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Abstract

We study reasoning in Levesque’s logic of only knowing. In particular, we first
prove that extending a decidable subset of first-order logic with the ability of reason-
ing about only knowing preserves decidability of reasoning, as long as quantifying-in
is not allowed in the language, and define a general method for reasoning about only
knowing in such a case. Then, we show that the problem of reasoning about only
knowing in the propositional case lies at the second level of the polynomial hier-
archy. Thus, it is as hard as reasoning in the majority of propositional formalisms
for nonmonotonic reasoning, like default logic, circumscription, and autoepistemic
logic, and it is easier than reasoning in propositional formalisms based on the min-
imal knowledge paradigm, which is strictly related to the notion of only knowing.
Finally, we identify a syntactic restriction in which reasoning about only knowing
is easier than in the general propositional case, and provide a specialized deduction
method for such a restricted setting.

1 Introduction

Research in the formalization of commonsense reasoning through epistemic
logics [21,23,18] has pointed out the need for providing systems (agents) with
the ability of introspecting on their own knowledge and ignorance. To this
aim, an epistemic closure assumption is generally adopted, which informally
can be stated as follows: “the logical theory formalizing the agent is a complete
specification of the agent’s knowledge”. As a consequence, any fact that is not
logically implied by such a theory is assumed to be not known by the agent. 1

1 The use of the notion of logical implication here may be misleading: to be more
precise, the closure assumption acts by “maximizing ignorance” (in a way that
changes according to the different proposals) in each possible epistemic state of the
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As shown in [18], this paradigm underlies the vast majority of the logical
formalizations of nonmonotonic reasoning. Roughly speaking, there exist two
different ways to embed such a principle into a logic:

(i) by considering a nonmonotonic formalism, whose semantics implicitly
realizes such a “closed” interpretation of the logical theory representing
the agent’s knowledge;

(ii) by representing the closure assumption explicitly in the framework of a
monotonic logic, suitably extending its syntax and semantics.

The first approach has been pursued in the definition of several modal formal-
izations of nonmonotonic reasoning, e.g. McDermott and Doyle’s nonmono-
tonic modal logics [20], Halpern and Moses’ logic of minimal epistemic states
[9] and Lifschitz’s logic of minimal belief and negation as failure [19]. On the
other hand, the second approach has been followed by Levesque [18] in the
definition of the logic of only knowing.

The logic of only knowing is obtained by adding an “all-I-know” modal oper-
ator O to modal logic K45. Informally, such an interpretation of the modality
O is obtained through a maximization of the set of successors of each world
satisfying O-formulas.

There is a strict similarity between the interpretation of the modality O and
the semantics of nonmonotonic modal logics. Let ϕ be a modal formula spec-
ifying the knowledge of the agent: in the logic of only knowing, satisfiability
of the formula Oϕ in a world w requires maximization of the possible worlds
connected to w and satisfying ϕ; an analogous kind of maximization is gen-
erally realized by the preference semantics of nonmonotonic modal logics, by
choosing, among the models for ϕ, only the models having a “maximal” set
of possible worlds, where such a notion of maximality changes according to
the different proposals. In a nutshell, the logic of only knowing is a monotonic
formalism, in which the modality O allows for an explicit representation of
the epistemic closure assumption at the object level (i.e. in the language of
the logic), whereas in nonmonotonic formalisms the closure assumption is a
meta-level notion.

The studies investigating the relationship between only knowing and non-
monotonic logics [1] have stressed the analogies between the two approaches
from an epistemological viewpoint. An analogous analysis from the computa-
tional viewpoint has not been pursued so far. Indeed, there exist several studies
concerning the computational properties of nonmonotonic logics, in particular
propositional nonmonotonic modal formalisms (e.g., [3,5,20,22]). On the other
hand, the computational properties of only knowing in the propositional case
have not been thoroughly investigated. The only related studies appearing

agent.
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in the literature concern a fragment of OL built upon a very restricted sub-
class of propositional formulas, for which satisfiability is tractable [15], and
a computational study of a framework in which only knowing is added to a
formal model of limited reasoning [13]. Moreover, a lower bound for reason-
ing in the propositional fragment of OL (Σp

2) is known, due to the fact that
autoepistemic logic [21] can be embedded in polynomial time into OL.

The goal of the present work is to provide algorithms for computing satis-
fiability in the logic of only knowing. To this end, we exploit the similarity
between this formalism and nonmonotonic modal logics, in order to identify
a finite characterization of the models of a formula in the logic OL.

The main results of the paper concern both decidability and complexity of
reasoning about only knowing. Specifically, we first prove that extending a
decidable subset of first-order logic (without equality) with the ability of
reasoning about only knowing preserves decidability of reasoning, as long as
quantifying-in, i.e. the presence of modalities inside quantifiers, is not allowed.
Moreover, we define a general method for computing satisfiability in OL with-
out quantifying-in. To the best of our knowledge, such an algorithm is the first
terminating procedure for reasoning about only knowing in any decidable frag-
ment of first-order logic (e.g. in the full propositional fragment of OL).

Then, we show that the problem of reasoning about only knowing in the propo-
sitional case lies at the second level of the polynomial hierarchy. More precisely,
satisfiability in the propositional fragment of OL is a Σp

2-complete problem.
Thus, reasoning about only knowing is as hard as reasoning in the majority
of propositional formalisms for nonmonotonic reasoning, like autoepistemic
logic [22,5], default logic [5], circumscription [4], and several McDermott and
Doyle’s logics [20]. Moreover, reasoning about only knowing is easier (unless
the polynomial hierarchy collapses) than reasoning in nonmonotonic modal
formalisms based on the minimal knowledge paradigm [27], like Halpern and
Moses’ logic of minimal epistemic states [2], Lifschitz’s logic MBNF [24], and
the moderately grounded version of autoepistemic logic [3].

We also define an interesting syntactic restriction of the propositional frag-
ment of OL in which deduction is easier than in the general case. Specifically,
we identify a subset of formulas in OL for which the satisfiability (and valid-
ity) problem is PNP[O(log n)]-complete, i.e. can be reduced to a logarithmic
number of propositional satisfiability problems. This case is particularly inter-
esting, since it can be viewed as a generalization of the problem of answering
epistemic queries to a propositional knowledge base [23,6].

In the following, we first briefly introduce the modal logic of only knowing OL.
Then, in Section 3 we present a finite characterization of the models of a sen-
tence in OL, which provides the basis for the definition of reasoning methods
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for OL. In Section 4 we define a deduction method for satisfiability (validity)
in decidable fragments of OL, and analyze the computational properties of
OL in the propositional fragment of OL; we also define a syntactic restriction
of OL, showing that reasoning in this setting is easier than in the general case.
Finally, in Section 5 we investigate the relationship between only knowing and
the minimal knowledge paradigm, and conclude in Section 6.

2 The logic OL

In this section we briefly recall the formalization of only knowing [18]. We
assume that the reader is familiar with the basic notions of modal logic. We
recall that K45 denotes the modal logic interpreted on Kripke structures whose
accessibility relation among worlds is transitive and euclidean, while modal
logic KD45 imposes in addition that the relation be serial; finally, modal logic
S5 also imposes reflexivity on the accessibility relation (see e.g. [10,20] for
more details).

We use L to denote the language of first-order logic without equality, i.e. L is
the set of first-order sentences built in the usual way upon connectives ∧,¬ (the
symbols ∨,⊃,≡ are used as abbreviations), an existential quantifier, an infinite
set of variables, an infinite set A of propositional symbols, an infinite set of
predicate symbols of every arity, and an infinite set of function symbols. 2 We
assume that A contains the symbols true, false. We call objective any sentence
from L.

Following [18], we interpret sentences from L with respect to a fixed, count-
ably infinite interpretation domain ∆. As shown in [17], imposing a countably
infinite domain does not influence satisfiability/validity of first-order sentences
without equality, i.e. the set of satisfiable sentences is the same as in classi-
cal first-order logic. In the following, we call interpretation a usual first-order
interpretation for L over ∆. An interpretation is also called world. For each
interpretation w, w(true) = TRUE and w(false) = FALSE. The evaluation
w(ϕ) of a sentence ϕ in an interpretation w is defined in the usual way. We
say that a sentence ϕ ∈ L is satisfiable if there exists an interpretation w such
that w(ϕ) = TRUE (which we also denote as w |= ϕ).

Definition 1 We denote as LO the modal extension of L with the modalities
K and O inductively defined as follows:

(i) if ϕ ∈ L, then ϕ ∈ LO;

2 The assumption done in [18] that constants are rigid designators (i.e., in each in-
terpretation, each constant denotes the same element of the interpretation domain)
can be omitted here, since the case of quantifying-in is not dealt with in this paper.
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(ii) if ϕ ∈ LO, then Kϕ ∈ LO;
(iii) if ϕ ∈ LO, then Oϕ ∈ LO;
(iv) if ϕ ∈ LO, then ¬ϕ ∈ LO;
(v) if ϕ1 ∈ LO and ϕ2 ∈ LO, then ϕ1 ∧ ϕ2 ∈ LO;
(vi) nothing else belongs to LO.

Informally, the above definition does not allow quantifying-in, i.e., in all sen-
tences from LO, each occurrence of the modalities K and O lies outside the
scope of quantifiers. E.g., the sentence ∀xO(p(x)) does not belong to LO, while
the sentence O(∀x p(x)) belongs to LO.

We also use LK to denote the analogous extension of L with the only modality
K. We call O-sentence a sentence from LO of the form Oϕ. Notice that, with
respect to [18], we slightly change the language of the logic, using the modality
K instead of B.

The semantics of a sentence ϕ ∈ LO is defined in terms of satisfiability in a
structure (w, M) where w is an interpretation (called initial world) and M is
a set of interpretations.

Definition 2 Let w be an interpretation on L, and let M be a set of such
interpretations. We say that a sentence ϕ ∈ LO is satisfied in (w, M), and
write (w,M) |= ϕ, iff the following conditions hold:

(i) if ϕ ∈ L, then (w,M) |= ϕ iff w(ϕ) = TRUE;
(ii) if ϕ = ¬ϕ1, then (w, M) |= ϕ iff (w, M) 6|= ϕ1;
(iii) if ϕ = ϕ1 ∧ ϕ2, then (w, M) |= ϕ iff (w, M) |= ϕ1 and (w, M) |= ϕ2;
(iv) if ϕ = Kϕ1, then (w, M) |= ϕ iff for every w′ ∈ M , (w′,M) |= ϕ1;
(v) if ϕ = Oϕ1, then (w, M) |= ϕ iff for every w′, w′ ∈ M iff (w′,M) |= ϕ1.

We say that ϕ ∈ LO is weakly OL-satisfiable if there exists (w,M) such
that (w, M) |= ϕ. Since the initial world does not influence satisfiability of
a sentence of the form Kϕ or Oϕ, we write M |= Kϕ (resp. M |= Oϕ) iff
(w, M) |= Kϕ (resp. (w, M) |= Oϕ) for any interpretation w.

The above semantics is not actually the one originally proposed in [18]: in
addition to the above rules, a pair (w,M) must satisfy a maximality condition
for the set M , as described below. However, as mentioned in [7], the above,
weaker notion of satisfiability is also meaningful.

In the following, Th(M) denotes the set of sentences Kϕ such that ϕ ∈ LK

and, for each w ∈ M , (w, M) |= Kϕ. Given two sets of interpretations M1, M2,
we say that M1 is equivalent to M2 iff Th(M1) = Th(M2).

Definition 3 A set of interpretations M is maximal iff, for each set of in-
terpretations M ′, if M ′ is equivalent to M then M ′ ⊆ M .
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Definition 4 A sentence ϕ ∈ LO is OL-satisfiable iff there exists a pair
(w, M) such that (w,M) |= ϕ and M is maximal.

Roughly speaking, the maximality condition prevents from the existence of
models which agree on all basic beliefs, yet disagree on whay they only know
[18, Section 2.2].

We say that a sentence ϕ ∈ LO is OL-valid iff ¬ϕ is not OL-satisfiable. In
the next section we will prove that the notions of OL-satisfiability and weak
OL-satisfiability of a sentence from LO coincide. Notice, however, that OL-
satisfiability and weak OL-satisfiability for infinite theories are, in general,
different (see [18, Section 2.4]).

As for reasoning in OL, we give the following definition.

Definition 5 A sentence ϕ ∈ LO logically implies a sentence ψ ∈ LO in OL
(and write ϕ |=OL ψ) iff ϕ ⊃ ψ is OL-valid.

Based on the above definition, we can immediately reduce reasoning to unsat-
isfiability in OL.

Remark 6 An alternative definition of logical implication is given in several
studies on epistemic and nonmonotonic modal logics (see e.g. [20, Definition
7.9]). Such a notion is based on the following notion of validity of a modal
sentence in a model: a formula ϕ is valid in a Kripke model M iff, for each
world w in M, (w,M) |= ϕ. The notion of logical implication is then expressed
as follows: “ψ is logically implied by ϕ iff ψ is valid in every model in which
ϕ is valid”. The two notions are in general different, and such a difference
also holds for the logic OL. However, since in OL the accessibility relation
of each interpretation structure is transitive, it can immediately be shown [20,
Remark 7.11] that the last notion of logical implication can be reduced to the
one given in Definition 5, and hence to validity in OL. In particular, ψ is
logically implied by ϕ according to the last notion iff (ϕ ∧ Kϕ) ⊃ ψ is OL-
valid.

Notice that the above semantics strictly relates the logic OL with modal logic
K45, since there is a precise correspondence between the pairs (w, M) used
in the above definition and K45 models. We recall that, with respect to the
satisfiability problem, a K45 model can be considered without loss of generality
as a pair (w,M), where w is a world, M is a set of worlds (possibly empty), w
is connected to all the worlds in M, the worlds in M are connected with each
other (i.e. M is a universal S5 model) and no world in M is connected to w
[20] (in the case of KD45 models, M is required to be non-empty). Thus, in the
following we will refer to a pair (w, M) as a K45 model whose S5 component
is M . Notice also that, if Σ ∈ LK , then Σ is OL-satisfiable if and only if
it is K45-satisfiable, which is shown by the fact that, if a K45 model (w, M)
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satisfies such a Σ, then there exists a maximal set M ′ equivalent to M , hence
(w, M ′) satisfies Σ.

Informally, the interpretation of the O modality is obtained through the max-
imization of the set of successors of each world satisfying an O-sentence. As
pointed out e.g. in [14], the meaning of an O-sentence Oϕ such that ϕ is non-
modal is intuitive, whereas it is more difficult to understand the semantics of
an O-sentence with nested modalities.

Example 7 Suppose ϕ ∈ L. Then, (w, M) is a model for Oϕ iff M = {w :
w |= ϕ}. Hence, the effect of prefixing ϕ with the modality O is that of max-
imizing the possible worlds in M , which contains all the interpretations con-
sistent with ϕ.

Example 8 Suppose ϕ ∈ L and ϕ is not a tautology. Then, the sentence
OKϕ is not OL-satisfiable. In fact, suppose OKϕ is OL-satisfiable. Then,
there exists (w,M) such that (w,M) |= OKϕ. Now, it is easy to see that, by
Definition 2, M cannot contain any interpretation w′ such that w′ 6|= ϕ. On
the other hand, since ϕ is not a tautology, there exists such an interpretation
w′; moreover, (w′, M) |= Kϕ, since the interpretation of Kϕ in (w′,M) does
not depend on the initial world, hence by Definition 2 it follows that w′ ∈ M .
Contradiction. Hence, OKϕ is not OL-satisfiable. On the contrary, O(Kϕ∧ϕ)
is OL-satisfiable, under the assumption that ϕ is satisfiable.

3 Characterizing OL-satisfiability

In this section we present a finite characterization of the models of a sentence
Σ ∈ LO which is based on the use of partitions of modal sentences occur-
ring in Σ. Similar techniques are used in several methods for reasoning in
nonmonotonic modal logics (e.g. [5,20,3,22,2]): in such methods, partitions of
subformulas of a modal theory are generally used for providing a finite char-
acterization of the epistemic states of the agent, which correspond to infinite
modal theories. In fact, such partitions can also be used in order to provide a
finite characterization of an S5 model. In particular, a partition satisfying cer-
tain properties identifies a particular S5 model M, by uniquely determining
a non-modal theory (called the objective knowledge of M). M is then defined
as the set of all interpretations satisfying such objective knowledge.

Now, in order to check whether an O-sentence Oϕ is satisfied in a K45 model
(w, M), we exploit the possibility of expressing, by means of an objective sen-
tence, the objective knowledge of the S5 component M of (w, M). This allows
us to establish whether ϕ is “all that is known” in the set of interpretations
M .
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We first introduce some preliminary definitions. Following [6], we say that an
occurrence of a sentence ψ in a sentence ϕ ∈ LO is strict if it is not in the
scope of a modal operator. We also call modal atom a sentence of the form
Kϕ or Oϕ, with ϕ ∈ LO, and call modal atoms of Σ (denoted by MA(Σ)) the
set of modal atoms occurring in Σ.

Definition 9 Let Σ ∈ LO and let P,N be sets of modal atoms such that
P ∪N ⊇ MA(Σ) and P ∩N = ∅. We denote with Σ|P,N the objective sentence
obtained from Σ by substituting each strict occurrence in Σ of a sentence in P
with true, and each strict occurrence in Σ of a sentence in N with false.

Notice that only the occurrences in Σ of modal atoms which are not within the
scope of another modality are replaced; notice also that Σ|P,N is an objective
sentence. Informally, the pair (P, N) identifies a “guess” on the modal atoms
from Σ, and Σ|P,N represents the “objective knowledge” implied by Σ under
such a guess.

Definition 10 Let (P, N) be a partition of MA(Σ). Then, we denote with
ob(P ) the following objective sentence:

ob(P ) =


 ∧

Kϕ∈P

ϕ|P,N


 ∧


 ∧

Oϕ∈P

ϕ|P,N




Roughly speaking, the objective sentence ob(P ) represents the objective knowl-
edge implied by the guess (P, N) on the modal atoms belonging to P .

Example 11 Suppose Σ = a ∧ O(¬a ∨ Kb). Then, MA(Σ) = {O(¬a ∨
Kb), Kb}. One possible partition of MA(Σ) is the following:

P = {O(¬a ∨Kb)}
N = {Kb}

Then, Σ|P,N = a ∧ true = a, and ob(P ) = (¬a ∨Kb)|P,N = ¬a ∨ false = ¬a.

Definition 12 Let S be a set of modal atoms. We say that a set of interpre-
tations M induces the partition (P, N) on S if, for each modal atom Kϕ ∈ S,
Kϕ ∈ P iff M |= Kϕ, and for each modal atom Oϕ ∈ S, Oϕ ∈ P iff M |= Oϕ.

We now define the notion of partition of a set of modal atoms induced by an
objective sentence.

Definition 13 Let Σ ∈ LO, ϕ ∈ L. We denote with (Pϕ(Σ), Nϕ(Σ)) the
partition of MA(Σ) induced by M = {w : w |= ϕ}.

Notice that the above definition associates a maximal set of interpretations
M with the sentence ϕ and the partition (Pϕ(Σ), Nϕ(Σ)).
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In order to establish a characterization of OL-satisfiability based on the use
of partitions of modal atoms, we prove some preliminary properties of such
partitions.

Lemma 14 Let ϕ ∈ LO, let w be an interpretation, let M be a set of inter-
pretations, and let (P, N) be the partition induced by M on a set of modal
atoms S. Then, (w, M) |= ϕ iff (w, M) |= ϕ|P,N .

Proof. Follows immediately from Definition 9 and from Definition 2. 2

Lemma 15 Let Σ ∈ LO, ϕ ∈ L. Then:

(i) each modal atom Kψ of MA(Σ) belongs to Pϕ(Σ) iff ϕ ⊃ ψ|Pϕ(Σ),Nϕ(Σ) is
a valid objective sentence;

(ii) each modal atom Oψ of MA(Σ) belongs to Pϕ(Σ) iff ϕ ≡ ψ|Pϕ(Σ),Nϕ(Σ) is
a valid objective sentence.

Proof. Follows immediately from Definition 2. 2

Lemma 16 Let Σ ∈ LK. If Σ is K45-satisfiable and KD45-unsatisfiable, then
the partition (P, N) induced by the empty set of interpretations is such that
ob(P ) is unsatisfiable.

Proof. Suppose Σ is K45-satisfiable and KD45-unsatisfiable, and let (w, M)
be a K45 model such that (w,M) |= Σ. Then, M = ∅. Let (P, N) be the
partition of MA(Σ) induced by M : since M = ∅, it follows that P = MA(Σ)
(each sentence of the form Kϕ is trivially satisfied by M). Now let M ′ =
{w : w |= ob(P )}. We prove that (P, N) = (Pob(P )(Σ), Nob(P )(Σ)). The proof
is by induction on the modal depth of the sentences in MA(Σ). First, let
Kϕ be a modal atom of MA(Σ) such that ϕ ∈ L. Then, since Kϕ ∈ P ,
Definition 10 implies that ob(P ) ⊃ ϕ is a valid objective sentence, hence
Kϕ ∈ Pob(P )(Σ). Suppose now that (P,N) and (Pob(P )(Σ), Nob(P )(Σ)) agree on
all modal atoms of modal depth less or equal to i. Consider a modal atom
Kϕ of MA(Σ) of modal depth i + 1. Again, since Kϕ ∈ P , by Definition 10
it follows that ob(P ) ⊃ ϕ|P,N is a valid objective sentence, hence M ′ |= ϕ|P,N ,
and since by Definition 9 the value of the sentence ϕ|P,N only depends on
the value of the modal atoms of modal depth less or equal to i in (P,N),
by the induction hypothesis and Lemma 14 it follows that M ′ |= ϕ, hence
Kϕ ∈ Pob(P )(Σ). Consequently, (P, N) = (Pob(P )(Σ), Nob(P )(Σ)), which in turn
implies that Σ|P,N = Σ|Pob(P )(Σ),Nob(P )(Σ). Now, since (w, M) |= Σ, by Lemma 14
w |= Σ|P,N , hence w |= Σ|Pob(P )(Σ),Nob(P )(Σ) and, by the same lemma, (w, M ′) |=
Σ. Since M ′ = {w : w |= ob(P )} and Σ is KD45-unsatisfiable, it follows that
M ′ is empty, hence ob(P ) is unsatisfiable. 2
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We say that a sentence ϕ ∈ LO has modal depth i if each occurrence of an
objective sentence in ϕ lies within the scope of at most i modalities, and there
is an occurrence of an objective sentence in ϕ which lies within the scope of
exactly i modalities.

Lemma 17 Let Σ ∈ LO, ϕ ∈ L. Let (P,N) be the partition of MA(Σ) built
as follows:

(i) start from P = N = ∅;
(ii) for each modal atom Kψ in MA(Σ) such that ψ|P,N ∈ L, if ϕ ⊃ ψ|P,N is

a valid objective sentence, then add Kψ to P , otherwise add Kψ to N ;
(iii) for each modal atom of the form Oψ in MA(Σ) such that ψ|P,N ∈ L, if

ϕ ≡ ψ|P,N is a valid objective sentence, then add Oψ to P , otherwise add
Oψ to N ;

(iv) iteratively apply the above rules until P ∪N = MA(Σ).

Then, (P, N) = (Pϕ(Σ), Nϕ(Σ)).

Proof. The proof is by induction on the structure of the sentences in MA(Σ).
First, from the fact that (Pϕ(Σ), Nϕ(Σ)) is the partition induced by M = {w :
w |= ϕ}, and from Definition 2, it follows that, if ψ ∈ L, then M |= Kψ if and
only if ϕ ⊃ ψ is a valid objective sentence, and M |= Oψ if and only if ϕ ≡ ψ is
a valid objective sentence. Therefore, (P,N) agrees with (Pϕ(Σ), Nϕ(Σ)) on all
modal atoms of modal depth 1. Suppose now that (P, N) and (Pϕ(Σ), Nϕ(Σ))
agree on all modal atoms of modal depth less or equal to i. Consider a modal
atom Kψ of MA(Σ) of modal depth i + 1. From Lemma 15 it follows that
M |= Kψ if and only if ϕ ⊃ ψ|Pϕ(Σ),Nϕ(Σ) is a valid objective sentence, and
since by Definition 9 the value of the sentence ψ|Pϕ(Σ),Nϕ(Σ) only depends on the
guess of the modal atoms of modal depth less or equal to i in (Pϕ(Σ), Nϕ(Σ)),
by the induction hypothesis it follows that ψ|Pϕ(Σ),Nϕ(Σ) = ψ|P,N , hence Kψ
belongs to P if and only if it belongs to Pϕ(Σ). Analogously, it can be proven
that any modal atom of depth i+1 of the form Oψ belongs to P if and only if
it belongs to Pϕ(Σ). Therefore, (P, N) and (Pϕ(Σ), Nϕ(Σ)) agree on all modal
atoms of modal depth i + 1. 2

In the following, the sentence Σ[O/false] stands for the sentence obtained
from Σ by replacing all O-sentences occurring in Σ with false. Notice that
Σ[O/false] ∈ LK , hence such a sentence is OL-satisfiable if and only if it is
K45-satisfiable.

We are now ready to provide a characterization of the notion of satisfiability
in OL, based on the existence of a partition (P, N) of MA(Σ) which satisfies
the property (P, N) = (Pob(P )(Σ), Nob(P )(Σ)).
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Theorem 18 Let Σ ∈ LO. Then, Σ is OL-satisfiable iff at least one of the
following two conditions holds:

(a) Σ[O/false] is KD45-satisfiable;
(b) there exists a partition (P, N) of MA(Σ) such that Σ|P,N is satisfiable

and (P, N) = (Pob(P )(Σ), Nob(P )(Σ)).

Proof. If part. Suppose that either condition (a) or condition (b) of the the-
orem holds. Then, there are two possible cases:

(i) Σ[O/false] is KD45-satisfiable. Then, there exists a K45 model (w, M)
such that M 6= ∅ and (w, M) |= Σ[O/false]. Let p′ be a propositional
symbol not appearing in Σ: without loss of generality, we can assume
that M contains at least one world evaluating p′ to TRUE, and at least
one world evaluating p′ to FALSE. Let M ′ be the maximal set equivalent
to M : since Th(M ′) = Th(M), it follows that (w, M ′) satisfies Σ[O/false].
Now let M ′′ be the set of interpretations obtained from M ′ by eliminating
all interpretations w′ such that w′(p′) = FALSE. By construction, M ′′ is
maximal and non-empty. Consider the model (w, M ′′): on the one hand,
(w, M ′′) satisfies Σ[O/false], since p′ does not appear in Σ; on the other
hand, since all interpretations in M ′′ satisfy p′, M ′′ |= Kp′. Now consider
a modal atom of the form Oϕ in MA(Σ), and suppose M ′′ |= Oϕ. Let
(P, N) be the partition induced by M ′′ on MA(Σ): from Lemma 14 it fol-
lows that M ′′ |= Oϕ|P,N . Then, since M ′′ |= Kp′, from Definition 2 it fol-
lows that ϕ|P,N ⊃ p′ is a valid objective sentence. Since p′ does not occur
in ϕ, ϕ|P,N ⊃ p′ is valid iff ϕ|P,N is unsatisfiable, but, if we assume ϕ|P,N

unsatisfiable, then by Definition 2 M ′′ |= Kfalse, thus contradicting the
hypothesis that M ′′ be non-empty. Therefore, for each modal atom Oϕ
in MA(Σ), M ′′ 6|= Oϕ, and since (w, M ′′) satisfies Σ[O/false], Lemma 14
implies that (w, M ′′) satisfies Σ. Since M ′′ is maximal, it follows that Σ
is OL-satisfiable;

(ii) there exists a partition (P, N) of MA(Σ) such that Σ|P,N is satisfiable
and (P, N) = (Pob(P )(Σ), Nob(P )(Σ)). Now, since Σ|P,N is satisfiable, there
exists an interpretation satisfying Σ|P,N . Let w be such an interpretation,
and let M = {w′ : w′ |= ob(P )}. Since (P,N) = (Pob(P )(Σ), Nob(P )(Σ)), it
follows that (P,N) is the partition of MA(Σ) induced by M . Therefore,
since w satisfies Σ|P,N , from Lemma 14 it follows that (w,M) |= Σ.
Moreover, M is maximal by construction, hence Σ is OL-satisfiable.

Only-If part. Suppose Σ is OL-satisfiable. Then, there exists a K45 model
(w, M) such that (w, M) |= Σ and M is maximal. Let (P,N) be the partition
induced by M on MA(Σ). There are two possible cases.

(i) All modal atoms of MA(Σ) of the form Oϕ belong to N . Then, from
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Lemma 14, it follows that (w,M) |= Σ[O/false], i.e. Σ[O/false] is K45-
satisfiable. Now, there are two possibilities:
– Σ[O/false] is KD45-satisfiable. In this case, condition (a) of the theorem

holds;
– Σ[O/false] is not KD45-satisfiable. In this case, from Lemma 16 it follows

that ob(P ) is unsatisfiable. Moreover, M is empty, hence M = {w :
w |= ob(P )}. Therefore, (P, N) coincides with the partition induced
by ob(P ), that is, (P,N) = (Pob(P )(Σ), Nob(P )(Σ)). Furthermore, since
(w, M) |= Σ and (P,N) is the partition induced by M on MA(Σ), from
Lemma 14 it follows that the interpretation w satisfies Σ|P,N , hence
condition (b) of the theorem holds.

(ii) At least one modal atom of MA(Σ) of the form Oϕ belongs to P .
Then, since (w, M) satisfies Σ, it follows that M = {w : w |= ϕ|P,N};
moreover, by definition of ob(P ) it follows that ob(P ) is equivalent to
ϕ|P,N , thus (P, N) coincides with the partition induced by ob(P ), that
is, (P, N) = (Pob(P )(Σ), Nob(P )(Σ)). Furthermore, since (w, M) |= Σ and
(P, N) is the partition induced by M on MA(Σ), from Lemma 14 it fol-
lows that the interpretation w satisfies Σ|P,N , hence condition (b) of the
theorem holds. 2

Intuitively, the above theorem provides for a characterization of the notion
of OL-satisfiability of a formula Σ in terms of properties of partitions of the
modal atoms of Σ. Specifically, the theorem states that a formula Σ ∈ LO is
OL-satisfiable iff either Σ[O/false] is KD45-satisfiable, which informally corre-
sponds to checking whether it is consistent to assume as false every O-sentence
occurring in Σ, or there exists a partition (P,N) of MA(Σ) such that Σ|P,N is
satisfiable and (P,N) = (Pob(P )(Σ), Nob(P )(Σ)), which corresponds to checking
whether there exists a guess of the modal atoms of Σ which is both consistent
with Σ and not self-contradictory.

From the above theorem, it is easy to prove that the two notions of OL-
satisfiability and weak OL-satisfiability coincide in the case of formulas from
LO.

Theorem 19 Let Σ ∈ LO. Then, Σ is OL-satisfiable iff it is weakly OL-
satisfiable.

Proof. Follows immediately from the fact that the proof of the only-if part
of Theorem 18 holds even if the assumption that M is maximal is discarded,
since such an assumption is not used in the proof. This in turn implies that Σ
is weakly OL-satisfiable iff conditions (a) and (b) of Theorem 18 hold. Thus,
from the same theorem, it follows that Σ is weakly OL-satisfiable iff Σ is
OL-satisfiable. 2

12



A property analogous to the above theorem has been proved in [8] for the
propositional fragment of OL.

4 Reasoning in OL

In this section we study reasoning in OL. In particular, we first show that
extending a decidable fragment of first-order logic with only knowing pre-
serves decidability of reasoning. Then, we establish an upper bound for the
satisfiability problem in the propositional fragment of OL, and finally analyze
a restriction of the propositional case in which reasoning is computationally
easier.

We briefly introduce the complexity classes mentioned in the following (refer
e.g. to [11] for further details). All the classes we use reside in the polynomial
hierarchy. In particular, the complexity class Σp

2 is the class of problems that
are solved in polynomial time by a nondeterministic Turing machine that uses
an NP-oracle (i.e., that solves in constant time any problem in NP), and Πp

2

is the class of problems that are complement of a problem in Σp
2. The class

PNP, also known as ∆p
2, is the class of problems that are solved in polynomial

time by a deterministic Turing machine that uses an NP-oracle, while the
class PNP[O(log n)], also known as Θp

2, is the class of problems that are solved
in polynomial time by a deterministic Turing machine that makes a number
of calls to an NP-oracle which is logarithmic in the size of the input. Hence,
the class PNP[O(log n)] is “mildly” harder than the class NP, since a problem
in PNP[O(log n)] can be solved by solving “few” (i.e. a logarithmic number
of) instances of problems in NP. It is generally assumed that the polynomial
hierarchy does not collapse, and that a problem in the class PNP[O(log n)] is
computationally easier than a Σp

2-hard or Πp
2-hard problem.

4.1 Reasoning method

As for effective methods for reasoning inOL, we recall thatOL-satisfiability in
unrestricted LO is not a decidable problem, since establishing OL-satisfiability
of objective sentences corresponds to solving the satisfiability problem for full
first-order logic. However, the characterization provided by Theorem 18 allows
for the definition of an algorithm for reasoning in subsets of LO built upon
decidable fragments of first-order logic. In the following, we say that a language
L′ ⊆ L is closed under boolean composition if, for each ϕ1, ϕ2 ∈ L′, ϕ1∧ϕ2 ∈ L′
and ¬ϕ1 ∈ L′. Moreover, we denote as L′O the subset of LO built upon L′, i.e.,
the modal extension of L′ obtained according to Definition 1.
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To the aim of identifying decidable fragments of LO, we prove the following
lemma.

Lemma 20 Let Σ ∈ LK. Then, Σ is KD45-satisfiable iff there exists a parti-
tion (P, N) of MA(Σ) such that:

(a) Σ|P,N is satisfiable;
(b) for each Kϕ ∈ N , ob(P ) ∧ ¬ϕ|P,N is satisfiable;
(c) ob(P ) is satisfiable.

Proof. If part. Let (P,N) be a partition of MA(Σ) satisfying conditions (a),
(b), and (c) of the theorem, and let M = {w : w |= ob(P )}. Condition (c) im-
plies M 6= ∅. Moreover, since Σ|P,N is satisfiable, there exists an interpretation
w such that w |= Σ|P,N . Now we prove, by induction on the modal depth of
the modal atoms in MA(Σ), that (P, N) = (Pob(P )(Σ), Nob(P )(Σ)). First, from
Lemma 15 and condition (b), it follows that each modal atom Kϕ in N of
modal depth 1 (i.e. such that ϕ ∈ L) also belongs to Nob(P )(Σ); moreover, Defi-
nition 10 and Lemma 15 imply that each modal atom Kϕ in P of modal depth
1 belongs to Pob(P )(Σ). Now suppose that (P,N) and (Pob(P )(Σ), Nob(P )(Σ))
agree on all modal atoms of modal depth less or equal to i. Consider a modal
atom Kϕ of MA(Σ) of modal depth i + 1. Since by Definition 9 the value of
the sentence ϕ|P,N only depends on the value of the modal atoms of modal
depth less or equal to i in (P,N), by the induction hypothesis it follows that
ϕ|P,N = ϕ|Pob(P )(Σ),Nob(P )(Σ), hence condition (b) and Lemma 15 imply that, if
Kϕ ∈ N , then Kϕ ∈ Nob(P )(Σ), while Definition 10 and Lemma 15 imply that,
if Kϕ ∈ P , then Kϕ ∈ Pob(P )(Σ). Therefore, (P, N) = (Pob(P )(Σ), Nob(P )(Σ)),
and since w |= Σ|P,N and (Pob(P )(Σ), Nob(P )(Σ)) is the partition of MA(Σ)
induced by M , from Lemma 14 it follows that (w,M) |= Σ, which proves that
Σ is KD45-satisfiable.

Only-if part. Suppose Σ is KD45-satisfiable. Then, there exists a model (w, M)
such that (w, M) |= Σ and M 6= ∅. Let (P, N) be the partition of MA(Σ)
induced by M . Then, from Lemma 14 it follows that w |= Σ|P,N , hence condi-
tion (a) holds. We now prove, by induction on the modal depth of the modal
atoms in MA(Σ), that (P, N) = (Pob(P )(Σ), Nob(P )(Σ)). Let M ′ = {w : w |=
ob(P )}. First, by Definition 10 it follows that, for each Kϕ ∈ MA(Σ) such
that ϕ ∈ L, M |= Kϕ iff M ′ |= Kϕ, hence Kϕ ∈ P iff Kϕ ∈ Pob(P )(Σ).
Now suppose that (P, N) and (Pob(P )(Σ), Nob(P )(Σ)) agree on all modal atoms
of modal depth less or equal to i. Consider a modal atom Kϕ of MA(Σ) of
modal depth i+1. Since Kϕ ∈ P , by Definition 10 it follows that ob(P ) ⊃ ϕ|P,N

is a valid objective sentence, hence M ′′ |= ϕ|P,N , and since by Definition 9 the
value of the sentence ϕ|P,N only depends on the value of the modal atoms
of modal depth less or equal to i in (P,N), by the induction hypothesis and
Lemma 14 it follows that M ′ |= ϕ, hence Kϕ ∈ Pob(P )(Σ). Consequently,
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(P,N) = (Pob(P )(Σ), Nob(P )(Σ)), and by Lemma 15 it follows that condition (b)
holds. Finally, since M 6= ∅, it follows that ob(P ) is satisfiable, hence condi-
tion (c) holds. 2

We are now ready to prove decidability of OL-satisfiability for subsets of LO

built upon decidable subsets of the first-order language L.

Theorem 21 Let L′ ⊂ L. If L′ is closed under boolean composition and sat-
isfiability in L′ is decidable, then OL-satisfiability in L′O is decidable.

Proof. Let Σ ∈ L′O. Theorem 18 implies that OL-satisfiability of Σ can be
decided through the following steps.

(i) First, checking KD45-satisfiability of Σ[O/false]. From Lemma 20, this
can be accomplished by verifying the existence of a partition (P, N) of
MA(Σ[O/false]) such that:
(a) Σ[O/false]|P,N is satisfiable. Since L′ is closed under boolean compo-

sition, it follows that Σ[O/false]|P,N ∈ L′, and since satisfiability in
L′ is decidable, this check is decidable;

(b) for each Kϕ ∈ N , ob(P ) ∧ ¬ϕ|P,N is satisfiable. Again, since L′ is
closed under boolean composition, it follows that, for each Kϕ ∈ N ,
ob(P ) ∧ ¬ϕ|P,N ∈ L′, hence this check is decidable;

(c) ob(P ) is satisfiable. Again, since ob(P ) ∈ L′, this check is decidable.
(ii) Verifying the existence of a partition (P,N) of MA(Σ) such that Σ|P,N is

satisfiable and (P,N) = (Pob(P )(Σ), Nob(P )(Σ)). Again, since L′ is closed
under boolean composition, Σ|P,N ∈ L′, hence verifying satisfiability of
Σ|P,N is decidable. Moreover, since L′ is closed under boolean composi-
tion, and since satisfiability in L′ is decidable, Lemma 17 provides an
effective method to build the partition (Pob(P )(Σ), Nob(P )(Σ)) in a finite
amount of time, hence checking whether (Pob(P )(Σ), Nob(P )(Σ)) is equal
to (P,N) is decidable. 2

Therefore, the above theorem states that reasoning about only knowing in the
modal extension (without quantifying-in) of a decidable fragment of first-order
logic closed under boolean composition is decidable.

In Figure 1 we present the algorithmOL-Sat for computing satisfiability in any
fragment L′O of LO satisfying the conditions of Theorem 21. The algorithm
is based on Theorem 18, and relies on both Lemma 20, which provides a
method for computing KD45-satisfiability in L′K by using a procedure for
computing satisfiability in L′, and Lemma 17, which provides a constructive
way to build the partition (Pϕ(Σ), Nϕ(Σ)) starting from the sentences Σ and
ϕ, again using a procedure for satisfiability in L′. Therefore, the algorithm
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Algorithm OL-Sat(Σ)
Input: sentence Σ ∈ L′O;
Output: true if Σ is OL-satisfiable, false otherwise.
begin
if Σ[O/false] is KD45-satisfiable
then return true
else if there exists partition (P, N) of MA(Σ) such that

(a) Σ|P,N is satisfiable and
(b) (P,N) = (Pob(P )(Σ), Nob(P )(Σ))

then return true
else return false
end

Fig. 1. Algorithm OL-Sat.

computes OL-satisfiability in L′O by reducing such a problem to a number of
satisfiability problems in L′. Correctness of the algorithm follows immediately
from Theorem 18.

Informally, the algorithm first checks whether it is possible to satisfy Σ by
assuming as false all O-sentences occurring in Σ, that is, by making no clo-
sure assumptions about what is known. If in this way it is not possible to
satisfy Σ, that is, the sentence Σ[O/false] is not KD45-satisfiable, then the
algorithm checks whether there exists a partition (P, N) of MA(Σ) satisfying
certain conditions. Intuitively, the partition must be consistent with Σ (con-
dition (a)) and cannot be self-contradictory (condition (b)). In particular, the
condition (P, N) = (Pob(P )(Σ), Nob(P )(Σ)) establishes that the objective knowl-
edge implied by the partition (P, N) (that is, the sentence ob(P )) identifies a
set of interpretations which induces the same partition (P,N) on MA(Σ). We
illustrate the algorithm through the following simple example.

Example 22 Let us consider the sentence Σ defined in Example 11. Then,
Σ[O/false] = a ∧ false = false, hence Σ[O/false] is not KD45-satisfiable. Now,
consider the partition (P, N) = ({O(¬a ∨Kb)}, {Kb}) of MA(Σ). As shown
in Example 11, Σ|P,N = a, hence (P, N) satisfies condition (a) of the al-
gorithm. Now, since ob(P ) = ¬a, and (¬a ∨ Kb)|P,N = ¬a, it follows that
O(¬a∨Kb) ∈ Pob(P )(Σ). Moreover, the objective sentence ¬a ⊃ b is not valid,
hence Kb ∈ Nob(P )(Σ). Therefore, (P,N) = (Pob(P )(Σ), Nob(P )(Σ)), i.e. condi-
tion (b) of the algorithm is satisfied. Consequently, OL-Sat(Σ) returns true.
In fact, the partition (P, N) identifies the set of interpretations M = {w :
w |= ¬a}. Moreover, since Σ|P,N is satisfiable, it follows that there exists an
interpretation w satisfying Σ|P,N , which implies that (w, M) |= Σ.
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4.2 Propositional case: complexity

We now study the complexity of reasoning about only knowing in the proposi-
tional case. To this aim, we analyze the complexity of the algorithm OL-Sat,
reported in Figure 1, under the restriction that Σ is a modal propositional for-
mula. To the best of our knowledge, such an algorithm is the first terminating
method for reasoning about only knowing in the full propositional case. 3 In
the following, we denote as Lp the propositional fragment of L, and with Lp

O

the propositional fragment of LO.

Observe that, if Σ ∈ Lp
O, then all formulas involved in the conditions reported

in the algorithm are propositional, hence all such conditions can be checked
by solving propositional satisfiability/validity problems. In particular:

– satisfiability in propositional KD45 can be computed in nondeterministic
polynomial time, since such a problem is NP-complete [10]. Membership in
NP is also an immediate consequence of Lemma 20;

– condition (a) can be checked in time linear with respect to the size of Σ;
– given (P,N), the formula ob(P ) can be computed in time linear with re-

spect to the size of P . Moreover, by Lemma 17 it follows that, since MA(Σ)
has size linear with respect to the size of Σ, construction of the partition
(Pob(P )(Σ), Nob(P )(Σ)) can be performed through a linear number (with re-
spect to the size of Σ) of calls to an NP-oracle for propositional satisfiability.
Therefore, condition (b) can be checked in linear time (with respect to the
size of Σ) using an NP-oracle.

Now, since the guess of the partition (P, N) of MA(Σ) requires a nondeter-
ministic choice, it follows that the algorithm OL-Sat, if considered as a non-
deterministic procedure, is able to establish satisfiability of a formula Σ ∈ Lp

O

in nondeterministic polynomial time (with respect to the size of Σ), using an
NP-oracle for propositional satisfiability. Thus, we obtain an upper bound of
Σp

2 for the problem.

Lemma 23 Let Σ ∈ Lp
O. The problem of establishing OL-satisfiability of Σ

is in Σp
2.

As for the lower bound of the satisfiability problem in propositional OL, we
recall that reasoning in Moore’s autoepistemic logic (AEL) [21] can be reduced
to reasoning in OL. We now briefly recall the notion of stable expansion in
AEL. In order to keep notation to a minimum, we change the language of
AEL, using the modality K instead of L: thus, in the following a formula of

3 In fact, Levesque’s axiomatization of the propositional fragment of OL [18] does
not directly imply the existence of a terminating procedure for reasoning in the
propositional fragment of OL.
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AEL is a formula belonging to the propositional fragment of LK (denoted as
Lp

K).

A set of formulas T from Lp
K is a stable expansion for a formula Σ ∈ Lp

K if T
satisfies the equation

T = Cn({Σ} ∪ {Kϕ : ϕ ∈ T} ∪ {¬Kϕ : ϕ 6∈ T})

where Cn is the logical consequence operator of propositional logic.

Proposition 24 [18, Theorem 3.9] Let ϕ ∈ Lp
K. Then, Oϕ is OL-satisfiable

iff there exists a stable expansion for ϕ.

Lemma 25 Let Σ ∈ Lp
O. The problem of establishing OL-satisfiability of Σ

is Σp
2-hard.

Proof. Let ϕ ∈ Lp
K . By Proposition 24, Oϕ is OL-satisfiable iff there exists

a stable expansion for ϕ. And since the problem of establishing whether a
formula ϕ ∈ Lp

K admits a stable expansion is Σp
2-hard [5, Theorem 4.3], this

proves the thesis. 2

The last two lemmas imply the following property.

Theorem 26 Let Σ ∈ Lp
O. The problem of establishing OL-satisfiability of Σ

is Σp
2-complete.

The previous theorem implies that validity in propositionalOL is Πp
2-complete,

and that the logical implication problem ϕ |=OL ψ is Πp
2-complete as well (with

respect to the size of ϕ∧ψ). Consequently, the algorithm OL-Sat is “optimal”
with respect to the complexity of satisfiability in propositionalOL, in the sense
that it matches the lower bound of the problem.

4.3 Propositional case: restrictions

We now define an interesting subset of propositional OL in which the modality
O can be used in a restricted way. We prove that reasoning in such a fragment
of OL is easier than in the general propositional case.

First, from Lemma 25 it follows that if we impose no restrictions on formulas
which lie within the scope of the operator O, then OL-satisfiability is a Σp

2-
hard problem. Hence, in order to find a fragment of Lp

O for which satisfiability
is computationally easier, we need to impose some restrictions on the structure
of O-subformulas.
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The first significant restriction corresponds to the case of formulas of the form
Oϕ∧¬Kψ in which ϕ ∈ Lp, ψ ∈ Lp

K . Satisfiability of this kind of formulas in
OL is analogous to a reasoning problem which has been analyzed in several
different settings (e.g. [18,23,5]), and corresponds to posing an epistemic query
ψ ∈ Lp

K to the propositional knowledge base ϕ, interpreting queries under the
following intuitive epistemic closure assumption:

– for any ξ ∈ Lp, if ξ is logically implied (in propositional logic) by ϕ then
Kξ is implied by ϕ, otherwise ¬Kξ is implied by ϕ;

– the interpretation of an epistemic query ψ with nested occurrences of the
modal operator is obtained by iteratively checking all modal subformulas
Kξ such that ξ ∈ Lp, then substituting all such subformulas with true or
false in ψ accordingly, thus obtaining new modal subformulas in ψ without
nested occurrences of the modality; when all modal subformulas in ψ have
been replaced in this way, it can be checked whether ψ is implied by ϕ.

It can be shown (see [18, Corollary 3.13]) that Oϕ ∧ ¬Kψ is satisfiable if
and only if ψ is not implied by ϕ under the above semantics for epistemic
queries. Moreover, it is known that the problem is PNP[O(log n)]-complete [6],
that is, it can be solved in polynomial time through a number of calls to the
NP-oracle which is logarithmic in the size of the formula ϕ ∧ ψ. Therefore,
satisfiability in OL of a formula of the form Oϕ ∧ ¬Kψ in which ϕ ∈ Lp,
ψ ∈ Lp

K , is PNP[O(log n)]-complete as well, hence it is easier than the problem
of OL-satisfiability of a generic formula in Lp

O.

We now define a large superclass of the above set of formulas, and show that
satisfiability in OL for such kind of formulas is still easier than in the general
case.

Definition 27 Let LS
O denote the set of formulas belonging to Lp

O in which
each propositional symbol lies within the scope of a modality. Then, we denote
with L−O the set of formulas belonging to Lp

O in which each O-subformula Oϕ
is such that ϕ is of the form f ∧ ψ or f ∨ ψ, with f ∈ Lp, ψ ∈ LS

O.

Notice that the only restriction imposed by the above definition is on the
form of O-subformulas: roughly speaking, in each O-subformula ϕ it must be
possible to isolate an “objective” (i.e. belonging to Lp) and a “subjective”
(i.e. belonging to LS

O) subformula. For instance, the formula Σ = a ∧ O(¬a ∨
Kb) defined in Example 11 belongs to the set L−O, since the O-subformula
O(¬a∨Kb) has an objective subformula ¬a and a subjective subformula Kb.
Conversely, the formula a ∧ O(¬a ∨ (Kb ∧ c)) does not belong to the set L−O,
since the subformula Kb ∧ c is neither objective nor subjective.

The language L−O allows for a nice formalization of a generalization of the
above mentioned setting of epistemic queries, in which one can express queries
regarding the epistemic state of a number (say n) of propositional knowledge
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bases. A multimodal language with n operators K1, . . . , Kn can be used for
expressing the epistemic state of each of the knowledge bases. Given a set of n
propositional knowledge bases K = {KB1, . . . ,KBn}, in which each KB i is a
formula from Lp, we define an epistemic query to K as a boolean combination
of epistemic queries to the single knowledge bases. E.g., we can pose a query
of the form

Q = K1ϕ ∧ (¬K2ψ ∨K3ξ)

such that ϕ is an epistemic query to KB1 (i.e. in which the only modality
K1 is used), ψ is an epistemic query to KB2, and ξ is an epistemic query to
KB3. Q is implied by K if and only if ϕ is implied by KB1 and either ψ is not
implied by KB2 or ξ is implied by KB3.

It is immediate to see that the evaluation of such forms of epistemic queries
can be reduced to checking validity of formulas in L−O. In the case of the above
example, Q is implied by K iff the formula

(OKB1 ⊃ Kϕ′) ∧ ((OKB2 ⊃ ¬Kψ′) ∨ (OKB3 ⊃ Kξ′))

is OL-valid, where ϕ′ is obtained from ϕ by substituting each occurrence of
K1 with K, and ψ′, ξ′ are obtained in a similar way from ψ and ξ.

We now prove that OL-satisfiability for a formula Σ belonging to L−O is easier
than for generic formulas in Lp

O. Informally, the key point is that the syntactic
restriction satisfied by a formula in L−O allows for easily identifying a “small”
(i.e., linear in the size of Σ) number of possible sets of propositional interpreta-
tions, each one represented in terms of a propositional formula. In particular,
given Σ ∈ L−O, there is a finite number (say n) of occurrences of O-subformulas
in Σ, and each of such formulas is of the form fi∧ψi or fi∨ψi, with fi ∈ Lp and
ψi ∈ LS

O, for i = 1, . . . , n: it is then possible to show that a model (w, M) for Σ
must be such that M is one of the maximal sets of interpretations represented
by one of the fi’s (plus the formulas true, false). This property simplifies the
problem of finding a model for Σ, since in this case the search can be restricted
to a linear number of candidate sets of interpretations, while in the general
case there is an exponential number of such candidate sets (represented in the
algorithm OL-Sat by all the possible partitions of the modal atoms of Σ).

In Figure 2 we present the algorithm L−O-Sat for computing OL-satisfiability
of formulas in L−O. In the algorithm, we assume without loss of generality that
the set MA(Σ) contains n ≥ 0 modal atoms prefixed by the operator O, of
the form O(fi ∧ ψi) or O(fi ∨ ψi), for i = 1, . . . , n, with fi ∈ Lp, ψi ∈ LS

O.

Example 28 Let us again consider the formula Σ = a ∧O(¬a ∨Kb) defined
in Example 11. As shown before, Σ[O/false] is not KD45-satisfiable. Moreover,
SΣ = {¬a, true, false}. Now let ϕ = ¬a. As shown before, Pϕ(Σ) = {O(¬a ∨
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Algorithm L−O-Sat(Σ)
Input: formula Σ ∈ L−O;
Output: true if Σ is OL-satisfiable, false otherwise.
begin
if Σ[O/false] is KD45-satisfiable
then return true
else if there exists ϕ in SΣ = {f1, f2, . . . , fn, true, false} such that

Σ|Pϕ(Σ),Nϕ(Σ) is satisfiable
then return true
else return false

end

Fig. 2. Algorithm L−O-Sat.

Kb)}, Nϕ(Σ) = {Kb}, and Σ|Pϕ(Σ),Nϕ(Σ) = a ∧ true is satisfiable. Therefore,
L−O-Sat(Σ) returns true.

Correctness of the algorithm is established by the following theorem.

Theorem 29 Let Σ ∈ L−O. Then, Σ is OL-satisfiable iff L−O-Sat(Σ) returns
true.

Proof. If part. Suppose L−O-Sat(Σ) returns true. Then, there are two possible
cases:

(i) Σ[O/false] is KD45-satisfiable. As shown in the proof of Theorem 18, this
implies that Σ is OL-satisfiable;

(ii) there exists a formula ϕ in the set SΣ = {f1, . . . , fn, true, false} such that
Σ|Pϕ(Σ),Nϕ(Σ) is satisfiable. Now let M = {w′ : w′ |= ϕ}; moreover, let
w be an interpretation satisfying the satisfiable propositional formula
Σ|Pϕ(Σ),Nϕ(Σ). From the definition of (Pϕ(Σ), Nϕ(Σ)) it follows that each
modal atom in MA(Σ) is satisfied by (w,M) iff it belongs to Pϕ(Σ).
Therefore, (w,M) satisfies Σ, and since M is maximal by construction,
it follows that Σ is OL-satisfiable.

Only-If part. Suppose Σ is OL-satisfiable. Then, there is a model (w, M)
satisfying Σ and such that M is maximal. Let (P, N) be the partition induced
by M on MA(Σ). Then, there are two possible cases.

(i) There is no modal atom of the form Oϕ in P . Then, Σ[O/false] ∈ Lp
K is

K45-satisfiable, since (w, M) satisfies it. Now, there are two possibilities:
– Σ[O/false] is KD45-satisfiable. In this case, the algorithm L−O-Sat(Σ)

returns true;
– Σ[O/false] is not KD45-satisfiable. In this case, from Lemma 16 it follows

that ob(P ) is unsatisfiable, hence ob(P ) is equivalent to false. Moreover,
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M is empty, hence M = {w : w |= false}. Therefore, (P,N) coincides
with the partition induced by false, that is,

(P, N) = (Pfalse(Σ), Nfalse(Σ))

Furthermore, since (w, M) |= Σ and (P,N) is the partition induced
by M on MA(Σ), from Lemma 14 it follows that the interpretation w
satisfies Σ|P,N , hence the algorithm L−O-Sat(Σ) returns true.

(ii) There exists Oϕ ∈ P . Then, since (w, M) satisfies Σ and M is maximal,
it follows that M = {w′ : w′ |= ϕ|P,N}. Now, since by hypothesis Σ ∈ L−O,
Oϕ is of the form fi ∧ ψ or fi ∨ ψ, with 1 ≤ i ≤ n and ψ ∈ LS

O, therefore
ψ|P,N is equivalent either to true or to false, which implies that ϕ|P,N is
equivalent to one of the formulas in the set SΣ = {f1, . . . , fn, true, false}.
Consequently, (P, N) is induced by one of the formulas in SΣ, and since
the formula Σ|P,N is satisfiable, it follows that the algorithm L−O-Sat(Σ)
returns true. 2

We now analyze the complexity of the algorithm L−O-Sat reported in Figure 2.
As noticed above, the partition (Pϕ(Σ), Nϕ(Σ)) can be computed through a
linear number (with respect to the size of Σ) of calls to an NP-oracle for
propositional satisfiability. Now, since the cardinality of MA(Σ) (and hence
the number of formulas in the set SΣ) is also linearly bounded by the size of
Σ, it follows that the algorithm L−O-Sat is able to establish OL-satisfiability of
a formula Σ ∈ L−O in deterministic polynomial time (in the size of Σ), using
an NP-oracle for propositional satisfiability.

More precisely, it can be shown that the problem of OL-satisfiability of a
formula Σ in L−O is PNP[O(log n)]-complete, namely it can be computed in
polynomial time by a logarithmic (in the size of Σ) number of calls to an
NP-oracle. To this aim, we recall the decision problem TREES(SAT) and the
notion of NP-tree [6]. An NP-tree is a triple 〈V ar,G, R〉 in which:

– V ar is a set of propositional variables v1, . . . , vn (called the linking vari-
ables);

– G = (V,E) is a directed tree, with edges directed from the leaves to the root.
Each element of the set of nodes V = {F1, . . . , Fn} contains a propositional
formula Fi built upon a set of private propositional symbols (i.e., symbols
which do not appear in any other node) and the linking variables vj such
that (Fj, Fi) ∈ E;

– Fr is a distinguished node, called terminal node.

The truth assignment σ to the propositional variables in an NP-tree is defined
as follows: σ(vi) = TRUE iff the formula F ′

i is satisfiable, where F ′
i stands

for for the formula obtained from Fi by replacing each propositional linking
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variable vj occurring in Fi with true if σ(vj) = TRUE, and with false if σ(vj) =
FALSE. The result value of an NP-tree is the value σ(vr).

The decision problem TREES(SAT) is the problem of establishing, given an
NP-tree T , whether the result value of T is TRUE. It has been shown [6,
Theorem 4.5] that TREES(SAT) is PNP[O(log n)]-complete.

Theorem 30 Let Σ ∈ L−O. Then, the problem of establishing OL-satisfiability
of Σ is PNP[O(log n)]-complete.

Proof. Hardness follows from the aforementioned fact that satisfiability in
OL of a formula of the form Oϕ∧¬Kψ such that ϕ ∈ Lp, ψ ∈ Lp

K , corresponds
to verify whether the epistemic query ψ is not implied by ϕ. In turn, this last
problem corresponds (see [6]) to check non-membership of the formula Kψ in
the stable set identified by the formula ϕ, which is a PNP[O(log n)]-complete
problem [6, Theorem 5.3.6].

As for membership in PNP[O(log n)], we show that the condition expressed in
the innermost if-then-else statement in the algorithm L−O-Sat, namely the ex-
istence of a formula ϕ among {f1, f2, . . . , fn, true, false} such that Σ|Pϕ(Σ),Nϕ(Σ)

is satisfiable, can be computed in PNP[O(log n)]. To this aim, we reduce, in
time polynomial in the size of Σ, the problem of checking whether such a
statement returns true to TREES(SAT). We construct the NP-tree T (Σ) as
follows. 4 First, let m = n + 2, fn+1 = true, fn+2 = false. We start from the
following tree:

– Fr = v1 ∨ v2 ∨ . . . ∨ vm;
– Fi = Σ, for i = 1, . . . , m;
– E = {(Fi, Fr) : i = 1, . . . , m}.

Then, we obtain T (Σ) by expanding each node Fi (i = 1, . . . , m) of the above
tree as follows. Let F be the node Fi or any successor node of Fi. Now:

– For each strict occurrence of a formula Kϕ in F , create a new node Fj =
¬(fi ⊃ ϕ), replace such an occurrence of Kϕ in F with the linking variable
vj, and add the edge (Fj, F ) to E;

– for each strict occurrence of a formula Oϕ in F , create a new node Fj =
¬(fi ≡ ϕ), replace such an occurrence of Oϕ in F with the linking variable
vj, and add the edge (Fj, F ) to E.

We repeat the above expansion until there are no nodes in T (Σ) which con-
tain modal operators. Now, let vj be a linking variable occurring in a node

4 The construction trivially extends the technique employed in [6] in the case of
Carnap’s modal logic.
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Fi or in a successor node of Fi, and let ϕ be the modal atom that gener-
ates vj in the above construction. From Lemma 15 it immediately follows
that σ(vj) = TRUE iff ϕ ∈ Pfi

(Σ). Consequently, for each node Fi such
that 1 ≤ i ≤ m, Fi is satisfiable iff Σ|Pϕ(Σ),Nϕ(Σ) is satisfiable. And since
Fr = v1 ∨ . . . ∨ vm, it follows that the result value of T (Σ) is TRUE iff there
exists ϕ ∈ {f1, . . . , fm} such that Σ|Pϕ(Σ),Nϕ(Σ) is satisfiable. Moreover, it is
immediate to verify that T (Σ) can be constructed in time polynomial in the
size of Σ. Therefore, the condition expressed by the innermost if-then-else
statement of the algorithm L−O-Sat can be computed in PNP[O(log n)]. And
since satisfiability in propositional KD45 can be computed in nondetermin-
istic polynomial time, Theorem 29 implies that the satisfiability problem for
formulas in L−O is in PNP[O(log n)]. 2

5 Only knowing vs. minimal knowledge

As mentioned in the introduction, only knowing is strictly related to the min-
imal knowledge principle. We now compare these two notions from the com-
putational viewpoint.

The principle of minimal knowledge is a very general notion which can be
phrased as follows: “In each possible epistemic state, the agent has minimal ob-
jective knowledge”, that is, the agent has as much ignorance as possible about
the current state of the world. As a consequence, there exists no epistemic
state whose objective knowledge logically implies the objective knowledge of
another epistemic state.

There are several proposals in the literature based on the minimal knowledge
paradigm (see e.g. [9,19,12,26]). Among them, the first attempt is due to
Halpern and Moses [9] and is the most similar to the notion of only knowing.
Informally, Halpern and Moses apply minimal knowledge to modal logic S5:
thus, they define a preference semantics [27] over S5, by considering as intended
models of a modal theory Σ only those S5 models satisfying Σ in which the
set of possible worlds is maximal with respect to set containment. Hence, in
this case the notion of maximization lies at the semantic level.

Recently, it has been proven [2] that reasoning in Halpern and Moses’ version
of S5 (also known as ground nonmonotonic modal logic S5G) lies at the third
level of the polynomial hierarchy. In particular, logical implication in S5G is a
Πp

3-complete problem. Moreover, many other formalisms based on the minimal
knowledge paradigm share the same computational properties of S5G [3,2,24].
Hence, we can conclude that (unless the polynomial hierarchy collapses) min-
imal knowledge is computationally harder than only knowing. In particular,
S5G cannot be “polynomially embedded” into OL. This is a surprising result,
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since the logic of only knowing is generally considered as a very expressive
formalism, due to its powerful ability of explicitly expressing minimization of
knowledge.

On the other hand, it can be shown that the reason why S5G (and more gen-
erally all logics based on S5G) is computationally harder than OL (and all
major propositional nonmonotonic formalisms) is that S5G allows for express-
ing minimal knowledge states in a more compact form than OL. See [25] for
a detailed study of the epistemological properties of S5G.

6 Conclusions

In this paper we have defined a general method for reasoning about only know-
ing based on deduction techniques developed for nonmonotonic modal logics,
which proves the strict similarity between these logics and Levesque’s mono-
tonic formalism. Based on such a reasoning method, we have investigated the
computational properties of the propositional fragment of Levesque’s modal
logic of only knowing. Our analysis shows that the problem of reasoning about
only knowing in the propositional case lies at the second level of the polyno-
mial hierarchy, just like reasoning in most of the propositional formalisms for
nonmonotonic reasoning. We have also studied syntactic restrictions in which
reasoning about only knowing is easier than in the general case, and have
shown the connections between such a restricted setting and the framework
of epistemic queries to “classical” knowledge bases [23].

We remark that a computational analysis of reasoning about only knowing
is interesting not only from a theoretical perspective, but also for the devel-
opment of automated reasoning procedures in the setting of reasoning about
actions, where the logic of only knowing has been recently applied [14,16].

One further development of the present work is towards the analysis of rea-
soning about only knowing in the presence of quantifying-in: in particular, it
should be interesting to see whether it is possible to extend the techniques
presented here for fragments of such a more expressive case. This analysis
may also take advantage of recent results on reasoning with quantifying-in in
standard modal logics [28].

Furthermore, the problem of embedding only knowing into nonmonotonic for-
malisms (as autoepistemic logic or the logic S5G) is very interesting from the
theoretical viewpoint, in order to establish further relationships between rea-
soning about only knowing and other forms of nonmonotonic reasoning.
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