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Abstract

We study the complexity of model checking
in propositional nonmonotonic logics. Specif-
ically, we first define the problem of model
checking in such formalisms, based on the fact
that several nonmonotonic logics make use of
interpretation structures (i.e. default exten-
sions, stable expansions, universal Kripke mod-
els) which are more complex than standard in-
terpretations of propositional logic. Then, we
analyze the complexity of checking whether a
given interpretation structure satisfies a non-
monotonic theory. In particular, we character-
ize the complexity of model checking for Reit-
er’s default logic and its restrictions, Moore’s
autoepistemic logic, and several nonmonotonic
modal logics. The results obtained show that,
in all such formalisms, model checking is com-
putationally easier than logical inference.

1 Introduction

In recent years the problem of model checking has
been widely studied in knowledge representation and Al
[Levesque, 1986; Halpern and Vardi, 1991]. Informally,
model checking for a logical formalism L corresponds to
the following problem: given an interpretation structure
I and a logical formula ¥, does I satisfy 3 according to
the semantics of L?

Model checking has been convincingly advocated as an
alternative to classical reasoning, i.e. logical inference.
The main advantage of model checking lies in the fact
that in general it is computationally easier than logical
inference: For instance, it is well-known that, in first-
order logic, model checking is polynomial in the size of
the interpretation structure. Besides “classical” applica-
tion domains (like hardware verification), model check-
ing techniques have been recently employed in the field
of planning and cognitive robotics [Cimatti et al., 1997].

Lately, model checking has been studied in some
propositional nonmonotonic settings [Cadoli, 1992; Lib-
eratore and Schaerf, 1998]. In particular, [Liberatore and
Schaerf, 1998] analyze the problem of checking whether a
classical (propositional) interpretation “satisfies” a given

default theory, in the sense that such interpretation sat-
isfies at least one extension of the default theory.

The results obtained show that for propositional de-
fault logic this kind of model checking is in general as
hard as logical inference, hence the computational ad-
vantages of model checking over theorem proving do not
seem to hold in the case of default logic.

The work presented in this paper originates from a
different definition of model checking for default logic
and several other nonmonotonic logics. Such a notion is
an immediate consequence of the fact that many non-
monotonic formalisms make use of interpretation struc-
tures (i.e. default extensions, autoepistemic expansions,
universal Kripke models) which are more complex than
standard interpretations of classical logic, and which can
be represented in a compact way by means of logical for-
mulas. Hence, we argue that model checking in such
frameworks corresponds to verify whether a given inter-
pretation structure of this form satisfies a nonmonotonic
theory, according to the semantics of the formalism.
E.g., according to this notion, a model of a default theory
is a default extension, and model checking for proposi-
tional default logic corresponds to verify whether a given
propositional formula represents an extension of a given
default theory. Hence, the notion of model checking in
such nonmonotonic formalisms is peculiar in the sense
that the interpretation structure is represented by means
of a logical formula.

We thus provide a computational analysis of the above
notion of model checking for several propositional non-
monotonic logics. In particular, we characterize the com-
plexity of model checking in Reiter’s default logic [Reiter,
1980], disjunctive default logic [Gelfond et al., 1991], and
for several syntactic restrictions of such formalisms; we
also study model checking in Moore’s autoepistemic logic
AEL [Moore, 1985], and in several other nonmonotonic
modal logics, including McDermott and Doyle’s (MDD)
modal logics [Marek and Truszczyriski, 1993], the modal
logic of minimal knowledge S5 [Halpern and Moses,
1985], and the logic of minimal knowledge and negation
as failure MKNF [Lifschitz, 1991].

Our analysis shows that the problem of model check-
ing is easier than logical inference in all the cases ex-
amined: typically, model checking for propositional non-



monotonic formalisms is complete with respect to the
class ©} [Eiter and Gottlob, 1997], while logical infer-
ence is typically IT5-complete in such logics. We also
provide model checking algorithms for both default logic
and several nonmonotonic modal logics.

In the following, we first briefly recall Reiter’s default
logic and Moore’s autoepistemic logic. Then, in Sec-
tion 3 we analyze model checking in default logic, and
in Section 4 we study model checking in nonmonotonic
modal logics. Finally, in Section 5 we compare our ap-
proach with recent related work, and conclude in Sec-
tion 6.

2 Preliminaries

We start by briefly recalling Reiter’s default logic [Reiter,
1980]. Let £ be the usual propositional language. A
default rule is a rule of the form

a:ﬁla"'vﬂn
Y

where n > 0 and « (called the prerequisite), f1, ..., On
(called justifications), and v (called the conclusion) are
all formulas from £. A default theory is a pair (D, W)
where W € £ and D is a set of default rules.

Default theories in which each rule is of the form %

(1)

are called normal (i.e. the justification is equal to the
consequence of the default). Moreover, if each default is
of the form %, then the default theory is called super-
normal.

The characterization of default theories is given
through the notion of eztension, i.e. a deductively closed
set of propositional formulas. In the following, given a
set of propositional formulas G, we denote with Cn(QG)
the deductive closure of G, i.e. the set of propositional
formulas logically implied by G.

Let £ C L, and let D be a set of default rules. We
denote with D(F) (and say that D(FE) is the reduct of
D with respect to E) the set

{O&Z . azﬁla"'aﬁn
gl v

We say that a set £ C L is closed under a set of
justification-free default rules D if, for each 0‘7 e D, if
a € F then v € E.

Definition 1 /[Gelfond et al., 1991, Theorem 2.3] Let
(D,W) be a default theory, and let E C L. E is an

extension for (D, W) iff W € E and E is the minimal set
closed under deduction and closed under the set D(E).

€ D and —0; € F for each i}

We recall that each extension is fully characterized by
the set of conclusions of the default rules applied during
this construction: in fact, it is easy to see that, for each
extension of (D, W), there exists a subset G of the set of
conclusions {71,...,7%} of the default rules in D (which
is denoted as Con(D)) such that 2= Cn(WANA,, < 7i)-
Hence, each extension of a given default theory can be
represented in terms of a propositional formula f (or

any propositional formula equivalent to f). Moreover,
the propositional formula f = W A /\%_ e Vi provides
a finite representation of an infinite structure (i.e. the
extension).

In [Gelfond et al., 1991] default logic has been ex-
tended to the case of disjunctive conclusions, in the fol-
lowing way. A disjunctive default rule is a rule of the

form
a:/Blv"'vﬁn

Ml
where n,m > 0 and a, 81, ..., Bny V155 Ym € L. A dis-
junctive default theory is a pair (D, W) where W € L
and D is a set of disjunctive default rules. The char-
acterization of disjunctive default theories is given by
changing (in a conservative way) the above notion of ex-

tension as follows.
The reduct D(E) wrt E C L of a set of disjunctive
defaults D is the set

a: Ca:fBr,.. B
Yl [ Ym

Y1l ym
We say that a set E C L is closed under a set of
justification-free disjunctive default rules D if, for each

'MI»C-Y-:\'V € D, if a € E then v; € E for some ¢ such that

1 <i<m. EC L is an extension for a disjunctive
default theory (D, W) iff W € E and E is a minimal set
closed under deduction and under the set D(E).

We finally briefly recall Moore’s autoepistemic logic
(AEL). We denote with Lk the modal extension of £
with the modality K. Moreover, we denote with L% the
set of flat modal formulas, that is the set of formulas
from Lk in which each propositional symbol appears in

the scope of exactly one modality.

" € D and —83; ¢ E for each i}

Definition 2 A consistent set of formulas T from Li
1s a stable expansion for a formula 3 € L if T satisfies
the following equation:

T = Cnkpas({Z} U{=Kp | p £T})

where Cnkpas s the logical consequence operator of
modal logic KD45.

Given X, € Lk, ¥ EagrL ¢ iff ¢ belongs to all the
stable expansions of Y. Notably, each stable expansion
T is a stable set, i.e. (i) T is closed under propositional
consequence; (ii) if ¢ € T then K¢ € T (iii) if ¢ ¢
T then -K¢ € T. We recall that each stable set S
corresponds to a mazimal universal S5 model Mg such
that S is the set of formulas satisfied by Mg (see e.g.
[Marek and Truszczynski, 1993]).

With the term AEL model for ¥ we will refer to an
S5 model whose set of theorems corresponds to a stable
expansion for ¥ in AEL: without loss of generality, we
will identify such a model with the set of interpretations
it contains. Moreover, each S5 model corresponding to a
stable expansion S of a formula 3 can be characterized
by a propositional formula f such that Mg ={I: 1 |
f}; 1 is called the objective kernel of the stable expansion
S. As in the case of default logic, f provides a finite
representation of an infinite structure.



Finally, notice that, as in e.g. [Marek and
Truszczyniski, 1993], we have adopted the notion of con-
sistent autoepistemic logic, i.e. we do not allow the in-
consistent theory consisting of all modal formulas to be a
(possible) stable expansion. The results we present can
be easily extended to this case (corresponding to Moore’s
original proposal).

We finally briefly introduce the complexity classes
mentioned throughout the paper (we refer to [Johnson,
1990] for further details). All the classes we use reside in
the polynomial hierarchy. In particular, the complexity
class XL is the class of problems that are solved in poly-
nomial time by a nondeterministic Turing machine that
uses an NP-oracle (i.e., that solves in constant time any
problem in NP), and II} is the class of problems that
are complement of a problem in ¥5. The class ©} [Eiter
and Gottlob, 1997] (also known as A5[O(log n)]) is the
class of problems that are solved in polynomial time by
a deterministic Turing machine that makes a number of
calls to an NP-oracle which is logarithmic in the size of
the input. Hence, the class ©F is “mildly” harder than
the class NP, since a problem in ©% can be solved by
solving “few” (i.e. a logarithmic number of) instances of
problems in NP. It is generally assumed that the poly-
nomial hierarchy does not collapse, and that a problem
in the class ©} is computationally easier than a ¥5-hard
or IT5-hard problem.

3 Model checking in default logic

In this section we analyze the complexity of model check-
ing for propositional default logic. We start by proving
that such a problem belongs to the complexity class ©5.
To this aim, we define the algorithm DL-Check (reported
in Figure 1) for checking whether a propositional formula
f represents an extension of a default theory (D, W).
The algorithm first computes D’; the reduct of D with
respect to f, then computes a formula representing the
extension of (D', W), and finally checks whether such a
formula is equivalent to f.

In the algorithm, we make use of the well-known fact
that a justification-free default theory (D', W) has ex-
actly one extension. We denote as Ezt((D',W)) the
propositional formula representing such an extension,
which can be naively computed through a quadratic (in
the cardinality of D’) number of NP-calls, starting from
Ezt((D',W)) = W and conjoining to Ext({D’,W)) the
conclusions ; of each default rule d; = % in D’ such
that «; is logically implied by Ezt((D’, W)).

Correctness of the algorithm follows immediately from
Definition 1.

Lemma 3 Let (D,W) be a default theory, and let f €
L. Then, Cn(f) is an extension of (D,W) iff DL-
Check({D, W), f) returns true.

The computational analysis of the algorithm DL-
Check provides an upper bound for the model checking
problem in default logic.

Algorithm DL-Check({D, W), f)
Input: default theory (D, W), formula f € L;
Output: true if Cn(f) is an extension of (D, W),
false otherwise
begin
D' =0
foreachd:MEDdo
if f£-B; foreachi=1,...,n
then add < to D’;
compute Ext({D', W));
if | f= Eat({D',W))
then return true
else return false
end

Figure 1: Algorithm DL-Check.

Theorem 4 Let (D, W) be a default theory, and let f €
L. Then, the problem of establishing whether Cn(f) is
an extension of (D, W) is in ©%.

Proof sketch. First, we prove that it is possible to com-
pute the formula Ext({D’, W)) through a linear number
(in the cardinality of D’) of calls to an NP-oracle, by
using the following procedure:

Ext((D',W)) :=W;
for each v; € Con(D’) do
if for each partition (P, N) of Con(D’)
(vi € P) or
(there exists v; € Ns. t. (WA A cp7) E aj)
then Ezt((D',W)) := Ext((D',W)) A v

Then, based on the use of the above procedure for
computing Ezt((D’',W)), we show that the algorithm
DL-Check can be reduced to an NP-tree [Eiter and Got-
tlob, 1997], which immediately implies an upper bound
of ©% for the problem of model checking in propositional
default logic. O

We now turn our attention to establishing lower
bounds for model checking in default logic. We first
prove that such a problem is ©5-hard even if default
rules are normal.

Theorem 5 Let (D, W) be a normal default theory, and
let f € L. Then, the problem of establishing whether
Cn(f) is an extension of (D, W) is ©%-hard.

Proof sketch. We reduce the ©5-complete problem PAR-
ITY(SAT) [Eiter and Gottlob, 1997] to model check-
ing for a normal default theory. Informally, an in-
stance of PARITY(SAT) is a set of propositional for-
mulas 1, ..., @y, such that if ¢; is not satisfiable then,
for each j > i, ¢; is not satisfiable. The problem is to
establish if the number of satisfiable formulas is odd.
Given an instance of such a problem, in which we as-
sume n odd without loss of generality, we construct the
normal default theory (D, W), in which W = true and

v oo/
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where p’ is a propositional symbol not appearing in
P1y--5Pn-

We prove that there is an odd number of satisfiable
formulas in ¢1, ..., ¢, iff true is an extension of (D, W).
Informally, this is due to the fact that the number of
satisfiable formulas is even if and only if either all for-
mulas are not satisfiable (i.e. ¢ is not satsfiable) or, for
some even %, it holds that ; is satisfiable and ;1 is not
satisfiable. Now, the rules in D are built in such a way
that, if this situation occurs, then there is a default rule
which is applied, thus forcing knowledge of p’ in the ex-
tension. Therefore, in this case true is not an extension
for (D, W). |

The above property, together with Theorem 4, imme-
diately implies that model checking is ©%-complete both
for general propositional default theories and for normal
default theories.

Then, with a proof similar to the previous one, it is
possible to show that model checking is ©5-hard also in
the case of prerequisite-free default theories.

Theorem 6 Let (D,W) be a prerequisite-free default
theory, and let f € L. Then, the problem of establishing
whether Cn(f) is an extension of (D, W) is ©5-hard.

Again, the above theorem and Theorem 4 prove that
model checking is ©5-complete for prerequisite-free de-
fault theories.

We now turn our attention to supernormal (i.e. both
normal and prerequisite-free) default theories, and prove
that in this case model checking is computationally easier
than for unrestricted default theories.

Theorem 7 Let (D, W) be a supernormal default the-
ory, and let f € L. The problem of establishing whether
Cn(f) is an extension of (D, W) is coNP-complete.

Proof sketch. As for membership in coNP, we reduce the
problem to a propositional validity problem. The key
property is the fact that, given

:ﬁl :ﬁn
D=<— ...
{ﬁl7 7571,}7

Cn(f) is an extension of (D, W) iff the following two
conditions hold:

1. for each 14, either f = (; or f |E —0;;
2. WA /\f':ﬁi B3; is equivalent to f.

We prove that it is possible to encode each of the
two above conditions in terms of a propositional valid-
ity problem, through two polynomial transformation of
the input. We thus obtain two propositional formulas
T1({(D, W), f) and 7o((D, W), f) such that condition 1.
holds iff 71 ({D, W), f) is valid and condition 2. holds iff
71((D,W), f) is valid. Then, by simply using two dis-
tinct alphabets for the two formulas, it is possible to
reduce the two problems to a single validity problem.
Hardness with respect to coNP follows from the fact
that propositional validity of a formula f can be reduced
to the problem of establishing whether f is an extension
of ((,true). d

Algorithm AEL-Check(Z, f)
Input: formula 3 € Lk, formula f € L;
Output: true if M = {I: I = f} is AEL model for %,
false otherwise
begin
while ¥ ¢ £ do begin
choose a subformula K¢ from ¥
such that ¢ € L;
if f = o
then ¥ := X(Kp — true)
else ¥ := X (Kp — false)
end;
if ef=%
then return true
else return false
end

Figure 2: Algorithm AEL-Check.

As for disjunctive default logic, the easiest way to
characterize model checking is to exploit known corre-
spondences between such a formalism and nonmonotonic
modal logic MKNF [Lifschitz, 1991]. In particular, the
existence of a polynomial embedding of disjunctive de-
fault theories in the flat fragment of the logic MKNF
makes it possible to show that model checking is in
©%. Moreover, ©}-hardness follows from Theorem 5 and
from the fact that disjunctive default logic is a conserva-
tive generalization of default logic. Hence, the following
property holds.

Theorem 8 Let (D, W) be a disjunctive default theory,
and let f € L. Then, the problem of establishing whether
Cn(f) is an extension of (D, W) is ©-complete.

The above property and Theorem 6 also imply ©5-
completeness of model checking for prerequisite-free dis-
junctive default theories.

In Table 1 we summarize the complexity results de-
scribed in this section. Each column of the table corre-
sponds to a different condition on the conclusion part of
default rules.

The results reported in the table, together with known
complexity characterizations of the inference problem in
default logic (for a survey see [Cadoli and Schaerf, 1993]),
show that model checking is easier than logical inference
in all the cases considered. In fact, logical inference is
already II5-hard (skeptical reasoning) or ¥5-hard (cred-
ulous reasoning) for supernormal default theories, while
model checking is always in ©F.

4 Model checking in nonmonotonic
modal logics

In this section we analyze model checking for non-
monotonic modal logics. Due to lack of space, in the
following we only sketch our complexity analysis, and
refer to [Marek and Truszczyriski, 1993; Lifschitz, 1991]
for a formal definition of MDD logics and MKNF: all the
results obtained are summarized in Table 2.



General

Normal

Disjunctive

General

OF-complete

OF-complete

OF-complete

Prerequisite-free

OF-complete

coNP-complete

OF-complete

Table 1: Complexity of model checking for default logic

AEL S4F\ipD SWhyipp Sha MKNF
General | ©F-complete | ©F-complete | ©F-complete | ¥0-complete | X5-complete
Flat ©F-complete | ©F-complete | ©f-complete | ©F-complete | ©F-complete

Table 2: Complexity of model checking for nonmonotonic modal logics

We start by examining the case of autoepistemic logic.
In Figure 2 we report the algorithm AEL-Check for
checking whether a propositional formula represents an
autoepistemic model of a modal formula. In the algo-
rithm, (K¢ — true) represents the formula obtained
from ¥ by replacing each occurrence of the subformula
K with true, while (K¢ — false) represents the for-
mula obtained from ¥ by replacing each occurrence of
the subformula K¢ with false.

Informally, the algorithm iteratively computes the
value of all modal subformulas (without nested occur-
rences of the modality) in ¥ according to f, until all
modal subformulas have been replaced by a truth value.
The resulting propositional formula is compared with f,
and the algorithm returns true if and only if the two
formulas are equivalent.

Correctness of the algorithm can be established by
means of previous results on reasoning in autoepistemic
logic [Marek and Truszczynski, 1993].

Lemma 9 Let¥ € L, f € L. Then, M ={I:1 = f}
is an AEL model of ¥ iff AEL-Check(%, f) returns true.

The above property allows us to prove ©5-
completeness of model checking in AEL.

Theorem 10 LetY € Lk, f € L. Then, the problem of
establishing whether M = {I : I |= f} is an AEL model
of 3 is ©F-complete.

Proof sketch. Membership in ©% follows from Lemma 9
and from the fact that the algorithm AEL-Check can be
polynomially reduced to an NP-tree. Hardness follows
from the fact that it is possible to reduce an instance
of the problem of model checking for prerequisite-free
default theories to model checking in AEL: the reduction
is based on the correspondence between the prerequisite-
free default 75 and the modal formula -K—§ D v in

autoepistemic logic. O

It can actually be shown that model checking for AEL
is ©%-hard (and thus, from the above theorem, ©5-
complete) even under the restriction that the formula
¥ is flat, i.e. each propositional symbol in ¥ lies within
the scope of exactly one modality. The proof of this
property can be obtained through a reduction from PAR-
ITY(SAT).

A similar analysis allows for establishing the same
complexity characterization for the problem of model
checking in two well-known nonmonotonic modal for-
malisms of the McDermott and Doyle’s (MDD) family,
i.e. the nonmonotonic logics based on the modal systems
SW5 and S4F [Marek and Truszczyniski, 1993].

Theorem 11 Let X € Lk, f € L. Then, the problem
of establishing whether M = {I : I = f} is an S4Fupp
model (or an SW5ypp model) of ¥ is ©F-complete.

As in the case of autoepistemic logic, the above prop-
erty also holds if we restrict to flat formulas.

For modal logics based on the minimal knowledge par-
adigm, we prove that model checking is harder than for
the above presented nonmonotonic logics. In particular,
it is a X5-complete problem. However, logical inference
in such logics of minimal knowledge is harder than in
default logic and autoepistemic logic, since it is a IT§-
complete problem both in MKNF and in S5 [Donini et
al., 1997; Rosati, 1997]. Hence, also in such formalisms
model checking is easier than logical inference. We first
analyze modal logic S5¢, i.e. the logic of minimal knowl-
edge introduced in [Halpern and Moses, 1985].

Theorem 12 Let € Lk, f € L. Then, the problem of
establishing whether M = {I : I = f} is an Sbg model
of ¥ is X5-complete.

Interestingly, if we impose that the modal formula X
is flat, then model checking in S5 becomes easier.

Theorem 13 LetX € L f € L. Then, the problem of
establishing whether M = {I : I = f} is an S5 model
of ¥ is ©F-complete.

The same computational characterization of model
checking can be shown for the logic MKNF i.e. the logic
of minimal knowledge and negation as failure introduced
in [Lifschitz, 1991], which extends S5 with a second
modal operator interpreted in terms of negation as fail-
ure.

Comparing the above results with known computa-
tional characterizations of the inference problem in non-
monotonic modal logics, it turns out that model checking
is easier than logical inference in all the cases consid-
ered. Moreover, we remark that logical inference in the
flat fragment of S5 and MKNF is IT5-complete. This



implies that, for each of the cases reported in the table,
if logical inference is II5-complete, then model checking
is ©%-complete, and if logical inference is II5-complete,
then model checking is ¥5-complete.

5 Related work

Model checking has been recently studied in some non-
monotonic settings (see e.g. [Cadoli, 1992; Liberatore
and Schaerf, 1998]). In particular, the work reported
in [Liberatore and Schaerf, 1998] is the closest to the
approach presented in this paper, since it deals with the
model checking problem for propositional default logic.

The notion of model checking introduced in [Liber-
atore and Schaerf, 1998] for default logic corresponds
to check whether a propositional interpretation I “sat-
isfies” a given default theory (D, W), in the sense that
I satisfies at least one extension of (D, W). Such a no-
tion of model checking relies on the usage of standard
propositional interpretations, thus avoiding the need to
resort to the representation of an interpretation struc-
ture in terms of a logical formula. On the other hand,
a propositional interpretation cannot be considered as
a “model” of a default theory: in fact, model-theoretic
characterizations of default logic are based on possible-
world structures analogous to universal S5 models intro-
duced for autoepistemic logic. Hence, a propositional
interpretation is a component of an interpretation struc-
ture of a default theory. Instead, our formulation of the
model checking problem is based on the idea of checking
a whole interpretation structure of this form against a
nonmonotonic theory: in this sense, our notion is a more
natural extension to nonmonotonic logics of the “classi-
cal” notion of model checking.

From the computational viewpoint, it turns out that
Liberatore and Schaerf’s notion of model checking is
harder than the one presented in this paper. In fact,
comparing Table 1 with the results reported in [Liber-
atore and Schaerf, 1998], it can be seen that our for-
mulation of model checking is computationally easier in
almost all the cases examined, with the exception of nor-
mal and supernormal default theories, for which the com-
plexity of the two versions of model checking is the same.

6 Conclusions

In this paper we have studied the complexity of model
checking in several nonmonotonic logics. Our results
show that, as in classical logic, model checking is com-
putationally easier than logical inference in many non-
monotonic formalisms. We have also provided algo-
rithms for model checking in default logic and nonmo-
tonic modal logics.

Our results provide a positive answer to the question
whether it is convenient to use “model-based” represen-
tations of knowledge in the case of nonmonotonic log-
ics. It therefore appears possible to use the analysis pre-
sented in this paper as the basis for the development of
model checking techniques in knowledge representation
systems with nonmonotonic abilities.
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