Improving Query Answering over DL-Lite Ontologies

Riccardo Rosati, Alessandro Almatelli
Dipartimento di Informatica e Sistemistica
Sapienza Universitdi Roma, Italy

Abstract

TheDL-Lite family of Description Logics has been de-
signed with the specific goal of allowing for answer-
ing complex queries (in particular, conjunctive queries)
over ontologies with very large instance sets (ABoxes).
So far, inDL-Lite systems, this goal has been actually
achieved only for relatively simple (short) conjunctive
queries. In this paper we present Presto, a new query
answering technique fddL-Lite ontologies, and an ex-
perimental comparison of Presto with the main previous
approaches to query answeringDh-Lite. In practice,

our experiments show that, in real ontologies, current
techniques are only able to answer conjunctive queries
of less than 7-10 atoms (depending on the complexity of
the TBox), while Presto is actually able to handle con-
junctive queries of up to 30 atoms. Furthermore, in the
cases that are already successfully handled by previous
approaches, Presto is significantly more efficient.

Introduction

The DL-Lite family of Description Logics (Calvanese et al.
2007) has been designed with the specific goal of allow-
ing for answering complex queries (in particular, conjunc-
tive queries) over ontologies with very large instance sets
(ABoxes). The ideas underlyirigL-Lite are currently very
popular both in the theoretical KR community (see, e.g.,
(Artale et al. 2009)) and in the more practical world of stan-
dard ontology languages for the Semantic \Web-{ite pro-
vides the logical underpinnings of the OWL2 QL language).
The strategy used by most of the existing systems and al-
gorithms forDL-Lite, (e.g., Quonto (Acciarri et al. 2005),
Owlgres (Stocker and Smith 2008), and Requieraré2-
Urbina, Motik, and Horrocks 2009)) iguery answering by
query rewriting More precisely, query answering is per-
formed by first computing a rewriting of the query with re-
spect to the intensional part of the ontology (TBox), thus ob-
taining a so-callegerfect reformulatiorof the initial query.
Such a perfect reformulation is then evaluated over the ex-
tensional part of the ontology (ABox) only. A distinguish-
ing feature ofDL-Lite with respect to the other DLs is that
the perfect reformulation of conjunctive queries can be ex-
pressed by first-order queries. This property, also called

Copyright(© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

first-order rewritability of conjunctive queries, is extremely
important, because it allows to delegate the management of
the ABox to a relational database system (RDBMS) and to
solve query answering by shipping the perfect reformula-
tion of the initial query (expressed in the SQL language) to
the RDBMS. This implementation strategy actually allows
to handle ABoxes of very large size (comparable to the size
of a database).

However, the bottleneck of the above algorithms and sys-
tems is constituted by the fact that the perfect reformulation
computed increases exponentially with the number of atoms
of the conjunctive query. Empirical studies have shown that,
while this is not a serious problem for conjunctions of up to
5-7 atoms (depending on the complexity of the TBox), for
larger queries the above algorithms typically either fail in
computing the perfect reformulation in a reasonable amount
of time, or produce a query that is too large (e.g., a union
of thousands of conjunctive queries) to be handled by cur-
rent RDBMSs. This constitutes a serious practical limita-
tion, since experiments have shown that some natural and
interesting conjunctive queries over real ontologies fall into
the class that cannot be handled by current query answering
techniques foDL-Lite.

In this paper we try to overcome the above limitation
of current query answering techniques ougk-Lite on-
tologies. In particular, we present a new algorithm, called
Presto, for the perfect reformulation of unions of conjunc-
tive queries ovebL-Lite ontologies. Presto is based on the
following innovative ideas: (i) differently from previous ap-
proaches, Presto does not generate a union of conjunctive
queries, but a nonrecursive datalog program. In fact, the use
of a disjunctive normal form is one of the reasons for the
exponential blow-up of previous techniques, which can thus
be avoided by Presto; (ii) the query expansion rules (based
on resolution) used by previous techniques are deeply op-
timized in Presto. In particular, Presto applies expansion
rules driven by the goal aéfliminating existential joinfrom
the query based on the computationmbst general sub-
sumee®f concept and role expressions, which turns out to
be a much smarter strategy than previous approaches. As a
consequence of the above innovations, the query produced
by Presto is not exponential anymore with respect to the
number of atoms of the initial conjunctive query, but is only
exponential with respect to the numbereadiminable exis-

tential join variablesof the query: such variables are a sub-
set of the join variables of the query, and are typically much
less than the number of atoms of the query.

P is arole name, and, b are constant names.
An ABox is a set of membership assertions.
A DL-Liter ontologyis a pairO = (7, .A) where7 is a

Then, we present a set of experimental results which show DL -Lite; TBox and.A is an ABox.
that: (i) both the time for computing the rewriting and the
size of the query generated by our algorithm are smaller than QueriesAn atomis an expression of the forp(X '), where
the corresponding time and size of all previous approaches; p is a predicate of arity, and X is an-tuple of variables or
(i) the evaluation of our nonrecursive datalog query (after a constants. If no variable symbol occursin thenp(X) is
translation in SQL) by the RDBMS is computationally much called aground atom(or fact).
easier than the evaluation of the queries produced by pre- A Datalog rule » is an expression of the form
vious techniques. In particular, the experiments show that «:— (4,..., 3., Wherea is an atom, eacl¥; is an atom,
Presto scales much better than all previous approaches withand every variable occurring iamust appear in at least one
respect to the size of the query: in practice, in all ontolo- of the atoms3, ..., 3,,. The atoma is called theheadof
gies we have used in our experiments, Presto allows for ef- r, while the expressiopy, ..., 3, is called thebodyof r.
fectively computing the perfect reformulation of conjunctive The predicate of: is called thehead predicatef r. Thear-
gueries of even 30 atoms (and more), while previous tech- ity of r is the number of arguments of the head predicate
nigues are able to deal with conjunctions of at most 7-10 The variables occurring in are called thénead variables

atoms (depending on the complexity of the TBox).

The above results prove that Presto constitutes a real
advancement with respect to the current techniques for
query answering ovebL-Lite ontologies, since it over-
comes the main computational limitation of thé-Lite ap-
proach to query answering over ontologies, allowing for ef-
fectively answering even very complex (unions of) conjunc-
tive queries oveDL-Lite ontologies.

The structure of the paper is the following. In the next
section, we briefly recall the description logics and query

of r, while the variables only occurring in the body+oére
called theexistential variable®f . An existential variable
that occurs only once in is called anunbound variable
otherwise it is called aexistential join variableej-var for
short). Head variables, ej-vars, and constants occurring in
r are thebound termsf », while unbound variables are the
unbound termsf r.

A Datalog progranover an ontology) is a set of Datalog
rules such that, for every rule of the program, the head
predicate of- is not a predicate (concept or role) used in the

languages used in the paper. Then, we describe the Prestoontology.

guery rewriting algorithm, and show formal properties of the
algorithm (correctness and computational complexity). Fi-
nally, we report on the experiments conducted with Presto.

Preliminaries

In this section we briefly recall the description logic
DL-Liteg, unions of conjunctive queries, and nonrecursive
datalog queries. We focus @L-Liter for ease of presen-
tation, since our technique is actually able to handle other
DL-Lite logics, in particulaDL-Liter, DL-Lite4, and (un-
der a slight extension) the OWL2 profile OWL2 QL.

DL-Lite ontologiesWe start from three mutually disjoint al-

A nonrecursive datalog prograrns a Datalog program
such that there exists an ordering. . ., r,, of its rules such
that the head predicate of does not occur in the body of
rule r; for everys, j such thatl <4 < j < n. W.lo.g,
we assume that all occurrences of the same predicate in a
program have the same arity.

A nonrecursive Datalog (nr-datalog) querwver an on-
tology O is a pair(q, @) such thatg is not a predicate of
O and (@ is a nonrecursive Datalog program ov@r The
arity of a nr-datalog queryg, @) is the arity of the predi-
cateq in (). We recall that nr-datalog queries correspond to
first-order positive existential first-order queries (i.e., to pos-
itive relational algebra queries) (Abiteboul, Hull, and Vianu

phabets: an alphabet of concept names, an alphabet of role1995).

names, and an alphabet of constant (or individual) names.
We call basic conceptan expression of the fornB ::
A | 3P | 3P, where A is a concept name an® is a
role name, and we caltlasic rolean expression of the form
R ::= P | P~, whereP is a role name.

With a slight abuse of notation, we will also make use of
expressions of the fordR and3R~, whereR represents
either a role namé or the basic role®~. In the latter case,
3R~ stands for the basic concepP.

A DL-Liter TBox assertion is an expression of one of
the following forms (whereB;, B, are basic concepts and
R;, R, are basic roles): (iB; = Bs (concept inclusion);
(i) Ry C Ry (role inclusion); (iii) By C —Bs (concept
disjointness); (iv)R; C —R; (role disjointness).

A DL-Liteg TBox is a set oDL-Liteg TBox assertions.

A membership assertida a ground atom, i.e., an expres-
sion of the formA(a), P(a,b) where A is a concept name,

A union of conjunctive queries (UC@Yyer an ontology)
is a nr-datalog queryg, Q) overO such that: (i) all rules in
@ havegq as their head predicate; (ii) for every rulec @, all
the predicates occurring in the bodyrcdire predicates aP.
We recall that every nr-datalog query canlrgoldedinto a
finite UCQ. A conjunctive query (CQdyver an ontology©®
is a UCQ overO whose program consists of a single rule.
Finally, aBooleannr-datalog query is a nr-datalog query of
arity 0.

From now on, to keep notation to a minimum, we will not
explicitly mention the query predicate of nr-datalog queries,
assuming that the query predicate is alwayand of course,
we also assume thatis not used as a predicate by any on-
tology): thus, we will denote the quety, Q) simply by Q.

SemanticsThe semantics of a DL is given in terms of in-
terpretations, where dnterpretationZ = (AZ, -Z) consists

of a non-emptynterpretation domaim\? and arinterpreta-
tion function-Z that assigns to each concepta subsetC”
of AZ, and to each rol& a binary relationkR? over AZ. In
particular, we have:

AT c AT

Pt C AT xA?
(P7)r = {(o02,01) | (01,02) € P*}
AR = {o|30.(0,0') € R*}
(~B) = AT\B
(-R)¥ = AT x AT\ R?

An interpretationZ is amodelof B C C, whereC is
either a basic concept or the negation of a basic concept, i
BT C C*. Similarly, T is amodelof R C E, whereR is
a basic role and’ is either a basic role or the negation of a
basic role, ifR? C EZ.

To specify the semantics of membership assertions, we
extend the interpretation function to constants, by assigning .

to each constant an objecta’ € AZ. An interpretatioriZ
is a model of a membership assertidftu), (resp.,P(a,b))
if a¥ € A% (resp.,(aZ,b?) € PY).

Given an (inclusion, or membership) assertigrand an
interpretationZ, we denote byZ = ¢ the fact thatZ is a
model of¢. Given a (finite) set of assertiods we denote
by Z |= ® the fact thatZ is a model of every assertion
A model of an ontology) = (7, .A) is an interpretatio
suchthafZ = 7 andZ |= A. An ontology issatisfiableif it
has at least one model.

A Boolean nr-datalog quer§ is satisfiedin an interpre-
tationZ if 7 = FO(Q), whereFO(Q) is the positive exis-
tential first-order sentence correspondingavhich is ob-
tained by “unfolding” the defined predicates @f (Abite-
boul, Hull, and Vianu 1995). For instance (¥fis the query

q() =C(z), p(x,y), R(y, 2)

IJ() :—D(.T), S(Z’, a‘)

p(z,y) —R(y, z), D(x), S(y, 2)
p(z,y) =T(z,y)

then FO(Q) is the first-order sentence

(Fz,y,2.C(x) A
((32.R(y,) A D(x) A S(y,2")) V T(z,y)) A R(y,2)) v
(Fz.D(x) A S(z,a))

For the sake of simplicity, the reasoning task we will
formally address in this paper is query entailment, i.e.,
guery answering restricted to Boolean queries. An ontol-
ogy O entails a Boolean nr-datalog query, denoted by
O kE g, if g is satisfied in all models 00. Since we
focus on query entailment only, from now on when we
speak about nr-datalog queries we always mBanlean

Ct = {a | C(a) € A}; (iii) for every role nameR,
RT = {{a,b) | R(a,b) € A}.

Given a TBox7 and a queryy, aperfect reformulation
of @ with respect to7 is a queryQ’ such that, for every
ABox A such that{7', A) is satisfiable{7, A) = Q iff @’
is satisfied incan(A). Informally, a perfect reformulation
of) is able to “encode” the TBo% , and thus allows to
answer@ by only looking at the ABox (and considering it
as a relational database, i.e., a single model).

Most general subsumees§iven aDL-Liteg TBox 7 and a

non-empty set of basic concef#s= { By, ..., B, }, amost
f general subsumee (MG$j B in 7 is a basic concepB
such that: (17 = B C 1 where L denotes the empty
concept; (2) for eactB; € B, T = B C B;; (3) for each
basic concepi3’ satisfying the above conditions 1 and 2,
either7 F BC B'or7 = B'C B.
The above notion of MGS of a set of concept expressions
is the usual one: however, for our purposes we actually need
to extend the above notion of MGS to a set of both concept
and role expressions.

Given aDL-Liter TBox 7 and a set of basic concepts and
basic rolesP = {B1,...,Bn,R1,...,R,,} withn > 1,
m > 1, amost general subsumémMGS) of P in 7 is a
basic concepiR such that:

1. T#3RC L;

2. for each basic concept; € P, 7 =3R C B;;

3. foreach basicrol®; € P, 7 = RC R;

4. for each basic concepts satisfying the above conditions
1-4,either7 £3IR~- C3S~ or7 35S~ C IR

We denote byMGS(P,T) the set of most general sub-
sumees ofP in 7. It can be easily shown that checking
whether a basic conceptis an MGSin aDL-Liter TBox

7 can be done in time polynomial in the size?fJ 7.

The Presto algorithm

We now present Presto, an algorithm that computes the per-
fect reformulation of a UCQ with respect toRL-Liteg
TBox. The algorithm is displayed in Figure 1. Before delv-
ing into its details, let us provide an informal explanation of
the intuitions behind the algorithm. Presto is based on three
main ideas:

(1) Split every rule into its existential join connected compo-
nents.As explained below in the description of the function
Split, the body of every rule is systematically divided into
subsets of atoms connected by existential join variables, and
every such subset of the query body constitutes the definition
of a new auxiliary predicate. This step is fundamental, since

nr-datalog queries. We remark, however, that, as in the case (s explained at the end of this section) the size of the query
of UCQs (see e.g. (Glimm et al. 2007)), answering arbitrary computed by Presto is exponential with respect to the max-
(i.e., non-Boolean) nr-datalog queries can be easily reduced jmum number of (eliminable) ej-vars that appear in a single

to nr-datalog query entailment. rule of the query, and applying the above splitting step may

by can(A)) is the interpretation isomorphic td, i.e., an
interpretationZ whose domain is the set of individuals oc-
curring in A and such that: (i) for every individual oc-
curring in A, o a; (ii) for every concept name’,

(2) Eliminate ej-vars through the use of most general sub-
sumees. This step (formalized by th&liminateEJVar
function) corresponds to a sequence of resolution steps in the

previous query rewriting algorithms f@L-Lite, in particu-
lar PerfectRef (Calvanese et al. 2007) and Requiesng®2
Urbina, Motik, and Horrocks 2009), and is based on the use

use the symbols, ¢, t, ..
bound or unbound).
An ontology-annotated predicatd OA-predicate for

. to denote generic terms (either

of the above defined most general subsumees of concept andshort) is an expression of the forph such that eithee is

role expressions with respect to a TBox. In practice, this
step realizes a crucial optimization of the rewriting rules of
previous methods (in particular, the reduce-rule of the Per-
fectRef algorithm): in Presto, only unifications among terms
that bring to the generation of a “significant” new rule (i.e., a

arole name and € {0,2}, ore is a basic concept expres-
sion andk € {0,1}. Given aDL-Liteg TBox 7, the OA-
predicates of are all the OA-predicates built using the role
and concept names occurringdn

rule not subsumed by an already generated rule of the query) The function Rename. Letr be a rule overZ. Then,
are considered. Instead, in the algorithm PerfectRef of (Cal- fiename(r) is the rule obtained from as follows: (i) every

vanese et al. 2007), unifications are derived in a “blind” way
from every unifiable pair of atoms, regardless of the conse-

guences of this unification: indeed (as already observed by

atom of the formR(t,¢1), whereR is a role name, is re-
placed byp% (¢, t1); (ii) every atom of the formA(t), where
is a concept name, is replaced p¥((¢). Then, given

(Perez-Urbina, Motik, and Horrocks 2009)), in many cases & duery@, we defineRename(Q) = U, ¢, Rename(r).

the vast majority of the unification steps performed by Per-

Thus, the functioRename replaces concept and role names

fectRef is superfluous. The idea of aggregating a sequenceWith OA-predicates in the rule. Notice that, in every OA-

of unification and resolution steps, avoiding useless unifi-
cations, is actually the central idea of the Presto algorithm,
and constitutes a dramatic improvement in terms of compu-
tational cost with respect to the above mentioned previous
methods, as will be shown by the experimental results re-
ported in the next section.

(3) Define predicates (views) corresponding to the TBox
expansion of basic concepts and rolegirst, the query

is transformed by introducing (through theename and
DeleteUnboundVars functions) concept and role expres-
sions, besides concept and role names.
concept expressiol3 (respectively, role name?) occur-

ring in the query, a new predicate is introduced (called OA-
predicate in the following): such a predicate is defined in the
guery as the union of the concepts (respectively, roles) that
are a specialization aB (respectively,R) in the TBox (this

is realized by the functioefineAtom View). In fact, all
such concepts constitute all the possible rewritings of the
rule atom corresponding to the concept (In this step

we also consider the TBox expansion of Boolean proposi-

Then, for every

predicate, the superscript represents the arity of the predi-
cate.

The function Delete Unbound Vars. Letr be a rule ovefl .
Then, DeleteUnboundVars(r) is the rule obtained from

as follows:
e every atom of the form% (b, u) is replaced by . (b);
e every atom of the formp,(u, b) is replaced by’ . (b);

e every atom of the formp% (us, u2) is replaced by?,;

~—~ Y~ o~

e every atom of the formp!;

Then, given a query @,
fine DeleteUnboundVars(Q) =
U,eq DeleteUnbound Vars(r). Thus, the function
DeleteUnboundVars eliminates unbound variables in a
systematic way, through the use of new OA-predicates.

u) is replaced byY.
de-

we

The function DeleteRedundantAtoms. Given aDL-Liter
TBox 7 and a ruler, DeleteRedundantAtoms(r, T) elim-
inates the redundant atoms in the body-afith respect to

tions corresponding to an extensional non-emptiness check 7, i.e., the atoms that are implied (undgy by other atoms

of atomic concepts and roles, i.e., the property whether a
concept (or a role) is populated in every model of the on-
tology. Such Boolean propositions are denoted®yyand

RO in the following.) The advantage of introducing con-
cept and role views is that the exponential blowup due to the
Cartesian product of the rewritings of the single rule atoms is

avoided. For instance, suppose we want to compute the per- e

fect reformulation of a CQ having 10 atoms in its body and
such that each atom has a rewriting of 10 atoms. If we are
forced to produce a UCQ, then we should produce a query
containing at least0'® CQs, while if we can define an in-
termediate predicate for (the rewriting of) every query atom,
the nr-datalog program thus computed hé%+ 1 rules.

We now define the auxiliary functions used by Presto. In
the following, given a rule we use the symbolg by, bo, . . .
to denote bound terms of(i.e., head variables, ej-vars, and
constants), we use the symbalsu,, us, . .. to denote un-
bound variables, we use the symbols:,, x5, . . . to denote
generic variables (which may be either bound or unbound),
we use the symbols, a4, as, . . . to denote constants, and we

in the body ofr. More precisely:

o if p%(t1,t2) andp%(t1,ts) occurinr and7 = R C S,
then eliminatep (¢4, t2) fromr;

o if p%(t1,t2) andp?(t2,t1) occurinrand7 = RC S—,

then eliminatev? (¢2, t1) fromr;

if pi(t) andp(t) oceurinr and7 = B C C, then

eliminatepy, (t) fromr;

o if p%(t1,t2) andpg(t1) occur inr and7 = 3R C C,
then eliminatep, (¢1) from r;

o if ph(t1,t2) andpg(t2) oceurinr and7 = 3R~ C C,
then eliminaten. (¢2) from r;

o if p), andpf; occur inr and7 | o C %, then eliminate
P} fromr;

e if pL(¢) andp® occur inr and7 | B° C oY then
eliminatep!, fromr;

o if p%(t1,t2) andp? occur inr and7 = R° C of then
eliminatep!, fromr.

Algorithm PrestdQ, 7)
input: UCQQ, DL-Liter TBox T
output: nr-datalog query’
begin
Q' = Rename(Q);
Q' = DeleteUnboundVars(Q');
Q' = DeleteRedundantAtoms(Q', T);
Q' = Split(Q");
repeat
if there exist- € @’ and ej-varz in r
such thatEliminable(x,r,T) = true
andx has not already been eliminated fram
then begin
Q" = EliminateEJVar(r,z,T);
Q" = DeleteUnboundVars(Q");
Q" = DeleteRedundantAtoms(Q",T);
Q' = Q' U Split(Q")
end
until Q" has reached a fixpoint;
for each OA-predicatep” occurring inQ’
do Q' = Q' U DefineAtomView(pl, T)

end
Figure 1: The Presto algorithm.
Then, given a query @, we de-
fine DeleteRedundantAtoms(Q, T) = 2,2), P2 (5 9), phr(2)
U,eq DeleteRedundantAtoms(r,T). In the above ' Psis,Y), Par

definition, we have indicated implications of Boolean
propositions using the notation” = 3°, with «, 3 basic
concepts or role names. E.gR° C A° stands for the
sentence(3z,y.R(z,y)) — (Jz.A(x)). Checking the
entailment of such formulas (which is a non-standard form

pz?(’ 2 1 2
pQT(% w), J;R(w7v)7 pE(v), Pé(w,z)
pT(mvt) pR(t7a)

andSplit(r) is the following program (using the new auxil-
iary predicateg, g2, gs):

of TBox reasoning in DLs) can easily be doneDh-Liter q(z,y) i—q1(z,y), ¢2(z,y), g3(x)

in polynomial time with respect to the size of the TBox, by a1 (z,y) —p%(z, 2), p%(2,v), Pir(2)

slightly extending the procedure for checking entailment @(z,y) —p2(y,w), pr(w,v), pE(v), pE(w,)
of ordinary concept and role inclusion assertions (we g3 () —p>(x,t), pR(t,a)

omit details on this aspect due to lack of space). Notice

that, after the above elimination of atoms, some ej-vars Given a progrand), we defineSplit(Q) = U, Split(r).
may have turned into unbound variables: we assume that _ o o

Such Variab'es are e"minated by executing the function The funCtlonSElzmmable and ElzmmateEJVar. Letz be

DeleteUnbound Vars on the query. an ej-var inr, letpp, (),...,pp, () be the unary atoms in
which z occurs, and let

The function Split. Given a ruler, Split(r) is the program
i plit(r) IS the prog & = Py (@,11), o D, (@), 0 (s, (B, 2))

that is obtained by splitting into the connected components

of theej-graphof r (and using a new auxiliary predicate for pe the set of binary atoms ofin which 2 occurs. Further-
each connected component). The ej-graph &f an undi- more, letP = {Bi,...,Bn,Ri,...,Rn,S7,...,5; },
rected graph whose nodes are the atoms in the bodwpod and let7 be aDL-Litep TBox.

such that there is an edge between two nodes if the corre- First, we say that the ej-varis 7-eliminable inr if:

sponding atoms share an ej-var. L :
P 9 J 1. 2 does not occur twice in the same binary atom;

Example Given the following ruler: 2. at most one constant symbol is contained in the set of
terms{ty, ..., tm,th, ..., 8}
q(z,y) 1—p?:¢2($az)7 Pégzay)y PQ%T(Z), P2T2(y7w), , 3. MGS(P,T) is non-empty.
Pr(w,v), PE(v), Ps(w,z), pr(@,1), PR(t0) Then, Eliminable(z,r, T) is defined as a Boolean function
that returngrue iff = is 7-eliminable inr.
wherex,y, z,v, w,t are variables and is a constant, the Finally, we define the functioliminateEJ Var as fol-

ej-connected componentsofre: lows:

e if m = 0 and/ = 0, then EliminateEJVar(r,z,T) is
the set of rule{r[a/p%] | B € MGS(P,T)}, where
r[a/p%] denotes the rule obtained fromby replacing
the set of atoms in the body ofr with the atomp$;

o if m > 1or¢ > 1, thenEliminateEJVar(r,x,T) is the
set of rules{o(r[a/pL,-(7)]) | IR € MGS(P,T)},
where: ()7 = t; if m > 1, otherwiser = t}; (ii)
r[o/pY - (7)] denotes the rule obtained fronby replac-
ing the set of atoms in the body ofr with the atom
pLp- (7); (iii) o is the variable substitution obtained from
the equalities, =to = ... =t, =t =th =... =1
(i.e., o(r) denotes the application of the above substitu-
tion to ruler).

ExampleLetr be the rule
4 =P, (2,9), Pr, (2,2), Pa(2), Pp(2), P& (Y)

and let T be such that MGS({A,Rs,R;}.7T)
{3R1,3R5; }. Then, Eliminable(x,r,T) true, and
EliminateEJVar(q,z,T) is the set of rules

{a=rip-), pEW): pey) @=Pin, (v): PEW), PO() }

(notice that in this case = {z — y}).

The function DefineAtomView. Finally, given an OA-
predicate V' and a DL-Liteg TBox 7, the function
DefineAtomView(V, T) is defined as follows:

(@ if v = p% with R a role name,
DefineAtomView(V, T) is the set of rules

then

{p%(z,y):—P(x,y) | Pisarole name an@ = P C R} U
{p%(z,y) :—=P(y,x) | Pisarole name and = P~ C R}

@iy if Vv pL with B a basic concept, then
DefineAtom View(V,T) is the set of rules

{pL(z)—A(x) | Ais aconceptname arll = A C B} U
{p5(z) —R(z,-)| Risarole name and = JRC B} U
{pL(z)—R(_,z) | Risarole name and@ = IR~ C B}

(i) if Vv = pQ with N concept or role name, then
DefineAtom View(V, T) is the set of rules

{p{ :—A(_)| Ais aconceptname artll = A° C N} U
{pQ=R(-,-) | Ris arole name an@ = R’ C N}

Let us now go back to the main algorithm. As shown
by Figure 1, the structure of the algorithm Presto is rather
simple: the input queryy is initially transformed by the
Rename, DeleteUnboundVars, DeleteRedundantAtoms
and Split functions. Then, a cycle is executed whose pur-
pose is to close the query (set of rules) with respect to the
elimination of ej-vars. At every iteration, the query is aug-
mented with new rules obtained from the elimination of an
ej-var from a rule already present in the query.

Example 1 Consider thd®L-Liter TBox (over the concepts
A Ay, AQ, A3, B, By, Bs, Bs, C,C, CQ, C3 and the roles

UT,W,V,Q, P, S, R) displayed in Figure 2(a), and con-
sider the conjunctive querydisplayed in Figure 2(b). The

nonrecursive datalog program returned by Presto is shown
in Figure 2(c). First, the query obtained after applying the
functionsRename and Delete Unbound Vars is

q(z,y) —pis(2), Ph(x, 2), phr— (w), P, (2), PR (Y, w)

Then, the application of the function
DeleteRedundantAtoms deletes the atonpl, (z) (be-
cause the TBox entails the inclusialR~ T A;). Next,

the function Split is applied, which splits the query into
the two connected componentgl(z),p%(z,2) and
P (w), pR(y,w), thus producing the set of ruleQ’
corresponding to the rules (R0), (R1) and (R2) which use
the auxiliary predicateg; and ¢s. Then, the algorithm
executes a first iteration of the repeat—until cycle, and
picks rule (R1). The functionEliminable identifies z

as an eliminable ej-var in (R1), since it is easy to verify
that MGS({3S,R~},7) = {3T7,3U}: therefore, the
function EliminateEJVar(z,(R1),7) returns the rules
(R3) and (R4). At its second iteration, the algorithm picks
rule (R2), and the functior®liminable identifiesw as an
eliminable ej-var in (R2), since it is easy to verify that
MGS({3IT—,R~},7) {3T,3U~}: therefore, the
function EliminateEJVar(w,(R2),7) returns the rules
(R5) and (R6). Finally, the repeat—until loop ends, because
there are no more eliminable ej-vars in the rules generated
so far, and the functionDefineAtomView adds to the
program the other rules shown in Figure 2{c). O

It is immediate to verify that the algorithm always termi-
nates, and that the set of rulé@s returned by the algorithm
is always a nr-datalog query ovér (i.e., Q)" is always non-
recursive). Correctness of the algorithm is established by the
following theorem.

Theorem 2 Let7 be a DL-Litez TBoXx, letQ) be a UCQ and
let @' be the nr-datalog query returned by Pre§th 7).
Then, for every ABo¥ such that(7,.A) is a satisfiable
DL-Liter knowledge basd7, A) = Q iff Q' is satisfied in
can(A).

Proof (sketch). The proof heavily relies on the correct-
ness of the algorithm PerfectRef presented in (Calvanese et
al. 2007) (also called “CGLLR algorithm” in @ez-Urbina,
Motik, and Horrocks 2009)). The algorithm PerfectRef iter-
atively construct a set of CQs (i.e., a UCQ) by making use
of two rules that produce a new CQ from a previously gen-
erated CQ: the atom-rewrite-rule (step (a) of the algorithm)
and the reduce-rule (step (b)). We refer to (Calvanese et al.
2007) for a detailed description of PerfectRef.

Let @', be the query returned by the algorithm PerfectRef
executed on inpuf) and7. We prove that)’, is equivalent
to the queryQ;, returned by Presto, i.e., in every interpreta-
tion Z, the evaluation of);, and@;, in T coincide.

First, the proof that the query;, is contained in the query
Q.. is quite easy. We first consider the unfolding(@f, i.e.,
the UCQQ), obtained by unfolding all defined predicates

1We remark that, for this query and TBox, the algorithm Perfec-
tRef produces a perfect reformulation which consists of the union
of 650 conjunctive queries.

cC A Cy
C A Cs
C B Cs
C A C3
cC A C3
C A, Ir
C A TP
C B Ela
C B IR

88 8

8 8

hsPsisshs ~d
WU U —UT—UT LT —UT—
N 0 n v v !0 U
EEEEEEE
|
TSN aN

3]

C B IR
c C 3R
e IR
C B IR
C B dR
C B R~
cC JU dR™
C By dR™
cC dR~

Q(zvy) :_S(Zaj)ﬂ R(I, Z)a

JU
A
35
C
Ay
A3
A
P~
Cs

(a) TBox

TP e

Jr
Jr
ar
3r-
31r-
3=
JU
U
JU~

(b) Query

) —q1(2), g2(y)

:_p%%('ra Z)ap%S(Z)
I—p%T- (w), pR(y, w)
=p3u(2)

_p%T— (:U)

:_p%T— (y)

=p3y(y)

) p%U(‘x) _T(x’)
-) phyle)=U(z,)
SL’) p%U(x) .—P(l’,,)
-) pip(x) —R(z,)
*) p%U(x) —U(,,{E)
) piy(x)=T(,)

FHFE I e e

Qqq\’ﬂ’ﬂ'ﬂ’ﬂ
T ICET e e

T(k7 w)v Al(z)v R(ya ’LU)

(c) Nonrecursive datalog query produced by Presto

Figure 2: TBox, query, and rewriting of Example 1.

in Q;,. Obviously, we have tha;, andQ;, are equivalent.
Then, we prove that for every Cg), in Q;’ there exists a
CQr. in Q. such that, is equal tor. up to variable names,
which easily follows from the definition of Presto and the
CGLLR algorithm. This implies that,, is contained irv.,
which in turn proves tha®);, is contained irQ...

Then, we show tha);, is contained inQ;. This part of
the proof is less trivial, since there are CQ€Jjithat are not
equal (up to variable renaming) to any CQ(¥. For every
such CQr., we prove that there exists a GQ in @} such
thatr. is contained in,. More precisely, we prove that, for
everyr. € @Q., there exists a CQ, € @, such that. is b-
containedin r, i.e., there exists a homomorphism from
to r. that maps bound variables gf to bound terms of-.
The proof is by induction on the structure @f.. We con-
sider a bottom-up inductive definition &f, in which (Q..);
is the UCQ computed by CGLLR aftéiterations. The base
case is immediate. As for the inductive caserldie the CQ
added by CGLLR at it$+ 1-th iteration. then, there are two
possible cases:

(1) . has been generated by the atom-rewrite-rule from a
CQ, € (Q.); using a TBox inclusiorf. In this case, by
the inductive hypothesis it follows that there exists a CQ

r, € @ such that the atom-rewrite-rule can be applied

to /, using the same TBox inclusioft let r, be the CQ
thus obtained. Now, it is immediate to verify that the usage
of OA-predicates inQ;, guarantees thap; is closed under
application of the atom-rewrite-rule: hencsg, belongs to
Q, - Moreover, by definition of the atom-rewrite-rule (which
does not eliminate ej-vars, thus it cannot introduce new un-
bound variables), it follows that, is b-contained irr,;

(2) r. has been generated by the reduce-rule from a CQ
rl. € (QL);. Inthis case, there are two possible cases: (2.a)
the reduce-rule does not eliminate an ej-var, i.e., it does not
introduce a new unbound variable. In this case, by the in-
ductive hypothesis, there exist§ € @, such that is b-
contained in;,. Now, it is immediate to see thaf is also
b-contained inr,,, hence the thesis follows; (2.b) the reduce-
rule eliminates an ej-var, i.e., it introduces a new unbound
variable. In this case, it can be proved that there exists a cor-
responding rule, generated by thé&liminateEJ Var step
such that-. is b-contained inr,. The proof of this property

is again by induction on the structure f,, and a crucial
role in this proof is played by the notion of MGS.

We have thus proved th&,. is equivalent taQ);,. Then,
since)’, is a perfect reformulation af’ ((Calvanese et al.
2007, Lemma 39)) and in tur®’ is equivalent ta?, it fol-
lows thatQ;, is a perfect reformulation af. O

We denote withQ’, is the nr-datalog query computed by
Presto after the firsiplit step (i.e., right before entering the
repeat-until cycle); moreovettielim(r) denotes the number
of eliminable ej-vars in rule. The following property fol-
lows from the fact that every auxiliary function can be com-
puted in polynomial time, due to the computational com-
plexity of TBox reasoning iDL-Liteg.

Theorem 3 Prestd@, 7)) runs in polynomial time with re-
spect to the size of the TBox, and in exponential time with re-

spect tomax,.c . {#elim(r)}. The same upper bounds hold
for the size of the query returned by Pregio 7).

Experimental results

We now report on a set of experiments on both query rewrit-
ing and query answering using Presto. The goal of these ex-
periments is to compare Presto with the previous techniques
for query answering and rewriting IDL-Lite.

Our experiments have been executed on the ontolo-
gies and queries used in the experimental evaluations
of previous approaches: in particular, we have consid-
ered: (A) the experimental setting used ire(€z-Urbina,
Motik, and Horrocks 2009); (B) the experimental setting
used in (Kontchakov et al. 2009); (C) the well-known
LUBM ontology benchmarkgwat.cse.lehigh.edu/
projects/lubm/); (D) a newly created ontology. Due to
space limits, here we provide detailed results only on tests
(A) and (D). In some cases, we have additionally tested more
complex queries than the ones already available, to verify
the effectiveness of Presto on such queries. We have con-
ducted our experiments on a Pentium dual core 2.00GHz
CPU, with 2GB RAM and Windows Vista OS.

Query rewriting: comparison with Quonto and
Requiem

To test the pure query rewriting abilities of the Presto ap-
proach (i.e., ignoring the cost of evaluating queries over the
ABox), we have used the experimental setting o&r@2-
Urbina, Motik, and Horrocks 2009), which presents a de-
tailed comparison between (different versions of) Requiem
and an implementation of the PerfectRef query rewriting
algorithm of (Calvanese et al. 2007). We have consid-
ered the three versions of the Requiem algorithm which
are currently available (seeww.comlab.ox.ac.uk/
projects/requiem), our implementation of Presto, and
the query rewriting module currently used in the Quonto
system (called QPerfRef in the following), which is an op-
timized version of the PerfectRef algorithm of (Calvanese
et al. 2007). (At this stage of our experiments, we have
not considered Owlgres (Stocker and Smith 2008), since
its rewriting technique is similar to PerfectRef.) Moreover,
we have considered the same ontologies and queries used
in (Pérez-Urbina, Motik, and Horrocks 2009), adding some
more complex queries.

Here we present only an excerpt of the results of this anal-
ysis. In particular, Figure 3 displays the results obtained
about six different ontologies (V, S, P1, P5X, A, U) of differ-
ent complexity: for each ontology, several different conjunc-
tive queries (Q1-Q7) of increasing size have been consid-
ered. In the figure, the empty cells correspond to the cases in
which the rewriting was not returned after 30 minutes (times
are expressed in milliseconds).

The table clearly shows the effectiveness of Presto. Ex-
cept from few (simple) queries, Presto is almost always
better than all the other techniques, in terms of both the
time needed for computing the rewriting and the size of the
rewriting generated. Moreover, the results show that Presto
scales much better than all other techniques.

Ontology | Query ID Number of rules/CQs of the generated query Time (msec) to generate the query

QPerfRef | Requiem | RequiemF | RequiemG | PRESTO | QPerfRef |Requiem | RequiemF | RequiemG | PRESTO

\'/ Q1 15 15 15 15 16 1 1 1 15 1
\'/ Q2 10 10 10 10 11 31 15 15 15 15
\'/ Q3 72 576 72 72 28 47 328 655 468 15
\ Q4 185 185 185 185 43 94 78 125 125 15
) Q5 30 30 30 30 14 140 16 31 15 16
\ Q6 1850 1850 1850 1850 53 920 2341 6428 8909 15
\ Q7 7200 7200 7200 7200 83 3323 36596 114599 327463 15
S Q1 6 6 6 6 7 1 1 1 15 1
S Q2 2 160 2 2 3 1 109 140 47 1
S Q3 4 480 4 4 5 46 1248 1779 171 1
S Q4 4 960 4 4 5 16 2341 3463 47 15
S Q5 8 2880 8 8 7 47 51481 75349 296 16
S Q6 8 8 9 32 60153 16
S Q7 16 16 12 78 164611 16
P1 Q1 2 2 2 2 3 15 1 1 1 1
P1 Q2 2 2 2 2 3 16 1 1 1 1
P1 Q3 2 2 2 2 3 31 1 1 1 1
P1 Q4 2 2 2 2 3 32 15 16 16 1
P1 Q5 2 2 2 2 3 47 15 16 31 15
P1 Q6 2 32 2 32 3 94 7098 7286 7238 15
P1 Q7 2 64 2 64 3 171 168379 172549 172218 16
P5X Q1 10 14 14 14 11 15 16 16 15 1
P5X Q2 50 77 25 25 16 46 46 63 63 1
P5X Q3 250 390 58 58 16 125 297 499 639 15
P5X Q4 1254 1953 179 179 16 749 6476 12247 16880 15
P5X Q5 6330 9766 718 718 16 7239 223955 427426 567713 15
P5X Q6 32338 16 114233 16
P5X Q7 16 16
A Q1 558 114 27 27 69 171 62 94 78 1
A Q2 1739 74 50 50 52 592 47 63 94 1
A Q3 4741 104 104 104 55 2200 94 140 374 15
A Q4 6589 285 224 224 93 2340 156 234 374 15
A Q5 66068 624 624 624 71 35365 672 1248 2247 16
A Q6 2496 2496 2496 91 9221 18799 36443 15
A Q7 131 31
U Q1 5 2 2 2 6 1 1 1 1 1
U Q2 1 148 1 1 1 1 78 93 47 1
U Q3 12 224 4 4 8 31 156 234 15 16
U Q4 5 1628 2 2 6 1 1998 4430 78 16
U Q5 25 2960 10 10 11 31 9953 18157 297 16
U Q6 40 2368 16 16 14 47 7322 14238 725 16
U Q7 560 33152 224 28 296| 1734331 121888 16

Figure 3: Results for query rewriting.

query Quonto Quonto-Presto
0 |alxy) - AL(j), Rik,y), R(xy), S(x,2), T(l,m) 33 3
1 [q(x,y) :- S(z,k), R(x,2), T(y,z), R(x,x), P(x,m) 227 47
2 [a(xy) - S(z,j), R(x,2), T(k,w), Al(z), Rly,w) 14478 64
3 [abxy) - ALG), S(z,), R(v.K), Rlkz), RC7'X) 13369 453
4 |a(x,y) :- R(z,j), T(j,w), R(x,k), P(w,y), S(z,'a4"), A1(k) 13791 7039
5 [a(x,y) :- S(z,k), AL(i), T(k,w), T(x,z), P(w,]), R(y.j), T('c7",i) 7269 65
6 |q(x,y) :- Q('ad',w), S(j,i), S(z,k), R(x,z), T(k,m), R(j,w), U(i,y), Al(m) 14341 127
7 [a(x,y) :- S(,i), S(z,k), R(x,z), T(k,m), R(j,w), Q(n,w), U(i,y), A1(m), W(y,n) 11956 47
8 [a(x,y) :- S(,i), T(n,u), S(z,k), S(u,x), W(k,n), T(k,m), U(x,z), R(j,w), Q(n,w), U(i,y), Al(m) 191226 16008
9 a(x,y) :- S(j,i), B2(t), S(z,k), R(x,z), W('a4',n), T(k,m), W(u,t), W(n,u), R(j,w), Q(n,w), U(i,y), 64
Al(m)
q(x,y) :- R(n,u), T(k,1), W('a4',n), T(k,m), R(j,w), U(i,y), P(u,t), S(j,i), S(z,k), B2(t), R(x,z), C3(l),
10 548
Q(n,w), Al(m)
1 q(x,y) :- S(I,r), W('ad',n), T(k,m), R(j,w), U(i,y), S(r,'c7"), P(n,u), R(u,t), S(j,i), B2(t), S(z,k), R(x,2), 422
Q(z,1), Q(n,w), A1(m)
1 q(x,y) :- S(l,r), W('ad',n), T(k,m), R(j,w), U(i,y), S(r,'c7"), P(n,u), P(s,'ad"), R(u,t), S(j,i), B2(t), 846
S(z,k), C3(s), R(x,z), Q(z,1), Q(n,w), Al(m)
13 [a60Y) = S(Lr), W(a'), Tllom), Rle), RGw), UGy), S(r'c7), Pln,u), Tly,e), P(s,'ad), Riu,1), 1958
S(j,i), B2(t), S(z,k), C3(s), R(x,z), Q(z,1), Q(n,w), Al(m)
14 [a6oY) = S(Lr), W('a'n), Tlkom), P f), Rie,i), RG,w), A(f), Uliy), S(r,<7), Pn,u), T.e), 2875
P(s,'ad'), R(u,t), S(j,i), B2(t), S(z,k), C3(s), R(x,z), W(f,w), Q(z,1), Q(n,w), A1l(m)
15 a(x,y) :- S(l,r), W('ad',n), T(k,m), R(e,i), R(j,w), T(v,g), U(i,y), S(r,'c7'), P(n,u), T(y,e), P(s,'ad’), 20860
R(u,t), S(j,i), B2(t), R(i,v), S(z,k), C3(s), S(g,x), R(x,z), Q(z,1), Q(n,w), Al(m)
16 q(x,y) :- R(x,p), S(I,r), W('ad',n), T(k,m), R(e,i), R(j,w), T(v,g), U(i,y), S(r,'c7"), P(n,u), T(y,e), 20421
Al(p), P(s,'ad"), R(u,t), S(j,i), B2(t), R(i,v), S(z,k), C3(s), S(g,x), R(x,2), Q(z,1), Q(n,w), Al(m)
a(x,y) - R(x,p), T(k,m), U(i,y), S(r,'c7"), P(n,u), T(y,e), Al(p), P(s,'a4'), S(j,i), S(z,k), R(i,v), Q(z,),
17 |1Q(n,w), S(1,r), W('a4',n), R(j,w), R(e,i), T(v,g), P(y,d), R(u,t), B2(t), S(g,x), C3(s), R(x,z), A1(m), 21174
U(d,z)
q(x,y) :- R(x,p), T(k,m), U(i,y), P(f,'al’), S(r,'c7"), P(n,u), T(y,e), Al(p), P(s,'ad"), S(j,i), S(z,k),
18 |R(i,v), Q(z,1), Q(n,w), S(z,f), S(L,r), W('ad',n), R(j,w), R(e,i), T(v,g), P(y,d), R(u,t), B2(t), C3(s), 22724
S(g,x), R(x,z), Al(m), U(d,z)
a(x,y) :- R(x,p), T(k,m), U(i,y), P(f,'al"), S(r,'c7"), P(n,u), T(y,e), Al(p), P(s,'ad'), S(j,i), S(z,k),
19 [R(i,v), T(,h), P(h,x), Q(z,1), Q(n,w), S(z,f), S(L,r), W('a4',n), R(j,w), R(e,i), T(v,g), P(y,d), R(u,t), 127862
B2(t), C3(s), S(g,x), R(x,z), Al(m), U(d,z)
a(x,y) :- R(x,p), T(k,m), U(i,y), P(f,'al"), S(r,'c7'), P(n,u), T(y,e), Al(p), P(s,'ad'), S(j,i), S(z,k),
20 |R(i,v), T(j,h), P(h,x), R(o,h), Q(z,1), Q(n,w), S(z,f), S(I,r), W('ad',n), R(j,w), R(e,i), T(v,g), P(y,d), 141279

R(u,t), A(o), B2(t), C3(s), S(g,x), R(x,z), A1(m), U(d,z)

Figure 4: Results for query answering (query rewriting and evaluation).

We remark that some of these ontologies are actually ex-

Conclusions

pressed in a language that is slightly more expressive than |n this paper we have presented a new query rewriting

DL-Liteg, due to the presence of qualified existential con-

method forDL-Lite. We believe that our technique is ex-

cepts on the right-hand side of concept inclusion assertions. tremely significant, since it overcomes serious limitations of
Differently from both Requiem and QPerfRef, the Presto al- the previous query answering techniquesbrLite. Presto

gorithm is not optimized to handle qualified existential con-

allows for providing a new upper bound on the size of the

cepts, therefore, to deal with such expressions in Presto, perfect reformulation of a UCQ iBL-Lite: this result has
an encoding of qualified existential concepts using auxiliary not only a theoretical significance, but also a strong practical
role names and role inclusions is needed, which causes an in-impact, since it allows for effectively solving the problem of

crease in the size of the TBox and of the or_1to|ogy alphabet. answering “real” complex queries ovBlL-Lite ontologies,
Nevertheless, the results show that Presto is able to competeas witnessed by our experiments.

with the methods that explicitly handle qualified existential
concepts.

The present work can be extended in several directions.

First of all, the present version of Presto can be certainly op-

Notice also that, in some cases, even if the size of the timized in many ways. For instance, the algorithm can be

rewriting computed by both Requiem and QPerfRefis small, improved in the case when there are no role inclusion as-
these algorithms take a considerable amount of time to com- sertions in the TBox (e.g., faDL-Liter TBoxes): in fact,

pute the rewriting. Roughly, this is due to the fact that, dif-

the problem of computing perfect reformulations in this set-

ferently from Presto, even when the number of actual so- ting is significantly simplified by this assumption. An ap-
lutions (conjunctive queries) is not high, the search space proach in this direction has been pursued in (Kontchakov et
scanned by such algorithms may be very large, i.e., a huge al. 2009), although under a strategy that mixes query an-

number of candidate solutions may be generated.

Query answering: comparison with Quonto

swering by query rewriting with ABox preprocessing.

From the theoretical viewpoint, it would be interesting

to see whether the ideas underlying Presto can be applied

Finally, in order to test the overall effectiveness of our ap- to DLs more expressive thabL-Lite: although it is well-
proach for query answering, we have experimented the eval- known that CQs are not first-order rewritable in such DLs,
uation of the queries generated by Presto (after a transla- it could be possible in principle to generalize Presto to im-

tion in SQL) on some of the most popular current RDBMSs
(IBM DB2, PostgreSQL, and MySQL). To this aim, we have

prove query rewriting and query answering in such logics.

Finally, the current implementation of query answering

produced a modified version of the Quonto system based on based on Presto, which we used to run our experiments, is at
the Presto query rewriting algorithm: we call Quonto-Presto a very early stage and needs several optimizations (e.g., in
such a system. We have compared the query answering per-the translation scheme from nr-datalog to SQL queries).

formance of Quonto-Presto with the original Quonto system
on the various versions of the LUBM ontology (which pro-
vides large ABoxes) and on an ontology explicitly created
for this purpose (the TBox of such an ontology is the one re-
ported in Figure 2(a)). Figure 4 displays the results obtained
on the latter ontology. For each of the queries displayed in
the first column of the table, each row reports the total query
evaluation time (query rewriting plus evaluation of the SQL
translation of the query on the DBMS). Empty cells repre-
sent the cases in which Quonto did not produce any answer
before the timeout of 30 minutes. These results are relative
to the tests performed using MySQL Server 5.1 (however,
analogous results have been otained with the other DBMSs
mentioned above).

The results clearly show that not only Presto allows for a
more efficient query rewriting than QPerfRef, but also the
evaluation of (the SQL translation of) the queries generated
by Presto is more efficient than the evaluation of the UCQs
generated by QPerfRef. In other words, our results show
that the increased complexity in the structure of the query
(from UCQ to nr-datalog query) does not actually compro-
mise the gain obtained by Presto in terms of size of the
rewritten query. These results have been confirmed by the
query evaluation tests that we have performed on the various
versions of the LUBM ontology: with the exception of few
cases (corresponding to very short queries and/or queries
with no join variables, where Quonto is already very effi-
cient), Quonto-Presto outperforms Quonto.

References

Abiteboul, S.; Hull, R.; and Vianu, V. 1995%-oundations
of DatabasesAddison Wesley Publ. Co.

Acciarri, A.; Calvanese, D.; De Giacomo, G.; Lembo,
D.; Lenzerini, M.; Palmieri, M.; and Rosati, R. 2005.
QUONTO: QueryingoNTologies. InProc. of AAAI 2005
1670-1671.

Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. THaeL-Lite family and relations.
J. of Artificial Intelligence ResearcB6:1-69.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini,
M.; and Rosati, R. 2007. Tractable reasoning and efficient
guery answering in description logics: Tbé&-Lite family.

J. of Automated Reasonii3§(3):385-429.

Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2007.
Conjunctive query answering for the description logic
SHIQ. InProc. of IICAI 2007399-404.

Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2009. Combined FO rewritability for con-
junctive query answering in DL-Lite. IRroc. of DL 2009
Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2009. A
comparison of query rewriting techniques for DL-lite. In
Proc. of DL 2009

Stocker, M., and Smith, M. 2008. Owilgres: A scalable owl
reasoner. IProc. of OWLED 2008

