Finite model reasoning inDL-Lite

Riccardo Rosati

Dipartimento di Informatica e Sistemistica
Sapienza Universitdi Roma
Via Ariosto 25, 00185 Roma, Italy
rosati@dis.uniromal.it

Abstract. The semantics of OWL-DL and its subclasses are based on the clas-
sical semantics of first-order logic, in which the interpretation domain may be
an infinite set. This constitutes a serious expressive limitation for such ontology
languages, since, in many real application scenarios for the Semantic Web, the
domain of interest is actually finite, although the exact cardinality of the domain
is unknown. Hence, in these cases the formal semantics of the OWL-DL ontology
does not coincide with its intended semantics. In this paper we start filling this
gap, by considering the subclasses of OWL-DL which correspond to the logics of
the DL-Lite family, and studying reasoning over finite models in such logics. In
particular, we mainly consider two reasoning problems: deciding satisfiability of
an ontology, and answering unions of conjunctive queries (UCQs) over an ontol-
ogy. We first consider the description lodit -Liter and show that, for the two
above mentioned problems, finite model reasoning coincides with classical rea-
soning, i.e., reasoning over arbitrary, unrestricted models. Then, we analyze the
description logicDL-Liter andDL-Lite4. Differently from DL-Liteg, in such
logics finite model reasoning does not coincide with classical reasoning. To solve
satisfiability and query answering over finite models in these logics, we define
techniques which reduce polynomially both the above reasoning problems over
finite models to the corresponding problem over arbitrary models. Thus, for all
the DL-Lite languages considered, the good computational properties of satisfi-
ability and query answering under the classical semantics also hold under the
finite model semantics. Moreover, we have effectively and easily implemented
the above techniques, extending fbk-Lite reasoner QuOnto with support for
finite model reasoning.

1 Introduction

The semantics of OWL-DL [3] and its fragments [8] are based on the classical semantics
of first-order logic, in which the interpretation domain may be either a finite or an
infinite set. This constitutes a serious expressive limitation for these ontology languages,
since in many real application scenarios for the Semantic Web, the domain of interest
is actually finite, although the exact cardinality of the domain is unknown. Hence, in
these cases the formal semantics of the OWL-DL ontology does not coincide with its
intended semantics.

We illustrate the above problem through two simple examples (in the following ex-
amples, the ontologies are expressed usindthe iter language, which corresponds
to a fragment of OWL-DLDL-Liter is formally introduced in Section 2).



Example 1.Let O be the following ontology about employees:

Employee_ JisHelpedBy 1)
JdisHelpedBy T Employee (2)
disHelpedBy C HighSalary 3)
(funct isHelpedBYy) 4)
EmployeéPaul) (5)

which formalizes the following knowledge about the concdprigployeeHighSalary
and the roldsHelpedBy

— every employee has some colleague who is committed to help her/him to perform
some special task (assertion (1));

— those who are committed to help employees are also employees (assertion (2)) and
have a high salary (assertion (3));

— an employee can commit to help at most one of her/his colleagues (assertion (4));

— Paul is an employee (assertion (5)).

Now, on the one hand, it can be shown that the ontolégygoes not entail (under
the standard OWL-DL semantics)ighSalary{Paul): indeed, consider the following
interpretatior over the countably infinite domaifd, . .., d,, ...}

— Pauft = d,;

— d; € Employeé for eachi > 0;

— d; € HighSalary for eachi > 1;

— (d;,d;11) € isHelpedBy for eachi > 0.

It is immediate to verify thaf satisfies the ontologg) and thatHighSalaryPaul) is
not satisfied irf.

On the other handevery finite model fo© satisfies HighSalaiiPaul). In fact,
if the domain is finite, then the chain of employees induced by the ontology on the
binary relationisHelpedBymust be finite, so the only possible way to close such a
chain is to “come back” to the initial employee, i.e., Paul, who is the only employee
who does not help someone yet. Consequently, in every finite modél,fBaul helps
some colleague, hence he has a high salary.

Now, for the above ontologg it seems very natural to assume that the domain of
interest is always finite (although not exactly known), i.e., it is unreasonable to assume
as possible the existence of an infinite number of employees. Hence, in this case we
would like to conclude from the above ontology that Paul has a high salary. However,
all current OWL reasoners will not derive such a conclusion. n

Example 2.Let O be the following ontology about peer networks:

EUpeerC 3hasNAmirror (6)
JhasNAmirror C NApeer (7
NApeerC JhasEUmirror (8)



JhasEUmirror C EUpeer (9)

JhasEUmirror- C AlwaysOnline (20)
(funct hasNAmirror ) (11)

(funct hasEUmirror) (12)
EUpee(dis.uniromal.it ) (13)

which formalizes the following knowledge about the conceltdpeer NApeer
AlwaysOnlineand the rolesiasNAmirror hasEUmirror.

every European peer has a mirror who is a North American peer (assertions (6)
and (7));

every North American peer has a mirror who is a European peer (assertions (8)
and (9));

peers who are mirrors of North American peers are always on-line (assertion (10));
a peer can be the mirror of at most one North American peer (assertion (11)) and
of at most one European peer (assertion (12));

— dis.uniromal.it is a European peer (assertion (13)).

In a way similar to the previous example, it can be shownthdbes not entail (under

the standard OWL-DL semanticéjwaysOnlinédis.uniromal.it ), while every
finite model forO satisfiesAlwaysOnlinédis.uniromal.it ). Similarly to the pre-
vious example, also for the above ontolo§yit seems very natural to assume that
the domain of interest is always finite. Hence, we would like to conclude that peer
dis.uniromal.it is always on-line, but all current OWL reasoners will not derive
such a conclusion. n

The above examples highlight the fact that OWL-DL ontologies (under the classical
first-order semantics) lack the ability to properly handle finite domains of interest. In
this respect, it is also important to point out that database applications are always based
on a finite domain assumption: such an assumption should be taken into account in
ontology-based access to database information sources, which is going to be one of the
prominent applications of the Semantic Web technology [12].

Finite model reasoning has actually been studied in past research in Description
Logics (DLs) [2], which constitute the logical basis of OWL-DL. In particular, besides
previous studies summarized in [2], recent research has mainly focuséd®©@7Z, a
large fragment of OWL-DL [4, 10]: for such a logic, an EXPTIME-completeness result
for finite model reasoning has been established [10]. However, such results on finite
model reasoning in DLs only consider “classical” DL reasoning tasks (concept sub-
sumption, knowledge base satisfiability) and do not tgkery answeringnto account.
Moreover, none of the currently available (OWL)DL reasoners supports finite model
reasoning.

Thus, with respect to finite model reasoning in OWL-DL ontologies, we are still
missing: (i) a thorough computational analysis, in particular for tractable fragments of
OWL-DL [8]; (ii) an analysis of query answering over finite models; (iii) the imple-
mentation of ontology-management systems supporting finite model reasoning.



In this paper we start filling this gap, by considering the subclasses of OWL-DL
which correspond to the logics of th&l-Lite family of Description Logics [6], and
study reasoning over finite models in such logics. In particular, we consider three rea-
soning problems: deciding entailment of intensional assertions (TBox entailment), de-
ciding satisfiability of the ontology, and answering queries (specifically, unions of con-
junctive queries) over an ontology.

Our contributions can be summarized as follows:

1. We first consider the description logil_-Lite and show that, for all the above
mentioned problems, finite model reasoning coincides with classical reasoning, i.e.,
reasoning over arbitrary, unrestricted models.

2. Then, we analyze the description logigk-Liter andDL-Lite,. Differently from
DL-Liteg, in such logics finite model reasoning does not coincide with classical
reasoning. To solve TBox entailment, satisfiability and query answering over fi-
nite models in these logics, we define techniques which reduce polynomially all
the above reasoning problems over finite models in such logics to the correspond-
ing problem over arbitrary models. This allows us to show that, for alDthd.ite
languages considered, the good computational properties of TBox entailment, sat-
isfiability and query answering under the classical semantics also hold under the
finite semantics.

3. Finally, we have effectively and easily implemented the above techniques to pro-
vide theDL-Lite reasoner QuOnto with support for finite model reasoning. To the
best of our knowledge, such an extension of QuOnto constitutes the first ontology
management system providing an automated support to finite model reasoning.

2 The description logicsDL-Lite  and DL-Lite

2.1 Syntax

We start from three mutually disjoint alphabets: an alphabet of concept names, an al-
phabet of role names, and an alphabet of constant (or individual) names. Wasiall
conceptan expression of the for®® ::= A | 3P | 3P, whereA is a concept name
andP is a role name, and we cdlhsic rolean expression of the forR ::= P | P,
whereP is a role name.

A DL-Litep TBox assertion is an expression of one of the following forms:

— By C B, (concept inclusion assertion) whelBe, B, are basic concepts;

— Ry C Ry (role inclusion assertion) whet@,, R, are basic roles;

— By C =B, (concept disjointness assertion) whétg B, are basic concepts;
— Ry C =Ry (role disjointness assertion) whele, R, are basic roles;

A DL-Liter TBox assertion is an expression of one of the following forms:

— By C B, (concept inclusion assertion) whelBe, B, are basic concepts;
— B; C =B, (concept disjointness assertion) whétg B, are basic concepts;
— (funct R) (functionality assertion) wherg is a basic role.



A DL-Liter TBox is a set oDL-Liter TBox assertions, while BL-Liter TBox is
a set ofDL-Liter TBox assertions.

A membership assertiois a ground atom, i.e., an expression of the fofrfu),
P(a,b) whereA is a concept name? is a role name, and, b are constant names.

An ABox is a set of membership assertions.

A DL-Liteg knowledge bas€B) is a pairK = (7, .A) whereT is aDL-Liteg
TBox and.A is an ABox. Analogously, ®L-Liter KB is a pairk = (7, A) whereT
is aDL-Liter TBox and.A is an ABox.

We call DL-Lite, TBox aDL-Liter TBox without disjointness assertions. Analo-
gously, We calDL-Lite;; TBox aDL-Liter TBox without disjointness assertions.

We now introduce queries. Anion of conjunctive query (UCQ3 an expression of
the form

{x1,...,2, | conjy V...V conj,}

wheren > 0, m > 1, and eaclctonj; is an expression of the fortfBy, ..., y;.a1 A

.. Aayp), wherej > 0, h > 1, eacha; is an atom, i.e., an expression of the fort(t)
or P(t,t') where A is a concept name? is a role name and, ¢’ are either constants
or variables from{z1,...,zn, y1,...,y;}. Whenn = 0 (i.e., the above expression is a
first-order sentence) the UCQ is calleBaoleanUCQ.

2.2 Semantics

The semantics of a DL is given in terms of interpretations, wher@nsapretation
T = (AT, 1) consists of a non-empipterpretation domainAZ and aninterpretation
function-Z that assigns to each concepta subsetC? of A%, and to each rolé? a
binary relationk? over AZ. In particular, we have:

AT C AT
PT C AT x AT
P7)* ={(02,01) | (01,02) € P*}
AR)T = {o| 30'.(0,0') € R}
~B)T = AI\B
R)T = AT x AT\ RY

N

An interpretatior? = (A%, .T) is calledfinite if AZ is a finite set.

An interpretatiorZ is amodelof B C C', whereC' is either a basic concept or the
negation of a basic concept, i C CZ. Similarly,Z is amodelof R C E, whereR is
a basic role and is either a basic role or the negation of a basic rol®4fC EZ.

To specify the semantics of membership assertions, we extend the interpretation
function to constants, by assigning to each consiamtlistinctobjecta” € AZ. Note
that this implies that we enforce thenique name assumptian constants [2]. An
interpretatiort is a model of a membership assertid(u), (resp.,P(a, b)) if a € AT
(resp.,(at,b?) € PT).

Given an (inclusion, or membership) assertigmnd an interpretatiof, we denote
by T = ¢ the fact thatZ is a model ofp. Given a (finite) set of assertiods we denote
byZ | & the factthaf is a model of every assertiondn A model of aKBC = (7, A)



is an interpretatio such thafZ = 7 andZ = A. Afinite interpretation that is a model
of a KB K is calledfinite modelof .

The reasoning tasks we are interested in are UCQ entailment, KB satisfiability, and
TBox entailment. More precisely:

— A KB K entailsa Boolean UCQy, denoted byC = ¢, if all models ofC are also
models ofg (where an interpretatiof is a model ofy if Z satisfies the first-order
sentence according to the standard notion of satisfiability in first-order logic).
finitely entails a UCQy, denoted by =5, ¢, if all finite models ofC are also
models ofg;

— a KB is satisfiableif it has at least one model, andfigitely satisfiabldf it has at
least one finite model.

— aTBox7 entailsa TBox assertion, denoted by |= ¢, if all models of7 are also
models ofp, while 7 finitely entailsp, denoted by/™ |=5,, ¢, if all finite models of
7T are also models af.

Since in the following we will focus on UCQ entailment, from now on when we
speak about UCQs we always meéBooleanUCQs. We recall that answering arbitrary
(i.e., non-Boolean) UCQs can be easily reduced to UCQ entailment (for more details
see e.g. [9]).

3 Finite model reasoning inDL-Lite

In this section we show that, IDL-Liteg, finite model reasoning coincides with classi-
cal reasoning. We start by proving such propertydarLite,, KBs (i.e.,DL-Liter KBs
without disjointness assertions) and for UCQ entailment.

Lemma 1. Let7 be a DL-Lite,-TBox, and leyy be a UCQ. Then, for every ABox,
(T, A) g qiff (T, A) Eq.

Proof. The proof is a consequence of Theorem 4 of [11], sin€ld. itezr KB cor-
responds to a database with inclusion dependencies (interpreted under open-world as-
sumption). More precisely, givenBL-Liter KB K = (7,.4), we build a database
instance (i.e., a set of fact®) and a set of inclusion dependencikas follows:

— for every concept namé (respectively, role nam®&) occurring inkC, the database
schema contains a unary relatidn(respectively, a binary relatioR)

— for every concept inclusion i of the form A; C A, C contains the inclusion
dependencwy; [1] C A[1];

— for every concept inclusion iff of the form A C 3R (respectivelyA C 3R™), C
contains the inclusion dependendyl] C R[1] (respectivelyA[1] C R[2]);

— for every concept inclusion i of the form3R C A (respectivelydR~ C A),C
contains the inclusion dependengyl] C A[1] (respectivelyR[2] C A[1]);

— for every concept inclusion ifir of the form3R; T 3R, (respectivelyR,
AR5 ), C contains the inclusion dependenBy[1] C R,[1] (respectively,R;[1]
Ry[2]);

C
c



— for every concept inclusion ii” of the form3R; C 3R, (respectivelydR; C
3R5), C contains the inclusion dependenBy[2] C Ry[1] (respectively,R;[2] C
Ry [2]);

— for every role inclusion irZ” of the formR; T R, (respectively,R; C R;), C
contains the inclusion dependen&y[1,2] C Rs[1,2] (respectively,R;[1,2] C

— for every role inclusion il of the formR; T R, (respectively,R; T R;),C
contains the inclusion dependen&y[2,1] C R»[1,2] (respectively,R;[2,1] C
R>[2,1)).

Finally, for every membership assertion of the forAtu) (respectively,R(a, b)) in the
ABox A, the database instanZecontains the facti(a) (respectivelyR(a, b)).

We now recall the definition of [11] of semantics of the pd@lrD): we denote by
sen{C, D) the set of database instandg$ | B O D andB satisfie<}, where eact
is a (possibly infinite) set of facts. Moreover, we denotesbyy (C, D) the subset of
sen{C, D) where eaclB is afinite set of facts.

It is now immediate to verify that the set of models/6fis in one-to-one corre-
spondence wittsen{C, D): more precisely, every database instafcén seniC, D)
corresponds to a mod&lB3) of X whereZ(B) is the interpretation defined as follows:
for each concept namé@ and for each constant a € CZ8B) iff C(a) € B, and for
each role namé and pair of constant, b, (a,b) € R*(®) iff R(a,b) € B.

This in turn immediately implies that for every UCQ (7, A) = q iff ¢ is true
in all database instances &¢n{C, D), and(7, A) =g, ¢ iff ¢ is true in all database
instances o$eny (C, D). Since from Theorem 4 of [11]is true in all database instances
of sen{C, D) iff ¢ is true in all database instancesseir;(C, D), the thesis follows ]

We now extend the above result to arbitr@ly-Litep KBs (i.e., KBs whose TBox
may also contain disjointness assertions).

Given aDL-Litep TBox 7, let D(7) denote the set of disjointness assertions oc-
curringin7Z,andletZ7— =7 — D(7), i.e.,7~ denotes the TBox obtained froh by
eliminating all disjointness assertions.

Given a disjointness assertighwe denote by)(¢) the Boolean conjunctive query
defined as follows:

—if d) = A; C —A,, thenQ(¢) = E'(EAl(fL) AN AQ((E),
—if¢g=AC -3JRor¢p =3RLC A, thenQ(¢) = Jz,y.A(x) A R(z,y);
—if¢g=AC -IR  or¢ =3R™ C —A, thenQ(¢) = Iz, y.A(x) A R(y, z);
— if ¢ = 3Ry C —3Ry, thenQ(¢) = 3z, y, z.R1(z,y) A Ra(z, 2);
—if $ = 3Ry C -3R; or¢ = IR, T —3Ry, thenQ(¢) = 3z, y,z.R1(z,y) A
Ry(2,2);
— if ¢ = 3R] C —3R,, thenQ(¢) = Iz, y, 2.R1(y, ) A Ra(z, x).
Informally, Q(¢) is satisfied in an interpretatidhiff Z does not satisfy the disjointness
assertionp.
Furthermore, given a set of disjointness asserti@nsge definel) () as the follow-
ing UCQ:
Q@) =\/ Q)

peD



Lemma 2. Let 7 be a DL-Litez-TBox, and lety be a UCQ. Then, for every UCQ
¢.(T,A) E qift (T7,A) £ ¢V Q(D(T)) and(T, A) =pn ¢ iff (T, A) |=fin
qVQ(D(T)).

Proof. It is immediate to verify thatD(7") corresponds to a first-order sentente
which is equivalent to-Q(D(7)), therefore from the deduction theorem it follows
that (7, A4) Epn ¢ iff (T7,A4) Em gV Q(D(7)). Moreover, since7 ~ is a
DL-Lite, TBox, from Theorem 1 it follows that7 —, A) =g, ¢ V Q(D(T)) iff
(T~ A) = qVvQ(D(T)). -

As an immediate consequence of Lemma 2 and of Lemma 1, we obtain the follow-
ing property.

Theorem 1. Let7 be a DL-Litez-TBox, and ley be a UCQ. Then, for every ABoX,
(T,A) Epin ¢iff (T, A) = q.

Then, we turn our attention to KB satisfiability. It can easily be shown that the
technique for reducing KB unsatisfiability DIL-Lite to UCQ entailment (see Lemma
16 of [6]) is also correct when we restrict to finite models. This fact and Theorem 1
imply the following property.

Theorem 2. Let K be a DL-Litez KB. Then K is finitely satisfiable iffC is satisfiable.

Moreover, it can also be shown that the technique for reducing TBox entailment in
DL-Liteg to KB unsatisfiability (see Theorem 22 and Theorem 23 of [6]) is also correct
when we restrict to finite models. Consequently, the two previous theorems imply the
following property.

Theorem 3. Let7 be a DL-Litez-TBoX, and lets be a DL-Litez TBox assertion. Then,
T fepin 1 T = 6.

4 Finite model reasoning inDL-Lite ¢

In this section we study finite model reasoningDh-Liter. First, we remark that,
differently from the case dDL-Liteg, in DL-Liter UCQ entailment over finite models
differs from UCQ entailment over arbitrary models, as illustrated by both Example 1
and Example 2. So, since we cannot simply establish an equivalence between classical
reasoning and finite model reasoning as in the cagd efiter, we must look for new
reasoning methods to solve finite model reasoninglirLitey.

We start by considerin@L-Lite, KBs (i.e., DL-Liter KBs without disjointness
assertions) and define inference rules for TBox assertiobs.ihite}.

4.1 Finite TBox inference rules inDL-Lite -

In the following, R denotes a basic role expression (i.e., eitResr P~ whereP is a
role name), whileR~ denotes the inverse @t, i.e., if R = P (R is a role name), then
R~ = P~ ,whileif R= P, thenR™ = P.



Definition 1. Given a DL-Litg. TBox7, finClosure,(7) denotes the closure &f
with respect to the following inference rules:

1. (inclusion-rulg if B; C B, and By C B3 then concludd3;, C Bs;
2. (functionality-inclusion-cycle-rulgif there is an inclusion-functionality cycle, i.e.,
a sequence of TBox assertions of the form

(funct Ry), 3R2 T 3Ry, (funct Rg), IR3 C 3R, ...
..., (funct R), 3Ry C 3R,

(where eachR; is a basic role expression, i.e., eithBror P~), then conclude

(funct Ry), 3Ry T 3Ry, (funct Ry ), 3R, C 3Rs,...
.oy (funct R;), 3R, CT3IR,y

It is immediate to verify that the above inference rules are not sound with respect to
classical TBox entailment (i.e., entailment over unrestricted models). On the other hand,
we now prove that the above inference rules are sound with respect to TBox entailment
over finite models.

Lemma 3. Let 7 be a DL-Litg, TBox and letp be a DL-Litg, TBox assertion. If
finClosure (T ) |= ¢ thenT =g, ¢.

Proof. The proof is a consequence of the axiomatization for unary inclusion dependen-
cies and functional dependencies presented in [7]. |

We call a TBoxf-closedif it is closed with respect to the two inference rules above.

4.2 Query answering over finite models irDL-Lite -

We now turn our attention to query answering over finite modeBlirLite,. KBs. No-

tice that Lemma 3 does not imply that query answering over finite models can be solved
by simply augmenting the TBox with the new assertions implied by Definition 1. How-
ever, we now show that this strategy is actually complete, i.e., we can answer (unions
of) conjunctive queries over finite models oba-Lite,, KB K = (7, .A) by first gen-
erating the augmented TBA&X obtained fron7 by adding the new assertions implied

by Definition 1, and then computing the certain answers to queries over tHg KBl)
according to the unrestricted semantics.

Theorem 4. LetT be a DL-Litg;-TBox, and let; be a UCQ. Then, for every ABok,
(T, A) =pn qiff (finClosure n(T), A) = q.

Proof (sketch). The proof is rather involved and is based on the notioohafseof a
DL-Lite KB [6]. More precisely, we modify the notion of (generally infinite) chase of
aDL-Liter KB, denoted bychase(K) and presented in [6], thus defining the notion of
finite chase of degrek of K, denoted byfinChase;, (K).

Informally, chase(K) is an ABox built starting from the initial ABox4 and apply-
ing a chase expansion rule that adds new membership assertions to the ABox until all



inclusions in7 are satisfied. In this expansion process new constants are introduced
in the ABox, and in the presence of cyclic concept inclusions this process may pro-
duce an infinite ABox. The important semantic properties/afse(X) are the follow-

ing: (i) chase(K) is isomorphic to an interpretatiah(chase(K)) which is a model

of K; (i) UCQ entailment ovelC can be solved by simply evaluating the query over
Z(chase(K)).

We modify the above chase procedure and define a chase procedure, called
ﬁnChasef (K) (parameterized with respect to a positive integerthat always termi-
nates, thus returning a finite ABox. Then, we prove iaChase; (K) only partially
preserves the above semantic properties of the chase with respect to finite model se-
mantics. More precisely, we prove that:

(A) finChase;, (K) is isomorphic to an interpretatiofi(finChasej, (K)) which is a
model of IC, under the assumption that the TB®of K is f-closed

(B) for every positive integek, entailment of a UCQ@f length less or equal té (i.e.,
all of whose conjunctions have a number of atoms less or eqéakian be decided
by simply evaluating the query ové finChaser, (K)).

With the notion offinChases (K) in place, we can prove the theorem as follows.
First, let = (7, A) andK' = (finClosure(T ), A). Soundness is trivial: i =g,
¢, thenK'’ =4, ¢, and since the set of finite models/6f is a subset of the set of models
of K, it follows thatK’ = ¢. To prove completeness, assume tat~ ¢ and letk be
the length of;. Now, by property (A) aboveZ (finChase;, (K')) is a finite model of’,
and by Lemma 37 (finChasei. (K')) is a model of<C. Finally, sincek’ (= ¢, from the
above property (B) it follows thaf(ﬁnChasef(IC’)) ¥ g, which in turn implies that

K l#ﬁn q. O

4.3 Query answering over finite models irDL-Lite

It is now immediate to extend the above theorenbtoliter, since it is possible to
encode disjointness assertions in the UCQ), as illustrated already in Section 3. Given a
DL-Liter TBox 7, let D(7) denote the set of disjointness assertions occurrirg,in
andlet7— =7 — D(7), i.e.,, 7~ denotes thé®L-Lite, TBox obtained front7” by
eliminating all disjointness assertions.

Theorem 5. Let7 be a DL-Lite=-TBoX, and ley be a UCQ. Then, for every ABoX,
(T, A) Efin qiff (finClosure (T ™), A) = qV Q(D(T)).
4.4 Finite KB satisfiability and TBox entailment

We now focus on KB satisfiability. Again, we start by showing that, differently from the
case ofDL-Liteg, in DL-Liter finite KB satisfiability does not coincide with classical
KB saisfiability. In particular, there af@L-Liter KBs that only admit infinite models.

Example 3.Let 7 be the followingDL-Liter TBox:

AC3R AC-3R™ JR™ C IR (funct R™)



and letA be the ABoxA = {A(a)}. Itis easy to see that the KB = (7, A) is not
finitely satisfiable, whilefC is satisfiable (i.e., there are models #6rbut they are all
infinite). n

To compute finite KB satisfiability, it is possible to show that the technique for
reducing KB unsatisfiability irDL-Liter to UCQ entailment (see Lemma 16 of [6]) is
also correct when we restrict to finite models. This fact and Theorem 5 imply that we
can reduce finite KB satisfiability iDL-Liter to standard KB satisfiability. Formally,
the following property holds:

Theorem 6. Let X be a DL-Lite- KB. Then, K is finitely satisfiable iff(7 U
finClosure (T ), A) is satisfiable.

It also turns out that finite TBox entailmentlL-Liter can be reduced to finite KB
unsatisfiability. In fact, it is easy to show that Theorem 22 and Theorem 24 of [6] hold
also when restricting to finite models, while Theorem 25 of [6] holds for finite models
under the assumption that the TB®Xs f-closed. Consequently, the following property
holds.

Theorem 7. Let7 be a DL-Lite--TBox, and let) be a DL-Lite- TBox assertion. Then,
T Efin ¢ iff T U finClosure (T ) = ¢.

5 Complexity results

We now study the computational complexity of finite model reasonimgLifLiteg and
DL-Liteg.

First, in the case dDL-Liteg, the theorems shown in Section 3 immediately imply
that, for the reasoning tasks considered in this paper, the complexity of finite model rea-
soning and of classical reasoning coincide. Hence, the complexity resuld fbite p
reported in [6] also holds when restricting to finite models.

We now analyze complexity in the casef-Liter. First, we show the following

property.

Lemma 4. Given a DL-Litg;, TBox7 and a DL-Litg; TBox assertion, 7 =g, ¢
can be decided in polynomial time with respect to the siZE of{¢}.

Moreover, by definitionfinClosure -(7') is only composed oDL-Lite,. TBox as-
sertions using concept and role names occurring jrand the number of possible
DL-Lite,. TBox assertions using such names is quadratic with respect to the size of
7. Thus, from the above lemma, it follows thét Closure (7)) can be computed in
polynomial time with respect to the size @t Furthermore, it is immediate to see that
Q(D(T)) can also be computed in polynomial time with respect to the siZe of

Therefore, from the theorems shown in Section 4, it follows that the complexity
results forDL-Liter reported in [6] also holds when restricting to finite models.

The above results are formally summarized as follows:



Theorem 8. Deciding UCQ entailment over finite models in DL-Ljtand DL-Liter
is:

— in LOGSPACE with respect to the size of the ABox;
— in PTIME with respect to the size of the KB;
— NP-complete with respect to the size of the KB and the query.

Theorem 9. Let K be either a DL-Litg; or a DL-Liter KB. Deciding whethefkC is
finitely satisfiable is:

— in LOGSPACE with respect to the size of the ABox;
— in PTIME with respect to the size of the TBox;
— in PTIME with respect to the size of the KB.

Theorem 10. Finite entailment of an assertiahwith respect to a TBo¥ in DL-Liteg
and DL-Liter can be decided in PTIME with respect to the siz& af {¢}.

6 Extension toDL-Lite 4

In this section we extend the previous results for finite model reasoning to the case
of DL-Lite 4. Due to space limitations, in the present version of the paper we are not
able to introduc®L-Lite, in detail (see [5]) and just sketch the way in which we have
extended the previous results to the casBPlofLite 4 KBs.

Informally, aDL-Lite, TBox is a TBox which admits all the TBox assertions al-
lowed in bothDL-Liter andDL-Liteg with the following limitation: a functional role
cannot be specialized, i.e., if the assert{ganct R) or (funct R™) is in the TBox,
then there is no role inclusion assertion of the faRfm_ R or of the formR’' C R~ in
the TBox. MoreoverDL-Lite4 allows for defining concepttributes i.e, binary rela-
tions whose ranges, called value-domains, are concepts interpreted over a domain that
is disjoint from the interpretation domain of ordinary concept and roleBLALite 4
TBox allows for value-domain inclusion/disjointness assertions and for attribute inclu-
sion/disjointness assertions. We refer the reader to [5] for more details.

First, we denote bpL-Lite; the version oDL-Lite,4 that does not allow for (con-
cept or role or value-domain or attribute) disjointness assertions.

Given aDL-Lite, TBox 7, we denote byinClosure ,(7) the closure ofl” with
respect to the following inference rules:

1. (binary-inclusion-rul¢if Ry C R, is either arole inclusion assertion or an attribute
inclusion assertion, then conclud®; C 3R, and3R; C JR;;

2. (transitivity-rule) if By © B, andB; C B3 then concludeB3; C Bs;

3. (functionality-inclusion-cycle-ruleif there is an inclusion-functionality cycle, i.e.,
a sequence of TBox assertions of the form

(funct Ry), 3R2 C3R;, (funct Rg), IR3 C 3R, ...
ooy (funct Ry), 3Ry C 3R,

(where eaclR; is a basic role expression, i.e., eithéior P~), then conclude

(funct R7), 3R] E 3Ry, (funct Ry), IR5; C IRs,
.ovy (funct R;), 3R, T 3R,



Observe that, with respect jinClosure », to computefinClosure , we basically
just add inference rules for deriving unary (i.e., concept and value-domain) inclusions
from binary (i.e., role and attribute) inclusions.

We are now able to prove that the reduction of query answering over finite models
to query answering over unrestricted models proved in Section Blferiter can be
extended tdL-Litey4.

Theorem 11. Let 7 be a DL-Lite;-TBox, and lety be a UCQ. Then, for every ABox
AT, A) Efin qiff (finClosure ,(T7), A) | ¢V Q(D(T)).

Proof. First, consider eDL-Lite; TBox 7. Let U(7) denote the set of unary (i.e.,
concept and value-domain) inclusions and functionality assertiofis in

We first modify the procedure for computi[ﬁfnghasekF, illustrated in the proof of
Theorem 4, thus producing a new terminating chase procgﬁu%asef. Then, we
prove that: (A)finChase; (K) is isomorphic to an interpretatiaf{ fin Chasej (K)) that
is a model ofC; (B) for every positive integek, entailment of a UCQ of length less
or equal tok can be decided by simply evaluating the query dﬁ@ﬁnChase’,j(lC)).
From the above two properties, the thesis follows with a proof analogous to the proof
of Theorem 4.

Finally, let us consider the case wh&nis an arbitraryDL-Lite4 TBox, i.e., when
7T also contains disjointness assertions. In this case, the thesis is proved in the same way
as in the proof of Theorem 5. |

From the above theorem, and in the same way as in the cd3k-biter, we are
able to derive the following properties.

Theorem 12. Let K be a DL-Litey; KB. Then, K is finitely satisfiable iff(7 U
finClosure , (T ), A) is satisfiable.

Theorem 13. Let 7 be a DL-Lite4-TBox, and letp be a DL-Litey TBox assertion.
Then,T g, ¢ iff T U finClosure ,(T ) = ¢.

Finally, from the above results it follows that the computational properties expressed
by Theorem 8, Theorem 9, and Theorem 10 extend to the cd3k-bfte 4.

7 Implementation

In this section we show that the techniques presented in this paper allow for an efficient
and effective implementation of finite model reasoning serviceBlot ite ontologies.

We have implemented the above techniques in QuOnto [1]. QuOntBislate 4
reasoner whose main purpose is to deal with very large instances (i.e., ABoxes). To
this aim, in QuOnto the ABox is stored and managed by a relational database system
(RDBMS). The main reasoning services provided by QuOnto are the “extensional’
ones, i.e., KB satisfiability and query answering (it allows for posing UCQs over the
ontology).

Computation in QuOnto is divided into an off-line and an on-line phase. Off-line
processing concerns purely intensional tasks, i.e., upload of the TBox, classification of



concept and roles, etc. On-line processing concerns the tasks involving the ABox, i.e.,
KB satisfiability and query answering. In particular, query answering is divided into a
query rewriting phase, in which the query is reformulated in terms of an SQL query
(through a reasoning step which exploits the knowledge expressed by the TBox), and a
query evaluation phase, in which the generated SQL query is evaluated over the ABox
by the RDBMS, and the answers are presented to the user.

To provide support for finite model reasoning, we have extended QuOnto as follows:

— during off-line processing, the system compufesg’losure 4,(7), and the asser-
tions in finClosure ,(7) — 7T are stored in an auxiliary TBoX”;

— during on-line processing, at every service request (KB satisfiability or query an-
swering) the user may choose between the classical semantics and the finite model
semantics;

— if finite model semantics is selected, then the system executes its reasoning service
method (KB satisfiability or query answering) using the TBox 7, otherwise it
executes its method on the TB@x

Notice that the main additional computation requested is the computation of
finClosure ,(T'), which is only executed during off-line processing. Hence, finite
model reasoning does not imply any significant overhead during on-line processing.
Moreover, even the off-line overhead caused by the computatigin 6fosure 4 (7) is
usually not very significant, since such a computation is in the worst case quadratic in
the number of functional roles @f (which are usually only a small fraction of the total
number of roles ir"). This very nice computational behaviour has been confirmed by
our experiments. We have thus included these functionalities for finite model reasoning
in the next version of QuOnto, which is going to be publicly released in 2008.

8 Conclusions

Comparison with related work We remark thaDL-Liter andDL-Liter are fragments

of expressive Description Logics for which finite model reasoning has been studied in
the past [4, 2, 10]. In particular, decidability of finite KB satisfiability and of finite TBox
entailment for bottDL-Liter andDL-Liteg is a consequence of such previous results.
However, the complexity of such tasks in these two logics was not known, while the
PTIME upper bound for finite TBox entailmentDL-Litey. is implied by the results in

[7]. Furthermore, nothing was known about decidability and complexity of answering
conjunctive queries and unions of conjunctive queries over finite models in such logics.

Future work From the theoretical viewpoint, our aim is to extend the present computa-
tional analysis towards other species of OWL-DL. In particular, we are interested in the
tractable Description Logics which could become part of the standardization process of
OWL 1.1 [8]. From a both theoretical and practical viewpoint, we would like to explore
the idea of extending the ontology specification language with constructs that allow
the user to associate single subparts of the ontology with either finite or unrestricted
interpretation.
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