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Abstract. The semantics of OWL-DL and its subclasses are based on the clas-
sical semantics of first-order logic, in which the interpretation domain may be
an infinite set. This constitutes a serious expressive limitation for such ontology
languages, since, in many real application scenarios for the Semantic Web, the
domain of interest is actually finite, although the exact cardinality of the domain
is unknown. Hence, in these cases the formal semantics of the OWL-DL ontology
does not coincide with its intended semantics. In this paper we start filling this
gap, by considering the subclasses of OWL-DL which correspond to the logics of
theDL-Lite family, and studying reasoning over finite models in such logics. In
particular, we mainly consider two reasoning problems: deciding satisfiability of
an ontology, and answering unions of conjunctive queries (UCQs) over an ontol-
ogy. We first consider the description logicDL-LiteR and show that, for the two
above mentioned problems, finite model reasoning coincides with classical rea-
soning, i.e., reasoning over arbitrary, unrestricted models. Then, we analyze the
description logicsDL-LiteF andDL-LiteA. Differently from DL-LiteR, in such
logics finite model reasoning does not coincide with classical reasoning. To solve
satisfiability and query answering over finite models in these logics, we define
techniques which reduce polynomially both the above reasoning problems over
finite models to the corresponding problem over arbitrary models. Thus, for all
the DL-Lite languages considered, the good computational properties of satisfi-
ability and query answering under the classical semantics also hold under the
finite model semantics. Moreover, we have effectively and easily implemented
the above techniques, extending theDL-Lite reasoner QuOnto with support for
finite model reasoning.

1 Introduction

The semantics of OWL-DL [3] and its fragments [8] are based on the classical semantics
of first-order logic, in which the interpretation domain may be either a finite or an
infinite set. This constitutes a serious expressive limitation for these ontology languages,
since in many real application scenarios for the Semantic Web, the domain of interest
is actually finite, although the exact cardinality of the domain is unknown. Hence, in
these cases the formal semantics of the OWL-DL ontology does not coincide with its
intended semantics.

We illustrate the above problem through two simple examples (in the following ex-
amples, the ontologies are expressed using theDL-LiteF language, which corresponds
to a fragment of OWL-DL:DL-LiteF is formally introduced in Section 2).



Example 1.LetO be the following ontology about employees:

Employeev ∃isHelpedBy (1)

∃isHelpedBy− v Employee (2)

∃isHelpedBy− v HighSalary (3)

(funct isHelpedBy−) (4)

Employee(Paul) (5)

which formalizes the following knowledge about the conceptsEmployee, HighSalary
and the roleisHelpedBy:

– every employee has some colleague who is committed to help her/him to perform
some special task (assertion (1));

– those who are committed to help employees are also employees (assertion (2)) and
have a high salary (assertion (3));

– an employee can commit to help at most one of her/his colleagues (assertion (4));
– Paul is an employee (assertion (5)).

Now, on the one hand, it can be shown that the ontologyO does not entail (under
the standard OWL-DL semantics)HighSalary(Paul): indeed, consider the following
interpretationI over the countably infinite domain{d0, . . . , dn, . . .}:

– PaulI = d0;
– di ∈ EmployeeI for eachi ≥ 0;
– di ∈ HighSalaryI for eachi ≥ 1;
– 〈di, di+1〉 ∈ isHelpedByI for eachi ≥ 0.

It is immediate to verify thatI satisfies the ontologyO and thatHighSalary(Paul) is
not satisfied inI.

On the other hand,every finite model forO satisfies HighSalary(Paul). In fact,
if the domain is finite, then the chain of employees induced by the ontology on the
binary relationisHelpedBymust be finite, so the only possible way to close such a
chain is to “come back” to the initial employee, i.e., Paul, who is the only employee
who does not help someone yet. Consequently, in every finite model forO, Paul helps
some colleague, hence he has a high salary.

Now, for the above ontologyO it seems very natural to assume that the domain of
interest is always finite (although not exactly known), i.e., it is unreasonable to assume
as possible the existence of an infinite number of employees. Hence, in this case we
would like to conclude from the above ontology that Paul has a high salary. However,
all current OWL reasoners will not derive such a conclusion.

Example 2.LetO be the following ontology about peer networks:

EUpeerv ∃hasNAmirror (6)

∃hasNAmirror− v NApeer (7)

NApeerv ∃hasEUmirror (8)



∃hasEUmirror− v EUpeer (9)

∃hasEUmirror− v AlwaysOnline (10)

(funct hasNAmirror−) (11)

(funct hasEUmirror−) (12)

EUpeer(dis.uniroma1.it ) (13)

which formalizes the following knowledge about the conceptsEUpeer, NApeer,
AlwaysOnlineand the roleshasNAmirror, hasEUmirror:

– every European peer has a mirror who is a North American peer (assertions (6)
and (7));

– every North American peer has a mirror who is a European peer (assertions (8)
and (9));

– peers who are mirrors of North American peers are always on-line (assertion (10));
– a peer can be the mirror of at most one North American peer (assertion (11)) and

of at most one European peer (assertion (12));
– dis.uniroma1.it is a European peer (assertion (13)).

In a way similar to the previous example, it can be shown thatO does not entail (under
the standard OWL-DL semantics)AlwaysOnline(dis.uniroma1.it ), while every
finite model forO satisfiesAlwaysOnline(dis.uniroma1.it ). Similarly to the pre-
vious example, also for the above ontologyO it seems very natural to assume that
the domain of interest is always finite. Hence, we would like to conclude that peer
dis.uniroma1.it is always on-line, but all current OWL reasoners will not derive
such a conclusion.

The above examples highlight the fact that OWL-DL ontologies (under the classical
first-order semantics) lack the ability to properly handle finite domains of interest. In
this respect, it is also important to point out that database applications are always based
on a finite domain assumption: such an assumption should be taken into account in
ontology-based access to database information sources, which is going to be one of the
prominent applications of the Semantic Web technology [12].

Finite model reasoning has actually been studied in past research in Description
Logics (DLs) [2], which constitute the logical basis of OWL-DL. In particular, besides
previous studies summarized in [2], recent research has mainly focused onALCQI, a
large fragment of OWL-DL [4, 10]: for such a logic, an EXPTIME-completeness result
for finite model reasoning has been established [10]. However, such results on finite
model reasoning in DLs only consider “classical” DL reasoning tasks (concept sub-
sumption, knowledge base satisfiability) and do not takequery answeringinto account.
Moreover, none of the currently available (OWL)DL reasoners supports finite model
reasoning.

Thus, with respect to finite model reasoning in OWL-DL ontologies, we are still
missing: (i) a thorough computational analysis, in particular for tractable fragments of
OWL-DL [8]; (ii) an analysis of query answering over finite models; (iii) the imple-
mentation of ontology-management systems supporting finite model reasoning.



In this paper we start filling this gap, by considering the subclasses of OWL-DL
which correspond to the logics of theDL-Lite family of Description Logics [6], and
study reasoning over finite models in such logics. In particular, we consider three rea-
soning problems: deciding entailment of intensional assertions (TBox entailment), de-
ciding satisfiability of the ontology, and answering queries (specifically, unions of con-
junctive queries) over an ontology.

Our contributions can be summarized as follows:

1. We first consider the description logicDL-LiteR and show that, for all the above
mentioned problems, finite model reasoning coincides with classical reasoning, i.e.,
reasoning over arbitrary, unrestricted models.

2. Then, we analyze the description logicsDL-LiteF andDL-LiteA. Differently from
DL-LiteR, in such logics finite model reasoning does not coincide with classical
reasoning. To solve TBox entailment, satisfiability and query answering over fi-
nite models in these logics, we define techniques which reduce polynomially all
the above reasoning problems over finite models in such logics to the correspond-
ing problem over arbitrary models. This allows us to show that, for all theDL-Lite
languages considered, the good computational properties of TBox entailment, sat-
isfiability and query answering under the classical semantics also hold under the
finite semantics.

3. Finally, we have effectively and easily implemented the above techniques to pro-
vide theDL-Lite reasoner QuOnto with support for finite model reasoning. To the
best of our knowledge, such an extension of QuOnto constitutes the first ontology
management system providing an automated support to finite model reasoning.

2 The description logicsDL-LiteF and DL-LiteR

2.1 Syntax

We start from three mutually disjoint alphabets: an alphabet of concept names, an al-
phabet of role names, and an alphabet of constant (or individual) names. We callbasic
conceptan expression of the formB ::= A | ∃P | ∃P−, whereA is a concept name
andP is a role name, and we callbasic rolean expression of the formR ::= P | P−,
whereP is a role name.

A DL-LiteR TBox assertion is an expression of one of the following forms:

– B1 v B2 (concept inclusion assertion) whereB1, B2 are basic concepts;
– R1 v R2 (role inclusion assertion) whereR1, R2 are basic roles;
– B1 v ¬B2 (concept disjointness assertion) whereB1, B2 are basic concepts;
– R1 v ¬R2 (role disjointness assertion) whereR1, R2 are basic roles;

A DL-LiteF TBox assertion is an expression of one of the following forms:

– B1 v B2 (concept inclusion assertion) whereB1, B2 are basic concepts;
– B1 v ¬B2 (concept disjointness assertion) whereB1, B2 are basic concepts;
– (funct R) (functionality assertion) whereR is a basic role.



A DL-LiteR TBox is a set ofDL-LiteR TBox assertions, while aDL-LiteF TBox is
a set ofDL-LiteF TBox assertions.

A membership assertionis a ground atom, i.e., an expression of the formA(a),
P (a, b) whereA is a concept name,P is a role name, anda, b are constant names.

An ABox is a set of membership assertions.
A DL-LiteR knowledge base(KB) is a pairK = 〈T ,A〉 whereT is a DL-LiteR

TBox andA is an ABox. Analogously, aDL-LiteF KB is a pairK = 〈T ,A〉 whereT
is aDL-LiteF TBox andA is an ABox.

We callDL-Lite−F TBox aDL-LiteF TBox without disjointness assertions. Analo-
gously, We callDL-Lite−R TBox aDL-LiteR TBox without disjointness assertions.

We now introduce queries. Aunion of conjunctive query (UCQ)is an expression of
the form

{x1, . . . , xn | conj1 ∨ . . . ∨ conjm}
wheren ≥ 0, m ≥ 1, and eachconji is an expression of the form(∃y1, . . . , yj .a1 ∧
. . . ∧ ah), wherej ≥ 0, h ≥ 1, eachai is an atom, i.e., an expression of the formA(t)
or P (t, t′) whereA is a concept name,P is a role name andt, t′ are either constants
or variables from{x1, . . . , xn, y1, . . . , yj}. Whenn = 0 (i.e., the above expression is a
first-order sentence) the UCQ is called aBooleanUCQ.

2.2 Semantics

The semantics of a DL is given in terms of interpretations, where aninterpretation
I = (∆I , ·I) consists of a non-emptyinterpretation domain∆I and aninterpretation
function ·I that assigns to each conceptC a subsetCI of ∆I , and to each roleR a
binary relationRI over∆I . In particular, we have:

AI ⊆ ∆I

P I ⊆ ∆I ×∆I

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}
(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(¬B)I = ∆I \BI

(¬R)I = ∆I ×∆I \RI

An interpretationI = (∆I , ·I) is calledfinite if ∆I is a finite set.
An interpretationI is amodelof B v C, whereC is either a basic concept or the

negation of a basic concept, ifBI ⊆ CI . Similarly,I is amodelof R v E, whereR is
a basic role andE is either a basic role or the negation of a basic role, ifRI ⊆ EI .

To specify the semantics of membership assertions, we extend the interpretation
function to constants, by assigning to each constanta a distinctobjectaI ∈ ∆I . Note
that this implies that we enforce theunique name assumptionon constants [2]. An
interpretationI is a model of a membership assertionA(a), (resp.,P (a, b)) if aI ∈ AI

(resp.,(aI , bI) ∈ P I).
Given an (inclusion, or membership) assertionφ, and an interpretationI, we denote

by I |= φ the fact thatI is a model ofφ. Given a (finite) set of assertionsΦ, we denote
byI |= Φ the fact thatI is a model of every assertion inΦ. A model of a KBK = 〈T ,A〉



is an interpretationI such thatI |= T andI |= A. A finite interpretation that is a model
of a KBK is calledfinite modelof K.

The reasoning tasks we are interested in are UCQ entailment, KB satisfiability, and
TBox entailment. More precisely:

– A KB K entailsa Boolean UCQq, denoted byK |= q, if all models ofK are also
models ofq (where an interpretationI is a model ofq if I satisfies the first-order
sentenceq according to the standard notion of satisfiability in first-order logic).K
finitely entails a UCQq, denoted byK |=fin q, if all finite models ofK are also
models ofq;

– a KB is satisfiableif it has at least one model, and isfinitely satisfiableif it has at
least one finite model.

– a TBoxT entailsa TBox assertionφ, denoted byT |= φ, if all models ofT are also
models ofφ, whileT finitely entailsφ, denoted byT |=fin φ, if all finite models of
T are also models ofφ.

Since in the following we will focus on UCQ entailment, from now on when we
speak about UCQs we always meanBooleanUCQs. We recall that answering arbitrary
(i.e., non-Boolean) UCQs can be easily reduced to UCQ entailment (for more details
see e.g. [9]).

3 Finite model reasoning inDL-LiteR

In this section we show that, inDL-LiteR, finite model reasoning coincides with classi-
cal reasoning. We start by proving such property forDL-Lite−R KBs (i.e.,DL-LiteR KBs
without disjointness assertions) and for UCQ entailment.

Lemma 1. Let T be a DL-Lite−R-TBox, and letq be a UCQ. Then, for every ABoxA,
〈T ,A〉 |=fin q iff 〈T ,A〉 |= q.

Proof. The proof is a consequence of Theorem 4 of [11], since aDL-LiteR KB cor-
responds to a database with inclusion dependencies (interpreted under open-world as-
sumption). More precisely, given aDL-LiteR KB K = 〈T ,A〉, we build a database
instance (i.e., a set of facts)D and a set of inclusion dependenciesC as follows:

– for every concept nameA (respectively, role nameR) occurring inK, the database
schema contains a unary relationA (respectively, a binary relationR)

– for every concept inclusion inT of the formA1 v A2, C contains the inclusion
dependencyA1[1] ⊆ A2[1];

– for every concept inclusion inT of the formA v ∃R (respectively,A v ∃R−), C
contains the inclusion dependencyA[1] ⊆ R[1] (respectively,A[1] ⊆ R[2]);

– for every concept inclusion inT of the form∃R v A (respectively,∃R− v A), C
contains the inclusion dependencyR[1] ⊆ A[1] (respectively,R[2] ⊆ A[1]);

– for every concept inclusion inT of the form∃R1 v ∃R2 (respectively,∃R1 v
∃R−2 ), C contains the inclusion dependencyR1[1] ⊆ R2[1] (respectively,R1[1] ⊆
R2[2]);



– for every concept inclusion inT of the form∃R−1 v ∃R2 (respectively,∃R−1 v
∃R−2 ), C contains the inclusion dependencyR1[2] ⊆ R2[1] (respectively,R1[2] ⊆
R2[2]);

– for every role inclusion inT of the formR1 v R2 (respectively,R1 v R−2 ), C
contains the inclusion dependencyR1[1, 2] ⊆ R2[1, 2] (respectively,R1[1, 2] ⊆
R2[2, 1]);

– for every role inclusion inT of the formR−1 v R2 (respectively,R−1 v R−2 ), C
contains the inclusion dependencyR1[2, 1] ⊆ R2[1, 2] (respectively,R1[2, 1] ⊆
R2[2, 1]).

Finally, for every membership assertion of the formA(a) (respectively,R(a, b)) in the
ABox A, the database instanceD contains the factA(a) (respectively,R(a, b)).

We now recall the definition of [11] of semantics of the pair(C,D): we denote by
sem(C,D) the set of database instances{B | B ⊇ D andB satisfiesC}, where eachB
is a (possibly infinite) set of facts. Moreover, we denote bysemf (C,D) the subset of
sem(C,D) where eachB is afiniteset of facts.

It is now immediate to verify that the set of models ofK is in one-to-one corre-
spondence withsem(C,D): more precisely, every database instanceB in sem(C,D)
corresponds to a modelI(B) of K whereI(B) is the interpretation defined as follows:
for each concept nameC and for each constanta, a ∈ CI(B) iff C(a) ∈ B, and for
each role nameR and pair of constanta, b, 〈a, b〉 ∈ RI(B) iff R(a, b) ∈ B.

This in turn immediately implies that for every UCQq, 〈T ,A〉 |= q iff q is true
in all database instances ofsem(C,D), and〈T ,A〉 |=fin q iff q is true in all database
instances ofsemf (C,D). Since from Theorem 4 of [11]q is true in all database instances
of sem(C,D) iff q is true in all database instances ofsemf (C,D), the thesis follows.

We now extend the above result to arbitraryDL-LiteR KBs (i.e., KBs whose TBox
may also contain disjointness assertions).

Given aDL-LiteR TBox T , let D(T ) denote the set of disjointness assertions oc-
curring inT , and letT − = T −D(T ), i.e.,T − denotes the TBox obtained fromT by
eliminating all disjointness assertions.

Given a disjointness assertionφ, we denote byQ(φ) the Boolean conjunctive query
defined as follows:

– if φ = A1 v ¬A2, thenQ(φ) = ∃x.A1(x) ∧A2(x);
– if φ = A v ¬∃R or φ = ∃R v ¬A, thenQ(φ) = ∃x, y.A(x) ∧R(x, y);
– if φ = A v ¬∃R− or φ = ∃R− v ¬A, thenQ(φ) = ∃x, y.A(x) ∧R(y, x);
– if φ = ∃R1 v ¬∃R2, thenQ(φ) = ∃x, y, z.R1(x, y) ∧R2(x, z);
– if φ = ∃R1 v ¬∃R−2 or φ = ∃R−2 v ¬∃R1, thenQ(φ) = ∃x, y, z.R1(x, y) ∧

R2(z, x);
– if φ = ∃R−1 v ¬∃R−2 , thenQ(φ) = ∃x, y, z.R1(y, x) ∧R2(z, x).

Informally,Q(φ) is satisfied in an interpretationI iff I does not satisfy the disjointness
assertionφ.

Furthermore, given a set of disjointness assertionsΦ, we defineQ(Φ) as the follow-
ing UCQ:

Q(Φ) =
∨

φ∈Φ

Q(φ)



Lemma 2. Let T be a DL-LiteR-TBox, and letq be a UCQ. Then, for every UCQ
q, 〈T ,A〉 |= q iff 〈T −,A〉 |= q ∨ Q(D(T )) and 〈T ,A〉 |=fin q iff 〈T −,A〉 |=fin

q ∨Q(D(T )).

Proof. It is immediate to verify thatD(T ) corresponds to a first-order sentenceφ
which is equivalent to¬Q(D(T )), therefore from the deduction theorem it follows
that 〈T ,A〉 |=fin q iff 〈T −,A〉 |=fin q ∨ Q(D(T )). Moreover, sinceT − is a
DL-Lite−R TBox, from Theorem 1 it follows that〈T −,A〉 |=fin q ∨ Q(D(T )) iff
〈T −,A〉 |= q ∨Q(D(T )).

As an immediate consequence of Lemma 2 and of Lemma 1, we obtain the follow-
ing property.

Theorem 1. LetT be a DL-LiteR-TBox, and letq be a UCQ. Then, for every ABoxA,
〈T ,A〉 |=fin q iff 〈T ,A〉 |= q.

Then, we turn our attention to KB satisfiability. It can easily be shown that the
technique for reducing KB unsatisfiability inDL-LiteR to UCQ entailment (see Lemma
16 of [6]) is also correct when we restrict to finite models. This fact and Theorem 1
imply the following property.

Theorem 2. LetK be a DL-LiteR KB. Then,K is finitely satisfiable iffK is satisfiable.

Moreover, it can also be shown that the technique for reducing TBox entailment in
DL-LiteR to KB unsatisfiability (see Theorem 22 and Theorem 23 of [6]) is also correct
when we restrict to finite models. Consequently, the two previous theorems imply the
following property.

Theorem 3. LetT be a DL-LiteR-TBox, and letφ be a DL-LiteR TBox assertion. Then,
T |=fin φ iff T |= φ.

4 Finite model reasoning inDL-LiteF

In this section we study finite model reasoning inDL-LiteF . First, we remark that,
differently from the case ofDL-LiteR, in DL-LiteF UCQ entailment over finite models
differs from UCQ entailment over arbitrary models, as illustrated by both Example 1
and Example 2. So, since we cannot simply establish an equivalence between classical
reasoning and finite model reasoning as in the case ofDL-LiteR, we must look for new
reasoning methods to solve finite model reasoning inDL-LiteF .

We start by consideringDL-Lite−F KBs (i.e., DL-LiteF KBs without disjointness
assertions) and define inference rules for TBox assertions inDL-Lite−F .

4.1 Finite TBox inference rules inDL-Lite−
F

In the following,R denotes a basic role expression (i.e., eitherP or P− whereP is a
role name), whileR− denotes the inverse ofR, i.e., if R = P (R is a role name), then
R− = P−, while if R = P−, thenR− = P .



Definition 1. Given a DL-Lite−F TBoxT , finClosureF (T ) denotes the closure ofT
with respect to the following inference rules:

1. (inclusion-rule) if B1 v B2 andB2 v B3 then concludeB1 v B3;
2. (functionality-inclusion-cycle-rule) if there is an inclusion-functionality cycle, i.e.,

a sequence of TBox assertions of the form

(funct R1), ∃R2 v ∃R−1 , (funct R2), ∃R3 v ∃R−2 , . . .
. . . , (funct Rk), ∃R1 v ∃R−k

(where eachRi is a basic role expression, i.e., eitherP or P−), then conclude

(funct R−1 ), ∃R−1 v ∃R2, (funct R−2 ), ∃R−2 v ∃R3, . . .
. . . , (funct R−k ), ∃R−k v ∃R1

It is immediate to verify that the above inference rules are not sound with respect to
classical TBox entailment (i.e., entailment over unrestricted models). On the other hand,
we now prove that the above inference rules are sound with respect to TBox entailment
over finite models.

Lemma 3. Let T be a DL-Lite−F TBox and letφ be a DL-Lite−F TBox assertion. If
finClosureF (T ) |= φ thenT |=fin φ.

Proof. The proof is a consequence of the axiomatization for unary inclusion dependen-
cies and functional dependencies presented in [7].

We call a TBoxf-closedif it is closed with respect to the two inference rules above.

4.2 Query answering over finite models inDL-Lite−
F

We now turn our attention to query answering over finite models inDL-Lite−F KBs. No-
tice that Lemma 3 does not imply that query answering over finite models can be solved
by simply augmenting the TBox with the new assertions implied by Definition 1. How-
ever, we now show that this strategy is actually complete, i.e., we can answer (unions
of) conjunctive queries over finite models of aDL-Lite−F KB K = 〈T ,A〉 by first gen-
erating the augmented TBoxT ′ obtained fromT by adding the new assertions implied
by Definition 1, and then computing the certain answers to queries over the KB〈T ′,A〉
according to the unrestricted semantics.

Theorem 4. LetT be a DL-Lite−F -TBox, and letq be a UCQ. Then, for every ABoxA,
〈T ,A〉 |=fin q iff 〈finClosureF (T ),A〉 |= q.

Proof (sketch).The proof is rather involved and is based on the notion ofchaseof a
DL-Lite KB [6]. More precisely, we modify the notion of (generally infinite) chase of
a DL-LiteF KB, denoted bychase(K) and presented in [6], thus defining the notion of
finitechase of degreek of K, denoted byfinChaseF

k (K).
Informally, chase(K) is an ABox built starting from the initial ABoxA and apply-

ing a chase expansion rule that adds new membership assertions to the ABox until all



inclusions inT are satisfied. In this expansion process new constants are introduced
in the ABox, and in the presence of cyclic concept inclusions this process may pro-
duce an infinite ABox. The important semantic properties ofchase(K) are the follow-
ing: (i) chase(K) is isomorphic to an interpretationI(chase(K)) which is a model
of K; (ii) UCQ entailment overK can be solved by simply evaluating the query over
I(chase(K)).

We modify the above chase procedure and define a chase procedure, called
finChaseF

k (K) (parameterized with respect to a positive integerk), that always termi-
nates, thus returning a finite ABox. Then, we prove thatfinChaseF

k (K) only partially
preserves the above semantic properties of the chase with respect to finite model se-
mantics. More precisely, we prove that:

(A) finChaseF
k (K) is isomorphic to an interpretationI(finChaseF

k (K)) which is a
model ofK, under the assumption that the TBoxT ofK is f-closed;

(B) for every positive integerk, entailment of a UCQof length less or equal tok (i.e.,
all of whose conjunctions have a number of atoms less or equal tok) can be decided
by simply evaluating the query overI(finChaseF

k (K)).

With the notion offinChaseF
k (K) in place, we can prove the theorem as follows.

First, letK = 〈T ,A〉 andK′ = 〈finClosureF (T ),A〉. Soundness is trivial: ifK |=fin

q, thenK′ |=fin q, and since the set of finite models ofK′ is a subset of the set of models
of K′, it follows thatK′ |= q. To prove completeness, assume thatK′ 6|= q and letk be
the length ofq. Now, by property (A) above,I(finChaseF

k (K′)) is a finite model ofK′,
and by Lemma 3,I(finChaseF

k (K′)) is a model ofK. Finally, sinceK′ 6|= q, from the
above property (B) it follows thatI(finChaseF

k (K′)) 6|= q, which in turn implies that
K 6|=fin q.

4.3 Query answering over finite models inDL-LiteF

It is now immediate to extend the above theorem toDL-LiteF , since it is possible to
encode disjointness assertions in the UCQ, as illustrated already in Section 3. Given a
DL-LiteF TBox T , let D(T ) denote the set of disjointness assertions occurring inT ,
and letT − = T − D(T ), i.e.,T − denotes theDL-Lite−F TBox obtained fromT by
eliminating all disjointness assertions.

Theorem 5. LetT be a DL-LiteF -TBox, and letq be a UCQ. Then, for every ABoxA,
〈T ,A〉 |=fin q iff 〈finClosureF (T −),A〉 |= q ∨Q(D(T )).

4.4 Finite KB satisfiability and TBox entailment

We now focus on KB satisfiability. Again, we start by showing that, differently from the
case ofDL-LiteR, in DL-LiteF finite KB satisfiability does not coincide with classical
KB saisfiability. In particular, there areDL-LiteF KBs that only admit infinite models.

Example 3.Let T be the followingDL-LiteF TBox:

A v ∃R A v ¬∃R− ∃R− v ∃R (funct R−)



and letA be the ABoxA = {A(a)}. It is easy to see that the KBK = 〈T ,A〉 is not
finitely satisfiable, whileK is satisfiable (i.e., there are models forK but they are all
infinite).

To compute finite KB satisfiability, it is possible to show that the technique for
reducing KB unsatisfiability inDL-LiteF to UCQ entailment (see Lemma 16 of [6]) is
also correct when we restrict to finite models. This fact and Theorem 5 imply that we
can reduce finite KB satisfiability inDL-LiteF to standard KB satisfiability. Formally,
the following property holds:

Theorem 6. Let K be a DL-LiteF KB. Then,K is finitely satisfiable iff〈T ∪
finClosureF (T −),A〉 is satisfiable.

It also turns out that finite TBox entailment inDL-LiteF can be reduced to finite KB
unsatisfiability. In fact, it is easy to show that Theorem 22 and Theorem 24 of [6] hold
also when restricting to finite models, while Theorem 25 of [6] holds for finite models
under the assumption that the TBoxT is f-closed. Consequently, the following property
holds.

Theorem 7. LetT be a DL-LiteF -TBox, and letφ be a DL-LiteF TBox assertion. Then,
T |=fin φ iff T ∪ finClosureF (T −) |= φ.

5 Complexity results

We now study the computational complexity of finite model reasoning inDL-LiteR and
DL-LiteF .

First, in the case ofDL-LiteR, the theorems shown in Section 3 immediately imply
that, for the reasoning tasks considered in this paper, the complexity of finite model rea-
soning and of classical reasoning coincide. Hence, the complexity results forDL-LiteR

reported in [6] also holds when restricting to finite models.
We now analyze complexity in the case ofDL-LiteF . First, we show the following

property.

Lemma 4. Given a DL-Lite−F TBoxT and a DL-Lite−F TBox assertionφ, T |=fin φ
can be decided in polynomial time with respect to the size ofT ∪ {φ}.

Moreover, by definition,finClosureF (T ) is only composed ofDL-Lite−F TBox as-
sertions using concept and role names occurring inT , and the number of possible
DL-Lite−F TBox assertions using such names is quadratic with respect to the size of
T . Thus, from the above lemma, it follows thatfinClosureF (T ) can be computed in
polynomial time with respect to the size ofT . Furthermore, it is immediate to see that
Q(D(T )) can also be computed in polynomial time with respect to the size ofT .

Therefore, from the theorems shown in Section 4, it follows that the complexity
results forDL-LiteF reported in [6] also holds when restricting to finite models.

The above results are formally summarized as follows:



Theorem 8. Deciding UCQ entailment over finite models in DL-LiteR and DL-LiteF
is:

– in LOGSPACE with respect to the size of the ABox;
– in PTIME with respect to the size of the KB;
– NP-complete with respect to the size of the KB and the query.

Theorem 9. Let K be either a DL-LiteR or a DL-LiteF KB. Deciding whetherK is
finitely satisfiable is:

– in LOGSPACE with respect to the size of the ABox;
– in PTIME with respect to the size of the TBox;
– in PTIME with respect to the size of the KB.

Theorem 10. Finite entailment of an assertionφ with respect to a TBoxT in DL-LiteR

and DL-LiteF can be decided in PTIME with respect to the size ofT ∪ {φ}.

6 Extension toDL-LiteA

In this section we extend the previous results for finite model reasoning to the case
of DL-LiteA. Due to space limitations, in the present version of the paper we are not
able to introduceDL-LiteA in detail (see [5]) and just sketch the way in which we have
extended the previous results to the case ofDL-LiteA KBs.

Informally, aDL-LiteA TBox is a TBox which admits all the TBox assertions al-
lowed in bothDL-LiteF andDL-LiteR with the following limitation: a functional role
cannot be specialized, i.e., if the assertion(funct R) or (funct R−) is in the TBox,
then there is no role inclusion assertion of the formR′ v R or of the formR′ v R− in
the TBox. Moreover,DL-LiteA allows for defining conceptattributes, i.e, binary rela-
tions whose ranges, called value-domains, are concepts interpreted over a domain that
is disjoint from the interpretation domain of ordinary concept and roles. ADL-LiteA

TBox allows for value-domain inclusion/disjointness assertions and for attribute inclu-
sion/disjointness assertions. We refer the reader to [5] for more details.

First, we denote byDL-Lite−A the version ofDL-LiteA that does not allow for (con-
cept or role or value-domain or attribute) disjointness assertions.

Given aDL-Lite−A TBox T , we denote byfinClosureA(T ) the closure ofT with
respect to the following inference rules:

1. (binary-inclusion-rule) if R1 v R2 is either a role inclusion assertion or an attribute
inclusion assertion, then conclude∃R1 v ∃R2 and∃R−1 v ∃R−2 ;

2. (transitivity-rule) if B1 v B2 andB2 v B3 then concludeB1 v B3;
3. (functionality-inclusion-cycle-rule) if there is an inclusion-functionality cycle, i.e.,

a sequence of TBox assertions of the form

(funct R1), ∃R2 v ∃R−1 , (funct R2), ∃R3 v ∃R−2 , . . .
. . . , (funct Rk), ∃R1 v ∃R−k

(where eachRi is a basic role expression, i.e., eitherP or P−), then conclude

(funct R−1 ), ∃R−1 v ∃R2, (funct R−2 ), ∃R−2 v ∃R3, . . .
. . . , (funct R−k ), ∃R−k v ∃R1



Observe that, with respect tofinClosureF , to computefinClosureA we basically
just add inference rules for deriving unary (i.e., concept and value-domain) inclusions
from binary (i.e., role and attribute) inclusions.

We are now able to prove that the reduction of query answering over finite models
to query answering over unrestricted models proved in Section 4 forDL-LiteF can be
extended toDL-LiteA.

Theorem 11. Let T be a DL-LiteA-TBox, and letq be a UCQ. Then, for every ABox
A, 〈T ,A〉 |=fin q iff 〈finClosureA(T −),A〉 |= q ∨Q(D(T )).

Proof. First, consider aDL-Lite−A TBox T . Let U(T ) denote the set of unary (i.e.,
concept and value-domain) inclusions and functionality assertions inT .

We first modify the procedure for computingfinChaseF
k , illustrated in the proof of

Theorem 4, thus producing a new terminating chase procedurefinChaseA
k . Then, we

prove that: (A)finChaseA
k (K) is isomorphic to an interpretationI(finChaseA

k (K)) that
is a model ofK; (B) for every positive integerk, entailment of a UCQ of length less
or equal tok can be decided by simply evaluating the query overI(finChaseA

k (K)).
From the above two properties, the thesis follows with a proof analogous to the proof
of Theorem 4.

Finally, let us consider the case whenT is an arbitraryDL-LiteA TBox, i.e., when
T also contains disjointness assertions. In this case, the thesis is proved in the same way
as in the proof of Theorem 5.

From the above theorem, and in the same way as in the case ofDL-LiteF , we are
able to derive the following properties.

Theorem 12. Let K be a DL-LiteA KB. Then,K is finitely satisfiable iff〈T ∪
finClosureA(T −),A〉 is satisfiable.

Theorem 13. Let T be a DL-LiteA-TBox, and letφ be a DL-LiteA TBox assertion.
Then,T |=fin φ iff T ∪ finClosureA(T −) |= φ.

Finally, from the above results it follows that the computational properties expressed
by Theorem 8, Theorem 9, and Theorem 10 extend to the case ofDL-LiteA.

7 Implementation

In this section we show that the techniques presented in this paper allow for an efficient
and effective implementation of finite model reasoning services forDL-Lite ontologies.

We have implemented the above techniques in QuOnto [1]. QuOnto is aDL-LiteA

reasoner whose main purpose is to deal with very large instances (i.e., ABoxes). To
this aim, in QuOnto the ABox is stored and managed by a relational database system
(RDBMS). The main reasoning services provided by QuOnto are the “extensional”
ones, i.e., KB satisfiability and query answering (it allows for posing UCQs over the
ontology).

Computation in QuOnto is divided into an off-line and an on-line phase. Off-line
processing concerns purely intensional tasks, i.e., upload of the TBox, classification of



concept and roles, etc. On-line processing concerns the tasks involving the ABox, i.e.,
KB satisfiability and query answering. In particular, query answering is divided into a
query rewriting phase, in which the query is reformulated in terms of an SQL query
(through a reasoning step which exploits the knowledge expressed by the TBox), and a
query evaluation phase, in which the generated SQL query is evaluated over the ABox
by the RDBMS, and the answers are presented to the user.

To provide support for finite model reasoning, we have extended QuOnto as follows:

– during off-line processing, the system computesfinClosureA(T ), and the asser-
tions infinClosureA(T )− T are stored in an auxiliary TBoxT ′;

– during on-line processing, at every service request (KB satisfiability or query an-
swering) the user may choose between the classical semantics and the finite model
semantics;

– if finite model semantics is selected, then the system executes its reasoning service
method (KB satisfiability or query answering) using the TBoxT ∪T ′, otherwise it
executes its method on the TBoxT .

Notice that the main additional computation requested is the computation of
finClosureA(T ), which is only executed during off-line processing. Hence, finite
model reasoning does not imply any significant overhead during on-line processing.
Moreover, even the off-line overhead caused by the computation offinClosureA(T ) is
usually not very significant, since such a computation is in the worst case quadratic in
the number of functional roles ofT (which are usually only a small fraction of the total
number of roles inT ). This very nice computational behaviour has been confirmed by
our experiments. We have thus included these functionalities for finite model reasoning
in the next version of QuOnto, which is going to be publicly released in 2008.

8 Conclusions

Comparison with related work We remark thatDL-LiteR andDL-LiteF are fragments
of expressive Description Logics for which finite model reasoning has been studied in
the past [4, 2, 10]. In particular, decidability of finite KB satisfiability and of finite TBox
entailment for bothDL-LiteF andDL-LiteR is a consequence of such previous results.
However, the complexity of such tasks in these two logics was not known, while the
PTIME upper bound for finite TBox entailment inDL-Lite−F is implied by the results in
[7]. Furthermore, nothing was known about decidability and complexity of answering
conjunctive queries and unions of conjunctive queries over finite models in such logics.

Future work From the theoretical viewpoint, our aim is to extend the present computa-
tional analysis towards other species of OWL-DL. In particular, we are interested in the
tractable Description Logics which could become part of the standardization process of
OWL 1.1 [8]. From a both theoretical and practical viewpoint, we would like to explore
the idea of extending the ontology specification language with constructs that allow
the user to associate single subparts of the ontology with either finite or unrestricted
interpretation.
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