest, we believe that the results of our investiga-
tion are very relevant in many research areas which have re-
cently dealt with databases under an incomplete information
assumption: e.g., view-based information access, ontology-
based information systems, data integration, data exchange,
and peer-to-peer information systems.

1. INTRODUCTION
The problem In this paper we study queries and integrity
constraints (ICs) over relational databases. The main prob-
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lem studied in this paper is OWA query answering, which
corresponds to query answering over a database with in-
tegrity constraints under open-world assumption (OWA),
i.e., under the assumption that the facts stored in the
database are only an incomplete specification of the data
[35, 21, 34]. Under this assumption, the actual meaning of
a database D with integrity constraints C is represented by
the set of all databases B such that B contains all the facts
in D and B satisfies the integrity constraints in C.

The significance of the OWA query answering problem is
witnessed by the following considerations:

• As we will explain in Section 3, OWA query answer-
ing is deeply related to several classical problems in
database theory, in particular: implication of integrity
constraints (a.k.a. database dependencies) [7]; OWA-
consistency, i.e., consistency of a database instance
with respect to a set of ICs under open-world assump-
tion [35, 21]; and query containment under integrity
constraints [26].

• Many research areas are currently studying problems
that involve databases with incomplete information:
e.g., view-based information access [23], ontology-
based information systems [25], data integration [28],
data exchange [17], mapping composition [18], consis-
tent query answering [3], and peer-to-peer information
systems [22]. In all such scenarios, the problem of
OWA query answering (or problems very closely re-
lated to it) is studied under various forms. Therefore,
results about OWA query answering are in principle
very relevant in all these areas.

We recall that, even in the absence of integrity constraints,
the problem of OWA-answering first-order queries is unde-
cidable both over finite and over unrestricted databases [31],
while, under the standard closed-world assumption (CWA)
adopted by databases, any (domain-independent) first-order
query can be answered in polynomial time with respect to
data complexity, even in the presence of the typical rela-
tional integrity constraints [2]. That is, OWA query answer-
ing is generally much harder than CWA query answering.

From queries to ICs We consider the most common form
of relational queries, i.e., conjunctive queries (CQs), and
the most important forms of relational integrity constraints,
i.e.: (i) functional dependencies (FDs), and in particular key
dependencies (KDs); (ii) inclusion dependencies (IDs); (iii)
exclusion dependencies (EDs).



We exploit the tight correspondence between the notion
of conjunctive query and each of the above forms of integrity
constraint. Informally, the correspondence between a class
of queries Q and a class of integrity constraints C is based on
the fact that (boolean) queries in Q are able to express the
negation of each integrity constraint in C, i.e., a database
violates an integrity constraint c ∈ C if and only if the cor-
responding query qc ∈ Q is true in the database. More
specifically, we establish the following correspondences:

• conjunctive queries can be put in correspondence with
exclusion dependencies;

• conjunctive queries with inequalities can be put in cor-
respondence with functional and key dependencies;

• conjunctive queries with negation can be put in cor-
respondence with inclusion dependencies and tuple-
generating dependencies (TGDs).

Of course, the above relationship between queries and ICs
is not a result per se, since it is not surprising and is not
totally new: indeed, some of the above correspondences have
been used, in different forms, in previous studies concerning
query containment and query answering under ICs (among
the most recent examples, see e.g. [24, 19, 16]).

However, through the systematic use of such correspon-
dences, we are actually able to “jump” from the notion of
integrity constraint to the notion of query, and we are able
to provide a unified view of the problems mentioned above,
i.e., implication of integrity constraints, OWA-consistency,
OWA query answering, and query containment under ICs.
Moreover, this allows us, for instance, to use a number of
known results about implication of ICs to prove properties
for OWA query answering and query containment under ICs.

Results for OWA query answering We develop our anal-
ysis both under the assumption that a database must be a
finite structure, and under the assumption of unrestricted
databases (i.e., a database may be infinite). In this respect,
we identify the cases when the OWA query answering prob-
lem is finitely controllable, i.e., when OWA query answering
over finite databases coincides with OWA query answering
over unrestricted databases.

We present a set of decidability and finite controllability
results for OWA query answering under ICs. More precisely:
(i) we identify the cases in which such a problem is finitely
controllable; (ii) we identify the decidability/undecidability
frontier for the query languages and the ICs above men-
tioned; (iii) for the decidable cases, we establish the com-
putational complexity of OWA query answering (both data
complexity and combined complexity). The summary of the
results obtained is reported in Figure 1 (see Section 9 for an
explanation of the table).

In a nutshell, our results provide a clear picture of the
frontier between decidability and undecidability of OWA-
answering of conjunctive queries (and unions of conjunctive
queries) under key dependencies and inclusion dependencies.
In particular, our results show that:

• OWA-answering of (unions of) conjunctive queries un-
der IDs (Theorems 3 and 4) and under keys and foreign
keys (Theorem 5) is finitely controllable;

• OWA-answering of conjunctive queries under so-called
non-conflicting KDs and IDs is not finitely controllable

and is undecidable over finite databases (Theorems 6
and 7);

• adding (even safe) negation to unions of conjunctive
queries makes OWA-answering under inclusion depen-
dencies non-finitely controllable (Theorem 9) and un-
decidable (Theorem 10);

• adding (even safe) negation to conjunctive queries un-
der combinations of KDs and IDs in which OWA-
answering of conjunctive queries is decidable, makes
OWA-answering non-finitely controllable and undecid-
able (Theorem 11);

• adding a form of negation with universal quantifica-
tion to unions of conjunctive queries makes OWA-
answering non-finitely controllable and undecidable
even in the absence of ICs (Theorem 13). Therefore,
even for very small fragments of first-order queries with
unsafe negation, and even in the absence of ICs, OWA-
answering is not finitely controllable and is undecid-
able.

• adding inequalities to conjunctive queries also makes
OWA-answering non-finitely controllable and undecid-
able in the presence of IDs (Theorem 8).

Results for query containment Moreover, we are able to
easily turn the above results into new results about impli-
cation of ICs and query containment under ICs, due to the
deep relationship between OWA query answering and these
two classical problems in database theory. In particular, we
close two long-standing open problems in query containment
which date back to the mid-80’s [26]:

• we prove finite controllability of containment of con-
junctive queries under arbitrary inclusion dependen-
cies (Corollary 1);

• we prove finite controllability of containment of con-
junctive queries under keys and foreign keys (Corol-
lary 2).

Relevance of our results Besides its theoretical interest,
we believe that the analysis presented in this paper is very
relevant in all the above mentioned areas dealing with data
under an incomplete information assumption.

In general, our results show that it is very easy to get
to undecidability of query processing in databases under in-
complete information, as long as the IC/schema language
and/or the query language are sufficiently expressive. Con-
sequently, such results provide a set of coordinates which
may help in the process of choosing a reasonable tradeoff be-
tween expressiveness of both schema and query languages,
and decidability/complexity of query processing.

Structure of the paper In the next section, we present
some preliminary definitions and define the problem studied.
In Section 3 we illustrate the relationship between queries
and integrity constraints which drives our analysis of OWA
query answering. Then, in Section 4 we present our re-
sults for OWA-answering of CQs and UCQs, in Section 5 we
analyze OWA-answering for UCQs with inequalities, and in
Section 6 we study UCQs with negation. In Section 7 we de-
scribe the relationship between OWA-answering and query
containment, and point out two notable consequences of our
results for OWA-answering in query containment. Finally,
we analyze related work in Section 8 and conclude in Sec-
tion 9.



2. DEFINITIONS
We start from: (i) a relational signature, i.e., a set of

relation symbols in which each relation is associated with
an arity, i.e., a non-negative integer; (ii) a countably infinite
alphabet of constant symbols; (iii) an alphabet of variable
symbols. An attribute of a relation r is an integer b such
that 1 ≤ b ≤ n, where n is the arity of r.

A fact is an expression of the form r(t), where r is a
relation symbol and t is a tuple of constants. An atom is
an expression of the form r(t), where r is a relation symbol
and t is a tuple of constants or variables. A substitution is
a function mapping variables to constants.

A database instance (or simply database) is a set of facts.
Given an n-tuple t = 〈v1, . . . , vn〉 and a sequence of in-

tegers A = i1, . . . , ik where each 1 ≤ ij ≤ n for each j, we
denote by t[A] the projection of t over A, i.e., the k-tuple
〈vi1 , . . . , vik 〉.

2.1 Integrity constraints

Key dependencies A key dependency (KD) is an expres-
sion of the form key(r) = A, where r is a relation symbol
and A is a non-empty sequence of attributes, i.e., a sequence
of integers ranging from 1 to the arity of r. The number of
attributes in A is called the arity of the KD. We say that
a set of KDs K is a set of single KDs if, for each relation
r, there is at most one KD for r in K. (We can assume
that a KD for a relation is always present, since in the case
when there are no KDs for r we can consider the trivial KD
key(r) = U where U is the set of all attributes of r.) A
database D satisfies a KD key(r) = A if, for every pair of
facts of the form r(t), r(t′) in D, if t[A] = t′[A] then t = t′.

Inclusion dependencies An inclusion dependency (ID) is
an expression of the form r[A] ⊆ s[B], where r and s are
relation symbols and A and B are sequences of attributes,
i.e., sequences of integers ranging from 1 to the arity of the
respective relations. The number of attributes in A (which
is the same as the number of attributes in B) is called the
arity of the ID. We do not allow multiple occurrences of the
same attribute in A and in B. A database D satisfies an
ID of the form r[A] ⊆ s[B] if, for every fact in D of the
form r(t), there exists a fact in D of the form s(t′) such that
t[A] = t′[B].

Other dependencies KDs and IDs are the main ICs stud-
ied in this paper. However, we also introduce functional de-
pendencies, single-head tuple-generating dependencies, and
exclusion dependencies, which will be used in the following.
A functional dependency (FD) is an expression of the form
r : A → b where r is a relation, A is a set of attributes of
r and b is an attribute of r. A database D satisfies a FD
r : A → b if, for every pair of facts of the form r(t), r(t′) in
D, if t[A] = t′[A] then t[b] = t′[b].

An exclusion dependency (ED) is an expression of the form
∀~x.g1, . . . , gn → ⊥, where gi is an atom. A database D
satisfies such ED if there exists no substitution σ of the
variables ~x such that {σ(g1), . . . , σ(gn)} ⊆ D.

We then recall single-head tuple-generating dependencies,
also known as template dependencies [6, 35], a generaliza-
tion of IDs. A single-head tuple-generating dependency
(STGD) is an expression of the form ∀~x.r1(~x), . . . , rn(~x) →
∃~y.r(~x, ~y). A database D satisfies an STGD of the above
form if, for every substitution σ of the variables ~x such

that {σ(r1(~x)), . . . , σ(rn(~x))} ⊆ D, there exists a substi-
tution σ′ of ~y such that r(σ(~x), σ′(~y)) ∈ D. An STGD
is called safe if there are no existential variables in the
right-hand side of the implication, i.e., if it is of the form
∀~x.r1(~x), . . . , rn(~x) → r(~x).

Classes of KDs and IDs Given a set of KDs K and a set
of IDs I, we say that I ∪ K is a set of non-conflicting KDs
and IDs if K is a set of single KDs and for each ID in I of
the form r[A] ⊆ s[B], B is not a proper superset of the key
of s, i.e., if K contains the KD key(s) = C, then B 6⊃ C.

Moreover, given a set of single KDs K and a set of IDs
I, we say that I is a set of foreign keys (FKs) for K if for
each ID in I of the form r[A] ⊆ s[B], B is a (not necessarily
strict) subset of the key of s, i.e., if K contains the KD
key(s) = C, then B ⊆ C.1 Of course, if I is a set of FKs for
K then I ∪ K is a set of non-conflicting KDs and IDs, but
not vice versa.

Finally, given a set of ICs C, we say that a database in-
stance B satisfies C if B satisfies every IC in C.
2.2 Queries

A union of conjunctive queries (UCQ) is an expression of
the form

{~x | conj1(~x,~c) ∨ . . . ∨ conjm(~x,~c)} (1)

where each conji(~x,~c) is an expression of the form

conji(~x,~c) = ∃~y.a1 ∧ . . . ∧ an

in which each ai is an atom whose arguments are terms
from the sets of variables ~x, ~y, and from the set of constants
~c and such that each variable from ~x and ~y occurs in at least
one atom ai. The variables ~x are called the distinguished
variables of the CQ.

A UCQ with negation (UCQ¬) is an expression of the
form (1) in which each ai is either an atom or a negated
atom, and a negated atom is an expression of the form ¬a
where a is an atom. A UCQ with safe negation (UCQ¬s)
is a UCQ¬ of the form (1) and such that in each conji(~x,~c)
each variable from ~x and ~y occurs in at least one positive
atom.

A UCQ with inequalities (UCQ 6=) is an expression of the
form (1) in which each conji(~x,~c) is a conjunction ∃~y.a1 ∧
. . . ∧ an where each ai is either an atom or an expression of
the form z 6= z′, where z and z′ are variables.

A UCQ with universally quantified negation (UCQ¬∀) is
a UCQ¬ in which the variables that only appear in negated
atoms are universally quantified. Formally, a UCQ¬∀ is an
expression of the form (1) in which each conji(~x,~c) is of the
form

∃~y.∀~z.conj(~x, ~y, ~z,~c)

where conj is a conjunction of literals (atoms and negated
atoms) whose arguments are terms from the sets of variables
~x, ~y, ~z and from the set of constants ~c, and in which each
variable in ~z only occurs in negated atoms. An example of
a UCQ¬∀ is the following:

{x | (∃y, z.∀v, w.r(x, y, z) ∧ ¬s(x, w, y) ∧ ¬t(v, w, x))∨
(∃y.∀u.r(x, x, y) ∧ ¬s(x, u, u))}

1Notice that this definition of foreign key generalizes the
more common assumption in which a foreign key refers ex-
actly to a key, which corresponds to B = C (or even B ⊇ C)
in the above definition.



Notice that all the classes of queries above considered are
domain-independent first-order queries [2].

We call a UCQ a conjunctive query (CQ) when m = 1.
Analogously, we define the notions of CQ with negation
(CQ¬), safe negation (CQ¬s), inequalities (CQ 6=), and uni-
versally quantified negation (CQ¬∀).

A boolean CQ is a CQ without distinguished variables,
i.e., an expression of the form conj1(~x,~c)∨ . . .∨ conjm(~x,~c).
Being a sentence, i.e., a closed first-order formula, such a
query is either true or false in a database. In the same way,
we define the boolean version of the other kinds of queries
introduced above. Given a non-boolean query q and a tuple
of constants t, we denote by q(t) the boolean query obtained
from q by replacing the distinguished variables of q with the
corresponding constants in t. Finally, the size of a CQ q is
the number of atoms in the body of q.

2.3 Problems studied
Given a query q and a database D, we denote by qD the

set of tuples corresponding to the standard evaluation of the
query over D (under CWA). Moreover, given a set of ICs C,
we denote by sem(C,D) the set of databases sem(C,D) =
{B | B ⊇ D and B satisfies C}, while semf (C,D) denotes
the subset of finite databases contained in sem(C,D).

Then, we define ans(q, C,D) and ansf (q, C,D) as follows:

ans(q, C,D) = {t | t ∈ qB for every B ∈ sem(C,D)}
ansf (q, C,D) = {t | t ∈ qB for every B ∈ semf (C,D)}

The above definition of ans(q, C,D) corresponds to the no-
tion of certain answers in indefinite databases.

We now introduce the main problems studied in the pa-
per, i.e., implication of ICs [2], OWA-consistency and OWA-
answering [36, 21].

Implication of ICs For unrestricted databases: given a set
of ICs C and an IC I, we say that C implies I (and write
C |= I) if for every database D such that D satisfies C, D
satisfies I. For finite databases: C finitely implies I (and
write C |=f I) if for every finite database D such that D
satisfies C, D satisfies I.

OWA-consistency For unrestricted databases: given a set
of ICs C and a database D, we say that D is OWA-consistent
with C if sem(C,D) 6= ∅. For finite databases: D is OWAf -
consistent with C if semf (C,D) 6= ∅.
OWA-answering For unrestricted databases: given a
set of ICs C, a database D, and a query q, compute
ans(q, C,D). For finite databases (finite OWA-answering):
compute ansf (q, C,D).

The decision problem associated with OWA-answering is
the following: given a query q and a tuple t, decide whether
t ∈ ans(q, C,D), i.e., decide whether the boolean query q(t)
is true in all databases in sem(C,D) (resp., semf (C,D)). In
the following, when we talk about (un)decidability of OWA-
answering we actually refer to (un)decidability of the deci-
sion problem associated with OWA-answering.

3. FROM INTEGRITY CONSTRAINTS TO
QUERIES

In this section we prove some preliminary results that
highlight the correspondences among implication of ICs,
OWA-consistency, and OWA-answering. We start by show-

ing a property that relates undecidability of IC implication
to OWA-consistency.

Theorem 1. Let C be a set of ICs, and let ϕ be either an
ED or a FD. If the problem of deciding whether C |= ϕ (re-
spectively, C |=f ϕ) is undecidable, then OWA-consistency
(respectively, OWAf -consistency) under C is undecidable.

Proof. We reduce the problem of deciding whether C |=
ϕ to OWA-consistency. More precisely, starting from the IC
ϕ, we construct an instance Dϕ as follows:

1. if ϕ is an ED of the form ∀~x.g1, . . . , gn → ⊥, we first
“freeze” ϕ, i.e., we define a substitution σ of the vari-
ables ~x appearing in ϕ with constant symbols, such
that each distinct variable is replaced by a distinct
constant, and define Dϕ = {σ(g1), . . . , σ(gn)};

2. if ϕ is a FD of the form r : 1, . . . , k → i,
again we “freeze” ϕ as above, and obtain Dϕ =
{r(c1, . . . , cn), r(c1, . . . , ck, c′k+1, . . . , c

′
n)} where each

distinct ci is a distinct constant symbol.

We now prove that C 6|= ϕ iff Dϕ is OWA-consistent with C.
Indeed, if Dϕ is OWA-consistent with C, then there exists
a database B containing Dϕ and satisfying C: therefore, in
both the above cases ϕ is not satisfied in such a B, which in
turn implies that C 6|= ϕ. Conversely, if C 6|= ϕ, then there
exists a database B that satisfies C ando does not satisfy ϕ.
In the case when ϕ is an ED (the case when ϕ is a FD is
analogous), this implies that there exists a substitution σ of
the variables in g1, . . . , gn such that there exists a set of facts
S = {g′1, . . . , g′n} contained in B such that σ(gi) = g′i for each
i. This immediately implies that Dϕ is OWA-consistent with
C.

The proof for the case of finite databases is analogous.

All the ICs presented in this paper and studied in the
relational setting belong to two well-known general classes
of ICs, called tuple-generating depndencies (TGDs) and
equality-generating dependencies (EGDs). Such kinds of ICs
correspond to sentences (in particular, implications) in first-
order logic. Consequently, the negation of an IC corresponds
to a sentence, i.e., a boolean first-order query.

Interestingly, it turns out that some of the ICs above pre-
sented are such that their negation corresponds to a boolean
conjunctive query of the kinds introduced above. In partic-
ular, it is immediate to verify that:

• if ϕ is an ED, the negation of ϕ corresponds to a CQ.
In particular, if ϕ is the ED ∀~x.a1 ∧ . . . ∧ an → ⊥, we
denote by τq(ϕ) the boolean CQ ∃~x.a1 ∧ . . . ∧ an;

• if ϕ is a FD, the negation of ϕ corresponds to
a CQ 6=. In particular, if ϕ is the FD r :
1, . . . , k → i (where r has arity n), we denote by
τq(ϕ) the boolean CQ 6= ∃x1, . . . , xn.r(x1, . . . , xn) ∧
r(x1, . . . , xk, x′k+1, . . . , x

′
n) ∧ xi 6= x′i;

• if ϕ is a STGD, the negation of ϕ corresponds to a
CQ¬∀. In particular, if ϕ is the STGD ∀~x.a1 ∧ . . . ∧
an−1 → ∃~y.an, we denote by τq(ϕ) the boolean CQ¬∀

∃~x.a1 ∧ . . . ∧ an−1 ∧ ∀~y.¬an.

• if ϕ is a safe STGD, the negation of ϕ corresponds to
a CQ¬s. In particular, if ϕ is the safe STGD ∀~x.a1 ∧
. . .∧an−1 → an, we denote by τq(ϕ) the boolean CQ¬s

∃~x.a1 ∧ . . . ∧ an−1 ∧ ¬an.



Finally, given a set of ICs Ψ such that each ϕ in Ψ is
either an ED or a FD or a (safe) STGD, we denote by τq(Ψ)
the boolean query corresponding to the union of the queries
obtained by negating each IC in Ψ, i.e., τq(Ψ) =

∨
ϕ∈Ψ τq(ϕ).

The following theorem establishes the correspondence be-
tween OWA-answering and OWA-consistency (w.l.o.g., we
can assume that the query is boolean):

Theorem 2. Let C, Ψ be sets of ICs, such that each ϕ ∈
Ψ is either an ED or a FD or a STGD or a safe STGD, and
let D be a database. Then, D is not OWA-consistent with
C ∪Ψ iff τq(Ψ) is true in all databases in sem(C,D) (and D
is not OWAf -consistent with C ∪ Ψ iff τq(Ψ) is true in all
databases in semf (C,D)).

Proof. If it is not the case that τq(Ψ) is true in all
databases in sem(C,D), then there exists a database B that
satisfies C, contains D and is such that τq(Ψ) is false in
B. Then, it follows immediately that B satisfies Ψ. Conse-
quently, D is OWA-consistent with C ∪Ψ. Conversely, sup-
pose D is OWA-consistent with C ∪Ψ. Then, there exists a
database B that satisfies C∪Ψ and contains D. Now suppose
that τq(Ψ) is true in B: this implies that Ψ is not satisfied in
B, thus contradicting the hypothesis. Consequently, τq(Ψ)
is false in B. In the same way, we prove the thesis for finite
databases.

4. RESULTS FOR (UNIONS OF)
CONJUNCTIVE QUERIES

In this section we analyze OWA-answering of CQs. We
start by studying finite controllability of this problem in the
presence of IDs.

Theorem 3. OWA-answering CQs under IDs is finitely
controllable.

Proof (sketch). The proof is rather involved and requires
several preliminary definitions and lemmas. In the follow-
ing, we assume that m is the number of relation symbols in
the database, and denote by k the maximum arity of such
relations.

In order to prove finite controllability of CQs under IDs,
we modify the chase procedure of [26] for inclusion depen-
dencies, which, given a set of IDs I and a database instance
D, produces a (in general infinite) database can(I,D) (called
the canonical chase). Our modified version always produces
a finite database. However, differently from the canonical
chase of [26], in this case we have to preliminarily fix the
maximum size of the CQs. In other words, the finite chase
will constitute a correct model of I and D only for CQs of
size less or equal to n.

Definition 1. Given a set of IDs I, a database instance
D, and an integer n ≥ 1, we denote by fchase(I,D, n) the
database obtained starting from D and closing the database
with respect to the following ID-chase rule:

if I ∈ I, with I = r[A] ⊆ s[B]
and r(t) ∈ fchase(I,D, n)
and there is no fact in fchase(I,D, n) of the form
s(t′) such that t′[B] = t[A],
then add to fchase(I,D, n) a fact s(t′) such that

t′[B] = t[A] and for each attribute p of s and
such that p 6∈ B,

t′[p] = f
(j)
I,p(truncn(t′[B]))

where:

• truncn(t) denotes the tuple obtained from t
by eliminating the terms occurring at nest-
ing level `(n) + 1;

• j is an integer such that 0 ≤ j ≤ `(n) and

the function symbol f
(j)
I,p does not occur in

truncn(t′[B]).

We call existential value every value t′[p] introduced in
fchase(I,D, n) by an application of the ID-chase rule in Def-
inition 1.

From Definition 1 it immediately follows that
fchase(I,D, n) satisfies the IDs in I.

Now consider a specific construction of fchase(I,D, n),
i.e., starting from fchase0(I,D, n) = D, at each step i of the
construction we nondeterministically choose a particular ap-
plication of the ID-chase rule to a fact in fchasei−1(I,D, n),
thus obtaining fchasei(I,D, n). This construction ends af-
ter a finite number of steps, because the nesting level of
the functions in the terms representing existential values is
bound to `(n)+1, and the number of function and constant
symbols used is finite, thus the number of distinct existen-
tial values introduced by the ID-chase rule is finite, and
therefore the number of values involved in the construction
of fchase(I,D, n) is finite. Consequently, fchase(I,D, n) is
always a finite database.

Moreover, we can consider every fchase(I,D, n) thus gen-
erated as a forest, where each node is a fact, the roots are
the facts in D, and there is an edge from a fact f to the fact
f ′ iff, in the construction of fchase(I,D, n), the fact f ′ has
been obtained by applying the ID-chase rule to f .

Definition 2. Let f ∈ fchase(I,D, n). We denote by
historyn(f) the set of facts corresponding to the branch of
the chase from the `(n)-th predecessor of f to f .

The following lemma is an immediate consequence of the
definitions of fchase(I,D, n) and can(I,D).

Lemma 1. There exists a homomorphism from can(I,D)
to fchase(I,D, n).

In the following, given a boolean CQ q ∃~y.a1∧ . . .∧an, we
call image of q a set of facts F such that there exists a substi-
tution σ of the variables ~y such that {σ(a1), . . . , σ(an)} = F .

The next property derives from an analogous result in [26].

Lemma 2. For each set of IDs I, for each database in-
stance D, for each query q of size less or equal to n, and for
each n-tuple t, if t ∈ qfchase(I,D,n) then there exists an image
Im of q(t) in fchase(I,D, n) such that, for each pair of facts
f, f ′ in Im, historyn(f) ∩ historyn(f ′) 6= ∅.

The following lemma is actually the key property for show-
ing correctness of the “reuse” of existential values done by
the ID-chase rule in the construction of fchase(I,D, n). The
lemma can be immediately proved from the construction
mechanism of the skolem terms denoting the existential val-
ues.



Lemma 3. For every fact f in fchase(I,D, n), for every
existential value v introduced by the ID-chase rule in f , and
for every fact f ′ of fchase(I,D, n) in which v is introduced
by the ID-chase rule and such that f 6= f ′, historyn(f) ∩
historyn(f ′) = ∅.

In words, the above lemma guarantees that in
fchase(I,D, n) the reuse of the same existential value v by
the ID-chase rule is always done at a distance from the other
occurrences of v that is sufficient to avoid that the “incor-
rect” (or unnecessary) equalities implied by the reuse of v
change the evaluation of any conjunctive query of size n (or
less).

We are now ready to prove correctness of the reuse of
existential values in fchase(I,D, n).

Lemma 4. For each set of IDs I, for each database in-
stance D, for each query q of size less or equal to n, and for
each n-tuple t, t ∈ qfchase(I,D,n) iff t ∈ qcan(I,D).

We are finally ready to prove Theorem 3. Indeed, given
a query q of size n, from Lemma 4 it follows that the
database fchase(I,D, n) constitutes a canonical model for

q, i.e., t ∈ ans(q, I,D) iff t ∈ qfchase(I,D,n). In partic-

ular, if t 6∈ ans(q, I,D) then t 6∈ qfchase(I,D,n), and thus,
since fchase(I,D, n) is a finite database, t 6∈ ansf (q, I,D).
On the other hand, the fact that t ∈ ans(q, I,D) implies
t ∈ ansf (q, I,D) trivially follows from definition of ans and
ansf . Consequently, t ∈ ans(q, I,D) iff t ∈ ansf (q, I,D),
which proves the thesis.

The above theorem can be easily extended to unions of
conjunctive queries.

Theorem 4. OWA-answering UCQs under IDs is
finitely controllable.

It is then possible to prove the analogous of Theorem 4
for the case of KDs and FKs.

Theorem 5. OWA-answering UCQs under single KDs
and FKs is finitely controllable.

Then, we prove that, as soon as we extend the ICs beyond
single KDs and FKs, finite controllability of OWA-answering
of CQs does not hold anymore.

Theorem 6. OWA-answering CQs under non-
conflicting KDs and IDs is not finitely controllable.

Proof (sketch). Let C be the set of non-conflicting KDs and
IDs constituted by the ID r[2] ⊆ r[1] and the KD key(r) = 2.
It is immediate to verify that C implies the ID I = r[1] ⊆
r[2] over finite databases, while C does not imply I over
unrestricted databases.

Consequently, given an instance D = {r(a, b)}, the query
∃x.r(x, a) is true over finite databases while it is false over
unrestricted databases.

Then, we recall a result presented in [9] for OWA-
answering UCQs under non-conflicting KDs and IDs over
unrestricted databases.

Proposition 1. [9, Theorem 3.9] OWA-answering
UCQs under non-conflicting KDs and IDs is decidable,
in particular it is in PTIME in data complexity and in
PSPACE in combined complexity.

Finally, we prove that the above property cannot be ex-
tended to the case of finite databases.

Theorem 7. Finite OWA-answering CQs under non-
conflicting KDs and IDs is undecidable.

Proof (sketch). We prove the theorem by reducing impli-
cation of IDs from FDs and IDs (which is not finitely con-
trollable [11], and is undecidable both for finite databases
and for unrestricted databases [30, 12]) to OWA-answering
of CQs under non-conflicting KDs and IDs. Given a set of
FDs F which contains m FDs, a set of IDs I, and an ID I,
we define a set of KDs K′ and a set of IDs I′ as follows: we
start from K = ∅ and I′ = I. Then, for each FD in F : if
the i-th FD in F is of the form r : i1, . . . , ik → b (such a
FD is denoted in the following by Fi), we use an auxiliary
relation ri (i.e., a new relation symbol that does not already
occur in F ∪ I ′ ∪ {I}) of arity 2k + 1, add to K′ the KD
key(ri) = k + 1, . . . , 2k, and add to I′ the IDs

ri[k + 1, . . . , 2k] ⊆ ri[1, . . . , k]
r[i1, . . . , ik, b] ⊆ r[1, . . . , k, 2k + 1]

Finally, if the ID I has the form I = r[l1, . . . , lh] ⊆
s[j1, . . . , jh] (where r has arity n and s has arity p), we
define D(I) as the database D = {r(t)} with t = c1, . . . , cn,
and define q(I) as the boolean CQ ∃x1, . . . , xp.s(v1, . . . , vp)
where each vi is such that vi = clk if i = jk for some k s.t.
1 ≤ k ≤ h, while vi = xi otherwise. Notice that the set
K′ ∪I′ thus constructed is a set of non-conflicting KDs and
IDs. It is now possible to show that F ∪ I |=f I iff the CQ
q(I) is true in all databases of semf (K′ ∪ I′,D(I)).

Observe that the above results identify the first combina-
tion of ICs and query language (CQs under non-conflicting
KDs and IDs) in which OWA-answering is decidable for un-
restricted databases and is undecidable over finite databases.

5. QUERIES WITH INEQUALITIES
In this section we analyze UCQ 6=, i.e., UCQs where the

presence of the inequality predicate 6= is allowed. As shown
by the following theorem, the possibility of expressing in-
equalities changes drastically the finite controllability and
decidability properties of OWA-answering for UCQs.

Theorem 8. OWA-answering UCQ 6=s under IDs is not
finitely controllable, and is undecidable both for finite
databases and for unrestricted databases.

Proof (sketch). We prove the theorem by reducing impli-
cation of IDs from FDs and IDs (which is not finitely con-
trollable [11], and is undecidable both for finite databases
and for unrestricted databases [30, 12]) to OWA-answering
of UCQ 6=s under IDs. First, observe that, given a set of FDs
F , the query τq(F) (see Section 3) is a boolean UCQ 6=.

Now, given a set of FDs F , a set of IDs I, and an ID
I = r[l1, . . . , lh] ⊆ s[j1, . . . , jh] (where r has arity n and s
has arity p), we define D(I) as the database D = {r(t)}
with t = c1, . . . , cn, and define q(I) as the boolean CQ
∃x1, . . . , xp.s(v1, . . . , vp) where each vi is such that vi = clk

if i = jk for some k s.t. 1 ≤ k ≤ h, while vi = xi otherwise.
We now prove that F ∪ I |= I iff the UCQ 6= τq(F) ∨

q(I) is true in all databases of sem(I,D(I)). The proof
follows immediately from the fact that, for each database
B ∈ sem(I,D(I)):



• F is not satisfied in B iff τq(F) is true in B;

• if F is satisfied in B and I is not satisfied in B, then
there are no facts of the form s(t′) such that t′[B] =
t[A], which implies that the query q(I) is false in B;

• if F is satisfied in B and I is satisfied in B, then there
is a fact of the form s(t′) such that t′[B] = t[A], which
implies that the query q(I) is true in B.

Consequently, if τq(F)∨ q(I) is true in B then either B does
not satisfy F or B satisfies F and I, while if τq(F) ∨ q(I)
is false in B then either B satisfies F or does not satisfy I.
The above proof also holds for finite databases, i.e., it also
shows that F ∪ I |=f I iff the UCQ 6= τq(F)∨ q(I) is true in
all databases of semf (I,D(I)).

6. QUERIES WITH NEGATION
We now turn our attention to the classes of queries pre-

viously introduced which allow for the presence of negated
atoms. As in the case of inequalities, we will show in this
section that adding negation makes it very easy to lose finite
controllability and decidability of OWA-answering, even un-
der quite simple forms of ICs. We start our analysis from
queries with safe negation.

Theorem 9. OWA-answering UCQ¬ss under IDs is not
finitely controllable.

Proof (sketch). Let I be the ID r[2] ⊆ r[1], let I = {I},
let q be the UCQ¬s (∃x, y, z.r(x, y) ∧ r(y, z) ∧ ¬r(x, z)) ∨
(∃x.r(x, x)), and let D be the database {r(a, b)}. First, q is
true in all databases in semf (I,D): indeed, for each finite
database B in semf (I,D), if r is not transitive in B, then q
is true in B (since the first disjunct of q corresponds to the
negation of the transitivity property), while if r is transitive
in B, then, due to the seriality of r imposed by the ID I, it
follows that r has a cycle in B, and therefore by transitivity
of r in B there exists a constant c such that r(c, c) ∈ B,
which implies that the second disjunct of q is true in B. On
the other hand, it is immediate to see that there exists an
infinite database in sem(I,D) in which q is false, i.e., in
which r is both serial and transitive but has no cycles.

Theorem 10. Both OWA-answering and finite OWA-
answering of UCQ¬ss under IDs are undecidable.

Proof (sketch). First, OWA-consistency (and OWAf -
consistency) under STGDs is undecidable, which easily fol-
lows from undecidability of implication (and finite implica-
tion) of STGDs [6, 35]. Then, we reduce OWA-consistency
under STGDs to OWA-consistency under IDs and safe
STGDs. The reduction is very simple: starting from a set
of STGDs, we replace every STGD of the form

∀~x.a1 ∧ . . . ∧ an → ∃~y.r(~x, ~y)

(where w.l.o.g. we assume that the variables from ~x occur in
the first k arguments of r(~x, ~y)) with the following two ICs:
the safe STGD

∀~x.a1 ∧ . . . ∧ an → aux(~x)

(where aux(~x) is an atom with k arguments which are ex-
actly the first k arguments of the atom r(~x, ~y)) and the ID

aux[1, . . . , k] ⊆ r[1, . . . , k]

in which aux is a new auxiliary relation of arity k (so we
introduce one new auxiliary relation for each STGD). We
have thus constructed a set of safe STGDs and IDs. Cor-
rectness of the reduction is straighforward (the above reduc-
tion is also correct for OWAf -consistency). Finally, we re-
duce OWA-consistency under safe STGDs and IDs to OWA-
answering of UCQ¬ss under IDs. Given a set of safe STGDs
S, a set of IDs I, the query τq(S) (see Section 3) is a
boolean UCQ¬s, and from Theorem 2 it follows that, for
each database D, D is not OWA-consistent with S ∪ I iff
τq(S) is true in all databases in sem(I,D) (and in the same
way we reduce OWAf -consistency under safe STGDs and
IDs to finite OWA-answering of UCQ¬ss under IDs).

We now turn our attention to OWA-answering of CQ¬s.

Theorem 11. OWA-answering of CQ¬s under single
KDs and FKs is not finitely controllable, and is undecidable
both for finite and for unrestricted databases.

Finally, we prove that OWA-answering UCQ¬∀s is unde-
cidable, even in the absence of integrity constraints. We
start from two auxiliary lemmas about implication of IDs
and EDs from STGDs.

Lemma 5. Let S be a set of STGDs, and let I be a ID.
The problem of establishing whether S |= I is not finitely
controllable and is undecidable both for finite and for unre-
stricted databases.

Proof. Follows immediately from the results on impli-
cation of STGDs from STGDs in [6, 35], which prove that
the implication problem for STGDs (called template depen-
dencies) is not finitely controllable and undecidable both for
finite and for unrestricted databases.

Lemma 6. Let S be a set of STGDs and EDs, and let I
be an ED. The problem of establishing whether S |= I is not
finitely controllable and is undecidable both for finite and for
unrestricted databases.

Proof. We reduce implication of IDs from STGDs to
implication of EDs from STGDs and EDs. Let S be a
set of STGDs and let I1 be a generic ID of the form
r1[i1, . . . , im] ⊆ r2[j1, . . . , jm]. Let s be a new relation sym-
bol (not appearing in S). Now let E be the following ED:
s[1, . . . , m] ∩ r1[i1, . . . , im] = ∅, and let E′ be the following
ED: s[1, . . . , m]∩r2[j1, . . . , jm] = ∅. It is immediate to verify
that S |= I iff S ∪ {E} |= E′. Consequently, by Lemma 5
the thesis follows.

Theorem 12. OWA-consistency under STGDs and EDs
is undecidable.

Proof. The proof follows from Theorem 1 and from
Lemma 6.

Theorem 13. OWA-answering of UCQ¬∀s (even in the
absence of ICs) is not finitely controllable, and is undecidable
both for finite and for unrestricted databases.

Proof. We reduce OWA-consistency under STGDs and
EDs to OWA-answering of UCQ¬∀s. Let S be a set of
STGDs and EDs, and let D be a database. From Theo-
rem 2, it follows that D is not OWA-consistent with S iff



τq(S) is true in all databases in sem(∅,D) (and D is not
OWAf -consistent with S iff τq(S) is true in all databases in
semf (∅,D)). Then, it is immediate to verify that τq(S) is
a UCQ¬∀: indeed, τq(S) =

∨
I∈S τq(I), and, if I is an ED,

then τq(I) is a CQ (i.e., a special case of a CQ¬∀), while if
I is a STGD, then τq(I) is a CQ¬∀.

Therefore, the above theorem shows that even for very
small fragments of domain-independent first-order queries
with unsafe negation, e.g., UCQ¬∀s, and even in the absence
of ICs, OWA-answering is not finitely controllable and is
undecidable.

7. FROM OWA-ANSWERING TO QUERY
CONTAINMENT

In this section we introduce query containment under ICs
and relate the results for OWA-answering presented above
to query containment.

Given two queries q1 and q2 and a set of ICs C, we say
that q1 is contained in q2 under C (denoted by q1 ⊆C q2) if,
for each database B that satisfies C, qB1 ⊆ qB2 .

When the query q1 is a CQ, the relationship between
OWA-answering and query containment can be informally
explained as follows (for more details see e.g. [26]). In the
absence of ICs, we “freeze” q1 by replacing each distinct vari-
able with a distinct constant in q1 through a substitution σ,
thus obtaining a set of facts, i.e., a database D(q1). Then, it
can be shown that q1 ⊆C q2 iff t ∈ ans(q2, C,D(q1)), where
t = σ(~x). In the presence of a set of ICs C, we must add
a unification phase to the above procedure, since the ICs
may imply equalities on the constants used for freezing the
query q1 (so the terms used for freezing q2 are now “soft”
constants): if C is such that implication of ICs under C is
decidable, then also this unification is computable in a finite
amount of time.

As a consequence of the above reduction, all the decid-
ability and finite controllability results for OWA-answering
presented in this paper can be easily extended to the corre-
sponding query containment problems.

Due to lack of space, in the present version of the paper
we omit details and comments on the results for query con-
tainment thus derived. We only point out the two following
results.

The following property immediately follows from Theo-
rem 3.

Corollary 1. Containment between CQs under IDs is
finitely controllable.

Analogously, the following corollary follows from Theo-
rem 5.

Corollary 2. Containment between CQs under single
KDs and FKs is finitely controllable.

The above two properties close two problems left open in
[26], which established finite controllability of containment
between CQs under unary IDs (i.e., IDs with arity 1) and
under the so-called key-based dependencies, which constitute
a combination of KDs and IDs much more restricted than
single KDs and FKs, and left open the problem of finite con-
trollability under arbitrary IDs and under more expressive
combinations of KDs and IDs.

8. RELATED WORK

Query answering and containment under ICs With
respect to query containment, the most closely related work
is certainly [26], which shows decidability of containment
of CQs under IDs (which immediately implies decidabil-
ity of OWA-answering of CQs under IDs) and under the
class of key-based dependencies (that has already been in-
troduced in Section 7). These results have been extended
in [9] to containment (and OWA-answering) of CQs under
non-conflicting KDs and IDs for unrestricted databases.

The work in [5, 4] present results on undecidability of first-
order query answering using unary conjunctive views. This
setting is quite different from the one studied in the present
paper, which actually cannot be reduced to the framework
of unary conjunctive views (and vice versa). However, al-
though in different settings, some of the results (in partic-
ular with respect to the use of negation and inequality) are
similar.

View-based query processing is also closely related to OWA
query answering. We only mention the approach presented
in [1, 15], which studies query answering using views. In
particular, [15] analyzes the presence of ICs, in particular
functional dependencies, in this setting.

Many decidability results have been established for classes
of ICs which admit a finite chase, i.e., a finite “canonical
model” for the database and the ICs (see [8, 2]). For in-
stance, [37] studies containment of conjunctive queries under
(a generalized form of) acyclic IDs and FDs (whose chase
is finite). Moreover, the approach presented in [14] studies
containment of conjunctive queries under Datalog ICs, i.e.,
ICs that can be expressed in terms of a Disjunctive Data-
log program. Again, Disjunctive Datalog programs cannot
express arbitrary IDs, so the kinds of ICs analyzed in the
present paper are not covered by the results in [14]. A sim-
ilar setting is studied in [32, 33] (although under a least-
fixpoint-based semantics that differs from the one presented
in this paper), which also present results about conjunctive
queries with inequality predicates which extend the one in
[27]. Also, [16, 17] present results about query answering
in a combination of dependencies for which the chase is fi-
nite, although in the different setting of data exchange. In
particular, conjunctive queries and conjunctive queries with
inequalities are studied.

Instead, in the present paper we have studied classes of
ICs for which the chase is in general infinite, since we ad-
mit IDs with arbitrary cycles. This is the main technical
difficulty of our work, and one of the main differences with
respect to the above mentioned studies.

Finally, we point out that the results presented in this
paper complement a previous result [10] which states that
OWA-answering of positive Datalog queries both under IDs
and under single KDs and FKs is undecidable.

Implication of ICs Many studies have dealt with the im-
plication problem for FDs and IDs. Besides the “classi-
cal” results already cited in the previous sections, below we
briefly describe some works which have a close relation to
the present paper.

In [13] the authors identify one of the first combinations
of ICs (namely, unary FDs and unary IDs) for which impli-
cation is not finitely controllable, although decidable both
for the finite and for the unrestricted case. In this respect,
our results about CQs under non-conflicting KDs and IDs



(Theorem 7) identify the first (to our knowledge) class of
FDs and IDs under which finite model reasoning is undecid-
able while unrestricted model reasoning is decidable.

The work presented in [29] defines a notion of non-
conflicting FDs and IDs and proves decidability of impli-
cation from such ICs. Our notion of non-conflicting KDs
and IDs is significantly different, because we take into ac-
count cyclic IDs, which cause the chase to be infinite, while
in [29] only proper-circular IDs are considered (i.e., a class
of IDs that has a finite chase).

Finally, [20, 19] have studied integrity constraints for
XML. To this aim, they have shown that the implication
problem for KDs and FKs is undecidable, which apparently
contradicts our decidability results for KDs and FKs. How-
ever, we point out that the notion of foreign key in [20, 19]
is different from ours: actually, since in [20, 19] a FK may
involve a superset of a key, it follows that a set of keys and
foreign keys according to [20, 19] is a set of conflicting KDs
and IDs according to our classification, and hence OWA-
answering under such ICs is undecidable, which agrees with
the results in [20, 19].

9. CONCLUSIONS
The table displayed in Figure 1 summarizes the results

presented in this paper. In the table, each column corre-
sponds to a different query language, while each row corre-
sponds to a different class of ICs. Each class of IC and each
query language identifies a cell, which is divided into three
(or two) sub-cells. The first sub-cell, whose corresponding
sub-row is labeled by FC, indicates whether OWA-answering
for the corresponding combination of ICs and queries is
finitely controllable, while the two subsequent sub-cells in-
dicate whether OWA-answering is undecidable (over unre-
stricted databases and over finite databases, respectively).
If it is not the case, the sub-cell displays the complexity of
OWA-answering (the first class refers to data complexity, the
second one to combined complexity).2 Some of the results
reported in the table are already known or follow trivially
from known results: the new results are printed in boldface
type.

As for further developments of the present work, we be-
lieve that one of the most interesting aspects to investigate is
the extension of the analysis presented in this paper towards
different kinds of IC/schema languages (data models, ontol-
ogy languages, etc.) and query languages. In particular, we
conjecture that our results may imply interesting results for
different schema languages that have the ability of express-
ing forms of key dependencies, inclusion dependencies, and
exclusion dependencies among data, with special regard to
the design of decidable query languages for such schemas.
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