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We propose an epistemic, nonmonotonic approach to the formalization of knowl-

edge in a multi-agent setting. From the technical viewpoint, a family of nonmono-

tonic logics, based on Lifschitz’s modal logic of minimal belief and negation as fail-

ure, is proposed, which allows for formalizing an agent which is able to reason about

both its own knowledge and other agents’ knowledge and ignorance. We define a

reasoning method for such a logic and characterize the computational complexity

of the major reasoning tasks in this formalism. From the practical perspective, we

argue that our logical framework is well-suited for representing situations in which

an agent cooperates in a team, and each agent is able to communicate his knowl-

edge to other agents in the team. In such a case, in many situations the agent needs

nonmonotonic abilities, in order to reason about such a situation based on his own

knowledge and the other agents’ knowledge and ignorance. Finally, we show the

effectiveness of our framework in the robotic soccer application domain.
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1. Introduction

In this paper we propose an epistemic and nonmonotonic approach to the
formalization of knowledge and belief in a multi-agent setting. Our aim is twofold:
on the one hand, we want to define a theoretical framework which is epistemo-
logically adequate for reasoning in concrete multi-agent scenarios; on the other
hand, we want to analyze the computational properties and to define algorithms
for reasoning in such a framework, to the aim of providing the basis for an im-
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plementation of such a framework in a real robotic architecture.
Our starting point is Lifschitz’s modal logic of minimal belief and negation as

failure MBNF [16], which allows for formalizing an agent which is able to reason
about both his own beliefs and other agents’ beliefs. Lifschitz’s logic MBNF is a
modal logic with two autoepistemic operators: a “minimal belief” modality B and
a “negation as failure” (also called “negation by default”) modality not ; however,
for ease of notation, in the following we will use the symbol A (introduced in [17]),
which stands for ¬not and is interpreted in terms of “autoepistemic assumption”.
It has been proved [16] that MBNF is able to embed many of the best known
formalisms for nonmonotonic reasoning, e.g. default logic, autoepistemic logic,
circumscription, and extended disjunctive logic programs (under the stable model
semantics). Such a logic has therefore been considered as a unifying framework
for nonmonotonic reasoning.

In this paper, we define the family of logics MBNF(K), obtained as the exten-
sion of the multimodal systems for knowledge and belief Kn, Tn, S4n, KD45n, S5n

[12] with Lifschitz’s modalities B and A. We define a reasoning method for such
logics and characterize the computational complexity of the major reasoning tasks
in these formalisms. In particular, we prove that reasoning in all MBNF(K) log-
ics is a PSPACE-complete task, which implies that extending any of the above
mentioned multimodal systems with the autoepistemic modalities B and A does
not increase the worst-case complexity of reasoning. We also identify the major
sources of complexity of reasoning in MBNF(K), and establish complexity results
for MBNF(K) under various syntactic restrictions, which correspond to imposing
different bounds on the number of agents modeled in the system and the depth
of nesting of the modal operators.

We then argue that our logical framework is well-suited for representing
situations in which an agent cooperates in a team, and each agent is able to
communicate his beliefs about the world to other agents. In such a case, in
many situations the agent needs nonmonotonic abilities for reasoning about such
a situation, based on the other agents’ knowledge and ignorance. In particular,
we exploit the capabilities of MBNF(K) in the formalization of nonmonotonic
reasoning about many agents, in order to represent nonmonotonic rules for in-
ferring new knowledge about the world, based on the information provided by
other agents. We show the usefulness of such kind of rules in multi-agent ap-
plications requiring a selective, qualitative fusion of information coming from
different agents. To this aim, we have tested the epistemological adequacy of our
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framework in the robotic soccer application domain (RoboCup).
The paper is structured in the following way. In Section 2, we illustrate

syntax and semantics of the MBNF(K) framework. In Section 3 we present a
general reasoning method for MBNF(K), then, in Section 4, we discuss complex-
ity issues and identify the sources of complexity of reasoning in MBNF(K). In
Section 5, we present the application of our framework to the RoboCup domain.
We illustrate related work in Section 6, and conclude in Section 7.

2. The logic MBNF(K)

In this section we define the family of logics MBNF(K). Informally, such
logics can be both seen as the extension of a multimodal logic with the MBNF
modalities B and A and as a syntactic restriction of first-order MBNF (since each
multimodal logic can be seen as a fragment of first-order logic).

We assume that the reader is familiar with the basics of modal logic. In the
following, we denote with K a multimodal logic among the following formalisms:
Kn, Tn, S4n,KD45n,S5n [12]. We recall that, e.g., Kn denotes the multimodal
extension of normal modal logic K: n different modalities K1, . . . , Kn can oc-
cur in a Kn-formula. We also recall that T denotes the modal logic interpreted
on Kripke structures whose accessibility relation among worlds is reflexive; S4

imposes reflexivity and transitivity on such a relation; KD45 denotes the modal
logic interpreted on Kripke structures whose accessibility relation among worlds
is serial, transitive and euclidean, while modal logic S5 imposes symmetry, tran-
sitivity, and reflexivity on the accessibility relation.

The abstract syntax of MBNF(K) is as follows:

ψ = p | ¬ψ | ψ1 ∧ ψ2 | Kiψ

ϕ = ψ | ¬ϕ | ϕ1 ∧ ϕ2 | Bϕ | Aϕ

where p is an element from an alphabet of propositional symbols A and 1 ≤ i ≤ n.
We also use the logical connectives ∨,⊃, which are defined as usual in terms of
∧,¬. Therefore, ψ denotes a K-formula, i.e. a modal formula of the language L of
the logic K, while ϕ denotes an MBNF(K) formula, i.e. a formula in the language
LM of the logic MBNF(K). Notice that we do not allow occurrences of MBNF
operators within the scope of K modalities.
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Moreover, we denote with LS
M the set of subjective MBNF(K) formulas,

that is the set of formulas from LM of the form ϕ such that each K-subformula
occurring in ϕ lies within the scope of an MBNF modality (i.e., B or A).

We now define the semantics of MBNF(K) formulas.
Let W be a fixed, countably infinite set of elements called worlds, and

let UA be the set of propositional valuations over an alphabet A. We call K-
interpretation a usual interpretation structure for the logic K, i.e. a Kripke struc-
ture I of the form I = 〈w,W,R1, . . . , Rn, V 〉, where w ∈ W is called initial world
of I, V : W → UA and Ri ⊆ W ×W for each i ∈ {1, . . . , n} such that:

• if K = Tn, then each Ri is a reflexive relation;
• if K = S4n, then each Ri is a reflexive and transitive relation;
• if K = KD45n, then each Ri is a serial, transitive and euclidean relation;
• if K = S5n, then each Ri is a reflexive, symmetric and transitive relation.

K-satisfiability of a formula ψ ∈ L in I (which we denote as I |= ψ) is defined
in the usual way:

1. if ψ is an atom, then I |= ψ iff V (w)(ψ) = TRUE;
2. I |= ¬ψ iff I 6|= ψ;
3. I |= ψ1 ∧ ψ2 iff I |= ψ1 and I |= ψ2;
4. I |= Kiψ iff, for every w′ ∈ W s. t. (w, w′) ∈ Ri, 〈w′,W,R1, . . . , Rn, V 〉 |= ψ.

In the following, we call cluster a set of K-interpretations M of the
above form. An MBNF(K) structure is a triple (I,Mb, Ma), where I is a K-
interpretation and Mb, Ma are clusters, which are denoted respectively as the
B-cluster and the A-cluster of (I, Mb,Ma).

Definition 1. Satisfiability of a formula in an MBNF(K) structure is inductively
defined as follows:

1. if ϕ ∈ L, (I, Mb,Ma) |= ϕ iff I |= ϕ;
2. (I, Mb,Ma) |= ¬ϕ iff (I, Mb,Ma) 6|= ϕ;
3. (I, Mb,Ma) |= ϕ1 ∧ ϕ2 iff (I,Mb, Ma) |= ϕ1 and (I,Mb,Ma) |= ϕ2;
4. (I, Mb,Ma) |= Bϕ iff, for every J ∈ Mb, (J,Mb,Ma) |= ϕ;
5. (I, Mb,Ma) |= Aϕ iff, for every J ∈ Ma, (J,Mb,Ma) |= ϕ.

Notice that the above definition evaluates the modality B in Mb (and the
modality A in Ma) as in the Kripke model in which each world corresponds to a
K-interpretation in Mb and the accessibility relation between worlds is universal.
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The nonmonotonic character of MBNF(K) is obtained by imposing the fol-
lowing preference semantics over the interpretation structures satisfying a given
formula.

Definition 2. An MBNF(K) structure of the form (I, M, M) is an MBNF(K)
model (or simply model) for σ ∈ LM iff (I, M, M) |= σ and, for every K-
interpretation J and every cluster M ′, if (J,M ′,M) |= σ then M ′ 6⊃ M .

We say that ϕ ∈ LM is MBNF(K)-satisfiable if ϕ has a model (MBNF(K)-
unsatisfiable otherwise). We say that a formula ϕ ∈ LM is entailed by σ ∈ LM

(and write σ |=MBNF(K) ϕ) iff, for every model (I, M, M) for σ, (I, M, M) |= ϕ.
Informally, the above preference semantics provides the modality B with

a “minimal belief” meaning, while the modality A is interpreted in terms of
an autoepistemic assumption that has to be justified [17]. More precisely, the
above semantics realizes a “belief closure”, that can be understood in terms of
maximization of the formulas not believed by the agent.

Example 3. Let σ = Bϕ, where ϕ is a K-formula. The only MBNF(K) models
for σ are of the form (I, M, M), with M = {J : J |= ϕ}. Hence, σ |=MBNF(K) Bϕ,
and σ |=MBNF(K) ¬Bψ for each ψ ∈ L such that the formula ϕ ⊃ ψ is not valid in
logic K (i.e., it is satisfied by all K-interpretations). Therefore, the agent modeled
by σ has minimal belief, in the sense that she only believes ϕ and the formulas
entailed by ϕ in the logic K, while she does not believe all other K-formulas.

As explained by the above example, the meaning of the operator B is pro-
vided by the belief closure implied by Definition 2. Such a closure allows the
agent for deriving in a nonmonotonic way what she does not believe.

Moreover, the autoepistemic assumption operator A allows for expressing
so-called autopistemic or “justified” assumptions [17]. Actually, the modality A

corresponds exactly to Moore’s autoepistemic operator L [17,21]. As shown by
Lifschitz, such a modality (although in its negated form) is also equivalent to the
negation-as-failure operator of logic programming under stable model semantics,
and has a deep semantic correspondence to justifications of Reiter’s default logic
[16]. Therefore, the combined usage of B and A allows for easily formalizing many
of the best known nonmonotonic reasoning mechanisms. As an example, we now
recall the representation of Reiter’s default rules in terms of MBNF(K) formulas



6 R. Rosati / Minimal belief and negation as failure in multi-agent systems

(and refer the reader to [16] for details on embedding other nonmonotonic logics
into MBNF). Let d be a propositional default rule of the form

α : β

γ

Then, we denote with τ(d) the MBNF(K) formula ¬Bα ∨ A¬β ∨ Bγ. Given a
finite default theory (D, W ), we denote with τ(D, W ) the MBNF(K) formula

τ(D, W ) = (
∧

ψ∈W

ψ) ∧ (
∧

d∈D

τ(d))

It can be shown that, given a default theory (D, W ) and a propositional for-
mula ψ, ψ belongs to each Reiter’s default extension of (D, W ) if and only if
τ(D, W ) |=MBNF(K) Bψ (see [16]).

We point out that MBNF(K) corresponds to the modal propositional frag-
ment of MBNF if we restrict MBNF(K) to a single agent, i.e., when the only
modalities allowed in MBNF(K) formulas are B and A.

Finally, from the knowledge representation viewpoint, the MBNF(K) frame-
work can be used for modeling an agent who is able to reason about her own
beliefs and other agents’ knowledge/beliefs. Precisely:

• the agent’s own beliefs can be formalized by the modalities B and A;
• the knowledge/belief of other agents can be expressed by means of the modal-

ities K1, . . . , Kn: each modality Ki is used to express the knowledge/beliefs of
agent i. The way such agents are modeled thus depends on the choice of the
modal logic K;

• the agent may have beliefs about other agents’ knowledge/beliefs (i.e., K-
formulas may occur within the scope of B and A).

Consequently, MBNF(K) allows for representing an agent who is able to perform
autoepistemic nonmonotonic reasoning about his own beliefs and other agents’
knowledge/beliefs. As shown in Section 5, such representational features appear
well-suited to actual multi-agent applications.

3. Reasoning in MBNF(K)

In this section we study reasoning in MBNF(K). We start by introducing
some auxiliary definitions and properties.

In the following, we say that an occurrence of a subformula ψ in a formula
ϕ ∈ LM is strict if it does not lie within the scope of an MBNF modal operator
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(i.e., B or A). E.g., let ϕ = Bσ∧A(Bψ∨ ξ). The occurrence of Bσ in ϕ is strict,
while the occurrence of Bψ is not strict. Then, we call a formula of the form Bψ

or Aψ, with ψ ∈ LM , an MBNF modal atom, or simply modal atom. Moreover,
given ϕ ∈ LM , we call the set of modal atoms occurring in ϕ the modal atoms of
ϕ (and denote such a set as MA(ϕ)).

Definition 4. Let ϕ ∈ LM and let (P, N) be a partition of a set of modal atoms.
We denote as ϕ(P, N) the formula obtained from ϕ by substituting each strict
occurrence in ϕ of a formula in P with true, and each strict occurrence in ϕ of a
formula in N with false.

Observe that only the occurrences in ϕ of modal subformulas of the form Bψ

or Aψ which are not within the scope of another MBNF modality are replaced;
notice also that, if P ∪N contains MA(ϕ), then ϕ(P, N) is a K-formula. In this
case, the pair (P, N) identifies a guess on all the MBNF modal atoms from ϕ, i.e.
P contains the modal atoms of ϕ assumed to hold, while N contains the modal
atoms of ϕ assumed not to hold.

Example 5. Suppose ϕ = B(K1a ∨Ba) ∧ (¬A(K2a ∨ ¬d) ∨BAK2b) ∧ c. Then,

MA(ϕ) = {B(K1a ∨Ba), Ba,A(K2a ∨ ¬d), BAK2b, AK2b}

A possible partition (P, N) of MA(ϕ) is the following:

P = {B(K1a ∨Ba)}
N = {Ba,A(K2a ∨ ¬d), BAK2b, AK2b}

For such a partition, ϕ(P, N) = true ∧ (¬false ∨ false) ∧ c.

Definition 6. Let ϕ ∈ LM and let (P, N) be a partition of MA(ϕ). We denote
as ob(P, N) the K-formula

ob(P, N) =
∧

Bψ∈P

ψ(P, N)

Roughly speaking, the K-formula ob(P,N) represents the “objective knowl-
edge” implied by the guess (P,N) on the formulas of the form Bψ belonging to P .
From the semantic viewpoint, in each structure (I,M,M ′) satisfying the guess on
the modal atoms given by (P, N) (i.e., such that each modal atom in P is satisfied
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by (I, M, M ′) and each modal atom in N is not satisfied by (I, M, M ′)), the K-
formula ob(P, N) constrains the K-interpretations of M , since in each such struc-
ture the K-formula ob(P,N) must be satisfied by each K-interpretation J ∈ M ,
i.e. J |= ob(P,N), while the K-formula ϕ(P, N) constrains the K-interpretation
I, since ϕ(P,N) must be satisfied by I.

Example 7. Consider again the partition (P, N) of MA(ϕ) in the previous ex-
ample:

P = {B(K1a ∨Ba)}
N = {Ba, A(K2a ∨ ¬d), BAK2b, AK2b}

For such a partition, the only formula of the form Bψ belonging to P is B(K1a∨
Ba), and

(K1a ∨Ba)(P,N) = K1a ∨ false

Therefore, ob(P, N) = K1a ∨ false.

Definition 8. We say that a pair of sets of K-interpretations (M, M ′) induces
the partition (P, N) of MA(ϕ) if, for each modal atom ξ ∈ MA(ϕ), ξ ∈ P iff, for
each K-interpretation I, (I,M, M ′) |= ξ.

Lemma 9. Let ϕ ∈ LM , let I be a K-interpretation, let M, M ′ be sets of K-
interpretations, and let (P, N) be the partition induced by (M, M ′) on a set of
modal atoms S. Then, (I, M, M ′) |= ϕ iff (I, M, M ′) |= ϕ(P, N).

Proof. Follows immediately from Definition 4, Definition 8, and Definition 1.

We now show that, if (I, M, M) is an MBNF(K) model for ϕ which in-
duces the partition (P, N) of MA(ϕ), then the K-formula ob(P, N) completely
characterizes the set of K-interpretations M .

Theorem 10. Let ϕ ∈ LM , let (I,M,M) be an MBNF(K) model for ϕ, and let
(P, N) be the partition of MA(ϕ) induced by (M, M). Then, M = {J : J |=
ob(P,N)}.

Proof. Let M ′ = {J : J |= ob(P, N)}. Since (M, M) induces the partition
(P, N), by Definition 8 it follows that each K-interpretation in M must satisfy
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ob(P, N), hence M ⊆ M ′. Now suppose M ⊂ M ′, and consider the struc-
ture (I,M ′,M). We prove that each modal atom ξ ∈ MA(ϕ) belongs to P iff
(I, M ′,M) |= ξ. The proof is by induction on the depth of formulas in MA(ϕ).

First, consider a modal atom Aψ such that ψ ∈ L: from the definition of
satisfiability of a formula in an MBNF(K) structure, it follows immediately that
Aψ ∈ P iff (I, M ′,M) |= Aψ. Then, consider a modal atom Bψ such that ψ ∈ L:
if Bψ ∈ P , then, by definition of ob(P,N), the K-formula ob(P, N) ⊃ ψ is valid,
therefore (I, M ′,M) |= Bψ. If Bψ ∈ N , then there exists a K-interpretation J in
M such that J 6|= ψ, and since M ′ ⊃ M , it follows that (I, M ′,M) 6|= Bψ. Hence,
each modal atom ξ ∈ MA(ϕ) of depth 1 belongs to P iff (I,M ′,M) |= ξ.

Suppose now that ξ ∈ P iff (I, M ′,M) |= ξ for each modal atom ξ in
MA(ϕ) of depth less or equal to i. Consider a modal atom Bψ of MA(ϕ) of
depth i + 1: by the induction hypothesis, and by Lemma 9, (I, M ′,M) |= Bψ

iff M ′ |= B(ψ(P, N)). Now, if Bψ ∈ P , then, by definition of ob(P, N), the
K-formula ob(P,N) ⊃ ψ(P, N) is valid, and since M ′ = {J : J |= ob(P,N)}, it
follows that M ′ |= B(ψ(P, N)), which in turn implies (I, M ′,M) |= Bψ; on the
other hand, if Bψ ∈ N , then there exists a K-interpretation J in M such that
(J,M, M) 6|= ψ, hence, by the induction hypothesis and Lemma 9, J 6|= ψ(P, N).
Now, since M ′ ⊃ M , it follows that M ′ 6|= B(ψ(P,N)), hence (I, M ′,M) 6|= Bψ.
In the same way it is possible to show that a modal atom of the form Aψ of depth
i + 1 belongs to P iff (I,M ′,M) |= Aψ.

We have thus proved that each modal atom ξ ∈ MA(ϕ) belongs to P iff
(I, M ′,M) |= ξ: this in turn implies that (I,M ′,M) |= ϕ iff I |= ϕ(P, N),
and since by hypothesis (I, M, M) satisfies ϕ and (P,N) is the partition of
MA(ϕ) induced by (M,M), by Lemma 9 it follows that I |= ϕ(P, N). Therefore,
(I, M ′,M) |= ϕ, which contradicts the hypothesis that (I,M) is an MBNF(K)
model for ϕ. Consequently, M ′ = M , which proves the thesis.

Informally, the above theorem states that each MBNF(K) model for ϕ can
be associated with a partition (P, N) of the modal atoms of ϕ; moreover, the
K-formula ob(P, N) exactly characterizes the set of K-interpretations M of an
MBNF(K) model (I, M, M), in the sense that M is the set of all K-interpretations
satisfying ob(P,N). This provides a finite way to describe all MBNF(K) models
for ϕ.

We now define the notion of a partition of a set of modal atoms induced by
a pair of K-formulas.
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Definition 11. Let σ ∈ LM , ϕ, ψ ∈ L. We denote as Prt(σ, ϕ, ψ) the partition of
MA(σ) induced by (M1,M2), where M1 is the set of K-interpretations satisfying
ϕ and M2 is the set of K-interpretations satisfying ψ.

In order to simplify notation, we denote as Prt(σ, ϕ) the partition
Prt(σ, ϕ, ϕ). The following theorem provides a constructive way to build the
partition Prt(σ, ϕ, ψ).

Theorem 12. Let σ ∈ LM , ϕ,ψ ∈ L. Let (P, N) be the partition of MA(σ)
built as follows:

1. start from P = N = ∅;
2. for each modal atom Bξ in MA(σ) such that ξ(P, N) ∈ L, if the K-formula

ϕ ⊃ ξ(P,N) is valid, then add Bξ to P , otherwise add Bξ to N ;
3. for each modal atom Aξ in MA(σ) such that ξ(P, N) ∈ L, if the K-formula

ψ ⊃ ξ(P,N) is valid, then add Aξ to P , otherwise add Aξ to N ;
4. iteratively apply the above rules until P ∪N = MA(σ).

Then, (P, N) = Prt(σ, ϕ, ψ).

Proof. In the following, we say that a formula ξ has MBNF-depth i if each
subformula in ξ lies within the scope of at most i modalities B or A, and there
exists a subformula in ξ which lies within the scope of exactly i modalities B or
A.

The proof is by induction on the structure of the formulas in MA(σ). First,
from the fact that Prt(σ, ϕ, ψ) is the partition induced by (M, M ′), with M =
{I : I |= ϕ}, M ′ = {I : I |= ψ}, and from the definition of satisfiability in MBNF
structures, it follows that, if ξ ∈ L, then (M,M ′) |= Bξ if and only if ϕ ⊃ ξ is
a valid K-formula, and (M,M ′) |= Aξ if and only if ψ ⊃ ξ is a valid K-formula.
Therefore, (P, N) agrees with Prt(σ, ϕ, ψ) on all modal atoms of MBNF-depth 1.
Suppose now that (P, N) and Prt(σ, ϕ, ψ) agree on all modal atoms of MBNF-
depth less or equal to i. Consider a modal atom Bξ of MA(σ) of MBNF-depth
i+1. From Lemma 9 and from the definition of satisfiability in MBNF structures,
it follows that (M,M ′) |= Bξ if and only if ϕ ⊃ ξ(Prt(σ, ϕ, ψ)) is a valid K-
formula, and since by Definition 4 the value of the formula ξ(Prt(σ, ϕ, ψ)) only
depends on the guess of the modal atoms of MBNF-depth less or equal to i in
Prt(σ, ϕ, ψ), by the induction hypothesis it follows that ξ(Prt(σ, ϕ, ψ)) = ξ(P, N),
hence Bξ belongs to P if and only if (M,M ′) |= Bξ. Analogously, it can be proven
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that any modal atom of MBNF-depth i + 1 of the form Aξ belongs to P if and
only if (M,M ′) |= Aξ. Therefore, (P, N) and Prt(σ, ϕ, ψ) agree on all modal
atoms of MBNF-depth i + 1.

Example 13. Let K = Kn, and let σ be the formula ϕ of Example 5, i.e.:

σ = B(K1a ∨Ba) ∧ (¬A(K2a ∨ ¬d) ∨BAK2b) ∧ c

We now build the partition Prt(σ,K1a,K1c) of MA(σ) according to the above
theorem, starting from P = N = ∅.
1. Since K1a ⊃ a is not Kn-valid, Ba is added to N ;
2. since K1c ⊃ K2b is not Kn-valid, AK2b is added to N ;
3. since K1c ⊃ K2a ∨ ¬d is not Kn-valid, A(K2a ∨ ¬d) is added to N ;
4. now, (K1a ∨ Ba)(P, N) = K1a ∨ false. Since K1a ⊃ K1a ∨ false is Kn-valid,

B(K1a ∨Ba) is added to P ;
5. finally, (AK2b)(P, N) = false. Since K1c ⊃ false is not Kn-valid, BAK2b is

added to N .

Therefore, Prt(σ,K1a,K1c) = (P,N), where

P = {B(K1a ∨Ba)}
N = {Ba,A(K2a ∨ ¬d), BAK2b, AK2b}

We now define a method for deciding satisfiability of a formula ϕ ∈ LM . In
particular, we present the algorithm MBNF(K)-Sat, reported in Figure 1.

The algorithm extends previous results for the propositional fragment of
MBNF. In particular, it generalizes the results presented in [21] concerning a
finitary characterization of propositional MBNF models and an analogous finite
characterization, in terms of partitions of MA(ϕ), of all the models relevant for
establishing whether a partition (P, N) of MA(ϕ) identifies a model.

The algorithm checks whether there exists a partition (P, N) of MA(ϕ)
satisfying the three conditions (a), (b), (c). Intuitively, the partition can-
not be self-contradictory (condition (a)): in particular, the condition (P, N) =
Prt(ϕ, ob(P, N)) establishes that the objective knowledge implied by the parti-
tion (P, N) (that is, the K-formula ob(P,N)) identifies a set of K-interpretations
M = {I : I |= ob(P,N)} such that (M, M) induces the same partition (P, N) on
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Algorithm MBNF(K)-Sat(ϕ)
Input: formula ϕ ∈ LM ;
Output: true if ϕ has a model, false otherwise.
begin
if there exists partition (P, N) of MA(ϕ)
such that

(a) (P, N) = Prt(ϕ, ob(P,N)) and
(b) ϕ(P, N) is K-satisfiable and
(c) for each partition (P ′, N ′) 6= (P, N) of MA(ϕ),

(c1) ϕ(P ′, N ′) is not K-satisfiable or
(c2) (P ′, N ′) 6= Prt(ϕ, ob(P ′, N ′), ob(P, N)) or
(c3) ob(P, N) ∧ ¬ob(P ′, N ′) is K-satisfiable

then return true
else return false
end

Figure 1. Algorithm MBNF(K)-Sat.

MA(ϕ). Moreover, the partition must be consistent with ϕ (condition (b)): such
a condition implies that there exists a K-interpretation I such that ϕ is satisfied
in (I, M, M). Moreover, condition (c) corresponds to check whether such a struc-
ture (I,M,M) identifies an MBNF(K) model for ϕ according to the preference
semantics of MBNF(K), i.e. whether there is no pair (J,M ′) such that M ′ ⊃ M

and (J,M ′, M) satisfies ϕ. Again, the search of such a structure is performed
by examining whether there exists a partition of MA(ϕ), different from (P, N),
which does not satisfy any of the conditions (c1), (c2), (c3).

We illustrate the algorithm through the following simple example.

Example 14. Suppose

ϕ = B(K1a ∨Ba) ∧ (¬A(K2a ∨ ¬d) ∨BAK2b) ∧ c

Therefore,

MA(ϕ) = {B(K1a ∨Ba), Ba, A(K2a ∨ ¬d), BAK2b, AK2b}
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1. First, suppose K = Kn, and consider the partition (P,N) = (P1, N1), where

P1 = {B(K1a ∨Ba)}
N1 = {Ba, A(K2a ∨ ¬d), BAK2b, AK2b}

Then, ϕ(P, N) = true ∧ (¬false ∨ false) ∧ c (which is Kn-equivalent to
c), thus satisfying condition (b) of the algorithm. Moreover, ob(P, N) =
K1a ∨ false (which is Kn-equivalent to K1a). Now, let M be the set of K-
interpretations satisfying K1a: it is easy to see that (M, M) satisfies the
modal atoms in P , while it does not satisfy the modal atoms in N , hence
(P, N) = Prt(ϕ, ob(P,N)), thus satisfying condition (a) of the algorithm. As
for condition (c), it is immediate to see that either condition (c1) or condi-
tion (c2) holds for each partition of MA(ϕ) different from (P1, N1), with the
exception of the following one:

P ′ = {B(K1a ∨Ba), Ba}
N ′ = {A(K2a ∨ ¬d), BAK2b, AK2b}

Since ob(P ′, N ′) = (K1a ∨ true) ∧ a, which is Kn-equivalent to a, ob(P, N) ∧
¬ob(P ′, N ′) is Kn-equivalent to K1a ∧ ¬a, hence it is Kn-satisfiable, thus
satisfying condition (c3) of the algorithm. Therefore, (P, N) satisfies con-
dition (c) of the algorithm. Consequently, MBNF(K)-Sat(ϕ) returns true
In fact, the partition (P1, N1) identifies the set of MBNF(K) models for ϕ

(I, M) such that I is a Kn-interpretation satisfying c and M is the set of
Kn-interpretations satisfying K1a.

2. now supposeK is a reflexive multimodal logic (i.e., either Tn or S4n or S5n). It
is easy to see that in this case the partition (P1, N1) does not satisfy condition
(a) of the algorithm, which is due to the fact that (M, M) satisfies the modal
atom Ba (since the formula K1a ⊃ a is valid in all reflexive multimodal
logics), which is assumed as false in (P1, N1). On the other hand, suppose
now that (P, N) = (P2, N2), where

P2 = {B(K1a ∨Ba), Ba, BAK2b, AK2b}
N2 = {A(K2a ∨ ¬d)}

Then, ϕ(P,N) = true ∧ (¬false ∨ true) ∧ c (which is K-equivalent to c), and
ob(P, N) = (K1a∨true)∧a∧true, which is K-equivalent to a. It is immediate
to verify that (P, N) = Prt(ϕ, ob(P, N)), thus satisfying condition (a) of the
algorithm, and that either condition (c1) or condition (c2) holds for each
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partition of MA(ϕ) different from (P2, N2), therefore condition (c) holds for
(P,N) = (P2, N2). Consequently, MBNF(K)-Sat(ϕ) returns true. In fact, the
partition (P2, N2) identifies the set of MBNF(K) models for ϕ (I,M) such
that I is a K-interpretation satisfying c and M is the set of K-interpretations
satisfying a.

We now prove soundness and completeness of the algorithm MBNF(K)-Sat.
To this aim, we need the following preliminary lemma.

Lemma 15. Let ϕ ∈ LM , and let (P,N) be the partition of MA(ϕ) induced by
(M ′,M). Let M ′′ = {I : I |= ob(P, N)}. Then, (P, N) is the partition induced
by (M ′′,M).

Proof. The proof is by induction on the depth of the modal atoms of MA(ϕ).
Let Aψ ∈ MA(ϕ) such that ψ ∈ L: then, (M ′,M) |= Aψ iff, for each K-
interpretation I ∈ M , I |= ψ, therefore (M ′, M) |= Aψ iff (M ′′,M) |= Aψ. Now
let Bψ ∈ MA(ϕ) such that ψ ∈ L: by Definition 6, (M ′,M) |= Bψ iff the K-
formula ob(P, N) ⊃ ψ is valid, and since M ′′ = {I : I |= ob(P,N)}, it follows
that (M ′,M) |= Bψ iff (M ′′,M) |= Bψ.

Now suppose that, for each modal atom ξ of depth i, (M ′, M) |= ξ iff
(M ′′,M) |= ξ, and let (P ′, N ′) denote the partition of the modal atoms in MA(ϕ)
of depth less or equal to i induced by (M ′,M). First, consider a modal atom Aψ

of depth i + 1. Then, by Lemma 9, (M ′,M) |= Aψ iff (M ′,M) |= A(ψ(P ′, N ′))
and, by the inductive hypothesis and Lemma 9, (M ′′,M) |= Aψ iff (M ′′,M) |=
A(ψ(P ′, N ′)). Then, since ψ has depth i, ψ(P ′, N ′) is a K-formula, hence
(M ′,M) |= A(ψ(P ′, N ′)) iff, for each K-interpretation I ∈ M , I |= ψ(P ′, N ′),
which immediately implies that (M ′,M) |= Aψ iff (M ′′,M) |= Aψ. Now con-
sider a modal atom Bψ of depth i + 1. Then, by Lemma 9, (M ′,M) |= Bψ

iff (M ′,M) |= B(ψ(P ′, N ′)) and, by the inductive hypothesis and Lemma 9,
(M ′′,M) |= Bψ iff (M ′′,M) |= B(ψ(P ′, N ′)). By Definition 6, (M ′,M) |= Bψ iff
the K-formula ob(P, N) ⊃ ψ(P ′, N ′) is valid, and since M ′′ = {I : I |= ob(P, N)},
it follows that (M ′,M) |= Bψ iff (M ′′,M) |= Bψ, which proves the thesis.

Theorem 16. Let ϕ ∈ LM . Then, MBNF(K)-Sat(ϕ) returns true iff ϕ is
MBNF(K)-satisfiable.
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Proof. If part. Suppose ϕ is MBNF(K)-satisfiable. Then, there exists a K-
interpretation I and a cluster M such that (I, M, M) is an MBNF(K) model for
ϕ. Let (P,N) be the partition of MA(ϕ) induced by (M, M). By Theorem 10,
M = {I : I |= ob(P,N)}. Therefore, by Definition 11, (P, N) = Prt(ϕ, ob(P,N)),
hence condition (a) in the algorithm holds. Then, since (I, M, M) |= ϕ, by
Lemma 9 I |= ϕ(P, N), hence condition (b) in the algorithm holds. Now sup-
pose there exists a partition (P ′, N ′) of MA(ϕ) such that (P ′, N ′) 6= (P, N)
and none of conditions (c1), (c2), and (c3) holds. Then, since ϕ(P ′, N ′) is K-
satisfiable, there exists a K-interpretation J such that J |= ϕ(P ′, N ′), and since
(P ′, N ′) = Prt(ϕ, ob(P ′, N ′), ob(P, N)), from Lemma 9 it follows that there exists
a K-interpretation J such that (J,M ′,M) |= ϕ, where M ′ = {I : I |= ob(P ′, N ′)}.
Then, since condition (c3) does not hold, the K-formula ob(P,N) ⊃ ob(P ′, N ′)
is valid, which implies that M ′ ⊇ M . Now, if M ′ = M , then (P ′, N ′)
would be the partition induced by (M,M), thus contradicting the hypothesis
(P ′, N ′) 6= (P, N). Hence, M ′ ⊃ M , and since (J,M ′,M) |= ϕ, it follows that
(I, M, M) is not an MBNF(K) model for ϕ. Contradiction. Therefore, condition
(c) in the algorithm holds, consequently MBNF(K)-Sat(ϕ) returns true.

Only-if part. Suppose MBNF(K)-Sat(ϕ) returns true. Then, there exists
a partition (P, N) of MA(ϕ) such that conditions (a), (b), and (c) hold. Let
M = {I : I |= ob(P, N)}. Since (P, N) = Prt(ϕ, ob(P,N)), by Definition 11
(P, N) is the partition induced by (M,M). And since ϕ(P, N) is K-satisfiable,
it follows that there exists a K-interpretation I such that I |= ϕ(P, N), hence,
by Lemma 9, (I, M, M) |= ϕ. Now suppose (I, M, M) is not an MBNF(K)
model for ϕ. Then, there exists a cluster M ′ and a K-interpretation J such that
M ′ ⊃ M and (J,M ′,M) |= ϕ. Let (P ′, N ′) be the partition of MA(ϕ) induced
by (M ′,M). Since M = {I : I |= ob(P, N)}, it follows that M ′ contains at least
one K-interpretation J which does not satisfy ob(P, N), and since ob(P, N) =∧

Bψ∈P ψ(P, N), J does not satisfy at least one formula of the form ψ(P, N)
such that Bψ ∈ P . Therefore, P ′ 6= P , which implies that (P ′, N ′) 6= (P, N).
Then, since (J,M ′,M) |= ϕ, by Lemma 9 J |= ϕ(P ′, N ′), hence ϕ(P ′, N ′) is
K-satisfiable. Now let M ′′ = {I : I |= ob(P ′, N ′)}. By Lemma 15, it follows
that (P ′, N ′) is the partition induced by (M ′′,M), therefore, by Definition 11,
(P ′, N ′) = Prt(ϕ, ob(P ′, N ′), ob(P,N)). Moreover, since M ′ ⊃ M , it follows
that the K-formula ob(P, N) ⊃ ob(P ′, N ′) is valid, hence the formula ob(P,N)∧
¬ob(P ′, N ′) is K-unsatisfiable. Consequently, (P ′, N ′) does not satisfy condition
(c) in the algorithm, thus contradicting the hypothesis. Therefore, (I, M, M) is
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an MBNF(K) model for ϕ, thus proving the thesis.

As for entailment in MBNF(K), even though the deduction theorem does
not hold in this formalism (as in other nonmonotonic logics), it turns out that, for
subjective formulas, it is possible to easily reduce entailment to (un)satisfiability
in this logic.

In the following, we denote as ϕ[B/A] the formula obtained from ϕ ∈ LM

by replacing each occurrence of the modality B with the modality A.

Theorem 17. Let σ ∈ LM , ϕ ∈ LS
M . Then, σ |=MBNF(K) ϕ iff the formula

σ ∧ (¬ϕ[B/A]) is MBNF(K)-unsatisfiable.

Proof. If-part. Suppose σ 6|=MBNF ϕ. Then, there exists an MBNF(K) model
(I,M,M) for σ such that (I, M, M) 6|= ϕ. Therefore, (I, M, M) |= ¬ϕ, and,
by Definition 1, (I,M, M) |= ¬ϕ[B/A], since the B-cluster and the A-cluster
coincide in (I,M, M). Since (I, M,M) is an MBNF(K) model for σ, it fol-
lows that (I,M,M) |= σ ∧ (¬ϕ[B/A]); moreover, from Definition 2, for each
K-interpretation J and for each cluster M ′ such that M ′ ⊃ M , (J,M ′,M) 6|= σ,
which implies that (J,M ′,M) 6|= σ ∧ (¬ϕ[B/A]). Consequently, (I, M, M) is
an MBNF(K) model for σ ∧ (¬ϕ[B/A]), which implies that σ ∧ (¬ϕ[B/A]) is
MBNF(K)-satisfiable.

Only-if part. Suppose σ ∧ (¬ϕ[B/A]) is MBNF(K)-satisfiable. Then, there
exist a K-interpretation I and a cluster M such that (I, M, M) is an MBNF(K)
model for σ ∧ (¬ϕ[B/A]), hence, by Definition 2, (I, M, M) |= σ ∧ (¬ϕ[B/A])
and, for each K-interpretation J and for each cluster M ′ such that M ′ ⊃ M ,
(J,M ′,M) 6|= σ ∧ (¬ϕ[B/A]), that is, either (J,M ′, M) 6|= σ or (J,M ′,M) 6|=
¬ϕ[B/A]. Now, since ϕ ∈ LS

M , the evaluation of ¬ϕ[B/A] in (J,M ′,M) does
not depend on the K-interpretation J ; moreover, since in ϕ[B/A] there are no
occurrences of the operator B, the evaluation of ¬ϕ[B/A] in (J,M ′,M) does not
depend on the B-cluster M ′. Therefore, the evaluation of ¬ϕ[B/A] in (J,M ′,M)
only depends on the A-cluster M , and since (I,M,M) |= ¬ϕ[B/A], it follows that,
for each K-interpretation J and for each cluster M ′, (J,M ′,M) |= ¬ϕ[B/A],
and since either (J,M ′,M) 6|= σ or (J,M ′,M) 6|= ¬ϕ[B/A], it follows that
(J,M ′,M) 6|= σ. Consequently, by Definition 2, (I, M, M) is an MBNF(K) model
for σ. Moreover, since (I, M,M) |= ¬ϕ[B/A], from Definition 1 it follows that
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(I, M, M) |= ¬ϕ, since the B-cluster coincides with the A-cluster in (I, M, M).
Therefore, (I, M, M) 6|= ϕ, which implies that σ 6|=MBNF(K) ϕ.

Based on the above theorem, we are able to decide entailment in MBNF(K)
through the algorithm MBNF(K)-Sat.

As for the implementation of a reasoning procedure for MBNF(K), we re-
mark that the algorithm MBNF(K)-Sat is essentially a method for reducing sat-
isfiability in MBNF(K) to a number of satisfiability problems in the logic K. This
allows for easily implementing a procedure for MBNF(K)-satisfiability on top of
an already implemented satisfiability solver for multimodal logics, like KSAT [8]
or FaCT [14].

4. Computational characterization

We now provide a computational characterization of reasoning in MBNF(K),
and analyze some syntactic restrictions of MBNF(K) which reduce the worst-case
complexity of reasoning.

In particular, we have identified four different syntactic restrictions that
affect the complexity of reasoning in MBNF(K):

1. the number of modeled agents;

2. the choice of the multimodal system K;

3. the depth of nesting of the K modalities K1, . . . , Kn;

4. the depth of nesting of the MBNF operator B.

In the following, we say that a modal formula ϕ has B-depth i (i ≥ 0) if
there is a subformula of ϕ which lies within the scope of i nested occurrences
of the modality B, and there is no subformula of ϕ which lies within the scope
of i + 1 occurrences of the modality B. Moreover, we say that ϕ has K-depth
i (i ≥ 0) if there is a subformula of ϕ which lies within the scope of i nested
occurrences of the modalities K1, . . . ,Kn, and there is no subformula of ϕ which
lies within the scope of i + 1 occurrences of the modalities K1, . . . , Kn.

The rest of this section is organized as follows: we first recall the complex-
ity of reasoning in the multimodal logics K ∈ {Kn, Tn,S4n, KD45n, S5n} under
various syntactic restrictions [12,9]; then, we first establish the complexity of
MBNF(K)-satisfiability with respect to the different choices of the multimodal
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logic K, and then establish the complexity of MBNF(K)-satisfiability for the var-
ious multimodal logics K when we impose a bound on the depth of nesting of the
modality B; finally, we summarize the complexity results obtained.

4.1. Complexity results for multimodal logics

We first briefly recall the complexity classes in the polynomial hierarchy,
and refer to [15,19] for further details about the complexity classes mentioned
in the paper. The class NP contains all problems that can be solved by a non-
deterministic Turing machine in polynomial time. The class coNP comprises all
problems that are the complement of a problem in NP. PA (NPA) is the class
of problems that are solved in polynomial time by deterministic (nondetermin-
istic) Turing machines using an oracle for A (i.e. that solves in constant time
any problem in A). The classes Σp

k, Πp
k and ∆p

k of the polynomial hierarchy are
defined by Σp

0 = Πp
0 = ∆p

0 = P, and for k ≥ 0, Σp
k+1 = NPΣp

k , Πp
k+1 = coΣp

k+1 and
∆p

k+1 = PΣp
k . In particular, the complexity class Σp

2 is the class of problems that
are solved in polynomial time by a nondeterministic Turing machine that uses
an NP-oracle, and Πp

2 is the class of problems that are complement of a problem
in Σp

2, while Σp
3 is the class of problems that are solved in polynomial time by

a nondeterministic Turing machine that uses an Σp
2-oracle, and Πp

3 is the class
of problems that are complement of a problem in Σp

3. It is generally assumed
that the polynomial hierarchy does not collapse: hence, a problem in the class Σp

2

or Πp
2 is considered computationally easier than a Σp

3-hard or Πp
3-hard problem.

Finally, PSPACE is the class of problems that can be solved by a Turing machine
that uses a polynomially bounded amount of memory. It is known that PSPACE
contains all problems in the polynomial hierarchy: moreover, a PSPACE-hard
problem is generally considered computationally harder than a Σp

k-hard or Πp
k-

hard problem, for any given k.

The computational results for multimodal logics obtained in [12,9] are sum-
marized in the table reported in Figure 2. The table must be read as follows:
for each row of the table, the complexity of checking K-satisfiability under the
syntactic restriction (on the depth of nesting of the modal operators) reported in
the first column (i.e., considering only the subset of K-formulas satisfying the re-
striction) is complete with respect to the complexity class appearing in the other
columns, where each column corresponds to a different choice of the multimodal
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K ∈ {KD45n,S5n} K ∈ {Kn, Tn} K = S4n

K ∈ {KD451, S51} (n ≥ 2) (n ≥ 1) (n ≥ 1)

K-depth ≤ 1 NP NP NP NP

K-depth ≤ k NP NP NP PSPACE
(k ≥ 2)

no restrictions NP PSPACE PSPACE PSPACE

Figure 2. Complexity of K-satisfiability [12,9]

logic K and of the number of agents modeled.

4.2. Complexity of MBNF(K)-satisfiability

In the following, we say that a language L′ ⊆ L is closed under boolean
composition if, for each ϕ1, ϕ2 ∈ L′, ϕ1 ∧ ϕ2 ∈ L′ and ¬ϕ1 ∈ L′. Moreover, we
denote as L′M the subset of LM built upon L′, i.e., the modal extension of L′ with
the modalities B and A obtained according to the following abstract syntax:

ϕ = ψ | ¬ϕ | ϕ1 ∧ ϕ2 | Bϕ | Aϕ

where ψ ∈ L′.

Theorem 18. Let K ∈ {Kn, Tn,S4n, KD45n,S5n}, let L′ ⊆ L, and let L′ be
closed under boolean composition. If K-satisfiability for formulas from L′ is a
PSPACE-complete problem, then MBNF(K)-satisfiability for formulas from L′M
is PSPACE-complete.

Proof. PSPACE-hardness follows from the fact that L′M ⊃ L′ and from the fact
that, if ϕ ∈ L′, ϕ is MBNF(K)-satisfiable if and only if ϕ is K-satisfiable.

To prove membership in PSPACE, we analyze the complexity of the algo-
rithm MBNF(K)-Sat reported in Figure 1. In particular, observe that:

• given (P, N), the formula ob(P, N) belongs to L′, because ϕ ∈ L′M and L′
is closed under boolean composition. Moreover, ob(P, N) can be computed
in polynomial time with respect to the size of P , hence, by Theorem 12,
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since MA(ϕ) has size linear with respect to the size of ϕ, construction of
the partition Prt(ϕ, ob(P, N)) can be performed by solving a linear number
(with respect to the size of ϕ) of K-satisfiability problems for formulas from
L′. Therefore, condition (a) can be checked through a linear number (in the
size of the input) of calls to a PSPACE-oracle;

• Since, given ϕ and (P,N), ϕ(P,N) can be computed in polynomial time with
respect to the size of the input, and since ϕ(P, N) ∈ L′, it follows that condi-
tion (b) can be computed in PSPACE;

• given a partition (P ′, N ′), each of the conditions (c1), (c2) and (c3) (analogous
to conditions (a) and (b)) can be checked in polynomial time, with respect to
the size of ϕ, using a PSPACE-oracle. Therefore, since the guess of the parti-
tion (P ′, N ′) of MA(ϕ) requires a nondeterministic choice, falsity of condition
(c) can be decided in NPPSPACE, and since NPPSPACE=PSPACE [15], verifying
whether condition (c) holds can be decided in PSPACE.

Since the guess of the partition (P, N) of MA(ϕ) requires a nondetermin-
istic choice, it follows that the algorithm MBNF(K)-Sat, if considered as a non-
deterministic procedure, decides satisfiability of ϕ in nondeterministic polyno-
mial time (with respect to the size of ϕ), using a PSPACE-oracle. And since
NPPSPACE=PSPACE, from Theorem 16 we obtain an upper bound of PSPACE
for the satisfiability problem in MBNF(K).

The above theorem and the results reported in the table of Figure 2 imply
that, for each language L′ and choice of the modal system K corresponding to an
entry of such a table for which K-satisfiability is PSPACE-complete, MBNF(K)-
satisfiability in the corresponding language L′M is PSPACE-complete as well.

In particular, in the general case, i.e., when L′ = L and hence L′M =
LM , MBNF(K)-satisfiability is PSPACE-complete for each choice of K in
{Kn,Tn, S4n, KD45n, S5n}. Moreover, from the above theorem and Theorem 17
it immediately follows that deciding entailment in MBNF(K) (when the formula
entailed is in LS

M ) is also a PSPACE-complete problem for each choice of K in
{Kn,Tn, S4n, KD45n, S5n}.

Theorem 19. Let K ∈ {Kn, Tn, S4n, KD45n, S5n}, let L′ ⊆ L, and let L′ be
closed under boolean composition. If K-satisfiability for formulas from L′ is NP-
complete, then MBNF(K)-satisfiability for formulas from L′M is Σp

3-complete.
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Proof. Σp
3-hardness follows from the fact that, since L′ is closed under boolean

composition, L′M is a superset of the extension of the propositional language with
the modalities B and A. For such a language, it has been proven in [21] that
satisfiability in MBNF is Σp

3-complete. Therefore, MBNF(K)-satisfiability in L′M
is Σp

3-hard.
To prove membership in Σp

3, we analyze the complexity of the algorithm
MBNF(K)-Sat reported in Figure 1. In particular, observe that:

• since, by Theorem 12, construction of the partition Prt(ϕ, ob(P, N)) can be
performed by solving a linear number (with respect to the size of ϕ) of K-
satisfiability problems for formulas from L′. Therefore, condition (a) can be
checked through a linear number (in the size of the input) of calls to an NP-
oracle;

• Since, given ϕ and (P, N), ϕ(P, N) can be computed in polynomial time with
respect to the size of the input, and since ϕ(P, N) ∈ L′, it follows that condi-
tion (b) can be computed in NP;

• given a partition (P ′, N ′), each of the conditions (c1), (c2) and (c3) (analogous
to conditions (a) and (b)) can be checked in polynomial time, with respect to
the size of ϕ, using an NP-oracle. In particular, falsity of condition (c3) can be
decided in coNP. Therefore, since the guess of the partition (P ′, N ′) of MA(ϕ)
requires a nondeterministic choice, falsity of condition (c) can be decided in
NPcoNP = Σp

2.

Since the guess of the partition (P, N) of MA(ϕ) requires a nondeterministic
choice, it follows that the algorithm MBNF(K)-Sat, if considered as a nondeter-
ministic procedure, decides satisfiability of ϕ in nondeterministic polynomial time
(with respect to the size of ϕ), using a Σp

2-oracle. Therefore, from Theorem 16
we obtain an upper bound of Σp

3 for the satisfiability problem in MBNF(K).

The above theorem and the results reported in the table of Figure 2 imply
that, for each language L′ and choice of the modal system K corresponding to
an entry of such a table for which K-satisfiability is NP-complete, MBNF(K)-
satisfiability in the corresponding language L′M is Σp

3-complete.

4.3. Complexity for B-depth 1

We now analyze reasoning in MBNF(K) when we restrict to formulas
of B-depth 1. In particular, we define a specialized algorithm for deciding
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Algorithm B-depth-1-Sat(ϕ)
Input: formula ϕ ∈ L1

M ;
Output: true if ϕ is MBNF(K)-satisfiable, false otherwise.
begin
if there exists partition (P, N) of MA(ϕ)
such that

(a) (P, N) = Prt(ϕ, ob(P,N)) and
(b) ϕ(P, N) is K-satisfiable and
(c) for each partition (P ′′, N ′′) of P − PA such that N ′′ 6= ∅,

(c1) ϕ(PA ∪ P ′′, N ∪N ′′) is not K-satisfiable or
(c2) there exists Bψ ∈ N ′′

such that (
∧

Bξ∈P ′′ ξ) ∧ ¬ψ is not K-satisfiable
then return true
else return false
end

Figure 3. Algorithm B-depth-1-Sat.

MBNF(K)-satisfiability of formulas of B-depth 1, and characterize the complexity
of MBNF(K)-satisfiability for such formulas.

In the following, we denote with L1
M the set of MBNF(K) formulas of B-

depth 1, that is the set of formulas from LM of the form ϕ such that each
subformula occurring in ϕ lies within the scope of at most one modality B.

In Figure 3 we report the algorithm B-depth-1-Sat for computing MBNF(K)-
satisfiability of a formula of B-depth 1. In the algorithm, PA denotes the subset
of modal atoms from P prefixed by the modality A, i.e. PA = {Aψ : Aψ ∈ P}.

Informally, the algorithms MBNF(K)-Sat and B-depth-1-Sat only differ in
the way in which it is verified whether the MBNF(K) structure associated with
a partition (P, N) satisfies the preference semantics provided by Definition 2,
which is implemented through condition (c) in both algorithms. In the algorithm
MBNF(K)-Sat, a partition is checked against all other partitions of MA(ϕ), while
in the algorithm B-depth-1-Sat, due to the fact that each formula within the scope
of a modality B is a K-formula, it is sufficient to verify, in a simpler way, the
partition (P, N) against the partitions of MA(ϕ) that agree with (P, N) in the
evaluation of all modal atoms in N and in the evaluation of all modal atoms of
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the form Aψ belonging to P . As shown in the following, such a difference reflects
the different computational properties of the MBNF(K)-satisfiability problem in
the two cases.

Theorem 20. Let ϕ ∈ L1
M . Then, B-depth-1-Sat(ϕ) returns true iff ϕ is

MBNF(K)-satisfiable.

Proof. We prove that, given ϕ ∈ L1
M , B-depth-1-Sat(ϕ) returns true if and only

if MBNF(K)-Sat(ϕ) returns true, that is, given a partition (P, N) of MA(ϕ),
condition (c) in the algorithm B-depth-1-Sat holds for (P,N) if and only if con-
dition (c) in the algorithm MBNF(K)-Sat holds for (P, N). Let (P ′′, N ′′) be a
partition of P − PA such that N ′ 6= ∅ and let P ′ = PA ∪ P ′′ and N ′ = N ∪N ′′.
It is immediate to see that if (P ′′, N ′′) does not satisfy condition (c1) in the
algorithm B-depth-1-Sat, then (P ′, N ′) does not satisfy condition (c1) in the al-
gorithm MBNF(K)-Sat; moreover, if (P ′′, N ′′) does not satisfy condition (c2) in
the algorithm B-depth-1-Sat, then, by Definition 11, (P ′, N ′) does not satisfy
condition (c2) in the algorithm MBNF(K)-Sat. Therefore, if condition (c) in
the algorithm B-depth-1-Sat does not hold for (P, N), then condition (c) in the
algorithm MBNF(K)-Sat does not hold for (P, N).

Conversely, suppose condition (c) in the algorithm MBNF(K)-Sat does not
hold for (P, N). Therefore, there exists a partition (P ′, N ′) 6= (P,N) of MA(ϕ)
that does not satisfy any of the conditions (c1), (c2) and (c3) in the algorithm
MBNF(K)-Sat. First, since condition (c2) does not hold, it follows that (P ′, N ′) =
Prt(ϕ, ob(P ′, N ′), ob(P, N)), which implies that for each modal atom of the form
Aψ of MA(ϕ), Aψ ∈ P iff Aψ ∈ P ′; moreover, since condition (c3) does not
hold, ob(P,N) ∧ ¬ob(P ′, N ′) is K-unsatisfiable, which implies that, if Bψ ∈ P ′,
then Bψ ∈ P . Finally, since (P, N) 6= (P ′, N ′), it follows that there exists at
least one modal atom of the form Bψ such that Bψ ∈ P and Bψ ∈ N ′. Now let
P ′′ = P ′−PA, N ′′ = N ′−N : by the above considerations, it follows that (P ′, N ′)
is a partition of P − PA, and N ′′ 6= ∅. Furthermore, since (PA ∪ P ′′, N ∪N ′′) =
(P ′, N ′) and condition (c1) in the algorithm MBNF(K)-Sat does not hold, it
follows that condition (c1) in the algorithm B-depth-1-Sat does not hold, and
since (P ′, N ′) = Prt(ϕ, ob(P ′, N ′), ob(P,N)), it follows that condition (c2) in
the algorithm B-depth-1-Sat does not hold. Consequently, condition (c) in the
algorithm B-depth-1-Sat does not hold for (P,N).
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We now prove that bounding the depth of nesting of the modality B to 1 has
the effect of lowering the complexity of MBNF(K)-satisfiability in all the cases
examined in which K-satisfiability is NP-complete.

In the following, we denote with L′1M the restriction of the language L′M to
formulas of B-depth 1, i.e., L′1M = L′M ∩ L1

M .

Theorem 21. Let K ∈ {Kn, Tn, S4n, KD45n, S5n}, let L′ ⊆ L, and let L′ be
closed under boolean composition. If K-satisfiability for formulas from L′ is an
NP-complete problem, then MBNF(K)-satisfiability for formulas from L′1M is Σp

2-
complete.

Proof. Σp
2-hardness follows from the fact that, since L′ is closed under boolean

composition, L′1M is a superset of the extension of the so-called flat fragment
of propositional MBNF, i.e., the extension of the propositional language with
the modalities B and A and such that each propositional symbol lies within the
scope of exactly one modality. For such a language, it has been proven in [21]
that satisfiability in MBNF is Σp

2-complete. Therefore, MBNF(K)-satisfiability
in L′1M is Σp

2-hard.
To prove membership in Σp

2, we analyze the complexity of the algorithm
B-depth-1-Sat reported in Figure 1. In particular, observe that, given a partition
(P, N), falsity of condition (c) can be decided in nondeterministic polynomial
time. In fact, given a partition (P ′′, N ′′), verifying that both conditions (c1)
and (c2) do not hold corresponds to decide that a linear number of K-formulas
from L′ are K-satisfiable, which can be decided in polynomial time after a single
nondeterministic choice. Therefore, finding a partition (P ′′, N ′′) such that that
both conditions (c1) and (c2) do not hold can be computed in nondeterministic
polynomial time. Then, since the guess of the partition (P,N) of MA(ϕ) requires
a nondeterministic choice, and, as shown in the proof of Theorem 19, conditions
(a) and (b) can be decided by solving a linear number of K-satisfiability problems
for formulas from L′, it follows that the algorithm B-depth-1-Sat, if considered
as a nondeterministic procedure, decides satisfiability of ϕ in nondeterministic
polynomial time (with respect to the size of ϕ), using an NP-oracle. Therefore,
from Theorem 20 we obtain an upper bound of Σp

2 for the satisfiability problem
in MBNF(K).

Informally, the different computational behavior of the algorithms MBNF(K)-
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K ∈ {KD45n,S5n} K ∈ {Kn, Tn} K = S4n

K ∈ {KD451, S51} (n ≥ 2) (n ≥ 1) (n ≥ 1)

B-depth ≤ 1∧
K-depth ≤ 1 Σp

2 Σp
2 Σp

2 Σp
2

B-depth ≤ 1∧
K-depth ≤ k Σp

2 Σp
2 Σp

2 PSPACE
(k ≥ 2)

B-depth ≤ 1 Σp
2 PSPACE PSPACE PSPACE

K-depth ≤ 1 Σp
3 Σp

3 Σp
3 Σp

3

K-depth ≤ k Σp
3 Σp

3 Σp
3 PSPACE

(k ≥ 2)

no restrictions Σp
3 PSPACE PSPACE PSPACE

Figure 4. Complexity of MBNF(K)-satisfiability

Sat and B-depth-1-Sat is due to the presence of condition (c3) in the algorithm
MBNF(K)-Sat: deciding falsity of such a condition requires to solve a coNP-
complete problem, which implies that deciding falsity of condition (c) is Σp

2-hard.
Conversely, without condition (c3) falsity of condition (c) can be decided in NP,
due to the fact that, in both algorithms, falsity of conditions (c1) and (c2) can
be decided in NP.

The above theorem and the results reported in the table of Figure 2 imply
that, for each language L′ and choice of the modal system K corresponding to
an entry of such a table for which K-satisfiability is NP-complete, MBNF(K)-
satisfiability in the corresponding language L′1M with B-depth 1 is Σp

2-complete.

4.4. Summary of results

The computational results obtained in the two previous subsections are sum-
marized in the table reported in Figure 4. The table must be read as follows:
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for each row of the table, the complexity of checking satisfiability in MBNF(K)
under the syntactic restriction reported in the first column (i.e., considering only
the subset of MBNF(K)-formulas satisfying the restriction) is complete with re-
spect to the complexity class appearing in the other columns, where each column
corresponds to a different choice of the multimodal logic K, both in the modal
system and in the number of agents modeled.

As shown in the table, four major sources of complexity can be identified:

1. The first one is the number of agents allowed. As shown in the table, bound-
ing the number of agents affects the worst-case complexity of the satisfiability
task only for the modal systems KD45 and S5, and only when the bound is
equal to 1. Indeed, for K = KD451 or K = S51, MBNF(K)-satisfiability is
Σp

3-complete in the general case, thus it is computationally easier than for the
other choices of K. We remark that choosing K = KD451 (or K = S51) does
not imply that MBNF(K) is only able to formalize a single agent: rather, it
is possible in such a logic to represent the knowledge of an agent (through
the modalities B and A) which is able to reason about another agent’s beliefs
(through the modality K1).

2. The second restriction which affects complexity is the choice of the underlying
multimodal system K. As illustrated by the table, for K = S4 the complexity
of MBNF(K)-satisfiability is harder than for the other choices of K, when the
K-depth is bounded to a value greater than 1.

3. The third complexity source is the K-depth: bounding the K-depth to any
integer value generally lowers the worst-case complexity of the MBNF(K)-
satisfiability problem, with the exception of the choice K = S4n. In this case,
it is necessary to bound the K-depth to 1 in order to affect the complexity.

4. Finally, bounding the B-depth to 1 has also an impact on the worst-case
complexity of MBNF(K)-satisfiability, which can be seen by comparing the
first three rows with the last three rows of the table. Notice that, conversely,
it is possible to prove that bounding the nesting of the modality A does not
affect the worst-case complexity of MBNF(K)-satisfiability in all the cases
considered.
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5. Application to RoboCup

In this section we apply our logical framework to the domain of robotic
soccer, by experimenting the expressive abilities of MBNF(K) in the domain of
RoboCup [1], the world championship for robotic soccer teams. To this pur-
pose, we have analyzed the robotic architecture of the italian competitor in the
RoboCup middle-size league, the ART team [18].1 Such an architecture is shared
by other teams participating in the RoboCup competition.

In the middle size league, each team is composed of four autonomous mobile
robots, playing in a soccer field of about 8x4 meters. In the ART team, each robot
has an internal representation (both at a symbolic and at a numerical level) of
the environment. Each robot has some high-level planning ability, which uses the
symbolic representation of the environment, and a set of low-level behaviors (i.e.
control programs for executing simple actions) that are executed based on the
numerical representation of the environment.

During the game, each robot receives data from his own sensors (video-
camera, sonars, etc.) and communicates periodically part of such data to all the
teammates. Then, each robot merges at the numerical level his own knowledge
(i.e. information coming from his sensors) with the information coming from the
other teammates, which may contradict the robot’s own knowledge, and then
updates his symbolic representation accordingly.

Such an approach has several limitations, which are mostly due to the fact
that the only way for a robot to take into account the other agents’ knowledge
is through a quantitative fusion of information, while in many situations a qual-
itative approach appears in principle better suited to this application domain.
In particular, we have modeled the information obtained by an agent’s sensor
as a belief, since such information may not correspond to the actual situation in
the field, and have analyzed the possibility of reasoning, through nonmonotonic
rules, about the other agents’ beliefs (and ignorance).

To this purpose, we have exploited two representational features of
MBNF(K):

1. the formal distinction done in MBNF(K) between the real world and the
agents’ beliefs about the world, which allows for easily representing rules for

1 The ART team is constituted by a consortium among six italian universities. It obtained the

second place in the middle-size league during the 1999 RoboCup edition.
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deriving knowledge about the real world based on the data coming from the
agents’ sensors;

2. the possibility of representing nonmonotonic default rules in MBNF(K) by a
combined usage of the two epistemic operators A and B.

Moreover, in order to properly model the information coming from the other
agents as beliefs, we have chosen K = KD45n as the underlying modal system [12].
Therefore, we have studied MBNF(KD45n) as a logical framework for reasoning
in the RoboCup domain.

Specifically, in the following examples we represent the knowledge of a robot
player who communicates with two teammates (for ease of exposition, we do not
consider the fourth robot, who plays as the goalkeeper). Such a knowledge is
formalized by means of a set of MBNF(KD45n) formulas, in which:

• properties concerning the robot are not subscripted;
• properties concerning the robot’s teammates (player 1 and player 2) are sub-

scripted with indices 1 and 2;
• the modalities B and A are used to represent the robot’s beliefs and assump-

tions;
• the modalities K1 and K2 are used to represent the beliefs of players 1 and

2, respectively. E.g., the formula BK1ϕ means that the robot believes that
player 1 believes the property ϕ: such a belief derives from the information
communicated to the robot by player 1;

• objective formulas represent properties that hold in the real world.

We have exploited such an approach in order to solve two crucial issues
for the robotic soccer application: (i) “intelligent” fusion of sensing information
coming from the robot’s own sensors and from the other agents; (ii) deciding
which role the robot has to play in the current situation, according to the team
strategy [23].

The following simple examples have the purpose to show the use of
MBNF(K) with respect to the above two issues. Hence, for the sake of simplicity,
such examples do not make use of all the expressive abilities of MBNF(K): in
particular, the examples only use literals (instead of general propositional formu-
las) within the scope of the modal operators K1, K2, and all K-subformulas have
K-depth 1.
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5.1. Merging beliefs about the current situation

In the MBNF(KD45n) framework we are able to represent different forms of
qualitative fusion rules, according to the different nature of the sensing data to
be merged. Below we report three different examples of such rules.

1. The first kind of rule is applied to those properties for which the robot can
completely rely on his own beliefs, regardless of the other agents’ beliefs. This
corresponds to the case when the robot’s sensing data relative to a certain
property are the most reliable. As an example, if the robot believes (through
his own sensor data) that he is in control of the ball, then he can conclude
that he is actually in control of the ball, regardless of the information coming
from the other players, since his sensors generally detect such a property more
precisely than the other robots’ sensors. We can formalize such a fusion rule
through the following MBNF(KD45n) formula:

Bball-control ⊃ ball-control

2. Then, there are some properties for which the robot can rely on his own
sensors, unless the data coming from another agent contradicts such a piece
of information. This case corresponds to the situation in which the different
sensing data coming from different robots, relative to a certain property, have
the same reliability. As an example, if the robot sees an opponent on player
1, then he can conclude there is actually an opponent on player 1, unless
player 2 communicates that he sees no opponent on player 1.

Bopponent-on1 ∧ ¬AK2¬opponent-on1 ⊃ opponenton1

3. Finally, there are properties for which the robot’s sensing data are the less
reliable, therefore the robot should always believe his teammates. As an
example, if player 1 or player 2 sees an opponent player on the robot, then
the robot concludes there is actually an opponent on him, regardless of his
own beliefs about such a property.

BK1opponent-on ∨BK2opponent-on ⊃ opponent-on

5.2. Inferring the robot’s role in the team

Another very useful application of epistemic reasoning in current robotic
soccer implementations (and more generally, in multi-agent applications [23])
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concerns the problem of deducing the role to assume within the team in a given
situation. In the ART team, each robot runs a different control program (be-
havior) according to the role played in the team (goalkeeper, defender, forward).
Each player is initially provided with a role, however such a role may change
dynamically according to the situation in the field. Therefore, it is very impor-
tant that a single robot is able to understand the “right” role he has to play in
each situation according to the team strategy. Nonmonotonic reasoning about
the other agents’ knowledge appears well-suited to this purpose, which we now
illustrate by a very simple example.

Example 22. Suppose the team plays with the following strategy: during a
defensive action, two players must defend and one must stay in a forward position.
Therefore, a cautious way for a robot to reasoning about such a situation is to
assume a defensive role, unless he knows that both other players have already
assumed a defensive role. Such a nonmonotonic rule can be expressed through
the following MBNF(KD45n) formula:

Bdefensive-sit ∧ (¬AK1defender1 ∨ ¬AK2defender2) ⊃ Bdefender (1)

For instance, suppose that, during a defensive action, the agent receives no infor-
mation from agent 2, while agent 1 communicates to the agent that he is playing
as a defender (i.e., BK1defender1 holds). In this case, from (1) the agent con-
cludes that he must assume a defensive role. In fact, all MBNF(KD45n) models
of the formula

Bdefensive-sit ∧BK1defender1(1) (2)

are of the form (I, M, M) where M is the set of KD45n-interpretations satisfying
the formula defensive-sit∧K1defender1 ∧ defender, since it can be seen that each
other structure of the form (J,M ′, M ′) satisfying the above formula is such that
(J,M ′,M ′) 6|= Bdefender, therefore from formula (1) it follows that (J,M ′,M ′)
should satisfy AK2defender2, but such an assumption is not “justified” by the
formula (2), i.e., under the assumption that AK2defender2 holds, it does not
follow that BK2defender2 is a consequence of (2). Conversely, if also agent 2
tells the agent that he is playing as a defender, then the agent does not conclude
from (1) that he must assume a defensive role, since both BK1defender1 and
BK2defender2 hold, which implies that (¬AK1defender1 ∨¬AK2defender2) does
not hold.
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Therefore, when all robots adopt the strategy formalized by formula (1),
they might all assume a defensive role, if they fail to communicate their conclu-
sions to the teammates: however, this situation may be accepted and preferred
to the case in which none or only one player assumes a defensive role.

Another strategy that can be easily formalized in terms of an MBNF(KD45n)
formula is the following: if the robot knows that both other teammates have
assumed a defensive role, then he can play in a forward position. Such a rule can
be formalized as follows:

Bdefensive-sit ∧BK1defender1 ∧BK2defender2 ⊃ Bforward

We conclude with an example of a strategy for an offensive situation, and
reasoning in such a scenario.

Example 23. Suppose that, during offensive actions, we want two players to
go forward while one player stays in a defensive position. Furthermore, we dis-
tinguish between the role of going forward while keeping control of the ball and
going forward without carrying the ball (forward-no-ball), since such roles are
implemented by two different behaviors. A player who is not in control of the
ball must assume the “forward without ball” role, unless he knows that another
player has already assumed such a role. This rule can be expressed through the
following MBNF(KD45n) formula:

Boffensive-sit ∧B¬ball-control ∧
(¬AK1forward-no-ball1 ∨ ¬AK2forward-no-ball2) ⊃ Bforward-no-ball

(3)

Suppose now that the agent is not in control of the ball during an offensive
action, i.e., both Boffensive-sit and B¬ball-control hold, and suppose that the
agent receives no information from the other agents. In this case, the agent
concludes that he must assume the “forward without ball” role. In fact, in a
way analogous to the above described defensive situation, it can be seen that all
MBNF(KD45n) models of the formula

Boffensive-sit ∧B¬ball-control ∧ (3) (4)

are of the form (I, M, M) where M is the set of KD45n-interpretations satisfying
the formula offensive-sit ∧ ball-control ∧ forward-no-ball, since each other struc-
ture satisfying the above formula should satisfy either AK1forward-no-ball1 or
AK2forward-no-ball2, but such assumptions are not “justified” by formula (4).
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5.3. Other forms of epistemic reasoning

In addition, more sophisticated forms of (auto)epistemic reasoning can be
realized within the MBNF(KD45n) framework. For instance, suppose it is rea-
sonable to assume that, during an offensive action, there is always at least one
player and at most two players which are blocked by an opponent player. Suppose
the robot sees one opponent on player 2 and no opponent on player 1; moreover,
suppose player 2 has not communicated to the robot that there is an opponent on
him. Then, the robot can conclude that there is an opponent player blocking him
(if player 2 saw no opponent on the robot, he would have concluded that there
is an opponent blocking him). Such a rule can be formalized by the following
MBNF(KD45n) formula:

B¬opponent-on1 ∧Bopponent-on2 ∧ ¬AK2opponenton2 ⊃ opponent-on

6. Related work

Several works in the recent literature have proposed modal approaches to
the formalization of knowledge in a multi-agent setting. Among them, the most
similar proposal to the one presented in this paper is [11,10], in which Levesque’s
logic of only knowing is extended to the case of many agents. Besides major
technical aspects (the logic of only knowing is a monotonic logic while MBNF(K)
is nonmonotonic), an important difference with our approach lies in the fact that
the logic of only knowing does not allow for easily representing nonmonotonic
rules and default rules with prerequisites, which are important tools for modeling
the knowledge of agents, as shown in the previous section.

Moreover, recent proposals have defined modal logics with the aim of merg-
ing the beliefs of many agents [3]: however, such approaches are based on prob-
abilistic frameworks, thus making it impossible a comparison with the logic
MBNF(K).

Also, a great amount of work has been devoted to the definition of modal
logics for reasoning about actions [7,2], in particular Dynamic Logics (see e.g.,
[22,4]): however, differently from our framework, such approaches use modalities
for modeling the actions of agents rather than their epistemic abilities.

Finally, let us briefly comment on the relationship between the MBNF(K)
framework and logic programming. Indeed, as illustrated in Section 2, the logic
MBNF can be seen as a generalization of logic programming with negation as
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failure under the stable model/answer set semantics: actually, the main reason
for the definition of MBNF was the logical reconstruction (and generalization)
of logic programs with negation as failure. Therefore, the fragment of MBNF
here presented, namely the MBNF(K) framework, can also be thought of as a
generalization of a special class of logic programs, whose goals correspond to
multimodal formulas (and negation-as-failure of such formulas). Consequently,
we can think of exploiting the technology of logic programming under stable
model semantics in order to reason about MBNF(K) theories, or, alternatively, to
use current implementations of logic programming for reasoning in syntactically
restricted MBNF(K) theories. However, such an issue is outside the scope of the
present paper, whose main purpose is to illustrate the computational properties
and the epistemological adequacy of the MBNF(K) framework.

7. Conclusions

In this paper we have proposed the logic MBNF(K) as a logical framework
for representing the knowledge of an agent who reasons about its own beliefs and
the beliefs of other agents. The main contributions of the paper are the following:

1. we have defined a theoretical framework for reasoning in multi-agent scenar-
ios;

2. we have characterized the computational properties and defined reasoning
algorithms for such a framework;

3. we have experimented the epistemological adequacy of our framework in a
concrete multi-agent application (RoboCup);

4. we have started analyzing the computational issues related to the actual
implementation of our framework in a real multi-robotic architecture. In
particular, we have identified the main sources of the complexity of reasoning
in MBNF(K), and, consequently, some syntactic restrictions which make the
reasoning task computationally easier.

The above results show that the MBNF(K) framework appears well-suited
for representing actual multi-agent settings. However, a lot of important ques-
tions still need to be addressed. In particular:

• on the one hand, the high worst-case complexity of reasoning in MBNF(K)
arises the question of whether is it possible to arrive at a concrete, useful im-
plementation of this framework on a real robotic architecture. On the other
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hand, we recall the very good experimental results of the most recent imple-
mentations of satisfiability solvers for multimodal logics, which already have
to deal with PSPACE-hard problems. Therefore, it would be very interesting
to construct a solver for MBNF(K)-satisfiability on top of an already existing
system for multimodal logics, and test its performance e.g. in the RoboCup
domain;

• the issue of belief revision in MBNF(K) appears also very important for the
application of this framework to multi-agent scenarios. E.g., in the RoboCup
application described in the previous section, it could be interesting to apply
belief revision when new information comes from the sensors (or from other
agents), instead of executing a cycle in which, at each iteration, first a new
knowledge base is created from the current sensor data and the information
communicated by the other agents, then all conclusions are recomputed with
respect to such a knowledge base;

• an important aspect of reasoning about knowledge that is missing in the
MBNF(K) framework is the so-called common knowledge [5,13], which allows
for sophisticated forms of epistemic inference. Therefore, it would be inter-
esting to add common knowledge to MBNF(K) and study the epistemological
and computational properties of such an augmented framework.
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