
On the Finite Controllability of Conjunctive Query

Answering in Databases under Open-World Assumption

Riccardo Rosati

Dipartimento di Informatica e Sistemistica
Sapienza Università di Roma

Via Ariosto 25, 00185 Roma, Italy
rosati@dis.uniroma1.it

Abstract

In this paper we study queries over relational databases with integrity con-
straints (ICs). The main problem we analyze is OWA query answering, i.e.,
query answering over a database with ICs under open-world assumption. The
kinds of ICs that we consider are inclusion dependencies and functional de-
pendencies, in particular key dependencies; the query languages we consider
are conjunctive queries and unions of conjunctive queries. We present results
about the decidability of OWA query answering under ICs. In particular, we
study OWA query answering both over finite databases and over unrestricted
databases, and identify the cases in which such a problem is finitely control-
lable, i.e., when OWA query answering over finite databases coincides with
OWA query answering over unrestricted databases. Moreover, we are able to
easily turn the above results into new results about implication of ICs and
query containment under ICs, due to the deep relationship between OWA
query answering and these two classical problems in database theory. In
particular, we close two long-standing open problems in query containment,
since we prove finite controllability of containment of conjunctive queries
both under arbitrary inclusion dependencies and under key and foreign key
dependencies. The results of our investigation are very relevant in many re-
search areas which have recently dealt with databases under an incomplete
information assumption: e.g., data integration, data exchange, view-based
information access, ontology-based information systems, and peer data man-
agement systems.

Preprint submitted to Journal of Computer and System Sciences April 12, 2010

1. Introduction

The problem. In this paper we study queries and integrity constraints (ICs)
over relational databases. We consider the most common forms of relational
queries, i.e., conjunctive queries (CQs) and unions of conjunctive queries
(UCQs), and the most important forms of relational integrity constraints, i.e.,
functional dependencies (FDs), and in particular key dependencies (KDs),
and inclusion dependencies (IDs). The main problem studied in this paper is
OWA query answering, which corresponds to query answering over a database
with integrity constraints under open-world assumption (OWA), i.e., under
the assumption that the facts stored in the database are only an incomplete
specification of the data [1, 2, 3]. Under this assumption, the actual meaning
of a database D with integrity constraints C is represented by the set of
all databases B such that B contains all the facts in D and B satisfies the
integrity constraints in C.

The significance of the OWA query answering problem is witnessed by
the following considerations:

• OWA query answering is deeply related to several classical problems
in database theory, in particular: implication of integrity constraints
(a.k.a. database dependencies) [4]; OWA-consistency, i.e., consistency
of a database instance with respect to a set of ICs under open-world as-
sumption [1, 2]; and query containment under integrity constraints [5].

• Many research areas are currently studying problems that are tightly re-
lated with databases under incomplete information: e.g., data integra-
tion [6], data exchange [7], view-based information access [8], ontology-
based information systems [9], mapping composition [10], consistent
query answering [11], and peer data management systems [12]. In all
such scenarios, the problem of OWA query answering (or problems very
closely related to it) is studied under various forms. Therefore, results
about OWA query answering are in principle very relevant in all these
areas.

Results for OWA query answering. We develop our analysis both under the
assumption that a database must be a finite structure, and under the as-
sumption of unrestricted databases (i.e., a database may be infinite). In this
respect, we identify the cases when the OWA query answering problem is
finitely controllable, i.e., when OWA query answering over finite databases
coincides with OWA query answering over unrestricted databases.

2

We present a set of decidability, complexity, and finite controllability
results for OWA query answering under ICs. More precisely: (i) we identify
the cases in which such a problem is finitely controllable; (ii) we identify
the decidability/undecidability frontier for the query languages and the ICs
above mentioned; (iii) for the decidable cases, we study the computational
complexity of OWA query answering (both data complexity and combined
complexity).

In a nutshell, our results provide a clear picture of the frontier between de-
cidability and undecidability of OWA-answering of conjunctive queries (and
unions of conjunctive queries) under key dependencies and inclusion depen-
dencies. In particular, our results show that:

• OWA-answering of unions of conjunctive queries under IDs (Theo-
rem 2) and under keys and foreign keys (Theorem 3) is finitely con-
trollable;

• OWA-answering of conjunctive queries under so-called non-conflicting
KDs and IDs is not finitely controllable and is undecidable over finite
databases (Theorems 4 and 5).

Results for query containment. Moreover, we are able to easily turn the above
results into new results about implication of ICs and query containment
under ICs, due to the deep relationship between OWA query answering and
these two classical problems in database theory. In particular, we close two
long-standing open problems in query containment which date back to the
mid-80’s [5]:

• we prove finite controllability of containment of conjunctive queries
under arbitrary inclusion dependencies (Corollary 1);

• we prove finite controllability of containment of conjunctive queries
under keys and foreign keys (Corollary 2).

Relevance of our results. Besides its theoretical interest, we believe that the
analysis presented in this paper is very relevant in all the above mentioned
areas dealing with data under open-world assumption, i.e., when it is not
possible/realistic to assume that the database constitutes a complete speci-
fication of the information of interest.

3

Structure of the paper. In the next section, we present some preliminary
definitions and define the problem studied. In Section 3 we present our main
result, i.e., the proof of finite controllability of OWA-answering CQs under
IDs. Then, in Section 4 we present our further results for OWA-answering
of UCQs. In Section 5 we describe the relationship between OWA-answering
and query containment, and point out two notable consequences of our results
for OWA-answering in query containment. Finally, we analyze related work
in Section 6 and conclude in Section 7.

The results presented in this paper appeared in a preliminary form in
[13].

2. Definitions

We start from: (i) a relational signature, i.e., a set of relation symbols in
which each relation is associated with an arity, i.e., a positive integer; (ii) a
countably infinite alphabet of constant symbols; (iii) an alphabet of variable
symbols. An attribute of a relation r is an integer b such that 1 ≤ b ≤ n,
where n is the arity of r.

A fact is an expression of the form r(c), where r is a relation symbol
and c is a tuple of constants. An atom is an expression of the form r(v),
where r is a relation symbol and v is a tuple of constants and/or variables.
A substitution is a function mapping variables to constants.

A database instance (or simply database) is a (possibly numerable infinite)
set of facts.

Given an n-tuple v = 〈v1, . . . , vn〉 and a sequence of integers A = i1, . . . , ik
where 1 ≤ ij ≤ n for each j, we denote by v[A] the projection of v over A,
i.e., the k-tuple 〈vi1 , . . . , vik〉.

2.1. Integrity constraints

Key dependencies. A key dependency (KD) is an expression of the form
key(r) = A, where r is a relation symbol and A is a non-empty sequence
of attributes, i.e., a sequence of integers ranging from 1 to the arity of r.
The number of attributes in A is called the arity of the KD. We say that a
set of KDs K is a set of single KDs if, for each relation r, there is at most
one KD for r in K. (We assume that a KD for a relation is always present,
since in the case when there are no KDs for r we can consider the trivial KD
key(r) = U where U is the set of all attributes of r.) A database D satisfies

4

a KD key(r) = A if, for every pair of facts of the form r(c) r(c′) in D, if
c[A] = c′[A] then c = c′.

Inclusion dependencies. An inclusion dependency (ID) is an expression of
the form r[A] ⊆ s[B], where r and s are relation symbols and A and B are
sequences of attributes, i.e., sequences of integers ranging from 1 to the arity
of the respective relations. The number of attributes in A (which is the same
as the number of attributes in B) is called the arity of the ID. We do not
allow multiple occurrences of the same attribute in A and in B. A database
D satisfies an ID of the form r[A] ⊆ s[B] if, for every fact in D of the form
r(c), there exists a fact in D of the form s(c′) such that c[A] = c′[B].

KDs and IDs are the main ICs studied in this paper. However, we will
also mention functional dependencies. A functional dependency (FD) is an
expression of the form r : A→ b where r is a relation, A is a set of attributes
of r and b is an attribute of r. A database D satisfies a FD r : A → b
if, for every pair of facts of the form r(c), r(c′) in D, if c[A] = c′[A] then
c[b] = c′[b].

Classes of KDs and IDs. Given a set of KDs K and a set of IDs I, we say
that I ∪K is a set of non-conflicting KDs and IDs if K is a set of single KDs
and for each ID in I of the form r[A] ⊆ s[B], B is not a proper superset of
the key of s, i.e., if K contains the KD key(s) = C, then B 6⊃ C.

Moreover, given a set of single KDs K and a set of IDs I, we say that I is
a set of foreign keys (FKs) for K if for each ID in I of the form r[A] ⊆ s[B],
B is a (not necessarily strict) subset of the key of s, i.e., if K contains the
KD key(s) = C, then B ⊆ C.1 Of course, if I is a set of FKs for K then
I ∪ K is a set of non-conflicting KDs and IDs, but not vice versa.

Finally, given a set of ICs C, we say that a database instance B satisfies
C if B satisfies every IC in C.

2.2. Queries

A union of conjunctive queries (UCQ) is an expression of the form

{x | conj1(x, c) ∨ . . . ∨ conjm(x, c)} (1)

1Notice that this definition of foreign key differs from the more common assumption
in which a foreign key refers exactly to a key, which corresponds to B = C in the above
definition.

5

where each conji(x, c) is an expression of the form

conji(x, c) = ∃y.a1 ∧ . . . ∧ an

in which each ai is an atom whose arguments are terms from the disjoint
tuples of variables x, y, and from the tuple of constants c and such that each
variable from x and y occurs in at least one atom ai. The variables x are
called the distinguished variables of the UCQ, while the other variables are
called existential variables.

We call a UCQ a conjunctive query (CQ) when m = 1 in (1).
A Boolean UCQ is a UCQ without distinguished variables, i.e., an ex-

pression of the form conj1(c)∨ . . .∨ conjm(c). Being a sentence, i.e., a closed
first-order formula, such a query is either true or false in a database. Given
a non-Boolean query q and a tuple of constants c, we denote by q(c) the
Boolean query obtained from q by replacing the distinguished variables of q
with the corresponding constants in c.

Finally, the size of a conjunctive query q is the number of atoms in the
body of q.

2.3. Problems studied

As a preliminary definition, we introduce the notion of homomorphism
between a query and a database. Given a Boolean conjunctive query q and a
database D, a function h mapping every variable occurring in q to a constant
occurring in D is a homomorphism from q to D if: (i) for every constant a
occurring in q, h(a) = a; (ii) for every atom r(t1, . . . , tm) occurring in q, the
fact r(h(t1), . . . , h(tm)) belongs to D.

Given a conjunctive query q and a database D, we denote by qD the set
of tuples corresponding to the standard evaluation of the query over D, i.e.:

qD = {c | there exists a homomorphism h : q(c)→ D}.

Moreover, if Q is the UCQ {x | q1(x) ∨ . . . ∨ qm(x)}, then

{c | there exists qi(x)(1 ≤ i ≤ m) and a homomorphism h : qi(c)→ D}.

It is immediate to verify that QD =
⋃m
i=1 q

D
i .

Given a set of ICs I and a database D, we denote by sem(I,D) the set
of databases sem(I,D) = {B | B ⊇ D and B satisfies I}, while semf (I,D)
denotes the subset of finite databases contained in sem(I,D).

6

Then, we define ans(q, I,D) and ansf (q, I,D) as follows:

ans(q, I,D) = {c | c ∈ qB for every B ∈ sem(I,D)}
ansf (q, I,D) = {c | c ∈ qB for every B ∈ semf (I,D)}

The above definition of ans(q, I,D) corresponds to the notion of certain
answers in indefinite databases.

We now introduce the main problems studied in the paper, i.e., implica-
tion of ICs [14], OWA-consistency, OWA-answering, and finite controllability
of OWA-answering [15, 2].

Implication of ICs. For unrestricted databases: given a set of ICs I and an
IC I, we say that I implies I (and write I |= I) if for every database D such
that D satisfies I, D satisfies I. For finite databases: I finitely implies I
(and write I |=f I) if for every finite database D such that D satisfies I, D
satisfies I.

OWA-consistency. For unrestricted databases: given a set of ICs I and a
database D, we say that D is OWA-consistent with I if sem(I,D) 6= ∅. For
finite databases: D is OWAf -consistent with I if semf (I,D) 6= ∅.

OWA-answering. For unrestricted databases: given a set of ICs I, a database
D, and a query q, compute ans(q, I,D). For finite databases (finite OWA-
answering): compute ansf (q, I,D).

The decision problem associated with OWA-answering is the following:
given a query q and a tuple c, decide whether c ∈ ans(q, I,D), i.e., de-
cide whether the Boolean query q(c) is true in all databases in sem(I,D)
(resp., semf (I,D)). In the following, when we talk about (un)decidability of
OWA-answering we actually refer to (un)decidability of the decision problem
associated with OWA-answering.

Finite controllability. Finally, given a class of queries Q and a class of ICs
C, we say that OWA-answering Q under C is finitely controllable if, for ev-
ery set of ICs I ⊆ C, for every query q ∈ Q, and for every database D,
ans(q, I,D) = ansf (q, I,D). In an analogous way, we define finite controlla-
bility of implication of ICs of a class of ICs C1 from a class of ICs C2.

7

3. Finite controllability of OWA-answering CQs under IDs

In this section we study finite controllability of OWA-answering of CQs
in the presence of IDs, and prove the following result, which in fact closes a
problem left open by Johnson and Klug [5], as we will explain in Section 5.

Theorem 1. OWA-answering CQs under IDs is finitely controllable.

The proof of the above theorem, which is the main result of the present
paper, is actually very involved and requires the introduction of several aux-
iliary definitions, as well as the proof of several lemmas. We will start by
recalling the well-known notion of chase (which we will call canonical chase)
for inclusion dependencies. Such a chase may be infinite in the presence of
cyclic IDs. Then, we will introduce a notion of finite chase, which is a mod-
ification of the chase procedure based on the idea of using a finite number
of Skolem terms (i.e., labeled null values) in the construction of the chase,
which guarantees termination of the chase even in the presence of cyclic
IDs. The key idea of the construction is to use Skolem terms as labeled null
values, limiting the nesting of Skolem functions in such terms to a number
which is actually a parameter for the finite chase procedure. Finally, we will
show that, in practice, the finite chase using m nesting levels of Skolem func-
tions evaluates conjunctive queries with a number of atoms (and a number
of existential variables) less than or equal to m in exactly the same way as
the canonical (infinite) chase. This implies that OWA-answering conjunctive
queries under IDs is finitely controllable.

3.1. The canonical chase

We start by recalling known results on OWA-answering of CQs for un-
restricted databases. From now on, we extend the notion of fact given in
Section 2, and say that a fact is an expression of the form r(t1, . . . , tn) where
each ti is either a constant or a functional term.

Definition 1 (canonical chase). Given a set of IDs I and a database in-
stance D, we denote by chase(I,D) the (possibly infinite) database obtained
starting from D and closing the database with respect to the following ID-
chase rule:

if I ∈ I, with I = r[A] ⊆ s[B]
and r(t) ∈ chase(I,D)

8

then add to chase(I,D) a fact s(t′) such that t′[B] = t[A] and
for each attribute p of s and such that p 6∈ B,

t′[p] = φI,p(t
′[B])

Moreover, we say that the fact s(t′) in the above definition is generated by
r(t) and I in chase(I,D). Finally, we call Skolem functions the functions of
the form φI,p used by the chase rule, and call Skolem terms the terms of the
form φI,p(α) introduced by the above chase rule, and distinguish them from
the constants occurring in D.

Notice that the above construction may generate Skolem terms whose size
is unbounded (in the presence of cyclic IDs). However, it is immediate to see
that the set of such symbols that can be generated is countably infinite, and
thus chase(I,D) is always either a finite set or a countably infinite set, i.e.,
it is actually a database according to the definitions provided in Section 2.

Given a fact f of chase(I,D), a branch for f in chase(I,D) is any sequence
of facts f0, . . . , fm with m ≥ 0 such that: (i) f0 ∈ D; (ii) fm = f ; (iii) for
every i such that 1 ≤ i ≤ m, the fact fi can be generated by the ID-chase
rule from the fact fi−1 and from some ID I ∈ I.

From now on, we call term every constant or Skolem term.
We now extend the notion of homomorphism given in Section 2 to pairs of

databases containing Skolem terms as follows. Given two databases D1,D2,
a function h mapping every term occurring in D1 to a term occurring in
D2 is a homomorphism from D1 to D2 if: (i) for every constant a occurring
in D1, h(a) = a; (ii) for every fact r(t1, . . . , tm) occurring in D1, the fact
r(h(t1), . . . , h(tm)) belongs to D2.

It is known that the database chase(I,D) constitutes a canonical model
for OWA-answering conjunctive queries, in the following sense:

Proposition 1 ([5, 16]). Let D be a database instance and let I be a set of
IDs. Then, chase(I,D) ∈ sem(I,D). Moreover, for every D′ ∈ sem(I,D),
there exists a homomorphism from chase(I,D) to D′.

The above property immediately implies the following proposition.

Proposition 2 ([5, 16]). Let D be a database instance and let I be a set
of IDs. For every CQ q and for every tuple c, c ∈ ans(q, I,D) iff c ∈
qchase(I,D).

9

3.2. The finite chase

Now, in order to prove finite controllability of CQs under IDs, we modify
the canonical chase above recalled. The modified version always produces a
finite database. However, differently from the canonical chase, in this case
we have to fix a priori the maximum size of the CQs. In other words, a finite
chase constitutes a correct model of I and D only with respect to CQs of a
given size, as we will show in the following.

First, we introduce some auxiliary definitions. We say that a Skolem
function φ occurs at depth 1 in a Skolem term t if φ is the outermost Skolem
function of t. Then, inductively, if t = ψ(t1, . . . , tn) and φ occurs at depth k
in some ti, we say that φ occurs at depth k+ 1 in t. Moreover, we say that a
Skolem term has depth k if there is a subterm of t occurring within the scope
of k − 1 Skolem functions, and there is no subterm of t occurring within the
scope of k Skolem functions.

Then, we define the functions trunck, where k is any positive integer, over
the domain of all constants and Skolem terms. The functions are inductively
defined as follows (c denotes a constant, φ(α) denotes a Skolem term whose
outermost Skolem function is φ, and 〈t1, . . . , tn〉 denotes a tuple of constants
and/or Skolem terms):

• if k = 1 then trunck(c) = c and trunck(φ(α)) = φ;

• if k > 1 then trunck(c) = c and trunck(φ(α)) = φ(trunck−1(α));

• for every k, trunck(〈t1, . . . , tn〉) = 〈trunck(t1), . . . , trunck(tn)〉.

Informally, trunck(t) corresponds to the “truncated” version of t in which
all subterms of t occurring at depth k + 1 have been eliminated.

The following are some simple examples that illustrate the function trunck:

trunc2(φ(ψ(a))) = φ(ψ)
trunc3(φ(ψ(ξ(a), b))) = φ(ψ(ξ, b))
trunc4(φ(ψ(ξ(a, ρ(b)), ρ(ψ(η(c), d))))) = φ(ψ(ξ(a, ρ), ρ(ψ)))

As shown by the above examples, when a Skolem function occurs at depth
k in a Skolem term t, it has arity 0 (no arguments) in the term returned by
trunck(t) (i.e., it plays the role of a constant in trunck(t)).

From now on, we denote by maxArityID the maximum arity of inclusions
in I.

10

Definition 2 (finite chase). Given a set of IDs I, a database instance D,
and an integer m ≥ 1, we denote by fchase(I,D,m) the database obtained
starting from D and closing the database with respect to the following f-chase-
rule (that is applied based on a total order on the IDs in I and on a total
order on the facts already generated):

if I ∈ I, with I = r[A] ⊆ s[B]
and r(t) ∈ fchase(I,D,m)
and there is no fact in fchase(I,D,m) of the form s(t′)
such that t′[B] = t[A],

then add to fchase(I,D,m) the fact s(t′) such that t′[B] = t[A]
and for each attribute p of s and such that p 6∈ B,

t′[p] = truncm(φjI,p(t
′[B]))

where j is the smallest integer such that 1 ≤ j ≤ m×(maxArityID)m+
1 and such that, for every attribute p′ of s such that p′ 6∈ B, the
Skolem function symbol φjI,p′ does not occur in t′[B].

We say that the fact s(t′) in the above definition is generated by r(t) and I
in fchase(I,D,m). Moreover, we call existential value in s(t′) every Skolem
term in t′[B].

Given a fact f belonging to fchase(I,D,m), the branch for f in fchase(I,D,m),
denoted by B(f), is the sequence of facts that generates f in fchase(I,D,m),
i.e., the sequence f0, . . . , fh with h ≥ 0 such that: (i) f0 ∈ D; (ii) fh = f ;
(iii) for every i such that 1 ≤ i ≤ h, the fact fi has been generated by the
f-chase-rule from the fact fi−1 and from some ID I ∈ I. Notice that, differ-
ently from the canonical chase, for every fact f ∈ fchase(I,D,m) there is a
unique branch for f in fchase(I,D,m).2

Moreover, since the maximum depth of Skolem functions in terms oc-
curring in fchase(I,D,m) is m, it immediately follows that the maximum

2Observe that, since we are interested in the branches of the finite chase, fchase(I,D,m)
should be defined as a set of branches rather than a database (i.e., a set of facts), to keep
track of the chase rules applied to generate the final database. However, to simplify
notation, we denote by fchase(I,D,m) only the set of facts generated by the finite chase
procedure, and when we speak about a “branch in fchase(I,D,m)” we implicitly refer to
the procedure for building the database fchase(I,D,m) starting from I and D (and the
integer m).

11

number of occurrences of Skolem functions in a term in fchase(I,D,m) is∑m−1
i=0 (maxArityID)i, which is less than or equal to m × maxArityIDm−1.

Therefore, the maximum number of different Skolem functions that can ap-
pear in t′[B] is maxArityID×m× (maxArityID)m−1 = m× (maxArityID)m.
This proves that Condition 2 of Definition 2 can always be satisfied, i.e., it
is always possible to pick a value for j such that, for every attribute p′ of s
such that p′ 6∈ B, the function symbol φjI,p′ does not occur in t′[B].

Observe that, in fchase(I,D,m), the depth of the functions of the Skolem
terms is bound to m, and the number of function and constant symbols used
is finite, thus the number of distinct Skolem terms introduced by the f-chase-
rule is finite, and therefore the number of terms involved in the construction
of fchase(I,D,m) is finite. Consequently, fchase(I,D,m) is always a finite
database.

Finally, notice that fchase(I,D,m) is unique, since we assume that the
f-chase-rule is applied based on a fixed total order on the IDs in I and a total
order on the facts of fchase(I,D,m) already generated.

Example 1. Here is a very simple example of a finite chase. Let D =
{r(a, b)}, I = {r[2] ⊆ r[1]}. The finite chase fchase(I,D, 2) is the following
(for ease of notation, since there is only one ID in I we omit subscripts in
the Skolem function symbols):

r(a, b)
↓

r(b, φ1(b))
↓

r(φ1(b), φ2(φ1))
↓

r(φ2(φ1), φ3(φ2))
↓

r(φ3(φ2), φ1(φ3))
↓

r(φ1(φ3), φ2(φ1))

Notice that each of the above facts is generated by the f-chase-rule from the
previous fact and the ID I. Notice also that the construction stops after
the generation of the fact r(φ1(φ3), φ2(φ1)), because the presence of the fact

12

r(φ2(φ1), φ3(φ2)) makes the inclusion dependency not applicable by the f-
chase-rule to the fact r(φ1(φ3), φ2(φ1)).

Notice also that, in this case, the canonical chase chase(I,D) is infinite.

Example 2. Here is a slightly more involved example of finite chase. Let I
and D be as follows:

I = {r[2] ⊆ r[1] (I1), s[1] ⊆ s[2] (I2), s[1, 2] ⊆ t[1, 2] (I3), v[1] ⊆ u[1] (I4)}
D = {r(a, b), r(c, d), v(g), s(b, c), u(e, f, e)}

For ease of notation, instead of writing Skolem functions with complex sub-
scripts, we use three different symbols φ, ψ, ξ. More precisely, in the following
φ stands for φI1,2, ψ stands for φI2,1, ξ stands for φI3,3, ρ stands for φI4,2, and
σ stands for φI4,3.

The finite chase fchase(I,D, 3) is the one displayed in Figure 1, in which
the facts from D are underlined. There are 13 branches (B1–B13) in the
finite chase: we assume that in this case the finite chase has been generated
according to a depth-first strategy, i.e., first all facts of branch B1 have been
generated, then all facts of B2, and so on. The reason for the termination
of branches B1 and B4 is analogous to what explained in Example 1. As
for branch B2, notice that the construction of this branch stops after the
generation of the fact r(φ2(φ1(d)), φ3(φ2(φ1))), since the presence in branch
B1 (that has already been generated) of the fact r(φ3(φ2(φ1)), φ4(φ3(φ2)))
makes the inclusion I1 not applicable to the fact r(φ2(φ1(d)), φ3(φ2(φ1))).

Finally, notice also that the canonical chase chase(I,D) is infinite.

3.3. Completeness of the finite chase

We now prove completeness of the finite chase with respect to the canon-
ical chase chase(I,D).

Lemma 1. Let I be a set of IDs, let D be a database instance, and let m be
an integer such that m ≥ 1. Then, fchase(I,D,m) ∈ semf (I,D).

Proof. From Definition 2 it immediately follows that (i)D ⊆ fchase(I,D,m);
(ii) fchase(I,D,m) satisfies all IDs in I. Therefore, fchase(I,D,m) ∈ semf (I,D).

13

r(a, b)

↓
r(b, φ1(b))

↓
r(φ1(b), φ2(φ1(b)))

↓
r(φ2(φ1(b)), φ3(φ2(φ1)))

↓
r(φ3(φ2(φ1)), φ4(φ3(φ2)))

↓
r(φ4(φ3(φ2)), φ1(φ4(φ3)))

↓
r(φ1(φ4(φ3)), φ2(φ1(φ4)))

↓
r(φ2(φ1(φ4)), φ3(φ2(φ1)))

(B1)

r(c, d)

↓
r(d, φ1(d))

↓
r(φ1(d), φ2(φ1(d)))

↓
r(φ2(φ1(d)), φ3(φ2(φ1)))

(B2)

v(g)

↓
u(g, ρ1(g), σ1(g))

(B3)

s(b, c)

↓
s(ψ1(b), b)

↓
s(ψ2(ψ1(b)), ψ1(b))

↓
s(ψ3(ψ2(ψ1)), ψ2(ψ1(b)))

↓
s(ψ4(ψ3(ψ2)), ψ3(ψ2(ψ1)))

↓
s(ψ1(ψ4(ψ3)), ψ4(ψ3(ψ2)))

↓
s(ψ2(ψ1(ψ4)), ψ1(ψ4(ψ3)))

↓
s(ψ3(ψ2(ψ1)), ψ2(ψ1(ψ4)))

(B4)

→

→

→

→

→

→

→

→

u(b, c, ξ1(b, c)) (B5)

u(ψ1(b), b, ξ1(ψ1(b), b)) (B6)

u(ψ2(ψ1(b)), ψ1(b), ξ1(ψ2(ψ1), ψ1(b))) (B7)

u(ψ3(ψ2(ψ1)), ψ2(ψ1(b)), ξ1(ψ3(ψ2), ψ2(ψ1))) (B8)

u(ψ4(ψ3(ψ2)), ψ3(ψ2(ψ1)), ξ1(ψ4(ψ3), ψ3(ψ2))) (B9)

u(ψ1(ψ4(ψ3)), ψ4(ψ3(ψ2)), ξ1(ψ1(ψ4), ψ4(ψ3))) (B10)

u(ψ2(ψ1(ψ4)), ψ1(ψ4(ψ3)), ξ1(ψ2(ψ1), ψ1(ψ4))) (B11)

u(ψ3(ψ2(ψ1)), ψ2(ψ1(ψ4)), ξ1(ψ3(ψ2), ψ2(ψ1))) (B12)

u(e, f, e)

(B13)

Figure 1: Finite chase fchase(I,D, 3) of Example 2.

14

Lemma 2. Let I be a set of IDs, let D be a database instance, and let m be
an integer such that m ≥ 1. For every CQ q and for every tuple of constants

c, if c ∈ qchase(I,D) then c ∈ qfchase(I,D,m).

Proof. From Lemma 1 and from the fact that semf (I,D) ⊆ sem(I,D), it
follows that fchase(I,D,m) ∈ sem(I,D). Therefore, since by hypothesis

c ∈ qchase(I,D), from Proposition 2 it follows that q(c) is true in every

database in sem(I,D), and hence c ∈ qfchase(I,D,m).

Unfortunately, proving soundness of the evaluation of conjunctive queries
over the finite chase with respect to the canonical chase is much harder and
more involved than the above proof of completeness. Thus, in order to make
the material in the following more readable, we first present an overview of
the proof.

3.4. Overview of the proof of soundness of the finite chase

Let F be a set of facts of the finite chase fchase(I,D,m) such that the
cardinality of F is sufficiently smaller than m (as explained in detail below),
and let F constitute an image of a conjunctive query q (i.e., such that there
exists a query homomorphism from q to F). Our goal is to map the subset
F of facts of fchase(I,D,m) to a set of facts IM of chase(I, D) which con-
stitutes an image of F (Lemma 12): this in turn implies soundness of the
evaluation of conjunctive queries whose size is sufficiently smaller than m
over the finite chase fchase(I,D,m) with respect to the evaluation over the
canonical chase (Lemma 13).

To identify such a set IM , an intuitive idea would be to simply map the
branches of the finite chase relative to every fact f ∈ F into the “naturally
corresponding” branch of the canonical chase. In other words, for every
f ∈ F , let Bfin be the branch for f in the finite chase and let f0 be the root
of Bfin (i.e., f0 is a fact from D); then, the definition of the canonical chase
implies that, in chase(I,D), there exists a branch Bcan starting from f0 and
obtained by applying the same sequence of IDs that have been used in the
branch Bfin . Such a branch ends with a fact f ′ that is equal to f on the first
m nesting levels of the Skolem functions, in the following sense: the relation
symbol of f coincides with the relation symbol of f ′ and, for every pair t, t′

of corresponding arguments in f and f ′, truncm(t) and truncm(t′) are equal,
up to superscripts of the Skolem functions. This mapping identifies a set of
facts IM = {f ′1, . . . , f ′n} of chase(I,D): however, a homomorphism from F

15

to such a set IM is guaranteed to exist only if there are no join Skolem terms
in F having depth m, where a join Skolem term in F is a Skolem term that
occurs in at least two distinct facts of F . Indeed, due to the reuse of Skolem
terms done in the finite chase, if a Skolem term t having depth m occurs in
two facts fi, fj of the finite chase, the occurrence of t in fi may be mapped by
the above strategy to a Skolem term of the canonical chase that is different
from the Skolem term used to map the occurrence of t in fj (notice that, if
instead t has depth less than m, then it can immediately be shown that the
two occurrences of t are necessarily mapped to the same Skolem term in the
canonical chase).

In order to correctly handle join Skolem terms of depth m in F , we define
a mapping of the branches of the finite chase relevant for F to the canonical
chase (Definition 7) that identifies a set of facts IM of the canonical chase
by suitably “linking” different branches of the finite chase and then mapping
such composed branches to corresponding branches of the canonical chase.
This mapping guarantees that, for every Skolem term t of depth m, every
occurrence of t in F is mapped in IM to the same Skolem term t′ (for a more
detailed explanation, we refer the reader to Definition 7 and to the proof of
Lemma 12).

A crucial property to correctly implement this idea is to find the right
“linking points” in the branches of both the finite chase and the canonical
chase. The identification of such linking points is obtained by resorting to
the relations of predecessor and sibling holding between Skolem terms in a
branch of the finite chase (Definition 3). Moreover, after showing some auxil-
iary properties of the predecessor and sibling relations (Lemma 4, Lemma 5,
Lemma 6), we define a way for mapping, through the function τ (Defini-
tion 5), all the join Skolem terms of depth m that are “relevant” for of a fact
f ∈ F (the notion of relevant join Skolem term for f is formally stated by the
function RJST). The function τ is the key tool in order to prove correctness
of the above mapping of the portion of the finite chase relative to the facts
in F to a portion of the canonical chase (Lemma 12).

Some of the above results (and in particular Lemma 12) hold under the
condition that the finite chase fchase(I,D,m) and the set F ⊆ fchase(I,D,m)
are such that m ≥ 2(|F | × |JST (F)|) + 2, where |F | is the number of facts
in F and |JST (F)| represents the number of join Skolem terms of depth m
of F . We remark that these conditions on m and F do not constitute any
restriction towards the proof of the general result, i.e., Theorem 1 (as we will
explain right after Lemma 13).

16

3.5. Proof of soundness of the finite chase

In this section we provide a detailed proof of soundness of the evaluation
of conjunctive queries over the finite chase. Throughout the section, we
assume that we are given a set of IDs I, a database D and an integer m ≥ 2.

We start with some preliminary lemmas and definitions.

Lemma 3. Let f be a fact of fchase(I,D,m). For every Skolem function φ,
there exists at most one argument of f having φ as its most external Skolem
function.

Proof. The proof is by induction on the structure of fchase(I,D,m). The
base case is immediate since there are no occurrences of Skolem functions in
D. As for the inductive case, when a new fact f is generated by applying
the f-chase-rule to a fact f ′ that has no pair of arguments sharing the same
external function, then also f has no pair of arguments sharing the same
external function, because the f-chase-rule uses Skolem functions that do not
occur in f ′ for the existential values in f , and there are no repetitions of
attributes in the inclusion dependencies, which implies that every argument
in f ′ is repeated at most once in f .

Let f = s(t1, . . . , th) be a fact of fchase(I,D,m), let B(f) = f0, . . . , fn be
the branch for f in fchase(I,D,m), and let ti (with 1 ≤ i ≤ h) be a Skolem
term. An introduction point for ti in B(f) is a fact fj (with 1 ≤ j ≤ n) such
that ti is generated as an existential value in fj (i.e., ti is not propagated
by the f-chase-rule from the previous fact fj−1 of B(f)). Observe that (due
to the f-chase-rule) there may be multiple introduction points for the same
term in a branch. We say that the last introduction point of t in B(f) is the
introduction point of t that is the closest to the end of the branch B(f) (i.e.,
the closest to f in B(f)).

Definition 3. Let f be a fact of fchase(I,D,m), let B(f) be the branch for f
in fchase(I,D,m), and let t1, t2 be two Skolem terms that occur as arguments
of f . Then:

• if the last introduction point of t1 in B(f) coincides with the last intro-
duction point of t2 in B(f), then we say that t1 and t2 are siblings in
B(f). More precisely, if in such a fact t1 is the argument at position
p and t2 is the argument at position q, then we say that t1 and t2 are
p-q-siblings in B(f) (we also say that t1 is the p-sibling of t2 in B(f),
and t2 is the q-sibling of t1 in B(f));

17

• we say that t1 is the k-predecessor of t2 in B(f) if: (i) the last intro-
duction point of t1 in B(f) precedes the last introduction point of t2 in
B(f); and (ii) t1 occurs at position k in the last introduction point of
t2 in B(f). We also say that t1 is a predecessor of t2 in B(f) if t1 is
the k-predecessor of t2 in B(f) for some k.

Example 3. In Example 1 there is only one branch (let us call it B) in
fchase(I,D, 2). The Skolem term φ2(φ1) has two introduction points in B,
i.e., the facts r(φ1(b), φ2(φ1)) and r(φ1(φ3), φ2(φ1)) (and the last introduction
point of φ2(φ1) is r(φ1(φ3), φ2(φ1))) while all other Skolem terms occurring
in B have only one introduction point. Moreover, the term φ2(φ1) is the
1-predecessor of φ3(φ2) in B, φ3(φ2) is the 1-predecessor of φ1(φ3) in B and
φ1(φ3) is the 1-predecessor of φ2(φ1) in B. Notice that the Skolem term φ1(b)
is not the 1-predecessor of φ2(φ1) in B, because r(φ1(b), φ2(φ1)) is not the
last introduction point of φ2(φ1) in B. Finally, in Example 2, the Skolem
terms ρ1(g), σ1(g) are 2-3-siblings in branch B3.

Based on the above notion of predecessor, we now define the notion of
ancestor in a branch of the finite chase.

Definition 4. The notion of j-ancestor (for every integer j ≥ 0) is induc-
tively defined as follows:

• for every term t1 occurring in B(f), t1 is 0-ancestor of itself in B(f);

• for every pair of terms t1, t2, t1 is 1-ancestor of t2 in B(f) if t1 is a
predecessor of t2 in B(f);

• for every pair of terms t1, t2, t1 is j-ancestor of t2 in B(f) if there exists
t′ such that t1 is a predecessor of t′ in B(f) and t′ is (j-1)-ancestor of
t2 in B(f).

Moreover, we say that t1 is an ancestor of t2 in B(f) if there exists an integer
j such that t1 is a j-ancestor of t2 in B(f).

Let F be a set of facts such that F ⊆ fchase(I,D,m). We denote by
JST (F) the set of Skolem terms of depth m that occur in at least two distinct

18

facts of F (we point out that, as an immediate consequence of Lemma 3, there
exists no Skolem term that occurs twice in the same fact of fchase(I,D,m)).3

Notice that, in the above definition, we do not consider join Skolem
terms of depth less than m, because (as we have already briefly explained
in Section 3.4) such terms are not problematic when mapping the branches
B(f1), . . . , B(fn) of fchase(I,D,m) to “corresponding” branches of chase(I,D):
this is due to the fact that every Skolem term t having depth less than m
has a unique introduction point in fchase(I,D,m).

Example 4. Consider the finite chase of Example 2, and let F be the fol-
lowing set of facts:

r(φ4(φ3(φ2)), φ1(φ4(φ3)))
r(φ3(φ2(φ1)), φ4(φ3(φ2)))
r(φ2(φ1(d)), φ3(φ2(φ1)))
s(ψ2(ψ1(b)), ψ1(b))

u(ψ2(ψ1(b)), ψ1(b), ξ1(ψ2(ψ1), ψ1(b)))

Then,
JST (F) = {(φ4(φ3(φ2)), φ3(φ2(φ1)), ψ2(ψ1(b))}

Notice that the Skolem term ψ1(b) does not belong to JST (F), because ψ1(b)
has depth 2 and in Example 2 we are considering m = 3 (i.e., F is a subset
of fchase(I,D, 3)).

Let t1, t2 be two terms and let k ≥ 1. We write t1
k
= t2 if trunck(t1) =

trunck(t2). That is, t1
k
= t2 if t1 and t2 coincide in the k most external levels

of Skolem functions. Moreover, given two facts f1, f2, we write f1
k
= f2 if the

relation symbol of f1 coincides with the relation symbol of f2 and for every
pair t, t′ of corresponding arguments of f1 and f2, t

k
= t′.

The following three lemmas are obvious consequences of the definition of
fchase and the definition of trunck.

3Of course, there exists a distinct function JST for every value of m: to simplify
notation, however, when denoting such function we omit the parameter m (the value of m
will always be clear from the context). We will do analogous simplifications of the notation
for some other auxiliary functions defined later on in this section.

19

Lemma 4. If there exist branches B1 and B2 in fchase(I,D,m) and an
integer k such that t1 is the k-predecessor of t2 in B1, t

′
1 is the k-predecessor

of t′2 in B2, and t2
h
= t′2 with h ≥ 1, then t1

h−1
= t′1. Moreover, if there exist

branches B1 and B2 in fchase(I,D,m) such that t1 and t2 are p-q-siblings in

B1, t
′
1 and t′2 are p-q-siblings in B2, and t2

h
= t′2 with h ≥ 2, then t1

h
= t′1.

Lemma 5. Let m ≥ 2, let t and t′ be terms occurring in a branch B of
fchase(I,D,m), and let g and g′ be introduction points of t and t′ respectively.

If t
h
= t′ for some h such that 2 ≤ h ≤ m, then g

h−1
= g′.

Lemma 6. Let f be a fact of fchase(I,D,m) and let t1 and t2 be distinct
Skolem terms such that t1 occurs at position k1 in f (i.e., as the k1-th argu-
ment of f) and t2 occurs at position k2 in f . Then, one of the following cases
holds: (i) t1 is the k1-predecessor of t2 in B(f); (ii) t2 is the k2-predecessor
of t1 in B(f); (iii) t1 and t2 are k1-k2-siblings in B(f).

We now define the ternary relation τ , which is a central notion in our
proof of soundness of the finite chase.

Definition 5. Let F be a set of facts such that F ⊆ fchase(I,D,m) and
let T be the set of terms occurring in fchase(I,D,m). We define τ as the
minimal subset of F × JST (F)× T satisfying the following equation:

τ = { 〈f, t, t〉 | f ∈ F and t ∈ JST (F) and t occurs in f } ∪
{ 〈f, t1, t′′1〉 | f ∈ F and there exist f ′, t′1, t2, t

′
2, t

′′
2, k s.t. 〈f ′, t1, t′1〉 ∈ τ

and 〈f ′, t2, t′2〉 ∈ τ and 〈f, t2, t′′2〉 ∈ τ
and t′1 is the k-predecessor of t′2 in B(f ′)
and t′′1 is the k-predecessor of t′′2 in B(f) } ∪

{ 〈f, t1, t′′1〉 | f ∈ F and there exist f ′, t′1, t2, t
′
2, t

′′
2, p, q s.t. 〈f ′, t1, t′1〉 ∈ τ

and 〈f ′, t2, t′2〉 ∈ τ and 〈f, t2, t′′2〉 ∈ τ
and t′1 and t′2 are p-q-siblings in B(f ′)
and t′′1 and t′′2 are p-q-siblings in B(f) }

In the following, we will also make use of the following, equivalent, bottom-
up inductive definition of τ : τ is the relation iteratively obtained starting
from τ0 = { 〈f, t, t〉 | f ∈ F and t ∈ JST (F) and t occurs in f } and in
which τj+1 is defined as the relation obtained from τj by adding one triple
(if such a triple exists) arbitrarily chosen among the triples 〈f, t1, t′′1〉 such

20

that f ∈ F and 〈f, t1, t′′1〉 6∈ τj and: (i) either there exist f ′, t′1, t2, t
′
2, t

′′
2, k

such that 〈f ′, t1, t′1〉 ∈ τj and 〈f ′, t2, t′2〉 ∈ τj and 〈f, t2, t′′2〉 ∈ τ and t′1 is the
k-predecessor of t′2 in B(f ′) and t′′1 is the k-predecessor of t′′2 in B(f); or (ii)
there exist f ′, t′1, t2, t

′
2, t

′′
2, p, q such that 〈f ′, t1, t′1〉 ∈ τj and 〈f ′, t2, t′2〉 ∈ τj

and 〈f, t2, t′′2〉 ∈ τ and t′1 and t′2 are p-q-siblings in B(f ′) and t′′1 and t′′2 are
p-q-siblings in B(f). If such a triple does not exist, then we define τj+1 = τj.

Before giving an intuitive explanation of τ , we first need to restrict our
attention to cases in which τ is a function. Specifically, we will show in
Lemma 10 that, if m is sufficiently greater than the cardinality of F and
JST (F), then τ is actually a binary function, i.e., given f ∈ F and t ∈
JST (F), there is at most one triple of the form 〈f, t, t′〉 in τ . To prove
this property, we need some prelimary lemmas (Lemma 7, Lemma 8, and
Lemma 9).

The following lemma shows that the triple 〈f, t, t′〉 added at step j of the

above bottom-up construction of τ is such that t
m−j
= t′.

Lemma 7. Let j be an integer such that 0 ≤ j < m and let 〈f, t, t′〉 ∈ τj.
Then, t

m−j
= t′.

Proof. The proof is by induction. Base case: if 〈f, t, t′〉 ∈ τ0 then t =
t′, so the thesis follows. Inductive case: suppose the thesis holds for τi
with i such that 1 ≤ i < m − 1. Now let 〈f, t, t′〉 be the triple added to
τi+1 at step i + 1. Now, by Definition 5 there are two possible cases: (i)
there exist triples 〈f ′′, t, t′′〉, 〈f ′′, t1, t′′1〉, 〈f, t1, t′1〉 in τi and an integer k such
that t′′ is the k-predecessor of t′′1 in B(f ′′) and t′ is the k-predecessor of
t′1 in B(f); (ii) there exist triples 〈f ′′, t, t′′〉, 〈f ′′, t1, t′′1〉, 〈f, t1, t′1〉 in τi and
integers p, q such that t′′ and t′′1 are p-q-siblings in B(f ′′) and t′ and t′1 are
p-q-siblings in B(f). In both cases, by the inductive hypothesis, we have that

t1
m−i
= t′1 and t1

m−i
= t′′1; consequently, by Lemma 4 it follows that, in both

cases, t′
m−i−1

= t′′, Moreover, since t
m−i
= t′′ by the inductive hypothesis, it

follows that t
m−i−1

= t′ in case (i), and t
m−i
= t′ in case (ii), which proves the

claim.

The following property follows immediately from Definition 2 and Defi-
nition 3.

Lemma 8. Let f ∈ fchase(I,D,m), let j be an integer such that 0 ≤ j < m,
let t1, t2 be Skolem terms, and let φ be the outermost Skolem function of t1.
If t1 is j-ancestor of t2 in B(f), then φ occurs at depth j + 1 in t2.

21

We now prove that, for every pair of terms t′′1 and t′′2 occurring in B(f)
and involved in the relation τ , t′′1 and t′′2 are connected through the ancestor
and sibling relations in B(f).

Lemma 9. Let F be a set of facts such that F ⊆ fchase(I,D,m), let j < m,
let f ∈ F and let 〈f, t1, t′′1〉 ∈ τj, 〈f, t2, t′′2〉 ∈ τj. Then, one of the following
conditions holds:

1. t′′1 is a h-ancestor of t′′2 in B(f) for some h such that 0 ≤ h ≤ j + 1;

2. t′′2 is a h-ancestor of t′′1 in B(f) for some h such that 0 ≤ h ≤ j + 1;

3. there exist t, t′ such that 〈f, t, t′〉 ∈ τ and t′′1 and t′ are siblings in B(f)
and t′ is a h-ancestor of t′′2 in B(f) for some h such that 0 ≤ h ≤ j+1;

4. there exist t, t′ such that 〈f, t, t′〉 ∈ τ and t′′2 and t′ are siblings in B(f)
and t′ is a h-ancestor of t′′1 in B(f) for some h such that 0 ≤ h ≤ j+1.

Proof. First, if t′′1 = t′′2, then t′′1 is 0-ancestor of itself in B(f), hence condition
1 of the claim holds. So suppose t′′1 6= t′′2. We prove the claim by induction
on the structure of τ .

Base case: if 〈f, t1, t′′1〉 ∈ τ0 and 〈f, t2, t′′2〉 ∈ τ0, then t′′1 = t1, t
′′
2 = t2 and

t1 and t2 occur in f . Thus by Lemma 6, one of the following cases holds: (i)
t1 is the k-predecessor of t2 in B(f) for some k, which implies that condition
1 of the claim holds (with h = 1); (ii) t2 is the k-predecessor of t1 in B(f) for
some k, which implies that condition 2 of the claim holds (with h = 1); (iii)
t1 and t2 are siblings in B(f), which implies that condition 3 of the claim
holds (with t′ = t2 and since t2 is 0-ancestor of itself in B(f)). Thus, the
claim follows.

Inductive case: suppose the claim holds for τi with 1 ≤ i < j, and let
τi+1 = τi∪{〈f, t1, t′′1〉}. Then, according to Definition 5 there are two possible
cases:

Case A. There exist f ′, t′1, t3, t
′
3, t

′′
3, k such that 〈f ′, t1, t′1〉 ∈ τi, 〈f ′, t3, t′3〉 ∈ τi,

t′1 is the k-predecessor of t′3 in B(f ′), 〈f, t3, t′′3〉 ∈ τi, and t′′1 is the k-predecessor
of t′′3 in B(f). In this case, let 〈f, t2, t′′2〉 ∈ τi, let g1 be the last introduction
point of t′′1 in B(f), let g2 be the last introduction point of t′′2 in B(f), and let
g3 be the last introduction point of t′′3 in B(f). By the inductive hypothesis,
t′′2 and t′′3 are such that one of the following four cases holds:

A1. t′′2 is a h-ancestor of t′′3 in B(f) for some h such that 0 ≤ h ≤ i + 1.
In this case, there exists a sequence of terms s0, s1, . . . , sh such that

22

s0 = t′′2, sh = t′′3 and for every ` such that 0 ≤ ` ≤ h − 1, s` is the k`-
predecessor of s`+1 in B(f) for some k`. Now, there are three possible
cases:

A1.1. g1 precedes g2 in B(f). In this case, since t′′1 is a predecessor of t′′3
in B(f), t′′1 occurs in all facts that lie between g1 and g3 in B(f),
therefore t′′1 occurs in g2, i.e., t′′1 is a predecessor of t′′2 in B(f).
Hence, condition 1 of the claim holds;

A1.2. g1 = g2. In this case, t′′1 and t′′2 are siblings in B(f), which implies
that condition 3 of the claim holds;

A1.3. g1 follows g2 in B(f). In this case, since in every fact g that lies
between g2 and g3 in B(f) there exists an s` with 0 ≤ ` ≤ h − 1
such that s` occurs in g in a predecessor position (i.e., s` is not
introduced in g), it follows that such an s` occurs in g1. Therefore,
such an s` is a predecessor of t′′1 in B(f), which implies that t′′2 is
a h′-ancestor of t′′1 in B(f) with h′ = h− `. Hence, condition 2 of
the claim holds;

A2. t′′3 is a h-ancestor of t′′2 in B(f) for some h such that 0 ≤ h ≤ i + 1.
In this case, since t′′1 is a predecessor of t′′3 in B(f), it follows that t′′1 is
h+1-ancestor of t′′2 in B(f), thus condition 1 of the claim holds (because
h+ 1 ≤ (i+ 1) + 1);

A3. there exist t, t′ such that 〈f, t, t′〉 ∈ τi and t′′2 and t′ are siblings in B(f)
and t′ is a h-ancestor of t′′3 in B(f) for some h such that 0 ≤ h ≤ i+ 1.
Again, there are three possible cases:

A3.1. g1 precedes g2 in B(f). In this case, since t′′1 is a predecessor of t′′3
in B(f), t′′1 occurs in all facts that lie between g1 and g3 in B(f),
therefore t′′1 occurs in g2, i.e., t′′1 is a predecessor of t′′2 in B(f).
Hence, condition 1 of the claim holds;

A3.2. g1 = g2. In this case, t′′1 and t′′2 are siblings in B(f), which implies
that condition 3 of the claim holds;

A3.3. g1 follows g2 in B(f). In this case, since t′ is a h-ancestor of t′′3
in B(f), there exists a sequence of terms s′0, s

′
1, . . . , s

′
h such that

s′0 = t′, s′h = t′′3 and for every ` such that 0 ≤ ` ≤ h− 1, s′` is the
k`-predecessor of s′`+1 in B(f) for some k`. Now, since in every
fact g that lies between g2 and g3 in B(f) there exists an s′` with

23

0 ≤ ` ≤ h − 1 such that s′` occurs in g in a predecessor position
(i.e., s′` is not introduced in g), it follows that such an s′` occurs
in g1. Therefore, such an s′` is a predecessor of t′′1 in B(f), which
implies that t′ is a h′-ancestor of t′′1 in B(f) with h′ = h−`. Hence,
condition 4 of the claim holds;

A4. there exist t, t′ such that 〈f, t, t′〉 ∈ τi and t′′3 and t′ are siblings in B(f)
and t′ is a h-ancestor of t′′2 in B(f) for some h such that 0 ≤ h ≤ i+ 1.
In this case, since t′′1 is the k-predecessor of t′′3 in B(f), it immediately
follows that t′′1 is the k-predecessor of t′ in B(f), hence t′′1 is a h + 1-
ancestor of t′′2 in B(f). Therefore, condition 1 of the claim holds (since
h+ 1 ≤ (i+ 1) + 1).

Case B. there exist f ′, t′1, t3, t
′
3, t

′′
3, p, q such that 〈f ′, t1, t′1〉 ∈ τi, 〈f ′, t3, t′3〉 ∈ τi,

t′1 and t′3 are p-q-siblings in B(f ′), 〈f, t3, t′′3〉 ∈ τi, and t′′1 and t′′3 are p-q-siblings
in B(f). In this case, let 〈f, t2, t′′2〉 ∈ τi, let g1 be the last introduction point
of t′′1 in B(f), let g2 be the last introduction point of t′′2 in B(f), and let g3

be the last introduction point of t′′3 in B(f). By the inductive hypothesis, t′′2
and t′′3 are such that one of the following four cases holds:

B1. t′′2 is a h-ancestor of t′′3 in B(f) for some h such that 0 ≤ h ≤ i+ 1. In
this case, we have that t′′2 is also h-ancestor of t′′1 in B(f), thus condition
2 of the claim holds;

B2. t′′3 is a h-ancestor of t′′2 in B(f) for some h such that 0 ≤ h ≤ i+ 1. In
this case, it immediately follows that condition 3 of the claim holds;

B3. there exist t, t′ such that 〈f, t, t′〉 ∈ τ and t′′2 and t′ are siblings in B(f)
and t′ is a h-ancestor of t′′3 in B(f) for some h such that 0 ≤ h ≤ i+ 1.
Again, in this case we have that t′ is also a h-ancestor of t′′1 in B(f),
therefore condition 4 of the claim holds;

B4. there exist t, t′ such that 〈f, t, t′〉 ∈ τ and t′′3 and t′ are siblings in B(f)
and t′ is a h-ancestor of t′′2 in B(f) for some h such that 0 ≤ h ≤ i+ 1.
In this case, it immediately follows that t′′1 and t′ are siblings in B(f),
therefore condition 3 of the claim holds.

Using the above lemmas, we are now able to prove that τ is actually a
binary function, provided that m is sufficiently greater than the cardinality
of F and JST (F).

24

Lemma 10. Let F be a set of facts such that F ⊆ fchase(I,D,m) and
m ≥ 2(|F | × |JST (F)|) + 2. Let 〈f, t, t′〉 ∈ τ , 〈f, t, t′′〉 ∈ τ . Then, t′ = t′′.

Proof. We prove the lemma by showing that, at every step j + 1 of the
bottom-up construction of τ , if 〈f, t, t′〉 ∈ τj then it is not possible to add a
triple of the form 〈f, t, t′′〉 with t′ 6= t′′. So, suppose conversely that τ contains
such a pair of triples and let the (j+1)-th iteration in the bottom-up inductive
definition of τ be the first iteration in which the triple inserted 〈f, t, t′′〉 is
such that there exists a triple of the form 〈f, t, t′〉 (for some term t′) in τj.
Observe that the bottom-up definition of τ implies that t′ 6= t′′. Suppose that
j ≤ |F |×|JST (F)|: thus, j ≤ m−`, where we define ` = |F |×|JST (F)|+2.

Therefore, by Lemma 7 we have that t
`
= t′ and t

`
= t′′, which implies t′

`
= t′′.

So let φ be the outermost Skolem function of both t′ and t′′. Now, from
Lemma 9, one of the following cases holds:

1. t′ and t′′ are siblings in B(f). But in this case, by definition of fchase
the outermost Skolem functions of t′ and t′′ should be different, thus
contradicting the above conclusion t′

2
= t′′. Consequently, this case

cannot occur;

2. t′ is a h-ancestor of t′′ in B(f) for some h such that 1 ≤ h ≤ j + 1
(notice that the case h = 0 is impossible since we have assumed t′ 6= t′′).
In this case, since j ≤ m − `, we have that h + 1 ≤ m − ` + 2, and
since ` ≥ 2, it follows that h + 1 ≤ m, thus by Lemma 8 φ (i.e., the
outermost Skolem function of t′) occurs at depth h+1 in t′′. But this is
impossible, since φ is also the outermost Skolem function of t′′ and, by
Definition 2, the outermost Skolem function of a Skolem term cannot
occur elsewhere in the term. Consequently, this case cannot occur;

3. t′′ is a h-ancestor of t′ in B(f) for some h such that 1 ≤ h ≤ j + 1.
By an argument identical to the previous case, it follows that this case
cannot occur;

4. there exist t1, t
′
1 such that 〈f, t1, t′1〉 ∈ τ and t′ and t′1 are siblings in B(f)

and t′1 is a h-ancestor of t′′ in B(f) for some h such that 0 ≤ h ≤ j+1.
In this case, let t′ be of the form φ(α1, . . . , αk). Then, since t′ and t′1
are siblings in B(f), t′1 is of the form ψ(α1, . . . , αk). Moreover, since

t′
`
= t′′, t′′ has the form φ(β1, . . . , βk) with αi

`−1
= βi for every i such

that 1 ≤ i ≤ k (recall that ` ≥ 2). Now, as shown above, h + 1 ≤ m,
so by Lemma 8 we have that ψ occurs at depth h+ 1 in t′′. Let βh be
the subterm of t′′ in which ψ occurs. Then, from αi

`−1
= βi and since

25

h+ 1 ≤ `− 1, it follows that ψ also occurs in αh. But this contradicts
Definition 2 which implies that the outermost Skolem function of a
Skolem term cannot occur elsewhere in the term. Consequently, this
case cannot occur;

5. there exist t1, t
′
1 such that 〈f, t1, t′1〉 ∈ τ and t′′ and t′1 are siblings

in B(f) and t′1 is a h-ancestor of t′ in B(f) for some h such that
1 ≤ h ≤ j + 1. By an argument identical to the previous case, it
follows that this case cannot occur.

Thus, we have proved that, for j such that j ≤ |F |×|JST (F)|, if 〈f, t, t′〉 ∈ τj
then, it is impossible that τj+1 contains a triple 〈f, t, t′′〉 with t′ 6= t′′. But
this immediately implies that, for j = |F | × |JST (F)|, τj = τj+1, i.e., τ = τj,
which in turn implies the thesis.

We now introduce a notion of completeness for the relation τ . We say
that τ is complete if the following conditions hold: (i) if 〈f ′, t1, t′1〉 ∈ τ and
〈f ′, t2, t′2〉 ∈ τ and 〈f, t2, t′′2〉 ∈ τ and t′1 is the k-predecessor of t′2 in B(f ′),
then there exists t′′1 such that t′′1 is the k-predecessor of t′′2 in B(f) (and thus
〈f ′, t1, t′′1〉 ∈ τ); (ii) if 〈f ′, t1, t′1〉 ∈ τ and 〈f ′, t2, t′2〉 ∈ τ and 〈f, t2, t′′2〉 ∈ τ and
t′1 and t′2 are p-q-siblings in B(f ′), then there exists t′′1 such that t′′1 and t′′2
are p-q-siblings in B(f) (and thus 〈f ′, t1, t′′1〉 ∈ τ).

Notice that τ may not be complete: e.g., it may be the case that t′1 is the
k-predecessor of t′2 in B(f ′) but t′′2 has no k-predecessor in B(f) (for instance,
if t′′2 is a constant, it has neither predecessors nor siblings in B(f)).

It is easy to show that, under the same conditions of the previous lemma,
τ is complete.

Lemma 11. Let F be a set of facts such that F ⊆ fchase(I,D,m) and
m ≥ 2(|F | × |JST (F)|) + 2. Then, τ is complete.

Proof. By Lemma 10, for j = |F | × |JST (F)|, τj = τj+1, thus from the

hypothesis and Lemma 7 it follows that, for every 〈f, t, t′〉 ∈ τ , t `
= t′ with

` = |F |×|JST (F)|+2. Since ` ≥ 2, this in turn implies that, if 〈f ′, t1, t′1〉 ∈ τ
and 〈f ′, t2, t′2〉 ∈ τ and 〈f, t2, t′′2〉 ∈ τ and t′1 is the k-predecessor of t′2 in B(f ′),

then we have t2
2
= t′2 and t2

2
= t′′2, consequently t′2

2
= t′′2, which implies by

Definition 2 that there exists t′′1 such that t′′1 is the k-predecessor of t′′2 in B(f)
(the same proof holds in the case when t′1 and t′2 are p-q-siblings in B(f ′)).

26

From now on, we will always assume the conditions under which τ is a
binary function and is complete, i.e., the integer m and the set of facts F of
fchase(I,D,m) are such that m ≥ 2(|F | × |JST (F)|) + 2. For every f ∈ F ,
we denote by τf the following function:

τf (t) = {〈t, t′〉 | 〈f, t, t′〉 ∈ τ}

Moreover, we denote by RJST (f) the subset of JST (F) defined as follows:

RJST (f) = {t | 〈t, t′〉 ∈ τf}

Finally, given a set of facts F ′ such that F ′ ⊆ F , we define RJST (F ′) =⋃
f∈F ′ RJST (f).
Therefore, the function τf provides a mapping of a subset of JST (F) to

a subset of the Skolem terms occurring in B(f). The domain of τf , i.e., the
set RJST (f), is called the set of relevant join Skolem terms of f .

Example 5. Let the following be sub-branches of a finite chase fchase(I,D,m):

.

.

.
f1 = r(to, t1)

↓
f2 = s(t1, t2)

↓
f3 = u(t2, t3)

.

.

.
f4 = r(t′o, t

′
1)

↓
f5 = s(t′1, t

′
2)

↓
f6 = u(t′2, t3)

where t1, t2, t3, t
′
1, t

′
2, t

′
3 are Skolem terms of depthm. Now let F = {f1, . . . , f6}.

Then, we have
JST (F) = {t1, t2, t3, t′1, t′2}

Now, following the bottom-up definition of τ , we have:

τ0 = {〈f1, t1, t1〉, 〈f2, t1, t1〉, 〈f2, t2, t2〉, 〈f3, t2, t2〉, 〈f3, t3, t3〉,
〈f4, t

′
1, t

′
1〉, 〈f5, t

′
1, t

′
1〉, 〈f5, t

′
2, t

′
2〉, 〈f6, t

′
2, t

′
2〉, 〈f6, t3, t3〉}

Then, one possible bottom-up construction of τ is the following:

• τ1 = τ0∪{〈f3, t1, t1〉}, since 〈f2, t1, t1〉 ∈ τ0, 〈f2, t2, t2〉 ∈ τ0, 〈f3, t2, t2〉 ∈
τ0, t1 is the 1-predecessor of t2 in B(f2) and t1 is the 1-predecessor of
t2 in B(f3);

27

• τ2 = τ1∪{〈f6, t
′
1, t

′
1〉}, since 〈f5, t

′
1, t

′
1〉 ∈ τ1, 〈f5, t

′
2, t

′
2〉 ∈ τ1, 〈f6, t

′
2, t

′
2〉 ∈

τ1, t
′
1 is the 1-predecessor of t′2 in B(f5) and t′1 is the 1-predecessor of

t′2 in B(f6);

• τ3 = τ2∪{〈f3, t
′
2, t2〉}, since 〈f6, t

′
2, t

′
2〉 ∈ τ2, 〈f6, t3, t3〉 ∈ τ2, 〈f3, t3, t3〉 ∈

τ2, t
′
2 is the 1-predecessor of t3 in B(f6) and t2 is the 1-predecessor of

t3 in B(f3);

• τ4 = τ3∪{〈f6, t2, t
′
2〉}, since 〈f3, t2, t2〉 ∈ τ3, 〈f3, t3, t3〉 ∈ τ3, 〈f6, t3, t3〉 ∈

τ3, t2 is the 1-predecessor of t3 in B(f3) and t′2 is the 1-predecessor of
t3 in B(f6);

• τ5 = τ4∪{〈f3, t
′
1, t1〉}, since 〈f6, t

′
1, t

′
1〉 ∈ τ4, 〈f6, t2, t

′
2〉 ∈ τ4, 〈f3, t2, t2〉 ∈

τ4, t
′
1 is the 1-predecessor of t′2 in B(f6) and t1 is the 1-predecessor of

t2 in B(f3);

• τ6 = τ5∪{〈f6, t1, t
′
1〉}, since 〈f3, t

′
1, t1〉 ∈ τ5, 〈f3, t

′
2, t2〉 ∈ τ5, 〈f6, t

′
2, t

′
2〉 ∈

τ5, t1 is the 1-predecessor of t2 in B(f3) and t′1 is the 1-predecessor of
t′2 in B(f6);

• τ7 = τ6∪{〈f2, t
′
1, t1〉}, since 〈f3, t

′
1, t1〉 ∈ τ6, 〈f3, t2, t2〉 ∈ τ6, 〈f2, t2, t2〉 ∈

τ6, t1 is the 1-predecessor of t2 in B(f3) and t1 is the 1-predecessor of
t2 in B(f2);

• τ8 = τ7∪{〈f5, t1, t
′
1〉}, since 〈f6, t1, t

′
1〉 ∈ τ7, 〈f6, t

′
2, t

′
2〉 ∈ τ7, 〈f5, t

′
2, t

′
2〉 ∈

τ7, t
′
1 is the 1-predecessor of t′2 in B(f6) and t′1 is the 1-predecessor of

t′2 in B(f5);

• τ = τ8.

Therefore,
RJST (f1) = {t1}
RJST (f2) = {t1, t2, t′1}
RJST (f3) = {t1, t2, t3, t′1, t′2}
RJST (f4) = {t′1}
RJST (f5) = {t′1, t′2, t1}
RJST (f6) = {t′1, t′2, t3, t1, t2}

It is interesting to observe that the set RJST (f) not only comprises join
Skolem terms occurring in the branch B(f), but also collects join Skolem
terms from other branches of the finite chase: for example, RJST (f3) contains

28

the terms t′1 and t′2 which do not occur in B(f3), while RJST (f6) contains the
terms t1 and t2 which do not occur in B(f6). Then, every function τf maps
every term of RJST (f) into a Skolem term (not necessarily from JST (F))
occurring in B(f): for instance, τf3 maps the join Skolem term t′1 into t1 and
t′2 into t2, while τf6 maps the join Skolem term t1 into t′1 and t2 into t′2.

We now try to provide an intuitive explanation of the usage of the function
τ that we will make in the proof of soundness of the finite chase. As already
mentioned, for each fact f ∈ F , the set RJST (f) constitutes the set of all
join Skolem terms from JST (F) that are relevant for the fact f . The reason
why we call the terms in RJST (f) “relevant join Skolem term for f” will be
completely clear only in the light of Lemma 12: the intuition, however, can
be explained through a simple example.

Example 6. Consider again Example 5. Then, suppose we want to identify
a portion of the canonical chase chase(I,D) with facts f ′1, . . . , f

′
6 that are

homomorphic to f1, . . . , f6 (this is of course crucial for proving soundness of
the finite chase). Now, it can be shown that the fact that f3 and f6 have
t3 as their second argument implies that f ′3 and f ′6 must have the same first
argument : this is reflected in the definition of τf3 , which states that t′2 must
be mapped to t2 in B(f3), and in the definition of τf6 , which states that t2
must be mapped to t′2 in B(f6). This in turn implies that f ′2 and f ′5 must
have the same first argument, and this is also reflected in the definition of
τf2 , which states that t′1 must be mapped to t1 in B(f2), and in the definition
of τf5 , which states that t1 must be mapped to t′1 in B(f5). Therefore, t′1
must be considered as a relevant join Skolem term for f3, because t1 occurs
in f1 and t′1 and t1 are forced to have an identical mapping on the canonical
chase. For the same reason, for instance, t1 must be considered as a relevant
join Skolem term for f6.

Informally, Lemma 7, Lemma 10 and Lemma 11 guarantee that, for every
fact f ∈ F and for every join Skolem term t of F that is relevant for f , the
branch B(f) of fchase(I,D,m) contains a Skolem term τf (t) that “correctly”

represents t, in the sense that t
`
= τf (t) where ` = |F | × |JST (F)|+ 2. This

property is actually crucial for the subsequent Lemma 12, since it allows us
to map all the branches of fchase(I,D,m) relative to the facts in F in the
canonical chase chase(I,D), in a way such that it can be proved that the

29

set of facts corresponding to the leaves of such branches of chase(I,D) has
a homomorphism to F .

To formally state such a property, we need the following crucial notion of
last relevant join Skolem term of a fact f with respect to a set of facts F ′.

Definition 6. Let F be a set of facts such that F ⊆ fchase(I,D,m) and
m ≥ 2(|F |×|JST (F)|)+2. Given a fact f ∈ F and a set of facts F ′ ⊆ F , we
define the function LastRJST (f, F ′) as follows. If RJST (f)∩RJST (F ′) 6= ∅,
then we define LastRJST (f, F ′) as the Skolem term t such that:

i. t ∈ RJST (f) ∩ RJST (F ′);

ii. there exists no t′ ∈ RJST (f)∩RJST (F ′) such that the last introduction
point of τf (t

′) in B(f) is subsequent to the last introduction point of
τf (t) in B(f);

iii. if there exists t′ ∈ RJST (f) ∩ RJST (F ′) such that τf (t) and τf (t
′) are

p-q-siblings in B(f) (which implies that the last introduction point of
τf (t

′) in B(f) is equal to the last introduction point of τf (t) in B(f)),
then p < q.

If otherwise RJST (f)∩RJST (F ′) = ∅, then we define LastRJST (f, F ′) = ⊥.

Example 7. Consider a pair I, D such that fchase(I,D,m) contains the
following branches:

(B2) q(t2, t3)←

.

.

.
r(t′)
↓

s(t′, t1)
↓

u(t1, t2)
↓

v(t1, t2, t3)
↓

w(t1, t3)

(B1)

→ z(t1, t2, t
′′) (B3)

30

where t1, t2, t3, t
′, t′′ are Skolem terms of depth m. Now let g1 = w(t1, t3)

g2 = q(t2, t3), and g3 = z(t1, t2, t
′′), and let F = {g1, g2, g3}. Then, we have

the following:
JST (F) = {t1, t2, t3}

RJST (g1) = {t1, t2, t3}
RJST (g3) = {t1, t2}

RJST (g1) ∩ RJST (g3) = {t1, t2}

Now, LastRJST (g3, {g1}) is the Skolem term t2, since the last introduction
point of t2 in B3 (i.e., the fact u(t1, t2)) follows the last introduction point of
t1 in B3 (i.e., the fact s(t′, t1)).

Informally, the intersection of RJST (f) and RJST (F ′) represents the set
of relevant join Skolem terms that f “shares” with F ′, in the sense that such
terms are relevant both for f and for some f ′ ∈ F ′, while LastRJST (f, F ′)
represents the join Skolem term t belonging to RJST (f)∩RJST (F ′) that is
the “last” or “most recent” one inB(f), in the sense that the last introduction
point of τf (t) in B(f) does not precede the last introduction point of τf (t

′)
for every other t′ belonging to RJST (f) ∩ RJST (F ′).

In the following, we denote by Branches(chase(I,D)) the set of branches
of chase(I,D), we denote by Branches(fchase(I,D,m)) the set of branches of
fchase(I,D,m), and we call Terms(chase(I,D)) the set of all terms occurring
in chase(I,D).

Definition 7. Let S = 〈f1, . . . , fn〉 be a sequence of distinct facts from
fchase(I,D,m) let F be the set {f1, . . . , fn}, and let S be such that m ≥
2(n× |JST (F)|) + 2. We define:

• the function BfinS : JST (F)→ Branches(fchase(I,D,m)),

• the function BcanS : JST (F)→ Branches(chase(I,D)),

• the function IPS : JST (F)→ chase(I, D),

• the function MapCanS : fchase(I,D,m)→ chase(I,D),

• and the function hS : JST (F)→ Terms(chase(I,D))

as follows. For each i such that 1 ≤ i ≤ n:

1. if LastRJST (fi, {f1, . . . , fi−1}) = ⊥ then:

31

• BfinS(fi) is defined as B(fi);

• BcanS(fi) is defined as the branch of chase(I,D) obtained by ex-
ecuting the sequence of IDs corresponding to the branch BfinS(fi)
in fchase(I,D,m) starting from the fact of D that is the root of
B(fi);

otherwise, if LastRJST (fi, {f1, . . . , fi−1}) = t′, then:

• BfinS(fi) is defined as the (sub-)branch of B(fi) starting from the
last introduction point of τfi

(t′) in B(fi) (and ending in f);

• BcanS(fi) is defined as the (sub-)branch of chase(I,D) correspond-
ing to BfinS(fi) and starting from IPS(t′);

2. for every fact g ∈ BfinS(fi), MapCanS(g) is defined as the fact corre-
sponding to g in BcanS(fi);

3. for each t ∈ RJST (fi)− RJST ({f1, . . . , fi−1}):
• IPS(t) is defined as MapCanS(g), where g denotes the last intro-

duction point of τfi
(t) in B(fi);

• hS(t) is defined as the term occurring in IPS(t) in the same argu-
ment position as τfi

(t) in g, where g denotes the last introduction
point of τfi

(t) in B(fi).

Finally, we define IM S =
⋃

1≤i≤n MapCanS(fi).

The goal of the above definition is to identify a set IM S of facts of
chase(I,D) and a function hS such that hS is a homomorphism from F
to IM S. As explained in Section 3.4, the set IM S is identified by mapping
(through the function MapCanS) the portion of the finite chase relative to
F (i.e., the branches of the finite chase whose leaves are the facts in F) to
a portion of the canonical chase: in practice, for every f ∈ F , the branch
B(f) of the finite chase (more precisely, the branch BfinS(f)) is mapped to a
“corresponding” branch of the canonical chase (the branch BcanS(f)). The
problem here is due to the presence of the join Skolem terms of depth m,
i.e., the Skolem terms in JST (F): such terms are problematic because two
occurrences of the same term t in different branches of the finite chase might
refer to two different introduction points of t (in other words, the terms in
JST (F) might be introduced multiple times in the finite chase). This makes
it generally incorrect to directly map every branch of the finite chase into the

32

“naturally corresponding” branch of the canonical chase (as defined in Sec-
tion 3.4), because two occurrences of such a term t in two different branches
of the finite chase (or even in a single branch) may correspond to two different
Skolem terms in the corresponding branches of the canonical chase.

To satisfy all joins among Skolem terms of depth m in F also in IM S

and map every join Skolem term t of JST (F) to a single Skolem term of
the canonical chase, the functions BfinS, BcanS and MapCanS are defined
as follows.

When considering the first fact f1 of the sequence S, BfinS(f1) is defined
as the whole branch B(f1) and BcanS(f1) is obtained as explained above, by
considering the branch that starts from the fact of D that is the root of B(f1)
and has been generated by applying the same sequence of IDs used in the
generation of B(f1). Let f ′1 be the leaf of BcanS(f1). Then, MapCanS(f1) =
f ′1 (more generally, MapCanS maps every fact of B(f1) to the corresponding
fact of BcanS(f1)). Then, the function τf1 is taken into account, which
identifies, in the branch B(f1) of the finite chase, a term τf1(t) of B(f1)
for every Skolem term t such that t ∈ RJST (f1). In turn, τf1(t) is used to
identify a corresponding Skolem term hS(t) in the branch of the canonical
chase corresponding to B(f1). From now on, the definition will enforce the
use of hS(t) when mapping the other facts of F in which t occurs.

When mapping the fact fi, with i > 1, there are two possibilities:

i. fi is such that LastRJST (fi, {f1, . . . , fi−1}) = ⊥. This condition im-
plies that the mapping of fi does not involve join Skolem terms that
have been already mapped to terms of chase(I,D), hence the term
fi can be mapped exactly like before, by mapping the whole branch
of the finite chase B(fi) on the “naturally corresponding” branch of
chase(I,D), i.e., the branch that starts from the root of B(fi) and is
generated by applying the same sequence of IDs used in the generation
of B(fi);

ii. fi is such that LastRJST (fi, {f1, . . . , fi−1}) = t′ for some Skolem term
t′. In this case, fi must be mapped to a corresponding fact f ′i of
chase(I,D) in such a way that f ′i makes use of the images hS(t) of
all the terms t of JST (F) that have already been mapped on the por-
tion of chase(I,D) identified in the mapping of f1, . . . , fi−1. This is
realized by considering the relevant join Skolem terms of fi, and se-
lecting among such join Skolem terms the “most recent” (or “last”)
term that has already been mapped through the function hS: this is

33

formally defined by the function LastRJST of Definition 6. So let
t = LastRJST (fi, {f1, . . . , fi−1}): then, let g be the fact that is the
last introduction point of τfi

(t) in B(fi) and let g′ be the fact that is
the introduction point of the term hS(t) in the canonical chase. The
fact g′ constitutes the “linking point” of B(fi) in the canonical chase,
in the sense that, to generate f ′i , the sequence of IDs of the portion
of the branch B(fi) of the finite chase that starts from the fact g is
applied, starting from the fact g′. In this way, the image hS(t) of every
join Skolem term of JST (F) that has been already mapped is correctly
reused, and thus all joins between fi and the facts already considered
in the construction are correctly satisfied in the new fact f ′i thus gen-
erated.

Obviously, in the construction of f ′i , further join Skolem terms from
JST (F) may be mapped by the function hS. By iterating the above pro-
cedure, we end up with a set of facts IM S = {f ′1, . . . , f ′n} and a function hS

such that hS is (more precisely, can be extended to) a homomorphism from
F to IM S, as we will show in the next lemma.

Example 8. We briefly illustrate Definition 7 referring to Example 7 and to
the sequence of facts S = 〈g1, g2, g3〉 with g1 = w(t1, t3), g2 = z(t1, t2, t

′′) and
g3 = q(t2, t3). Of course, LastRJST (g1, ∅) = ⊥, so BfinS(g1) = B(g1) = B1
and BcanS(g1) is the branch of the canonical chase that has the same root as
the root of branch B1 and whose sequence of IDs coincides with the sequence
of IDs used to generate branch B1 of the finite chase. Then, RJST ({g1}) =
{t1, t2, t3}, thus IPS(t1) is the fact in BcanS(g1) that corresponds to the fact
s(t′, t1) in B1 (let p1 be such a fact of the canonical chase), IPS(t2) is the fact
in BcanS(g1) that corresponds to the fact u(t1, t2) in B1 (let p2 be such a fact
of the canonical chase), and IPS(t3) is the fact in BcanS(g1) that corresponds
to the fact v(t1, t2, t3) in B1 (let p3 be such a fact of the canonical chase).
Let g′1 be the leaf of BcanS(g1): then, MapCanS(g1) = g′1. Moreover, since
t1 and t3 occur in g1, we have τg1(t1) = t1 and τg1(t3) = t3, and in branch B1
we have also τg1(t2) = t2 (since t2 is actually the 2-predecessor of t3 in B1),
thus hS(t1) is the term corresponding to t1 in p1, in the sense that hS(t1) is
the second argument of p1, t1 is the second argument of s(t′, t1), and p1 is
the representation on the canonical chase of s(t′, t1). In the same way, hS(t2)
is the term corresponding to t2 in p2, and hS(t3) is the term corresponding
to t3 in p3.

34

Then, consider the fact g2. As explained in Example 7, LastRJST (g2, {g1})
is the Skolem term t2, so BfinS(g2) is the sub-branch of branch B3 of the fi-
nite chase starting from u(t1, t2) and ending in g2 (such a sub-branch contains
three facts). Therefore, BcanS(g2) is the branch of the canonical chase that
starts from IPS(t2) = p2 and whose sequence of IDs coincides with the se-
quence of IDs of the sub-branch BfinS(g2) of the finite chase. Let g′2 be the
leaf of BcanS(g2): then, MapCanS(g2) = g′2.

Now, consider the fact g3. It can be verified that LastRJST (g3, {g1, g2}) is
the Skolem term t3, so BfinS(g3) is the sub-branch of branch B2 of the finite
chase starting from v(t1, t2, t3) and ending in f (such a branch contains two
facts). Therefore, BcanS(g3) is the branch of the canonical chase that starts
from IPS(t3) = p3 and whose sequence of IDs coincides with the sequence
of IDs of the sub-branch BfinS(g3) of the finite chase. Let g′3 be the leaf of
BcanS(g3): then, MapCanS(g3) = g′3.

Finally, we have IM S = {g′1, g′2, g′3}.

Let t be a term. We denote by δ(t) the term obtained from t by replac-
ing each occurrence of a Skolem function of the form φjI,p with the Skolem
function φI,p. In other words, in δ(t) we eliminate all superscripts from the
Skolem functions occurring in t. Moreover, given a fact f = r(t1, . . . , tn), we
denote by δ(f) the fact r(δ(t1), . . . , δ(tn)). The function δ will be necessary
in the proof of the next lemma in order to properly compare Skolem terms
of the finite chase with Skolem terms of the canonical chase.

We are finally ready to show the following crucial property.

Lemma 12. Let F be a set of facts such that F ⊆ fchase(I,D,m) and
m ≥ 2(|F | × |JST (F)|) + 2. There exists a set of facts IM ⊆ chase(I,D)
such that there exists a homomorphism h from F to IM .

Proof. We first state the following Property (*), whose proof follows im-
mediately from the definition of the f-chase-rule in Definition 2 and of the
ID-chase-rule in Definition 1.

Property (*): Let g, g′ be two facts such that g belongs to a branch

B(f) of fchase(I,D,m), g′ ∈ chase(I,D), and δ(g)
k
= g′ for some k such

that 1 ≤ k ≤ m. Let S be the sequence of IDs from I that are applied in
B(f) from g to obtain f , and let f ′ be the fact obtained starting from g′ and
applying the chase-rule of the canonical chase using the sequence of IDs S (let

35

us denote by B(f ′) this branch of chase(I,D)). Then, δ(f)
k
= f ′. Moreover,

if t is a Skolem term introduced in B(f) in a fact g1 that follows (or is the
same as) g in B(f), and t′ is the corresponding Skolem term introduced in

B(f ′), then δ(t)
k+1
= t′.

Let f1, . . . , fn be any enumeration of F , i.e., F = {f1, . . . , fn}, and let
S = 〈f1, . . . , fn〉. With Property (*) in place, we now show that the following
properties hold for every fi ∈ F :

(1) for every t ∈ RJST ({f1, . . . , fi}), δ(t) `
= hS(t), where ` = |F |×|JST (F)|+

2;

(2) δ(fi)
`−1
= MapCanS(fi);

(3) for every t ∈ RJST (fi), if τfi
(t) occurs as the argument at posi-

tion p in the last introduction point of τfi
(t′) in B(fi), where t′ =

LastRJST (fi, {f1, . . . , fn}), then hS(t) occurs as the argument at posi-
tion p in IPS(t′).

We first prove property (1), by induction on the structure of sequence S.
Base case (fact f1). If RJST (f1) = ∅, then property (1) holds trivially.

If RJST (f1) 6= ∅, then suppose t ∈ RJST (f1). From Lemma 7 and from the

fact that τj+1 = τj for every j ≥ |F | × |JST (F)|, it follows that τf1(t)
`
= t

(since by hypothesis m ≥ |F | × |JST (F)| + `). Moreover, we have that
hS(t) is the Skolem term occurring in BcanS(f1) that corresponds to τf1(t) in

B(f1), hence by construction we have δ(τf1(t))
m
= hS(t); this, together with

τf1(t)
`
= t immediately implies δ(t)

`
= hS(t).

Inductive case (fact fi with 2 ≤ i ≤ n). Let t ∈ RJST ({f1, . . . , fi}).
If t ∈ RJST ({f1, . . . , fi−1}) then δ(t)

`
= hS(t) follows from the inductive

hypothesis. If otherwise t ∈ RJST (fi)−RJST ({f1, . . . , fi−1}), there are two
possible cases:

(a) RJST (fi)∩RJST ({f1, . . . , fi−1}) = ∅. In this case, the branch BcanS(fi)
starts from the root of B(fi) and the proof of property (1) is the same
as in the base case;

(b) RJST (fi) ∩ RJST ({f1, . . . , fi−1}) 6= ∅. In this case, let

t′ = LastRJST (fi, {f1, . . . , fi−1})

By the inductive hypothesis, δ(t′)
`
= hS(t′). Now there are three pos-

sibilities:

36

(b1) t = t′. This case is impossible since by hypothesis t ∈ RJST (fi)−
RJST ({f1, . . . , fi−1}) and t′ = LastRJST (fi, {f1, . . . , fi−1});

(b2) the last introduction point of τfi
(t) is subsequent to (or is the

same as) the last introduction point of τfi
(t′) in B(fi). In this

case, from the fact that δ(t′)
`
= hS(t′) and from the second part

of Property (*) it follows that δ(t)
`
= hS(t);

(b3) the last introduction point of τfi
(t) precedes the last introduc-

tion point of τfi
(t′) in B(fi). In this case, let f ′ be a fact from

{f1, . . . , fi−1} such that t′ ∈ RJST (f ′). From Lemma 9 we have
that one of the following cases holds: (1) τfi

(t) is a h-ancestor of
τfi

(t′) in B(fi) for some h such that h ≤ `−1; (2) there exist t0, t
′
0

such that τfi
(t0) = t′0 and τfi

(t) and t′0 are siblings in B(fi) and t′0
is a h-ancestor of τfi

(t′) in B(fi) for some h such that h ≤ `− 1;
(notice that cases 2 and 4 in the claim of Lemma 9 cannot occur
because the last introduction point of τfi

(t) precedes the last in-
troduction point of τfi

(t′) in B(fi)). It is immediate to see that, in
both cases, Definition 5 implies that t ∈ RJST (f ′), which contra-
dicts the hypothesis that t ∈ RJST (fi) − RJST ({f1, . . . , fi−1}).
Thus, this case cannot occur.

Then, we prove property (2), again by induction on the structure of S. In
the base case, property (2) follows immediately from the first part of Prop-
erty (*) and from the fact that B(f1) and BcanS(f1) have the same root.
As for the inductive case, if LastRJST (fi, {f1, . . . , fi−1}) = ⊥, then since the
root of BcanS(fi) is the same as the root of B(fi), from the first part of Prop-

erty (*) it follows that δ(fi)
m
= MapCanS(fi). If LastRJST (fi, {f1, . . . , fi−1}) =

t′, then let g be the last introduction point of τfi
(t′) in B(fi): by property (1)

we have δ(t′)
`
= hS(t′), hence by Lemma 5 it follows that δ(g)

`−1
= IPS(t′),

therefore from the first part of Property (*) the thesis follows.
We now prove property (3), again by induction on the structure of S.

The base case is straightforward. As for the inductive case, assume that
τfi

(t) occurs as the argument at position p in the last introduction point of
τfi

(t′) in B(fi). Let fj be the first fact of S such that t′ ∈ RJST (fj) (i.e.,
there is no j′ < j such that t′ ∈ RJST (fj′)). Of course, 1 ≤ j < i. Now, since
τfi

(t) and τfi
(t′) occur in the same fact of B(fi) (which is an introduction

point of τfi
(t′) in B(fi)), by Lemma 6 there are two possible cases:

37

i. τfi
(t) and τfi

(t′) are p-q siblings in B(fi) for some q. Then, from Lemma
11 it follows that τfj

(t) is defined (i.e., t ∈ RJST (fj)) and that τfj
(t)

and τfj
(t′) are p-q-siblings in B(fj). This in turn immediately implies

that fj is also the first fact of S such that t ∈ RJST (fj). Therefore,
by Definition 7, we have that hS(t) occurs as the argument at position
p in IPS(t′), which proves the thesis;

ii. τfi
(t) is the p-predecessor of τfi

(t′) in B(fi). In this case, from Lemma
11 it follows that τfj

(t) is defined (i.e., t ∈ RJST (fj)) and that τfj
(t) is

the p-predecessor of τfj
(t′) in B(fj). Now, there are two possibilities:

(a) fj is also the first fact of S such that t ∈ RJST (fj). In this case, the
thesis follows by an argument analogous to the proof of the above point
(i); (b) there exists j′ such that j′ < j and t ∈ RJST (fj′). In this case,
w.l.o.g. assume that j′ is the minimum integer such that t ∈ RJST (f ′j),
let t′′ = LastRJST (fj, F

′
j), where F ′

j = {f1, . . . , fj′−1}, let g be the last
introduction point of τfj

(t) in B(fj), let g′ be the last introduction point
of τfj

(t′) in B(fj), and let g′′ be the last introduction point of τfj
(t′′)

in B(fj). Now, we have that g′′ must follow g in B(fj) (otherwise the
hypothesis t′′ = LastRJST (fj, F

′
j) would be contradicted), and that g′′

must precede g′ in B(fj) (otherwise by Lemma 11 t′ would belong to
RJST (fj′), thus contradicting the hypothesis that fj is the first fact of
S such that t′ ∈ RJST (fj)). Now, since τfj

(t) is the p-predecessor of
τfj

(t′) in B(fj), it follows that τfj
(t) occurs in all facts that lie between

g and g′ in B(fj), therefore τfj
(t) must occur at some position p′ in

g′′. Consequently, by the inductive hypothesis, hS(t) occurs at position
p′ in IPS(t′′). Then, by definition of BfinS(fj) and BcanS(fj) (and
MapCanS and IPS), and since τfj

(t) is the p-predecessor of τfj
(t′) in

B(fj), we conclude that hS(t) occurs at position p in IPS(t′).

Finally, let us define the function h which extends the above function
hS as follows: (i) for every constant c, h(c) = c; (ii) for every Skolem term
of depth less than m, h(t) = δ(t). We now prove that, if t occurs in the
i-th position of f ∈ F and h(t) has been defined (i.e., t is a constant or a
Skolem term of depth less than m or a term of JST (F)), then h(t) is the
i-th argument of MapCanS(f). The case when t is a constant is immediately
implied by the above property (2). In the case when t is a Skolem term of
depth less than m, the property follows from the fact that t has a unique
introduction point in fchase(I,D,m). In the case when t ∈ JST (F), the

38

property immediately follows from the above property (3).
Thus, the function h defined so far maps all constants and Skolem terms

occurring in F , with the exception of the Skolem terms of depth m which
occur only once in F : it is now trivial to extend h to these terms: if such a
term t occurs as the i-th argument of f ∈ F , then h(t) is defined as the i-th
argument of MapCanS(f). The above properties (2) and (3) immediately
imply that the function h thus defined constitutes a homomorphism from F
to IM S.

Based on the above lemma, we are finally to prove soundness of the
evaluation of conjunctive queries over the finite chase with respect to the
canonical chase.

Lemma 13. Let I be a set of IDs, let D be a database instance, and let q be
a conjunctive query with k occurrences of existential variable symbols. Let n
be the size of q and let m be any integer such that m ≥ 2(n× k) + 2. Then,

for every tuple of constants c, if c ∈ qfchase(I,D,m) then c ∈ qchase(I,D).

Proof. Assume c ∈ qfchase(I,D,m): thus, there exists a set of facts F of
fchase(I,D,m) such that there exists a query homomorphism from q(c) to
F . Then, the proof follows immediately from the observation that F is
a set of facts that satisfies the conditions of Lemma 12, since at most k
occurrences of Skolem terms may appear in F , which implies that |JST (F)| ≤
k, therefore by such lemma it follows that there exists a set of facts IM of
chase(I,D) such that there exists a homomorphism h from F to IM . Thus,
by composing the query homomorphism from q(c) to F with h we obtain a

query homomorphism from q(c) to IM , which implies that c ∈ qchase(I,D).

Now, since for every conjunctive query q there exists a value of m that
satisfies the hypothesis of Lemma 13, it follows that for every conjunctive
query q there exists a finite database in semf (I, D) (i.e., fchase(I,D,m) for a
suitable m) such that the evaluation of q over such a finite database coincides
with the evaluation of q over the canonical chase chase(I,D). From the above
property and Lemma 2 we are finally able to conclude that Theorem 1 holds.

4. Results for (unions of) conjunctive queries

Based on Theorem 1, in this section we complete our analysis of OWA-
answering of CQs and UCQs.

39

First, we extend Theorem 1 to unions of conjunctive queries.

Theorem 2. OWA-answering UCQs under IDs is finitely controllable.

Proof. Let Q be the UCQ q1 ∨ . . . ∨ qk, let n be the maximum size of a
CQ in Q, and let h be the maximum number of occurrences of existential
variables in a conjunct qi of Q. Let m = 2(n × h) + 2, and let c be a tuple

of constants. We prove that c ∈ ansf (Q, I,D) iff c ∈ Qfchase(I,D,m). First,

suppose that c 6∈ Qfchase(I,D,m). Then, since by Lemma 1 fchase(I,D,m) ∈
semf (I,D), it immediately follows that c 6∈ ansf (I,D). Now suppose that

c ∈ Qfchase(I,D,m). Then, there exists qi (with 1 ≤ i ≤ k) such that c ∈
q
fchase(I,D,m)
i . Therefore, from Lemma 13 it follows that c ∈ q

chase(I,D)
i ,

and from Proposition 2 it follows that c ∈ ans(qi, I,D), which immediately
implies c ∈ ans(Q, I,D), and since semf (I,D) ⊆ sem(I,D), it follows that
c ∈ ansf (Q, I,D).

It is then possible to prove the analogous of Theorem 2 for the case of
KDs and FKs.

Theorem 3. OWA-answering UCQs under single KDs and FKs is finitely
controllable.

Proof. Let I be a set of IDs, let K be a set of single KDs such that I
are foreign keys for K, let D be a database instance, and let q be a UCQ.
The proof follows immediately from the fact that, if D satisfies K, then,
by construction, the database fchase(I,D,m) also satisfies the KDs in K:
indeed, it is immediate to verify that, since every ID in I is a foreign key
for K, every fact f that is added by the f-chase-rule in the construction of
fchase(I,D,m) is such that there is no other fact with the same key as f in
fchase(I,D,m).

Then, we prove that, as soon as we extend the ICs beyond single KDs and
FKs, finite controllability of OWA-answering of CQs does not hold anymore.

Theorem 4. OWA-answering CQs under non-conflicting KDs and IDs is
not finitely controllable.

Proof. Let I be the set of non-conflicting KDs and IDs constituted by the ID
r[2] ⊆ r[1] and the KD key(r) = 2. It is immediate to verify that I implies

40

the ID I = r[1] ⊆ r[2] over finite databases, while I does not imply I over
unrestricted databases. Consequently, given an instance D = {r(a, b)}, the
query ∃x.r(x, a) is true over finite databases while it is false over unrestricted
databases.

Then, we recall a result presented in [16] for OWA-answering CQs under
non-conflicting KDs and IDs over unrestricted databases.

Proposition 3. [16, Theorem 3.9] OWA-answering CQs under non-conflicting
KDs and IDs is decidable, in particular it is in PTIME in data complexity
and in PSPACE in combined complexity.

Finally, we prove that the above property cannot be extended to the case
of finite databases.

Theorem 5. Finite OWA-answering CQs under non-conflicting KDs and
IDs is undecidable.

Proof. We prove the theorem by reducing implication of IDs from FDs and
IDs (which is not finitely controllable [17], and is undecidable both for finite
databases and for unrestricted databases [18, 19]) to OWA-answering of CQs
under non-conflicting KDs and IDs. Given a set of FDs F which contains
m FDs, a set of IDs I, and an ID I, we define a set of KDs K′ and a set of
IDs I ′ as follows: we start from K = ∅ and I ′ = I. Then, for each FD in F :
if the i-th FD in F is of the form r : i1, . . . , ik → b (such a FD is denoted
in the following by Fi), we use an auxiliary relation ri (i.e., a new relation
symbol that does not already occur in F ∪ I ′ ∪ {I}) of arity 2k + 1, add to
K′ the KD key(ri) = k + 1, . . . , 2k, and add to I ′ the IDs

ri[k + 1, . . . , 2k] ⊆ ri[1, . . . , k]
r[i1, . . . , ik, b] ⊆ r[1, . . . , k, 2k + 1]

Finally, if the ID I has the form I = r[l1, . . . , lh] ⊆ s[j1, . . . , jh] (where r has
arity n and s has arity p), we define D(I) as the database D = {r(c)} with
c = 〈c1, . . . , cn〉, and define q(I) as the Boolean CQ ∃x1, . . . , xp.s(v1, . . . , vp)
where each vi is such that vi = clk if i = jk for some k s.t. 1 ≤ k ≤ h, while
vi = xi otherwise. Notice that the set K′ ∪ I ′ thus constructed is a set of
non-conflicting KDs and IDs.

We now prove that F ∪ I |=f I iff the CQ q(I) is true in all databases
of semf (K′ ∪ I ′,D(I)). The proof is based on the fact that, for each of the

41

above auxiliary relations ri, the KD K = key(ri) = 1, . . . , k is finitely implied
by K′ ∪ I ′, i.e., K′ ∪ I ′ |=f K. This in turn implies that, due to the presence
of the ID r[i1, . . . , ik, b] ⊆ r[1, . . . , k, 2k + 1], the KD K is “pulled back”
to r, thus the original FD Fi is also implied, i.e., K′ ∪ I ′ |=f Fi. Hence,
all the initial FDs and IDs are finitely implied by K′ ∪ I ′. Moreover, it is
possible to prove that, for each IC ϕ where ϕ is either a FD or an ID over
the initial relations (i.e., the relations occurring in F ∪ I), if K′ ∪ I ′ |=f ϕ
then F ∪ I |=f ϕ. Consequently: (i) if F ∪ I |=f I, then for each database
B in semf (K′ ∪ I ′,D(I)), there is a fact s(t′) such that t′[B] = t[A], which
implies that the query q(I) is true in B; (ii) if F ∪ I 6|=f I, then there exists
a database B in semf (K′∪I ′,D(I)) such that there is no fact s(t′) such that
t′[B] = t[A], which implies that the query q(I) is false in B.

Observe that the above results identify the first combination of ICs and
query language (CQs under non-conflicting KDs and IDs) in which OWA-
answering is decidable for unrestricted databases and is undecidable over
finite databases.

Finally, we recall a result of [16], which answers the question whether
OWA-answering of CQs in the presence of conflicting (i.e., arbitrary) single
KDs and IDs is still decidable.

Proposition 4. [16, Theorem 3.4] OWA-answering CQs under single KDs
and IDs is undecidable.

5. From OWA-answering to query containment

In this section we introduce query containment under ICs and briefly
relate the results for OWA-answering presented above to query containment.

Given two queries q1 and q2 and a set of ICs C, we say that q1 is contained
in q2 under C (denoted by q1 ⊆C q2) if, for each database B ∈ sem(C, ∅),
qB1 ⊆ qB2 . Analogously, we say that q1 is finitely contained in q2 under C
(denoted by q1 ⊆Cf q2) if, for each database B ∈ semf (C, ∅), qB1 ⊆ qB2 .

When the query q1 is a CQ, the relationship between OWA-answering
and query containment can be informally explained as follows (for more de-
tails see e.g. [5]). In the absence of ICs, we “freeze” q1 by replacing each
distinct variable with a distinct constant in q1 through a substitution σ, thus
obtaining a set of facts, i.e., a database D(q1). Then, it can be shown that
q1 ⊆C q2 iff c ∈ ans(q2, C,D(q1)), where c = σ(x) and x is the tuple of all
variables occurring in q1. In the presence of a set of ICs C, we must add a

42

unification phase to the above procedure, since the ICs may imply equalities
on the constants used for freezing the query q1 (so the terms used for freezing
q2 are now “soft”, i.e., unifiable, constants): if C is such that implication of
ICs under C is decidable, then also this unification is computable in a finite
amount of time.

As a consequence of the above reduction, all the decidability and finite
controllability results for OWA-answering presented in this paper immedi-
ately extend to the corresponding query containment problems.

We only point out the two following results, which are corollaries of The-
orem 1 and Theorem 3 respectively.

Given a class of queries Q and a class of ICs C, we say that containment
between queries in Q under C is finitely controllable if, for every set of ICs
I ⊆ C, and for every pair of queries q1, q2 ∈ Q, q1 ⊆I q2 iff q1 ⊆If q2.

Corollary 1. Containment between CQs under arbitrary IDs is finitely con-
trollable.

Corollary 2. Containment between CQs under single KDs and FKs is finitely
controllable.

The above two properties close two problems left open in [5], which es-
tablished finite controllability of containment between CQs under unary IDs
(i.e., IDs with arity 1) and under the so-called key-based dependencies, which
constitute a combination of KDs and IDs much more restricted than single
KDs and FKs, and left open the problem of finite controllability under arbi-
trary IDs and under more expressive combinations of KDs and IDs.

6. Related work

In this section we briefly describe some of the studies that are most closely
related to the present work.

Query answering and query containment under ICs. With respect to query
containment, the most closely related work is certainly [5], which shows de-
cidability of containment of CQs under IDs (which immediately implies de-
cidability of OWA-answering of CQs under IDs) and under the class of key-
based dependencies (that has already been introduced in Section 5). These
results have been extended in [16] to containment (and OWA-answering) of
CQs under non-conflicting KDs and IDs for unrestricted databases.

43

The work in [20, 21] present results on undecidability of first-order query
answering using unary conjunctive views. This setting is quite different from
the one studied in the present paper, which actually cannot be reduced to the
framework of unary conjunctive views (and vice versa). However, although
in different settings, some of the results (in particular with respect to the use
of negation and inequality) are similar.

View-based query processing is also closely related to OWA query answer-
ing. We only mention the approach presented in [22, 23], which studies query
answering using views. In particular, [23] analyzes the presence of ICs, in
particular functional dependencies, in this setting.

Many decidability results have been established for classes of ICs which
admite a finite chase, i.e., a finite “canonical model” for the database and
the ICs (see [24, 14]). For instance, [25] studies containment of conjunctive
queries under (a generalized form of) acyclic IDs and FDs (whose chase is
finite). Moreover, the approach presented in [26] studies containment of con-
junctive queries under Datalog ICs, i.e., ICs that can be expressed in terms
of a Disjunctive Datalog program. Again, Disjunctive Datalog programs can-
not express arbitrary IDs, so the kinds of ICs analyzed in the present paper
are not covered by the results in [26]. A similar setting is studied in [27, 28]
(although under a least-fixpoint-based semantics that differs from the one
presented in this paper), which also present results about conjunctive queries
with inequality predicates which extend the one in [29]. Also, [30, 7] present
results about query answering in a combination of dependencies for which the
chase is finite, although in the different setting of data exchange. In particu-
lar, conjunctive queries and conjunctive queries with inequalities are studied.
We point out that our results on finite controllability have very important
implications for data exchange: for instance, Theorem 1 immediately im-
plies that it is possible to compute certain answers in data exchange settings
where target constraints are expressed by arbitrary (non-weakly-acyclic) in-
clusion dependencies. This is an interesting result, since it contrasts with
the fact that for this class of constraints no finite universal solution exists
for conjunctive queries.

Differently from the above mentioned work, in the present paper we have
studied classes of ICs for which the chase is in general infinite, since we admit
IDs with arbitrary cycles. This is the main technical difficulty of our work,
and one of the main differences with respect to the above mentioned studies.

Finally, a recent interesting work that deals with the infinite chase is [31],
which presents new general decidability and complexity results for OWA-

44

answering under tuple-generating dependencies and equality-generating de-
pendencies, for unrestricted databases. Also, [32] presents new results on the
decidability of termination of the standard chase, and new sufficient condi-
tions for the termination of the chase.

Implication of ICs. Many studies have dealt with the implication problem
for FDs and IDs. Besides the “classical” results already cited in the previous
sections, below we briefly describe some works which have a close relation to
the present paper.

In [33] the authors identify one of the first combinations of ICs (namely,
unary FDs and unary IDs) for which implication is not finitely controllable,
although decidable both for the finite and for the unrestricted case. In this
respect, our results about CQs under non-conflicting KDs and IDs (Theo-
rem 5) identify the first (to our knowledge) class of FDs and IDs under which
finite model reasoning is undecidable while unrestricted model reasoning is
decidable.

The work presented in [34] defines a notion of non-conflicting FDs and
IDs and proves decidability of implication from such ICs. Our notion of
non-conflicting KDs and IDs is significantly different, because we take into
account cyclic IDs, which cause the chase to be infinite, while in [34] only
proper-circular IDs are considered (i.e., a class of IDs that has a finite chase).

Finally, [35, 36] have studied integrity constraints for XML. To this aim,
they have shown that the implication problem for KDs and FKs is unde-
cidable, which apparently contradicts our decidability results for KDs and
FKs. However, we point out that the notion of foreign key in [35, 36] is
different from ours: actually, since in [35, 36] a FK may involve a superset
of a key, it follows that a set of keys and foreign keys according to [35, 36]
is a set of conflicting KDs and IDs according to our classification, and hence
OWA-answering under such ICs is undecidable, which agrees with the results
in [35, 36].

7. Conclusions

In this paper we have studied query answering in databases with integrity
constraints under open-world assumption. The main results of this paper
concern the finite controllability of answering unions of conjunctive queries
in the presence of either (i) arbitrary inclusion dependencies, or (ii) keys

45

and foreign keys. We have also shown a class of integrity constraints (non-
conflicting inclusion and key dependencies) in which answering unions of
conjunctive queries is not finitely controllable, decidable over unrestricted
databases, and undecidable over finite databases.

As for further development of the present work, we believe that one of
the most promising aspects to investigate is the extension of the analysis
presented in this paper towards different kinds of IC/schema languages (data
models, ontology languages, etc.) and query languages.4. In particular, we
conjecture that our results for the relational setting may imply interesting
results for other schema languages (and data models) that have the ability of
expressing analogous forms of key dependencies and inclusion dependencies:
e.g., these results might drive the design of decidable query languages for such
settings. Also, it would be interesting to analyze whether the finite chase,
defined for proving the above mentioned finite controllability results, may
imply interesting consequences for the design of practical query answering
algorithms in the settings considered by this paper.

Acknowledgments
This research has been partially supported by the project TONES (FP6-

7603) funded by the EU, by project HYPER, funded by IBM through a
Shared University Research (SUR) Award grant, and by MIUR FIRB 2005
project “Tecnologie Orientate alla Conoscenza per Aggregazioni di Imprese
in Internet” (TOCAI.IT). The author is extremely grateful to an anonymous
reviewer of this paper for her/his invaluable comments and suggestions. The
author also wishes to thank Georg Gottlob and Maurizio Lenzerini for useful
discussions on the subject of the paper.

References

[1] M. Y. Vardi, The implication and finite implication problems for typed
template dependencies, in: Proceedings of the First ACM SIGACT SIG-
MOD Symposium on Principles of Database Systems (PODS’82), 1982,
pp. 230–238.

[2] M. H. Graham, A. O. Meldelzon, M. Y. Vardi, Notions of dependency
satisfaction, Journal of the ACM 33 (1) (1986) 105–129.

4A study on the decidability and complexity of OWA query answering for classes of
queries more expressive than CQs and UCQs has been presented in [13, 37].

46

[3] R. van der Meyden, Logical approaches to incomplete information, in:
J. Chomicki, G. Saake (Eds.), Logics for Databases and Information
Systems, Kluwer Academic Publishers, 1998, pp. 307–356.

[4] C. Beeri, M. Y. Vardi, Formal systems for tuple and equality generating
dependencies, SIAM Journal on Computing 13 (1) (1984) 76–98.

[5] D. S. Johnson, A. C. Klug, Testing containment of conjunctive queries
under functional and inclusion dependencies, Journal of Computer and
System Sciences 28 (1) (1984) 167–189.

[6] M. Lenzerini, Data integration: A theoretical perspective., in: Proceed-
ings of the Twentyfirst ACM SIGACT SIGMOD SIGART Symposium
on Principles of Database Systems (PODS 2002), 2002, pp. 233–246.

[7] R. Fagin, P. G. Kolaitis, L. Popa, Data exchange: Getting to the core,
in: Proceedings of the Twentysecond ACM SIGACT SIGMOD SIGART
Symposium on Principles of Database Systems (PODS 2003), 2003, pp.
90–101.

[8] A. Y. Halevy, Answering queries using views: A survey, Very Large
Database Journal 10 (4) (2001) 270–294.

[9] U. Hustadt, B. Motik, U. Sattler, Data complexity of reasoning in very
expressive description logics, in: Proceedings of the Nineteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2005), 2005.

[10] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan, Composing schema map-
pings: Second-order dependencies to the rescue, in: Proceedings of the
Twentythird ACM SIGACT SIGMOD SIGART Symposium on Princi-
ples of Database Systems (PODS 2004), 2004.

[11] M. Arenas, L. E. Bertossi, J. Chomicki, Consistent query answers
in inconsistent databases, in: Proceedings of the Eighteenth ACM
SIGACT SIGMOD SIGART Symposium on Principles of Database Sys-
tems (PODS’99), 1999, pp. 68–79.

[12] A. Halevy, Z. Ives, D. Suciu, I. Tatarinov, Schema mediation in peer
data management systems, in: Proceedings of the Nineteenth IEEE
International Conference on Data Engineering (ICDE 2003), 2003, pp.
505–516.

47

[13] R. Rosati, On the decidability and finite controllability of query process-
ing in databases with incomplete information, in: Proc. of the Twen-
tyfifth ACM SIGACT SIGMOD SIGART Symposium on Principles of
Database Systems (PODS 2006), 2006, pp. 356–365.

[14] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison
Wesley Publ. Co., 1995.

[15] M. Y. Vardi, On the integrity of databases with incomplete information,
in: Proceedings of the First ACM SIGACT SIGMOD Symposium on
Principles of Database Systems (PODS’82), 1982, pp. 252–266.

[16] A. Cal̀ı, D. Lembo, R. Rosati, On the decidability and complexity of
query answering over inconsistent and incomplete databases, in: Pro-
ceedings of the Twentysecond ACM SIGACT SIGMOD SIGART Sym-
posium on Principles of Database Systems (PODS 2003), 2003, pp. 260–
271.

[17] M. A. Casanova, R. Fagin, C. H. Papadimitriou, Inclusion dependencies
and their interaction with functional dependencies, Journal of Computer
and System Sciences 28 (1) (1984) 29–59.

[18] J. C. Mitchell, The implication problem for functional and inclusion
dependencies, Information and Control 56 (1983) 154–173.

[19] A. K. Chandra, M. Y. Vardi, The implication problem for functional
and inclusion dependencies is undecidable, SIAM Journal on Computing
14 (3) (1985) 671–677.

[20] J. Bailey, G. Dong, K. Ramamohanarao, Decidability and undecidability
results for the termination problem of active database rules, in: Proceed-
ings of the Seventeenth ACM SIGACT SIGMOD SIGART Symposium
on Principles of Database Systems (PODS’98), 1998, pp. 264–273.

[21] J. Bailey, G. Dong, Decidability of first-order logic queries over views,
in: Proceedings of the Seventh International Conference on Database
Theory (ICDT’99), 1999, pp. 83–99.

[22] S. Abiteboul, O. Duschka, Complexity of answering queries using ma-
terialized views, in: Proceedings of the Seventeenth ACM SIGACT

48

SIGMOD SIGART Symposium on Principles of Database Systems
(PODS’98), 1998, pp. 254–265.

[23] O. M. Duschka, M. R. Genesereth, A. Y. Levy, Recursive query plans
for data integration, Journal of Logic Programming 43 (1) (2000) 49–73.

[24] C. Beeri, M. Y. Vardi, A proof procedure for data dependencies, Journal
of the ACM 31 (4) (1984) 718–741.

[25] X. Zhang, Z. M. Ozsoyoglu, Implication and referential constraints: A
new formal reasoning, IEEE Transactions on Knowledge and Data En-
gineering 9 (6) (1997) 894–910.

[26] G. Dong, J. Su, Conjunctive query containment with respect to views
and constraints, Information Processing Letters 57 (2) (1996) 95–102.

[27] R. van der Meyden, The complexity of querying indefinite information,
Ph.D. thesis, Rutgers University (1992).

[28] R. van der Meyden, The complexity of querying indefinite data about
linearly ordered domains, Journal of Computer and System Sciences
54 (1) (1997) 113–135.

[29] A. C. Klug, On conjunctive queries containing inequalities, Journal of
the ACM 35 (1) (1988) 146–160.

[30] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa, Data exchange: Seman-
tics and query answering, in: Proceedings of the Ninth International
Conference on Database Theory (ICDT 2003), 2003, pp. 207–224.

[31] A. Cal̀ı, G. Gottlob, M. Kifer, Taming the infinite chase: Query an-
swering under expressive relational constraints, in: Proc. of the 11th
Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2008), 2008.

[32] A. Deutsch, A. Nash, J. B. Remmel, : The chase revisited, in: Proc. of
the Twentyseventh ACM SIGACT SIGMOD SIGART Symposium on
Principles of Database Systems (PODS 2008), 2008, pp. 149–158.

[33] S. S. Cosmadakis, P. C. Kanellakis, M. Vardi, Polynomial-time impli-
cation problems for unary inclusion dependencies, Journal of the ACM
37 (1) (1990) 15–46.

49

[34] M. Levene, G. Loizou, How to prevent interaction of functional and
inclusion dependencies, Information Processing Letters 71 (4) (1999)
115–125.

[35] W. Fan, J. Siméon, Integrity constraints for XML, in: Proceedings of the
Nineteenth ACM SIGACT SIGMOD SIGART Symposium on Principles
of Database Systems (PODS 2000), 2000, pp. 23–34.

[36] W. Fan, L. Libkin, On XML integrity constraints in the presence of
DTDs, Journal of the ACM 49 (3) (2002) 368–406.

[37] R. Rosati, The limits of querying ontologies, in: Proceedings of the
Eleventh International Conference on Database Theory (ICDT 2007),
Vol. 4353 of Lecture Notes in Computer Science, Springer, 2007, pp.
164–178.

50

