
Reasoning about Actions with Sensing under
Qualitative and Probabilistic Uncertainty

LUCA IOCCHI, THOMAS LUKASIEWICZ, DANIELE NARDI, and RICCARDO ROSATI

Sapienza Università di Roma

We focus on the aspect of sensing in reasoning about actions under qualitative and probabilistic
uncertainty. We first define the action language E for reasoning about actions with sensing, which
has a semantics based on the autoepistemic description logic ALCKNF , and which is given a
formal semantics via a system of deterministic transitions between epistemic states. As an im-

portant feature, the main computational tasks in E can be done in linear and quadratic time. We
then introduce the action language E+ for reasoning about actions with sensing under qualitative
and probabilistic uncertainty, which is an extension of E by actions with nondeterministic and

probabilistic effects, and which is given a formal semantics in a system of deterministic, nonde-
terministic, and probabilistic transitions between epistemic states. We also define the notion of
a belief graph, which represents the belief state of an agent after a sequence of deterministic,
nondeterministic, and probabilistic actions, and which compactly represents a set of unnormal-

ized probability distributions. Using belief graphs, we then introduce the notion of a conditional
plan and its goodness for reasoning about actions under qualitative and probabilistic uncertainty.
We formulate the problems of optimal and threshold conditional planning under qualitative and

probabilistic uncertainty, and show that they are both uncomputable in general. We then give
two algorithms for conditional planning in our framework. The first one is always sound, and it
is also complete for the special case in which the relevant transitions between epistemic states
are cycle-free. The second algorithm is a sound and complete solution to the problem of finite-

horizon conditional planning in our framework. Under suitable assumptions, it computes every
optimal finite-horizon conditional plan in polynomial time. We also describe an application of our
formalism in a robotic-soccer scenario, which underlines its usefulness in realistic applications.

Categories and Subject Descriptors: I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and

Methods—Representation languages

General Terms: Languages, Algorithms

Additional Key Words and Phrases: reasoning about actions, sensing, qualitative and probabilistic
uncertainty, action languages, description logics, imprecise probabilities

Author’s addresses: DIS, Sapienza Università di Roma, Via Ariosto 25, 00185 Rome, Italy; e-mail: {iocchi,

lukasiewicz, nardi, rosati}@dis.uniroma1.it. Alternative address of T. Lukasiewicz: Institut für Informationssys-

teme, TU Wien, Favoritenstraße 9-11, 1040 Vienna, Austria; e-mail: lukasiewicz@kr.tuwien.ac.at.

This paper is a significantly extended and revised version of two papers that appeared in: Proceedings of the 10th

International Workshop on Non-Monotonic Reasoning (NMR-2004), pp. 240–248, 2004; Proceedings of the 16th

European Conference on Artificial Intelligence (ECAI-2004), pp. 818–822, IOS Press, 2004.

This work has been partially supported by the German Research Foundation (DFG) under the Heisenberg Pro-

gramme, by the Austrian Science Fund Projects P18146-N04 and Z29-N04, and by a Marie Curie Individual Fel-

lowship of the EU programme “Human Potential” under contract number HPMF-CT-2001-001286 (disclaimer:

The authors are solely responsible for information communicated and the European Commission is not respon-

sible for any views or results expressed). We are grateful to the reviewers of this paper and its NMR-2004 and

ECAI-2004 abstracts for their constructive comments, which helped to improve this work.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use

provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server

notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the

ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific

permission and/or a fee.

c© 2007 ACM 1529-3785/07/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007, Pages 1–36.

2 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

1. INTRODUCTION

Representation and reasoning about actions is a basic component for the design of cognitive

robots. In reasoning about the actions of mobile robots operating in real-world environ-

ments, one of the most crucial problems that we have to face is uncertainty, both about the

initial situation of the robot’s world and about the results of the actions taken by the robot.

One way of adding uncertainty to reasoning about actions is based on qualitative models,

in which all possible alternatives are equally considered. Another way is based on quanti-

tative models, where we have a probability distribution on the set of possible alternatives,

and thus can numerically distinguish between possible alternatives.

Well-known first-order formalisms for reasoning about actions, such as the situation

calculus [Reiter 2001], easily allow for expressing qualitative uncertainty about the initial

situation of the world and the effects of actions through disjunctive knowledge. Similarly,

recent formalisms for reasoning about actions that are inspired by the early action lan-

guage A [Gelfond and Lifschitz 1993], such as the action language C+ [Giunchiglia et al.

2004], and the planning language K [Eiter et al. 2003], allow for qualitative uncertainty

in the form of incomplete initial states and nondeterministic effects of actions.

The need for dealing with quantitative uncertainty has lead to a number of proposals

for probabilistic reasoning about actions. They include probabilistic extensions of the

situation calculus [Bacchus et al. 1999; Mateus et al. 2001], of logic programming for-

malisms [Poole 1997], and of the action language A [Baral et al. 2002].

Even though there is extensive work on reasoning about actions under qualitative and

probabilistic uncertainty separately, there is relatively little work that orthogonally com-

bines qualitative and probabilistic uncertainty in a uniform framework for reasoning about

actions. One seminal such approach is due to Halpern and Tuttle [1993], which combines

nondeterminism and probabilistic uncertainty in a game-theoretic framework. In particular,

Halpern and Tuttle [1993] draw the following important conclusion:

“ This discussion leads us to conclude that some choices in a distributed system

must be viewed as inherently nondeterministic (or, perhaps better, nonproba-

bilistic), and that it is inappropriate, both philosophically and pragmatically,

to model probabilistically what is inherently nondeterministic.”

This underlines the strong need for explicitly modeling qualitative uncertainty in addition

to probabilistic uncertainty in reasoning about actions. The following example illustrates

this strong need for modeling both qualitative and probabilistic uncertainty.

Example 1.1 (Robotic Soccer) In a robotic soccer domain, the action “align to ball” may

succeed resp. fail with the probability 0.7 resp. 0.3, while the goalkeeper’s action “open

legs” may either save the goal or not save the goal. That is, the former action has proba-

bilistic effects, while the latter action has nondeterministic effects. More precisely, in the

latter case, it may not be possible to assign probabilities to the possible effects, which in

fact depend on external factors (such as the speed and the kind of kick performed by an

opponent robot) and thus cannot be given a priori. That is, we only know that the goal-

keeper’s action “open legs” may save the goal resp. not save the goal with the probability p

resp. 1− p, where the value p∈ [0, 1] is unknown. Hence, rather than having exactly one

probability distribution, we have the very different situation of a set of possible probabil-

ity distributions for the effects of an action. Observe in particular that we cannot simply

assume the uniform distribution, that is, that p= 1− p= 0.5 holds.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 3

The work [Eiter and Lukasiewicz 2003] is among the few papers that orthogonally com-

bine qualitative and probabilistic uncertainty in a uniform framework for reasoning about

actions. However, this approach does not deal with the crucial issue of sensing in reasoning

about actions under qualitative and probabilistic uncertainty, which is needed to operate in

dynamic environments in which it is not possible to acquire all the necessary information

before executing a task (that is, in the initial state). In contrast to actions that change the

state of the world (which are thus also called physical actions), sensing actions in reason-

ing about actions (see especially [Levesque 1996; Lobo et al. 1997; Son et al. 2004]) are

actions that change the knowledge about the state of the world, that is, they allow an agent

or a robot to obtain information about certain properties of the world. Sensing actions are

strongly motivated by the overwhelming part of real-world applications where the initial

state of the world is not fully specified or where exogenous actions may occur, and conse-

quently an agent or a robot is forced to use sensors of some sort to determine the values

of certain properties of the world. One important way to represent the sensing capabilities

of the robotic agent is through an epistemic operator, which allows to distinguish what the

agent knows from what is true in the world [Levesque 1996; Iocchi et al. 2000].

In this paper, we develop a formalism that allows for sensing in reasoning about ac-

tions under qualitative and probabilistic uncertainty, thus formulating and addressing the

problem of conditional planning under qualitative and probabilistic uncertainty. The pro-

posed formalism provides a complete integration of the notion of qualitative belief, with

that of probabilistic belief. Furthermore, we show that, in this setting, under rather feasible

hypotheses, the basic reasoning task can be solved in polynomial time.

More specifically, the contributions of this paper can be summarized as follows:

—We present the action language E for reasoning about actions with sensing. We define a

formal semantics of action descriptions in E by systems of transitions between epistemic

states (or e-states), which are sets of possible states of the world. We show that all

basic computational tasks in E (among which there are especially the tasks of deciding

whether an action is executable in an e-state, and of computing the successor e-state

after executing an action in an e-state) can be done in linear resp. quadratic time.

—We define the action language E+ for reasoning about actions with sensing under qual-

itative and probabilistic uncertainty, which is an extension of the action language E by

actions with nondeterministic and probabilistic effects. Note that such an extension can

also be defined for C+ and related action languages as core action language instead

of E . We define a formal semantics of action descriptions in E+ through systems of

deterministic, nondeterministic, and probabilistic transitions between e-states.

—We introduce the concept of a belief graph, which represents the belief state of an agent

after a sequence of deterministic, nondeterministic, and probabilistic actions. We also

define the notions of lower and upper probabilities of fluent formulas in belief graphs,

and we finally prove the important result that every belief graph is a compact represen-

tation of a set of unnormalized probability distributions, which intuitively shows that

combining nondeterminism with precise probabilities leads to imprecise probabilities.

—We introduce the concept of a conditional plan in our framework for reasoning about ac-

tions under qualitative and probabilistic uncertainty. We define the notion of goodness

of a conditional plan for achieving a goal from an initial observation, and the problems

of optimal and threshold conditional planning under qualitative and probabilistic uncer-

tainty. We then show that both problems are uncomputable in the general case.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

4 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

—We present an algorithm for cycle-free conditional planning under qualitative and prob-

abilistic uncertainty, which computes a set of conditional plans with goodness above

a given threshold θ> 0. The algorithm is always sound, and it is also complete when

the relevant transition system between e-states is acyclic. That is, in the latter case, the

algorithm returns the set of all conditional plans with goodness above θ.

—We also present an algorithm for finite-horizon conditional planning under qualitative

and probabilistic uncertainty, which computes all optimal conditional plans of length

below a given horizon h> 0. An important feature of this algorithm is that every optimal

conditional plan can be computed in polynomial time, when the horizon is bounded by

a constant, which is a reasonable assumption in many applications in practice.

The concepts and techniques presented in this paper are illustrated along a robotic-soccer

scenario. The robotic application is implemented with a heterogeneous layered architecture

[Iocchi 1999], where the formalism presented in this article is used to drive the high-level

behavior of the system (that is, to select high-level actions to perform), while a numerical

level is responsible for sensor processing and action execution. The heterogenous repre-

sentation of the information within the system allows for appropriately integrating various

techniques (such as image processing, probabilistic localization, fuzzy control, path plan-

ning procedures, and specialized control techniques). The layered architecture also allows

for the effective implementation of complex behaviors, even though the used formalism is

propositional. Such a scenario thus gives evidence of the usefulness of our formalism in

realistic applications.

The rest of this paper is organized as follows. In Section 2, we define the action lan-

guage E . Section 3 extends E by actions with nondeterministic and probabilistic effects. In

Section 4, we introduce the concept of a belief graph, and in Section 5, we formally define

the conditional planning problem in our framework. Sections 6 and 7 provide algorithms

for cycle-free and finite-horizon conditional planning in our framework, respectively. In

Section 8, we discuss related work. Section 9 summarizes the main results and gives an

outlook on future research. A notation table is given in Appendix A. To not distract from

the flow of reading, some technical details have been moved to Appendix B.

2. THE ACTION LANGUAGE E

In this section, we introduce the action language E , which is syntactically similar to the ac-

tion language A and its variants including the recent C+, but which has a formal semantics

in description logics. More precisely, it is equivalent to a fragment of the autoepistemic

description logic ALCKNF [Donini et al. 2002] for modeling dynamic systems (see [Ioc-

chi et al. 2006] for the proof that E is semantically founded on ALCKNF), which has been

successfully implemented and used for a robotic soccer team [Iocchi et al. 2000].

As a central feature, the action language E allows for sensing actions and for modeling

the epistemic state of an agent, which is the set of all world states that the agent considers

possible in a given situation. Intuitively, the epistemic state encodes what the agent knows

about the world, in contrast to what is true in the world [Levesque 1996; Son and Baral

2001]. Reasoning about actions in the presence of sensing is then done by modeling the

dynamics of the agent’s epistemic state, rather than the dynamics of the world.

A dynamic system is specified in E through an initial state description and an action

description, which express what an agent knows about the initial properties of the world

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 5

and how this knowledge changes through the execution of actions, respectively. We now

describe the syntax and the semantics of initial state and action descriptions.

2.1 Syntax

An action description in E consists of a set of formulas that encode dynamic knowledge

about the preconditions and effects of actions as well as static background knowledge about

the world. The states and properties of the world are described through fluent formulas,

which are Boolean combinations of elementary propositions, called fluents. They may

directly or indirectly change through the execution of actions.

We first define fluents, actions, and fluent formulas. We assume a nonempty finite set of

fluents F and a nonempty finite set of actions A, which are divided into physical actions

and sensing actions (with binary sensing outcome). We use ⊥ and ⊤ to denote the con-

stants false and true, respectively. The set of fluent formulas is the closure of F ∪{⊥,⊤}
under the Boolean operators ¬ and ∧ (that is, if φ and ψ are fluent formulas, then also

¬φ and (φ∧ψ)). We use (φ∨ψ) and (ψ⇐φ) to abbreviate ¬(¬φ∧¬ψ) and ¬(φ∧¬ψ),
respectively, and adopt the usual conventions to eliminate parentheses. A fluent literal ℓ is

either a fluent f or the negation of a fluent ¬f . A fluent conjunction φ is either ⊥, or ⊤, or

a fluent formula of the form ℓ1 ∧ · · · ∧ ℓn, where ℓ1, . . . , ℓn are fluent literals and n> 1.

We next introduce precondition, conditional effect, sensing effect, default frame, and

domain constraint axioms in the action language E . We use precondition axioms to encode

the preconditions of actions. They are expressions of the form

executable α if φ , (1)

where φ is a fluent conjunction, and α is an action. Informally, the axiom (1) encodes that

the action α is executable in every state that satisfies φ. In particular, if φ=⊤, then α is

always executable. We use conditional effect axioms to represent the different conditional

effects of physical actions. They are of the form

caused ψ after α when φ , (2)

where φ and ψ are fluent conjunctions, and α is a physical action. Informally, the axiom

(2) encodes that if the current state of the world satisfies φ, then the successor state after

executing the action α satisfies ψ. If φ=⊤, then the axiom (2) is also called an effect

axiom and abbreviated as caused ψ after α. Sensing effect axioms associate with sensing

actions their possible two sensing outcomes. They have the form

caused to know ω or ¬ω after α , (3)

where ω is a fluent literal, and α is a sensing action. Informally, after executing α, the

agent knows that ω is either true or false. Note that, for ease of presentation, we consider

only sensing actions with two outcomes, but the formalism and all our results can be easily

extended to sensing actions with more than two outcomes. Default frame axioms associate

with actions properties of the world that they generally do not change. They are of the form

inertial φ after α , (4)

where φ is a fluent conjunction, and α is a physical action. Informally, if φ holds in

the current state of the world, then φ also holds in the successor state after executing the

action α, if this is consistent with the effects of α. Finally, domain constraint axioms

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

6 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

describe background knowledge, and are of the form

caused ψ if ℓ , (5)

where ℓ is a fluent literal, and ψ is a fluent conjunction. Informally, every state of the

world that satisfies ℓ should also satisfy ψ. Such an axiom (5) represents static background

knowledge about the world, which is invariant relative to the execution of actions.

We are now ready to define the notions of an initial state description and of an action

description as follows. An initial state description δI is a fluent conjunction. An action

description AD is a finite set of precondition axioms, conditional effect axioms, sensing

effect axioms, default frame axioms, and domain constraint axioms.

The following example shows how some actions of a goalkeeper in robotic soccer (Robo-

Cup Four-Legged League) can be expressed in the action language E .

Example 2.1 (Robotic Soccer cont’d) The fluents are ballclose (the goalkeeper is close

to the ball), ballinarea (the ball is in the penalty area), freeahead (the space ahead the

goalkeeper is free), inposition (the goalkeeper is in the correct position), ballmoving (the

ball is moving towards the goal), alignedtoball (the goalkeeper is aligned with the direction

of the ball), and goalsaved (the goal has been saved). We assume the physical actions

gotoball (a movement towards the ball, which may touch the ball and move it outside

the penalty area), bodykick, straightkick, and sidekick (three different kinds of kicks with

different capabilities), openlegs (a position for intercepting a ball kicked towards the goal),

and aligntoball (a movement for aligning to the direction of the ball moving towards the

goalkeeper’s own goal), as well as several sensing actions for some of the properties.

An action description is shown in Fig. 1. In particular, the action gotoball is executable

only if the ball is in the penalty area and not moving towards the goal (1). The action

openlegs has the effect that the goalkeeper is able to save the goal when it is aligned to

the ball direction (8), which encodes a possible capability of saving the goal even when the

alignment is unknown. After the sensing action senseballclose, the goalkeeper knows if the

ball is close or not (9). All fluents are inertial (12), and thus they generally do not change

through the execution of an action. Finally, the ball is in the penalty area, if the goalkeeper

is close to the ball (13), since we assume that the goalkeeper is always in its own area.

2.2 Semantics

An initial state description δI represents an epistemic state, which is a set of possible states

of the world, while an action description AD encodes a system of transitions between

epistemic states (which forms a directed graph where the nodes represent epistemic states

and the arrows encode transitions between epistemic states through actions).

We first define states and epistemic states, which are truth assignments to the fluents resp.

sets of states that satisfy every domain constraint axiom in AD and that are representable

by a fluent conjunction. Formally, a state s of an action description AD is a truth assign-

ment to the fluents in F . A set of states S satisfies a fluent formula φ, denoted S |=φ, iff

every s∈S satisfies φ. It satisfies a domain constraint axiom caused ψ if ℓ iff either S 6|= ℓ

or S |=ψ.1 An epistemic state (or e-state) S of AD is a nonempty set of states s of AD

1Notice that this definition provides an epistemic interpretation of domain constraints, which is different from the

usual interpretation. Based on such an interpretation, the constraint can be read as follows: if ℓ is known in the

epistemic state S (that is, is true in every state s belonging to S), then ψ is known in S.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 7

(i) precondition axioms:

(1) executable gotoball if ballinarea∧¬ballmoving

(2) executable bodykick if ballclose

(3) executable straightkick if ballclose∧freeahead

(4) executable sidekick if ballclose∧¬freeahead

(5) executable aligntoball if ballmoving

(6) executable openlegs if ballmoving

(7) executable sensealignedtoball if ballmoving

(ii) conditional effect axioms and effect axioms:

(8) caused goalsaved after openlegs when alignedtoball

(9) caused ballclose after gotoball

(10) caused ¬ballinarea after bodykick

(11) caused ¬ballinarea after straightkick

(12) caused ¬ballinarea after sidekick

(iii) sensing effect axioms:

(13) caused to know ballclose or ¬ballclose after senseballclose

(14) caused to know freeahead or ¬freeahead after sensefreeahead

(15) caused to know alignedtoball or ¬alignedtoball after sensealignedtoball

(iv) default frame axioms:

(16) inertial ℓ after α (for every fluent literal ℓ and every action α)

(v) domain constraint axioms:

(17) caused ballinarea if ballclose

Fig. 1. Robotic Soccer Example: Action description AD .

such that (i) S satisfies every domain constraint axiom in AD , and (ii) there exists a fluent

conjunction φ such that S is the set of all states s of AD that satisfy φ.

We next define the executability of actions in e-states and the transitions between e-

states through the execution of physical and sensing actions. An action α is executable in

an e-state S of AD iff S |=φ for every precondition axiom executable α if φ in AD .

Given an e-state S of AD and a physical action α that is executable in S, let direct(S, α)
denote the conjunction of all ψ such that caused ψ after α when φ is in AD and S |=φ.

We say that S′ is a successor e-state of S under the physical action α iff S′ is an e-state

of AD such that (i) S′ satisfies direct(S, α), (ii) S′ satisfies every domain constraint ax-

iom in AD , and (iii) S′ satisfies a maximal subset of default frame axioms (that is, there

exists no S′′ 6= ∅ such that (1) S′′ ⊂S′, (2) S′′ satisfies direct(S, α), (3) S′′ satisfies ev-

ery domain constraint axiom in AD , and (4) there exists a default frame axiom inertial φ

after α in AD such that S |=φ, S′ 6|=φ and S′′ |=φ). Intuitively, a successor e-state of S

under α encodes the direct effects of α (expressed through direct(S, α)), the indirect ef-

fects due to the domain constraint axioms, and a maximal propagation of inertial properties

that are consistent with these direct and indirect effects.

Analogously, S′ is a successor e-state of S under a sensing action α with outcome

o∈{ω,¬ω} iff S′ is an e-state of AD such that (i) S′ satisfies o, (ii) S′ satisfies every

domain constraint axiom in AD , and (iii) S′ satisfies a maximal subset of default frame

axioms (that is, no S′′ 6= ∅ exists such that (1) S′′ ⊂S′, (2) S′′ satisfies o, (3) S′′ satisfies

every domain constraint axiom in AD , and (4) there is a default frame axiom inertial φ

after α in AD with S |=φ, S′ 6|=φ and S′′ |=φ). Intuitively, a successor e-state of S under

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

8 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

a sensing action α encodes the sensing outcome of α, the indirect effects due to the domain

constraint axioms, and the propagation of inertial properties consistent with them.

The following result shows an important uniqueness property for successor e-states,

namely that there exists at most one successor e-state of an e-state S of AD under a physi-

cal action α (resp., a sensing action α with outcome o), denoted Φ(S, α) (resp., Φ(S, αo)).
Notice that we here use the notation αo to denote the pair consisting of a sensing action α

and an outcome o. This notation allows for handling in a uniform way the two cases of a

physical action α (without outcome) and a sensing action α with outcome o.

Proposition 2.2 Let AD be an action description in E , let S be an e-state of AD , and

let α be a physical action (resp., sensing action with outcome o∈{ω,¬ω}). If a successor

e-state of S under α (resp., α with outcome o) exists, then it is unique.

We are now ready to define the formal semantics of action and initial state descriptions as

follows. An action description AD represents the directed graph GAD = (N,E), where N

is the set of all e-states of AD , and E⊆N ×N contains S→S′ labeled with “α” (resp.,

“αo”) iff (i) α is a physical action (resp., sensing action with outcome o∈{ω,¬ω}) that is

executable in S, and (ii) S′ =Φ(S, α) (resp., S′ =Φ(S, αo)). An initial state description δI
encodes the greatest e-state of AD that satisfies δI , denoted SδI

, if it exists (if there is an

e-state that satisfies δI , then there is also a greatest such e-state). We denote by GAD,δI

the subgraph of GAD consisting of all successors of SδI
along with their incident arrows.

Example 2.3 (Robotic Soccer cont’d) Consider the action description AD shown in Fig. 1

and the initial state description δI =¬ballmoving∧ballinarea, where the ball is in the

penalty area and not moving. A portion of the directed graph GAD,δI
is shown in Fig. 2.

We finally define the notion of consistency for action and initial state descriptions. An

action description is consistent iff it has at least one e-state and each action execution is

defined. An initial state description is consistent if its e-state is defined. Formally, an action

description AD is consistent iff (i) AD has at least one e-state S, (ii) Φ(S, α) is defined for

each e-state S of AD and each physical action α that is executable in S, and (iii) Φ(S, αo)
is defined for each e-state S of AD and each sensing action α with outcome o∈{ω,¬ω}
that is executable in S. An initial state description δI is consistent if SδI

is defined. In the

sequel, we implicitly assume that all action and initial state descriptions are consistent.2

2.3 Computation

The main computational tasks related to action descriptions AD in E are (i) deciding

whether an action α is executable in an e-state S, (ii) computing the e-state Sφ for a fluent

conjunction φ (if it exists), (iii) deciding if an e-state S satisfies a fluent conjunction φ,

and (iv) computing the successor e-state of an e-state S under an action α (if it exists). In

this section, we provide upper bounds for the complexity of these tasks, which show that

they all can be solved efficiently. In detail, (i)–(iii) can all be done in linear time in the

size of AD , while (iv) can be done in quadratic time in the size of AD .

For fluent literals ℓ= f (resp., ℓ=¬f), we use ¬.ℓ to denote ¬f (resp., f), and for sets

of fluent literals L, we define ¬.L= {¬.ℓ | ℓ∈L}. For fluent conjunctions φ, we denote by

2Our definition of consistency is thus stronger than simply requiring the existence of a model. This is analogous

to other approaches in reasoning about actions, e.g., [Pirri and Reiter 1999; Zhang et al. 2002; Lang et al. 2003].

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 9

S0

S4

S7 S8

S10 S11

S3S1 S2

S5 S6
S9

gotoball

T F

sensefreeahead

sidekick

bodykicksenseballclose

T

senseballclose

FT F

sensefreeahead

F

gotoball
senseballclose

T

T

F

gotoball
gotoball

gotoballgotoball
straightkick

S0 = SδI
|= ¬ballmoving∧ballinarea

S1 |= ¬ballmoving∧ballinarea∧freeahead

S2 |= ¬ballmoving∧ballinarea∧¬freeahead

S3 |= ¬ballmoving∧ballinarea∧¬ballclose

S4 |= ¬ballmoving∧ballinarea∧ballclose

S5 |= ¬ballmoving∧ballinarea∧¬ballclose∧freeahead

S6 |= ¬ballmoving∧ballinarea∧¬ballclose∧¬freeahead

S7 |= ¬ballmoving∧ballinarea∧ballclose∧freeahead

S8 |= ¬ballmoving∧ballinarea∧ballclose∧¬freeahead

S9 |= ¬ballmoving∧¬ballinarea

S10 |= ¬ballmoving∧¬ballinarea∧freeahead

S11 |= ¬ballmoving∧¬ballinarea∧¬freeahead

Fig. 2. A part of the directed graph GAD,δI
for δI =¬ballmoving∧ballinarea.

Lit(φ) the set of all fluent literals in φ, if φ is satisfiable, and the set of all fluent literals,

otherwise. For e-states S, we denote by Lit(S) the set of all fluent literals satisfied by S.

Given an action description AD , an e-state S of AD (represented by Lit(S)), and an

action α, deciding whether α is executable in S can be done in linear time in the size of AD

along the set of all precondition axioms in AD using standard data structures. Similarly,

given AD and a fluent conjunction φ, computing the e-state Sφ (represented by Lit(Sφ))
of AD and deciding whether a given e-state S (represented by Lit(S)) of AD satisfies φ

can also both be done in linear time in the size of AD using standard data structures.

In the rest of this section, we provide a quadratic-time algorithm for computing the

successor e-state of an e-state under a physical action (which can also easily be adapted to

compute the successor e-state of an e-state under a sensing action). The algorithm, called

Compute-Successor, is presented in Fig. 3. It takes as input an action description AD ,

an e-state S of AD (represented by Lit(S)), and a physical action α, and it returns as

output the successor e-state S′ of S under α (represented by Lit(S′)). The set of fluent

literals L′ =Lit(S′) is constructed as follows. We start by initializing L′ to an empty set,

which is first augmented with all the fluent literals corresponding to the direct effects of

the action α in S (steps 2–3 of the algorithm). Then, all the indirect effects due to the

domain constraint axioms are added to L′ (steps 4–8). Then, it is verified (step 9) whether

the set of literals L′ computed so far is consistent, that is, for each literal ℓ belonging

to L′, the literal ¬.ℓ does not belong to L′. Finally, the effects of the default frame axioms

are computed and added to L′ (steps 10–19). In particular, for each default frame axiom

inertial φ after α such that φ holds in the initial e-state S (step 11), the set of literals Laux

initially contains the inertial literals propagated by the default frame axiom (that is, the ones

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

10 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

Algorithm Compute-Successor

Input: action description AD , e-state S of AD (represented by Lit(S)), and physical action α.

Output: successor e-state S′ of S under α (represented by Lit(S′)), if it exists,

and “there exists no successor e-state of S under α”, otherwise.

1. L′ = ∅;

2. for each conditional effect axiom “caused ψ after α when φ” in AD do

3. if Lit(φ)⊆Lit(S) then L′ = L′ ∪ Lit(ψ);

4. repeat

5. L′′ = L′;

6. for each domain constraint axiom “caused ψ if ℓ ” in AD do

7. if ℓ ∈ L′ then L′ = L′ ∪ Lit(ψ)

8. until L′′ = L′;

9. if L′ is not consistent then return “there exists no successor e-state of S under α”;

10. for each default frame axiom “inertial φ after α” in AD do

11. if Lit(φ)⊆Lit(S) then begin

12. Laux = Lit(φ);

13. repeat

14. L′
aux = Laux;

15. for each domain constraint axiom “caused ψ if ℓ ” in AD do

16. if ℓ ∈ Laux then Laux = Laux ∪ Lit(ψ)
17. until L′

aux = Laux;

18. if L′ ∪ Laux is consistent then L′ = L′ ∪ Laux

19. end;

20. return L′.

Fig. 3. Algorithm Compute-Successor

occurring in φ); then (steps 13–17), Laux is closed with respect to the domain constraint

axioms (that is, it is augmented with the literals indirectly derived by the domain constraint

axioms); finally, it is verified (step 18) whether the set of literals Laux thus computed is

consistent with L′, that is, the set of literals L′ ∪ Laux is consistent: if this is the case,

then the default frame axiom can be applied and the literals in φ (and all their indirect

consequences) are propagated in the successor state L′ by adding the literals in Laux to the

set L′. The following theorem shows that Compute-Successor is correct.

Proposition 2.4 Given an action description AD in the action language E , an e-state S

of AD (represented by Lit(S)), and a physical action α, Compute-Successor returns the

successor e-state S′ of S under α (represented by Lit(S′)), if it exists, and Compute-

Successor returns “there exists no successor e-state of S under α”, otherwise.

Proof. First, it is easy to verify that there exists no successor e-state of S under α iff the

set of fluent literals obtained by the union of the direct effects of α in S and the indirect

effects given by the domain constraint axioms is unsatisfiable. Thus, the algorithm returns

no set of fluent literals (step 9) iff there exists no successor e-state of S under α. Then,

we prove that, for each AD , S, and α as stated in the theorem, the algorithm returns the

set of fluent literals L′ =Lit(S′), where S′ is the successor e-state of S under α. First,

notice that, when φ is a fluent conjunction, then S |=φ iff Lit(φ)⊆Lit(S) (steps 3 and 11

of the algorithm). Now, the first for–each cycle at step 2 guarantees that the above e-state

represented by L′ satisfies direct(S, α), while the two repeat–until loops guarantee that

the e-state represented by L′ satisfies all domain constraint axioms in AD . Finally, the last

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 11

for–each cycle at step 9 guarantees that the e-state represented by L′ satisfies a maximal

subset of default frame axioms as requested by the definition of successor e-state. Hence,

the returned L′ is equal to Lit(S′), where S′ is the successor e-state of S under α. 2

Finally, as an immediate consequence of the previous result, we state an important upper

bound for the complexity of computing successor e-states. The following theorem shows

that computing successor e-states can be done in quadratic time. Here, we denote by |AD |
(resp., ‖AD‖) the number of elements in AD (resp., the size of AD).

Proposition 2.5 Let AD be an action description in the action language E , let α be a phys-

ical action, and let S be an e-state of AD (represented by Lit(S)). The successor e-state

S′ =Φ(S, α) (represented by Lit(S′)) can be computed in time O(|AD | · ‖AD‖). More-

over, if α is a sensing action, and o is an outcome of α, the successor e-state S′ = Φ(S, αo)
(represented by Lit(S′)) can be computed in time O(|AD | · ‖AD‖).

Proof. For physical actions α, the proof is an immediate consequence of the algorithm

Compute-Successor in Fig. 3. Indeed, it is easy to see that the algorithm runs in time

O(|AD | · ‖AD‖) using standard data structures (note that the size of Lit(S) is linearly

bounded by ‖AD‖). The case when α is a sensing action can be proved analogously. 2

3. THE ACTION LANGUAGE E+

In this section, we introduce the action language E+, which is an extension of the action

language E by actions with nondeterministic and probabilistic effects. We define the syntax

and semantics of extended action descriptions in E+, which extend action descriptions in E
by axioms to encode nondeterministic and probabilistic effects of actions.

3.1 Syntax

We divide the set of physical actions into deterministic, nondeterministic, and probabilistic

physical actions. The nondeterministic and probabilistic conditional effects of the latter

two types of actions are encoded in nondeterministic and probabilistic conditional effect

axioms, respectively. A nondeterministic conditional effect axiom has the form

caused ψ1, . . . , ψn after α when φ , (6)

where ψ1, . . . , ψn and φ are fluent conjunctions, α is a nondeterministic physical action,

and n> 2. Informally, if the current state of the world satisfies φ, then the successor state

after executing α satisfies ψi for some i∈{1, . . . , n}. A probabilistic conditional effect

axiom is an expression of the form

caused ψ1 : p1, . . . , ψn : pn after α when φ , (7)

whereψ1, . . . , ψn and φ are fluent conjunctions, α is a probabilistic physical action, p1, . . . ,

pn> 0, p1+ · · ·+pn =1, and n> 2. Informally, if the current state of the world satis-

fies φ, then the successor state after executing α satisfies ψi with the probability pi, for

all i∈{1, . . . , n}. Note that similar specifications of probabilistic knowledge can also be

found in probabilistic reasoning about actions (see Section 8) and in probabilistic agent

systems (see, e.g., [Dix et al. 2006]). If φ=⊤, then (6) (resp., (7)) is also called a nonde-

terministic (resp., probabilistic) effect axiom, and we omit “when φ” in (6) (resp., (7)).

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

12 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

(vi) nondeterministic conditional effect axioms:

(18) caused goalsaved,¬goalsaved after openlegs

(vii) probabilistic conditional effect axioms:

(19) caused ballclose: 0.8,¬ballinarea: 0.1,¬ballclose: 0.1 after gotoball

(20) caused ¬ballinarea∧¬inposition: 0.1,¬ballinarea∧inposition: 0.5,
¬inposition: 0.1,⊤: 0.3 after bodykick

(21) caused ¬ballinarea: 0.9,⊤: 0.1 after straightkick

(22) caused ¬ballinarea: 0.7,⊤: 0.3 after sidekick

(23) caused alignedtoball: 0.7,¬alignedtoball: 0.3 after aligntoball

Fig. 4. Robotic Soccer Example: Nondeterministic and probabilistic conditional effect axioms.

We define extended action descriptions as follows. An extended action description EAD

is a finite set of precondition, conditional effect, sensing effect, default frame, domain con-

straint, nondeterministic conditional effect, and probabilistic conditional effect axioms.

Example 3.1 (Robotic Soccer cont’d) The physical actions gotoball, bodykick, straight-

kick, sidekick, and aligntoball of the robotic soccer scenario in Example 2.1 have either

nondeterministic or probabilistic effects, and thus cannot be encoded in action descriptions

in E . However, using nondeterministic and probabilistic conditional effect axioms, they

can be easily be expressed in extended action descriptions in E+. More precisely, the

extended action description EAD is given by the precondition, conditional effect, sensing

effect, default frame, and domain constraint axioms in Fig. 1 and the nondeterministic

and probabilistic conditional effect axioms in Fig. 4. In particular, after executing the

nondeterministic physical action openlegs, the goal is saved or not (14). After executing

the probabilistic physical action gotoball, the ball is close with probability 0.8, or the ball is

not in the penalty area with probability 0.1, or the ball is not close with probability 0.1 (15).

3.2 Semantics

We define the semantics of an extended action description EAD by a system of determinis-

tic, nondeterministic, and probabilistic transitions between e-states. To this end, we extend

the transition system of an action description AD by nondeterministic and probabilistic

transitions between e-states through nondeterministic and probabilistic physical actions,

respectively. These transitions are defined by associating with each pair (S, α) of a current

e-state S and a nondeterministic (resp., probabilistic) physical action α executable in S,

a set (resp., probability distribution on a set) of successor e-states after executing α in S.

Note that the above probabilistic transitions are similar to the probabilistic transitions

in fully observable Markov decision processes (MDPs) [Puterman 1994] and partially ob-

servable Markov decision processes (POMDPs) [Kaelbling et al. 1998]. However, they are

between e-states and thus involve sets of states rather than single states.

In the sequel, let EAD be an extended action description. We define states, e-states,

the executability of actions in e-states, and the transitions between e-states through the

execution of deterministic physical actions and sensing actions in the same way as in

Section 2.2, but relative to EAD instead of AD . Hence, it now only remains to define

the nondeterministic and probabilistic transitions between e-states through the execution

of nondeterministic and probabilistic physical actions, respectively.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 13

Let S be an e-state of EAD , and α be a nondeterministic (resp., probabilistic) physical

action executable in S. We now define the set (resp., probability distribution on a set) of

successor e-states after executing α in S. We first collect the set of all axioms (6) (resp., (7))

in EAD that are relevant to S and α, that is, for which S |=φ holds. Let {caused ψj,1, . . . ,

ψj,nj
after α when φj | j ∈J} (resp., {caused ψj,1 : pj,1, . . . , ψj,nj

: pj,nj
after α when

φj | j ∈ J}) denote this set. For every combination c= (ψj)j∈J =(ψj,ij
)j∈J (called con-

text) from CS,α = {(ψj)j∈J | ∀j∈J : ψj∈{ψj,1, . . . , ψj,nj
}}, we then compute one suc-

cessor e-state (which is associated with the probability PrS,α(c)= Πj∈J pj,ij
, if α is prob-

abilistic). We thus assume that any two nondeterministic (resp., probabilistic) conditional

effect axioms relevant to S and α are logically (resp., probabilistically) independent. For-

mally, the successor e-state of S after executing α in the context c = (ψj)j∈J ∈CS,α,

denoted Φc(S, α), is the e-state Φ(S, α) under the action description obtained from EAD

by removing all axioms (6) and (7) and adding caused
∧

j∈J ψj after α. We finally define

the overall nondeterministic (resp., probabilistic) transition as follows. If α is nondeter-

ministic, then the set of successor e-states of S under α is defined as Fα(S) = {Φc(S, α) |
c∈CS,α}. Ifα is probabilistic, then the probability distribution on the successor e-states of

S under α, denoted Prα(· |S), is defined by Prα(S′|S) =
∑

c∈CS,α, S′=Φc(S,α) PrS,α(c)

for all e-states S′ of EAD . Intuitively, executing a nondeterministic action α in an e-state S

nondeterministically leads to some S′ ∈Fα(S), while executing a probabilistic action α

in S leads to S′ with the probability Prα(S′|S).
We are now ready to define the semantics of an extended action description EAD in

terms of a system of deterministic, nondeterministic, and probabilistic transitions between

its e-states as follows. The extended action description EAD represents the directed graph

GEAD =(N,E), where N is the set of all e-states of EAD , and E⊆N ×N contains

(i) an arrow S→S′ labeled with “α” for every e-state S ∈N and deterministic physi-

cal action α that is executable in S, where S′ =Φ(S, α), (ii) an arrow S→S′ labeled

with “αo” for every e-state S ∈N and sensing action α with outcome o∈{ω,¬ω} that

is executable in S, where S′ = Φ(S, αo), (iii) an arrow S→S′ labeled with “αc” for ev-

ery e-state S ∈N , nondeterministic physical action α that is executable in S, and context

c∈CS,α, where S′ =Φc(S, α), and (iv) an arrow S→S′ labeled with “αc, pr” for every

e-state S ∈N , probabilistic physical action α that is executable in S, and context c∈CS,α,

where pr =PrS,α(c) and S′ = Φc(S, α). We denote by GEAD,δI
the subgraph of GEAD

that consists of all successors of SδI
along with their incident arrows.

We finally define the consistency of extended action descriptions. We say EAD is con-

sistent iff (i) EAD has at least one e-state S, (ii) Φ(S, α) is defined for every e-state S of

EAD and every deterministic physical action α that is executable in S, (iii) Φ(S, αo) is

defined for every e-state S of EAD and every sensing action α with outcome o∈{ω,¬ω}
that is executable in S, and (iv) Φc(S, α) is defined for every e-state S of EAD , nondeter-

ministic or probabilistic physical action α that is executable in S, and context c∈CS,α. In

the sequel, we implicitly assume that all extended action descriptions are consistent.

Example 3.2 (Robotic Soccer cont’d) Let the extended action description EAD be given

by the axioms in Figs. 1 and 4 excluding the axioms (9) to (12). Furthermore, let the

initial state description be given by δI =¬ballmoving∧ballinarea∧inposition, where the

goalkeeper is in the correct position, and the ball is in the penalty area and not moving.

Then, a portion of the directed graph GEAD,δI
is shown in Fig. 5.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

14 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

S0

S3

S10

S7 S8

S2S1

S4 S5
S6

S9

T F

sidekick
straightkick

0.7

0.3

0.9

sensefreeahead

0.8

gotoball
0.5

0.80.1

gotoball

0.3
bodykick

0.10.1

0.1

S11

0.1

0.1
0.1

S0 = SδI
|= ¬ballmoving∧ballinarea∧inposition

S1 |= ¬ballmoving∧¬ballinarea∧inposition

S2 |= ¬ballmoving∧ballinarea∧inposition∧¬ballclose

S3 |= ¬ballmoving∧ballinarea∧inposition∧ballclose

S4 |= ¬ballmoving∧ballinarea∧inposition∧ballclose∧freeahead

S5 |= ¬ballmoving∧ballinarea∧inposition∧ballclose∧¬freeahead

S6 |= ¬ballmoving∧¬ballinarea∧inposition

S7 |= ¬ballmoving∧¬ballinarea∧¬inposition

S8 |= ¬ballmoving∧ballinarea∧¬inposition∧ballclose

S9 |= ¬ballmoving∧¬ballinarea∧inposition∧freeahead

S10 |= ¬ballmoving∧¬ballinarea∧inposition∧¬freeahead

S11 |= ¬ballmoving∧¬ballinarea∧inposition∧¬ballclose

Fig. 5. A part of the directed graph GEAD,δI
for δI =¬ballmoving∧ballinarea∧inposition.

3.3 Computation

The computational results of Section 2.3 about action descriptions AD in E all carry over to

extended action descriptions EAD in E+. That is, (i) deciding if an action α is executable

in an e-state S, (ii) computing the e-state Sφ for a fluent conjunction φ (if it exists), and

(iii) deciding if an e-state S satisfies a fluent conjunction φ can all be done in linear time

in the size of EAD , while (iv) computing the successor e-state (if it exists) of an e-state S

under a (deterministic, nondeterministic, or probabilistic) physical action α and a context c,

if α is nondeterministic or probabilistic, along with its probability, if α is probabilistic, or

under a sensing action α with outcome o can be done in quadratic time in the size of EAD .

4. BELIEF GRAPHS

In this section, we define the notion of a belief graph and the concepts of lower and upper

probabilities of fluent formulas in belief graphs. We then show that every belief graph is

a compact representation of a finite set of unnormalized probability distributions over the

set of all e-states. In the sequel, let EAD be an extended action description.

4.1 Belief Graphs

Intuitively, a belief graph encodes the overall epistemic state of an agent after starting from

a single initial e-state and then performing a finite sequence of actions. A belief graph

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 15

consists of a directed acyclic graph (which is a directed graph that does not contain any

directed path forming a cycle) in which every node represents an e-state and every arrow

represents a transition between two e-states. Given an initial e-state and a sequence of

actions α1, . . . , αn, their belief graph is built by using the initial e-state as a root and then

adding for every action αi, i∈{1, . . . , n}, a new layer of descendent nodes, namely, the

set of all possible successor e-states after executing αi in the e-states added before.

Formally, every belief graph B= (V,E, ℓ,Pr) consists of a directed acyclic graph G =
(V,E), a labeling function ℓ that associates with every node v ∈V an e-state ℓ(v)=S

of EAD , and a partial mapping Pr that associates with some arrows e∈E a real number

Pr(e)∈ [0, 1]. Every belief graph B=(V,E, ℓ,Pr) has exactly one node r∈V without

parents, called the root of B, and some nodes without children, called the leaves of B. A

deepest leaf of B is a leaf of B that has the maximum distance from the root of B. An

action α is executable in a belief graph B iff α is executable in the label S of some deepest

leaf v of B. More precisely, belief graphs are inductively defined as follows. Any node v

labeled with an e-state S of EAD is a belief graph. In particular, for fluent conjunctions φ

such that Sφ is defined, we denote by Bφ the belief graph that consists of a single node v

labeled with Sφ. If B is a belief graph and α is a deterministic (resp., nondeterministic)

physical action executable inB, thenB◦α is also a belief graph, which is obtained fromB

by (i) adding a new node v′ labeled with S′ for every S′ =Φ(S, α) (resp., S′ ∈Fα(S)) such

that S is the label of a deepest leaf v of B in which α is executable, and (ii) connecting

the nodes v and v′ of such S and S′, respectively, by a new arrow v→ v′. If B is a

belief graph and α is a probabilistic physical action executable in B, then B ◦ α is also

a belief graph, which is obtained from B by (i) adding a new node v′ labeled with S′ for

every S′ = Φc(S, α) such that (i.1) c∈CS,α and (i.2) S is the label of a deepest leaf v

of B in which α is executable, and (ii) connecting the nodes v and v′ of such S and S′,

respectively, by a new arrow e= v→ v′ with the probability Pr(e)=Prα(S′|S). If B

is a belief graph and α is a sensing action with outcome o∈{ω,¬ω} executable in B,

then B ◦ αo is also a belief graph, which is obtained from B by (i) adding a new node v′

labeled with S′ for every S′ = Φ(S, αo) such that S is the label of a deepest leaf v of B in

which α is executable, and (ii) connecting the nodes v and v′ of such S and S′, respectively,

by a new arrow e= v→ v′. Informally, B ◦α (resp., B ◦αo) is the successor belief graph

after executing the action α (resp., α with outcome o) in B.

Example 4.1 (Robotic Soccer cont’d) Consider the fluent conjunction δI = ballinarea ∧
inposition∧¬ballmoving. Fig. 6, left side, shows the belief graphs after executing the fol-

lowing sequences of actions inBδI
(that is, the belief graph associated with δI): (1.a) goto-

ball and bodykick; (1.b) gotoball, sensefreeahead with outcome T, and straightkick; and

(1.c) gotoball, sensefreeahead with outcome F, and sidekick.

Consider next the fluent conjunction δI = ballmoving. Fig. 6, right side, shows the be-

lief graphs after executing the following sequences of actions in the belief graph BδI
:

(2.a) openlegs; (2.b) aligntoball and openlegs; (2.c) sensealignedtoball with outcome T
and openlegs; and (2.d) sensealignedtoball with outcome F, aligntoball, and openlegs.

Observe that the number of nodes nB of a belief graph B depends on the length l of its

sequence of actions and the width of its nondeterministic and probabilistic branchings.

Hence, nB may be large. However, nB is polynomial in the size of EAD under suitable

assumptions, that is, in the special case where l is bounded by a constant and the maximal

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

16 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

0.8

0.1

0.7

0.1

0.7

0.7

0.3

0

1

1

0

0.7

0.3

0

0.7

0.5

0.1

0.8

0.1

0.4

0.8

0.1

0.9

0.1

0.9

0.9

0.1

1

0

1

0

0.7

0.3

0

0

0

0.7

1

0.70.56

0.72

1

1

1

1

1

1

1

1

0

0.5

0.1

0.3

0

0

δI

δI

δI δI

δI

δI

δI

δG

δG

δG

δG

δG

δG

δG

δG

δG

(1.c) B = BδI
◦ gotoball ◦ sensefreeaheadF ◦ sidekick

g
o
to

b
a
ll

se
n
se

fr
e
e
-

a
h
e
a
d
F

si
d
e
k
ic

k

(1.b) B = BδI
◦ gotoball ◦ sensefreeaheadT ◦ straightkick

o
p
e
n
le

g
s

se
n
se

a
li
g
n

-

a
li
g
n
to

b
a
ll

o
p
e
n
le

g
s

e
d
to

b
a
ll
F

e
d
to

b
a
ll
T

se
n
se

a
li
g
n

-

g
o
to

b
a
ll

b
o
d
y
k
ic

k

g
o
to

b
a
ll

se
n
se

fr
e
e
-

a
h
e
a
d
T

st
ra

ig
h
tk

ic
k

a
li
g
n
to

b
a
ll

o
p
e
n
le

g
s

o
p
e
n
le

g
s

(1) δI = ballinarea ∧ inposition∧¬ballmoving

0.1

δG =¬ballinarea∧inposition

probl,B(δG) = 0.56

probl,B(δG) = 0.72

(1.a) B = BδI
◦ gotoball ◦ bodykick

probl,B(δG) = 0.4

(2.a) B = BδI
◦ openlegs

probl,B(δG) = 0

(2.b) B = BδI
◦ aligntoball ◦ openlegs

(2.c) B = BδI
◦ sensealignedtoball

T
◦ openlegs

probl,B(δG) = 1

(2) δI = ballmoving

δG = goalsaved

probl,B(δG) = 0.7

(2.d) B = BδI
◦ sensealignedtoball

F
◦ aligntoball ◦ openlegs

probl,B(δG) = 0.7

Fig. 6. Belief graphs and lower probabilities of fluent formulas.

number of nondeterministic and probabilistic conditional effect axioms (6) resp. (7) that

are relevant to some S and α is also bounded by a constant (see also Section 7).

4.2 Lower and Upper Probabilities of Fluent Formulas

We next evaluate the truth of fluent formulas in belief graphs. Since a belief graph as

an overall epistemic state of an agent contains qualitative and probabilistic uncertainty, it

specifies a set of probability values for the truth of a fluent formula, rather than an exact

binary truth value. We especially deal with the smallest and the largest probability value

of a fluent formula φ in a belief graph B, called the lower and the upper probability of φ

in B, respectively. Intuitively, given the qualitative and probabilistic knowledge of B, the

fluent formula φ holds with at least (resp., most) its lower (resp., upper) probability in B.

Formally, let B=(V,E, ℓ,Pr) be a belief graph with the root r∈V , and let φ be a

fluent formula. Let Gd = (Vd, Ed) denote the subgraph of G= (V,E) where (i) Vd is the

set of all nodes v ∈V on a path from r to a deepest leaf in G, and (ii) Ed is the restriction

of E to the nodes in Vd. Then, the lower probability of φ in B, denoted probl,B(φ), is the

value probl,r(φ), where the function probl,·(φ) : Vd → [0, 1] is defined as follows:

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 17

—probl,v(φ) is 1 for every leaf v ∈Vd with ℓ(v) |=φ, and 0 for all other leaves v ∈Vd;

—probl,v(φ)= mine=v→v′∈Ed
probl,v′(φ) for every v ∈Vd where Pr(e) is undefined;

—probl,v(φ)=
∑

e=v→v′∈Ed
Pr(e) · probl,v′(φ) for every v ∈Vd where Pr(e) is defined.

Informally, the deepest leaves v of B whose e-state ℓ(v) satisfies (resp., does not satisfy) φ

associate with φ the lower probability 1 (resp., 0). We then propagate the lower probability

to every node of Gd, using the lower probabilities of the children and the probabilities

that are associated with some arrows. The lower probability of φ in B is then the lower

probability that the root r associates with φ. Similarly, the upper probability of φ in B,

denoted probu,B(φ), is the value probu,r(φ), where probu,·(φ) : Vd → [0, 1] is defined by:

—probu,v(φ) is 1 for every leaf v ∈Vd with ℓ(v) 6|=¬φ, and 0 for all other leaves v ∈Vd;

—probu,v(φ)= maxe=v→v′∈Ed
probu,v′(φ) for every v ∈Vd where Pr(e) is undefined;

—probu,v(φ)=
∑

e=v→v′∈Ed
Pr(e)·probu,v′(φ) for every v ∈Vd where Pr(e) is defined.

Finally, the executability probability of a belief graph B is defined as probl,B(⊤). Intu-

itively, this is the probability with which the sequence of actions behind B is executable.

Example 4.2 (Robotic Soccer cont’d) The lower probabilities of δG = ¬ballinarea ∧ in-

position in the belief graphs of Fig. 6 (1.a), (1.b), and (1.c) are given by 0.4, 0.72, and 0.56,

respectively, while the lower probabilities of δG = goalsaved in the belief graphs of Fig. 6

(2.a), (2.b), (2.c), and (2.d) are given by 0, 0.7, 1, and 0.7, respectively. The executability

probabilities of the belief graphs of Fig. 6 (1.a) to (1.c) are all 0.8, while the executability

probabilities of the belief graphs of Fig. 6 (2.a) to (2.d) are all 1.

The following lemma shows that the lower probability of a fluent formula φ in a belief

graph B is always below the upper probability of φ in B. This result can be easily proved

along the recursive definition of the lower and the upper probability of φ in B.

Lemma 4.3 IfB is a belief graph and φ is a fluent formula, then probl,B(φ)6 probu,B(φ).

4.3 Representation Results

We finally show that every belief graph is a compact representation of a set of unnormalized

probability distributions over the set S of all e-states of EAD . That is, every belief graph

can be associated with a set of unnormalized probability distributions such that (i) decid-

ing the executability of an action, (ii) executing an action, and (iii) evaluating the lower

and the upper probability of a fluent formula in a belief graph B can be defined in an

isomorphic way on the set of unnormalized probability distributions of B.

LetB= (V,E, ℓ,Pr) be a belief graph with the root r∈V , and letGd = (Vd, Ed) be the

subgraph of G= (V,E) defined in Section 4.2. Then, the set of unnormalized probability

distributions associated with B, denoted µB , is defined as µr, where the function µ ·

associates with every node v ∈Vd a set of unnormalized probability distributions by:

—µv = {µv} for every leaf v ∈Vd, where µv(ℓ(v))= 1 and µv(S)= 0 for all other S ∈S;

—µv =
⋃
{µv′ | e= v→ v′ ∈Ed} for every node v ∈Vd such that Pr(e) is undefined;

—µv =
⋃
{
∑

e=v→v′∈Ed
Pr(e) ·µv′ | ∀e= v→ v′ ∈Ed : µv′ ∈µv′} for every node v ∈

Vd such that Pr(e) is defined, where (
∑

e=v→v′∈Ed
Pr(e) ·µv′)(S)=

∑
e=v→v′∈Ed

Pr(e) ·µv′(S) for all e-states S ∈S.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

18 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

Example 4.4 (Robotic Soccer cont’d) The belief graph in Fig. 6 (1.a) has one unnormal-

ized probability distribution, which maps the e-states of the deepest leaves to the proba-

bilities 0.08, 0.4, 0.08, and 0.24, while the belief graph in Fig. 6 (2.a) has two probability

distributions, one that maps the first leaf to 1, and one that maps the second leaf to 1.

The following theorem shows that the executability of an action α in a belief graph B

can be expressed in terms of µB , that is, B’s set of unnormalized probability distributions

over the set S of all e-states of EAD . It also shows that there exists an operation ◦′ such

that µB ◦′ α= µB◦α for all belief graphs B and all actions α that are executable in B.

Theorem 4.5 Let EAD be an extended action description, let B be a belief graph, and

let α be an action, which is executable in B for (b) to (e). Let S be the set of all e-states

of EAD , and let µB be B’s set of unnormalized probability distributions over S. Then:

(a) The action α is executable in B iff it is executable in some e-state S ∈S such that

µ(S)> 0 for some µ∈µB .

(b) If α is a deterministic physical action, then µB◦α = {µ ◦α |µ∈µB}, where (µ ◦
α)(S′) =

∑
S∈S : S′=Φ(S,α) µ(S) for all S′ ∈S.

(c) If α is a sensing action with outcome o∈{ω,¬ω}, then µB◦αo
= {µ ◦αo |µ ∈ µB},

where (µ ◦αo)(S
′)=

∑
S∈S : S′=Φ(S,αo) µ(S) for all S′ ∈S.

(d) If α is a nondeterministic physical action, then µB◦α = {µ ◦ α̃ |µ∈µB , α̃∈ inst(α)},

where (µ ◦ α̃)(S′)=
∑

S∈S : S′=Φ(S,eα) µ(S) for all S′ ∈S, and inst(α) denotes the

set of all actions α̃ such that Φ(S, α̃)∈Fα(S) for all S ∈S. Intuitively, inst(α) is the

set of all possible “deterministic instances” of α.

(e) If α is a probabilistic physical action, then µB◦α = {µ ◦α |µ∈µB}, where (µ ◦
α)(S′) =

∑
S∈S : ∃c∈CS,α : S′=Φc(S,α) Prα(S′|S) ·µ(S) for all S′ ∈S.

The next theorem shows that (i) lower and upper probabilities of fluent formulas in

a belief graph B and (ii) the executability probability of a belief graph B can also be

expressed in terms of B’s set of unnormalized probability distributions.

Theorem 4.6 Let EAD be an extended action description, let B be a belief graph, and

let φ be a fluent formula. Let S be the set of all e-states of EAD , and let µB be the set of un-

normalized probability distributions over S associated withB. Then, (a) probl,B(φ) (resp.,

probu,B(φ)) is given by minµ∈µB

∑
S∈S, S|=φ µ(S) (resp., maxµ∈µB

∑
S∈S, S 6|=¬φ µ(S)),

and (b) the executability probability of B is given by minµ∈µB

∑
S∈S µ(S).

5. CONDITIONAL PLANNING

The conditional planning problem in our framework can be described as follows. Given an

extended action description EAD , an initial state description δI , and a goal description δG,

which is a fluent conjunction, compute the best conditional plan to achieve δG from δI . We

first define conditional plans and their goodness for achieving δG from δI . We then for-

mally state the conditional planning problems and provide some uncomputability results.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 19

CP1 = gotoball; bodykick

CP2 = gotoball; sensefreeahead; if freeahead then {straightkick}
else {sidekick}

CP3 = gotoball; senseballclose; if ballclose then {sensefreeahead; if freeahead then {straightkick}
else {sidekick}}

CP4 = openlegs

CP5 = aligntoball; openlegs

CP6 = sensealignedtoball; if alignedtoball then {openlegs}
else {aligntoball; openlegs}

Fig. 7. Conditional plans.

5.1 Conditional Plans

Intuitively, a conditional plan (see especially [Levesque 1996; Lobo et al. 1997; Son et al.

2004]) is a binary directed tree where every arrow represents an action, and every branch-

ing expresses the two outcomes of a sensing action, which can thus be used to select the

proper actions. We recall that a directed tree is a directed acyclic graph in which every

node has exactly one parent, except for the root, which has no parents; nodes without

children are called leaves. Formally, a conditional plan CP is either (i) the empty con-

ditional plan, denoted λ, or (ii) of the form α ; CP ′, or (iii) of the form β ; if ω then

{CPω} else {CP¬ω}, where α is a physical action, β is a sensing action with outcomes ω

and ¬ω, and CP ′, CPω , and CP¬ω are conditional plans. We call α and β in (i) and

(ii), respectively, the root action of CP , and we often abbreviate “π ;λ” in (i) by “π”.

The length of a conditional plan CP , denoted length(CP), is inductively defined by

(i) length(λ)= 0, (ii) length(α ; CP ′)= 1+ length(CP ′), and (iii) length(β ; if ω then

{CPω} else {CP¬ω})= 1+ max(length(CPω), length(CP¬ω)).

Example 5.1 (Robotic Soccer cont’d) Consider first the following initial state description

δI = ballinarea∧ inposition∧¬ballmoving, which encodes the initial state where the robot

is in its standard position and the ball is in the robot’s own area and not moving, and the

goal description δG =¬ballinarea ∧ inposition, which encodes the goal state where the

robot should kick away the ball and remain in its position. Some potential conditional

plans CP1, CP2 and CP3 for achieving δG from δI are shown in Fig. 7. Consider next an

initial state description δI = ballmoving, where the ball is moving, and a goal description

δG = goalsaved, where the goal has been saved. Some potential conditional plans CP4,

CP5, and CP6 for achieving δG from δI are also shown in Fig. 7.

5.2 Goodness of Conditional Plans

We next define the notion of goodness for conditional plans. Intuitively, the best condi-

tional plans are those that reach a goal state from an initial state with highest probability.

We first define the goodness of a conditional plan for achieving a goal state from a belief

graph. Given a belief graph B and a conditional plan CP , we say that CP is executable

in B iff either (i) CP =λ, or (ii) CP =α;CP ′ and α and CP ′ are executable in B and

B ◦ α, respectively, or (iii) CP =β; if ω then {CPω} else {CP¬ω} and β, CPω , and

CP¬ω are executable in B, B ◦βω , and B ◦β¬ω , respectively. Given a belief graph B,

a conditional plan CP that is executable in B, and a goal description δG, the goodness

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

20 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

of CP for achieving δG from B, denoted goodness(CP , B, δG), is defined as follows:





probl,B(δG) if CP =λ

goodness(CP ′, B ◦α, δG) if CP =α;CP ′

min(goodness(CPω, B ◦βω, δG),
goodness(CP¬ω, B ◦β¬ω, δG)) if CP =β; if ω then {CPω} else {CP¬ω}.

Informally, if CP is empty, then its goodness for achieving δG from B is the lower prob-

ability of δG in B. Otherwise, if CP consists of a physical action α and a conditional

plan CP ′, then its goodness for achieving δG from B is the goodness of CP ′ for achiev-

ing δG from the successor belief graph of B after executing α. Finally, if CP consists of

a sensing action β and one conditional plan CPo for each outcome o∈{ω,¬ω}, then its

goodness is the minimum of the goodness values of CPω and CP¬ω for achieving δG from

the successor belief graphs of B after executing β and observing ω and ¬ω, respectively.

We next extend the notion of goodness for conditional plans from belief graphs to initial

state descriptions as follows. Given an initial state description δI , a conditional plan CP

that is executable in the belief graph BδI
(that is, the belief graph that consists only of the

e-state SδI
, which is the greatest e-state SδI

of EAD that satisfies δI), and a goal descrip-

tion δG, the goodness of CP for achieving δG from δI , denoted goodness(CP , δI , δG), is

defined as the goodness of CP for achieving δG from BδI
.

Example 5.2 (Robotic Soccer cont’d) The goodness values of the conditional plans CP1

and CP2 in Fig. 7 for achieving δG =¬ballinarea ∧ inposition from δI = ballinarea ∧
inposition∧¬ballmoving are given by 0.4 and min(0.72, 0.56)= 0.56, respectively, where

0.4 and 0.72 and 0.56 are the lower probabilities of δG in the belief graphs in Fig. 6

(1.a), (1.b), and (1.c), respectively. The conditional plan CP3 has the goodness 0.56 for

achieving δG from δI . The goodness values of the conditional plans CP4, CP5, and

CP6 in Fig. 7 for achieving δG = goalsaved from δI = ballmoving are given by 0, 0.7, and

min(1, 0.7)= 0.7, respectively, where 0, 0.7, 1, and 0.7 are the lower probabilities of δG
in the belief graphs in Fig. 6 (2.a), (2.b), (2.c), and (2.d), respectively.

The following result shows that the goodness of a conditional plan CP is the mini-

mum of the goodness values of all linearizations of CP , which are roughly all possible

sequences of actions from the root to a leaf of CP . Formally, linearizations of a condi-

tional plan CP are defined as follows. The only linearization of the empty conditional

plan CP =λ is λ itself. A linearization of CP =α;CP ′ has the form α; l, where l is a

linearization of CP ′. A linearization of CP =β; if ω then {CPω} else {CP¬ω} has the

form βo; lo where o∈{ω,¬ω} and lo is a linearization of CPo. The executability in belief

graphs and the goodness for achieving a goal description from a belief graph or an initial

state description are then naturally extended from conditional plans to their linearizations.

Proposition 5.3 Let EAD be an extended action description, let δI be an initial state de-

scription, let δG be a goal description, and let CP be a conditional plan that is executable

in BδI
. Then, the goodness of CP for achieving δG from δI is the minimum of the good-

ness values of all the linearizations of CP for achieving δG from δI .

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 21

5.3 Problem Statements

The conditional planning problem in our framework of extended action descriptions in E+
can now be formalized as the problem of finding a conditional plan with maximum possible

goodness for achieving a goal state from an initial state and as the problem of finding a

conditional plan with a goodness of at least a given threshold as follows:

OPTIMAL CONDITIONAL PLANNING: Given an extended action description EAD , an

initial state description δI , and a goal description δG, compute a conditional plan CP that

has the maximal goodness among all conditional plans for achieving δG from δI .

THRESHOLD CONDITIONAL PLANNING: Given an extended action description EAD ,

an initial state description δI , a goal description δG, and a threshold θ > 0, compute a

conditional plan CP that has a goodness g> θ for achieving δG from δI (if one exists).

Example 5.4 (Robotic Soccer cont’d) Some conditional plans of goodness g > θ = 0.4
for achieving δG =¬ballinarea∧inposition from δI = ballinarea∧inposition∧¬ballmoving

are given by CP1, CP2, and CP3. In fact, the latter two conditional plans have the maxi-

mum possible goodness, and thus they are both optimal.

Observe that THRESHOLD CONDITIONAL PLANNING can be easily reduced to OPTI-

MAL CONDITIONAL PLANNING by first computing a conditional plan of maximal good-

ness g and then checking whether g> θ. The following theorem shows that the above

two problems are both uncomputable. Its proof is similar to the undecidability proof of

the plan existence problem in sequential (unconditional) probabilistic planning given in

[Madani et al. 2003]. Note that the variant of THRESHOLD CONDITIONAL PLANNING

where the condition g> θ (> 0) is replaced by g > θ (> 0) is also uncomputable.

Theorem 5.5 The two problems OPTIMAL CONDITIONAL PLANNING and THRESHOLD

CONDITIONAL PLANNING are both uncomputable.

6. CYCLE-FREE CONDITIONAL PLANNING

In this section, we show that OPTIMAL and THRESHOLD CONDITIONAL PLANNING are

both computable in the special case in which GEAD,δI
is acyclic. More precisely, we

present an algorithm for solving THRESHOLD CONDITIONAL PLANNING. For every given

problem instance, the algorithm terminates and returns some conditional plans of good-

ness g> θ for achieving δG from δI . In the special case in which GEAD,δI
is acyclic, the

algorithm returns all conditional plans of goodness g> θ for achieving δG from δI .

The algorithm is shown in Fig. 8. It uses the function find all cycle free paths , which

takes as input the directed graph GEAD,δI
, an e-state S0, and a fluent formula φ, and

which returns as output the set of all paths without cycles from S0 to an e-state Sn that

satisfies φ. Every such path P =S0 →α1
S1 →α2

S2 · · ·Sn−1 →αn
Sn is encoded as the

sequence α1;α2; . . . ;αn of labels of the arrows of P . Recall that every αi is either (a) a de-

terministic physical action or a sensing action along with one of its outcomes, or (b) a

nondeterministic (resp., probabilistic) physical action along with one of its contexts (resp.,

one of its contexts and a probability value). We then write P ⋆ to denote the sequence of

actions α′
1;α

′
2; . . . ;α

′
n, where (a) α′

i =αi if αi is a deterministic physical action or a sens-

ing action along with one of its outcomes, and (b) α′
i is obtained from αi by removing the

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

22 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

Algorithm Cycle-Free Conditional Planning

Input: extended action description EAD , initial state description δI , goal description δG,

and threshold θ > 0.

Output: set of conditional plans CP such that goodness(CP , δI , δG) >θ.

1. SL = find all cycle free paths(GEAD,δI
, SδI

, δG);

2. SL = {P ⋆ |P ∈SL, goodness(P ⋆, δI , δG) >θ};

3. SCP = SL;

4. while ∃CP ∈SCP such that rαo⋉CP but not rα¬o⋉CP do begin

5. Laux = {L∈SL | rα¬o⋉L};

6. SCP = SCP − {CP};

7. for each L∈Laux do begin

8. CPnew = unify(CP , L) ;

9. SCP = SCP ∪ {CPnew}
10. end

11. end;

12. return SCP .

Fig. 8. Algorithm Cycle-Free Conditional Planning

context (resp., the context and the probability value) if αi belongs to a nondeterministic

(resp., probabilistic) physical action. For sensing actions α with outcome o∈{ω,¬ω}, we

write ¬¬ω to denote ω. For fragments of conditional plans CP , we denote by p⋉ CP that

p is a prefix of a linearization of CP . We define unify(CP , L) by unify(α;CP ′, α;L′) =
α; unify(CP ′, L′) and unify(αo;CP ′, α¬o;L

′)=α; if o then {CP ′} else {L′}.

The algorithm in Fig. 8 works as follows. Step 1 computes the set of all paths P without

cycles in GEAD,δI
from SδI

to an e-state S that satisfies δG. By Proposition 6.2 below,

their sequences of actions P ⋆ are candidates for linearizations of the desired conditional

plans. In step 2, using Proposition 5.3, we keep only those linearizations with a goodness

of at least θ for achieving δG from δI . In steps 3–11, we then combine them to conditional

plans, and in step 12, we finally return these conditional plans.

Example 6.1 (Robotic Soccer cont’d) Consider the initial state description δI = ballin-

area ∧ inposition ∧ ¬ballmoving, where the ball is in the penalty area and not moving,

and the goalkeeper is in the correct position, and the goal description δG =¬ballinarea ∧
inposition, where the ball is outside the penalty area, and the goalkeeper is in the correct

position. By applying the algorithm in Fig. 8, supposing the threshold θ= 0.5, we com-

pute the set of all cycle-free paths in GEAD,δI
from SδI

to some e-state S satisfying δG.

Consider the two paths P ⋆
1 , P

⋆
2 ∈SL in step 2 given by P ⋆

1 = gotoball; sensefreeaheadT;
straightkick and P ⋆

2 = gotoball; sensefreeaheadF; sidekick (with goodness 0.72 resp. 0.56
as shown in Fig. 6). The path CP =P ⋆

1 satisfies the condition in step 4 of the algorithm,

thus entering the loop. In the next steps, Laux contains P ⋆
2 and these two paths are unified

through the unify function in step 8. The resulting CPnew, which is included in the output,

is the conditional plan CP2 shown in Fig. 7 with goodness 0.56.

The following result shows that linearizations from conditional plans of positive good-

ness for achieving δG from δI correspond to paths in GEAD,δI
from SδI

to an e-state S

that satisfies δG, which essentially states the correctness of step 1 of the algorithm.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 23

Proposition 6.2 Let EAD be an extended action description, let δI be an initial state de-

scription, and let δG be a goal description. Let CP be a conditional plan of positive good-

ness for achieving δG from δI . Then, for every linearization L=α1;α2; . . . ;αn of CP ,

there exists a deepest leaf node in BδI
◦ α1 ◦ α2 ◦ · · · ◦ αn whose e-state satisfies δG.

The next result shows that the algorithm always terminates with some conditional plans

of goodness g> θ for achieving δG from δI in its output. Moreover, if GEAD,δI
is acyclic,

then all conditional plans of goodness g> θ for achieving δG from δI are returned.

Theorem 6.3 Let EAD be an extended action description, let δI be an initial state de-

scription, let δG be a goal description, and let θ > 0 be a threshold. Then, (a) Cycle-Free

Conditional Planning terminates, and (b) the algorithm returns a set of conditional plans

of goodness g> θ for achieving δG from δI ; if GEAD,δI
is acyclic, then it returns the set

of all conditional plans of goodness g> θ for achieving δG from δI .

As a corollary, we obtain that THRESHOLD CONDITIONAL PLANNING is computable

in the case in which GEAD,δI
is acyclic. Observe that a variant of Cycle-Free Conditional

Planning where “ > θ ” is replaced by “>θ ” can be used for computing a set of conditional

plans of goodness g > θ> 0, and thus in particular for computing the set of all conditional

plans of positive goodness in the acyclic case. Since we can then compute the goodness

of every such conditional plan and select the ones of maximal goodness, also OPTIMAL

CONDITIONAL PLANNING is computable in the case in which GEAD,δI
is acyclic.

Corollary 6.4 OPTIMAL CONDITIONAL PLANNING and THRESHOLD CONDITIONAL

PLANNING are both computable for the class of all instances in which GEAD,δI
is acyclic.

7. FINITE-HORIZON CONDITIONAL PLANNING

In this section, we define the problem of finite-horizon conditional planning, which is

roughly the problem of finding a conditional plan of bounded length with maximal good-

ness for achieving a goal description from an initial state description. We then show how

some (and even all) optimal conditional plans of bounded length can be computed, which

thus proves that this problem is computable. We also show that finite-horizon conditional

planning can be used to perform cycle-free conditional planning. Formally, the optimiza-

tion problem of finite-horizon conditional planning is defined as follows:

FINITE-HORIZON CONDITIONAL PLANNING: Given an extended action description EAD,

an initial state description δI , a goal description δG, and a horizon h> 0, compute a con-

ditional plan CP of length l6h with maximal goodness for achieving δG from δI .

We now show how to compute a solution to this problem. In the sequel, let EAD be an

extended action description, and let δG be a goal description. Let A′ =A∪{nop}, where

nop is a new deterministic physical action that is executable in every e-state S of EAD

and that satisfies Φ(S,nop)=S for every such S. Informally, nop is the empty action,

which is always executable and does not change the e-state. It subsequently allows us to

consider only conditional plans that have a length l of exactly the horizon h and whose

linearizations all have a length l of exactly the horizon h, even if the optimal conditional

plans or some of their linearizations have a length l <h, since we can always enlarge

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

24 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

such shorter conditional plans and linearizations by filling in nop. We first define the

function V n, n> 0, which associates with every belief graph B and goal description δG
the maximal goodness of a conditional plan of length l6n to achieve δG from B:

V n(B, δG) =

{
probl,B(δG) if n= 0

max {Qn(B,α, δG) |α∈A′, α is executable in B} if n> 0,

where Qn(B,α, δG) denotes the maximal goodness of a conditional plan that starts with

the action α and has the length l6n to achieve δG from B:

Qn(B,α, δG) =

{
V n−1(B ◦α, δG) if α is a physical action

min {V n−1(B ◦αo, δG) | o∈{ω,¬ω}} otherwise.

Informally, V 0(B, δG) is the lower probability of δG in B, while V n(B, δG), n> 0, is

the maximum of Qn(B,α, δG) subject to all actions α∈A′ that are executable in B. If α

is a physical action, then Qn(B,α, δG) is the maximal goodness of a conditional plan

of length l6n−1 to achieve δG from B ◦α. If α is a sensing action with outcomes ω

and ¬ω, thenQn(B,α, δG) is the minimum of the maximal goodness of a conditional plan

of length l6n−1 to achieve δG from B ◦αo subject to o∈{ω,¬ω}.

The following result shows that V n(B, δG) is indeed the maximal goodness of a condi-

tional plan of length l6n to achieve the goal description δG from the belief graph B.

Theorem 7.1 Let EAD be an extended action description, and let δG be a goal descrip-

tion. Let B be a belief graph, and let α∈A′ be an action that is executable in B. Then,

V n(B, δG) (resp., Qn(B,α, δG)) is the maximal goodness of a conditional plan (resp.,

a conditional plan that starts with the action α) of length l6n for achieving δG from B.

We next specify a solution to FINITE-HORIZON CONDITIONAL PLANNING in terms of

the function CPn, n> 0, which assigns to every belief graph B and goal description δG
a conditional plan of length l=n with maximal goodness for achieving δG from B:

CPn(B, δG) =





λ if n= 0

Auxn(B,α, δG), where α∈A′ such that (i) α is

executable in B and (ii) V n(B, δG)=Qn(B,α, δG) if n> 0,

where Auxn(B,α, δG) is the conditional plan that (i) starts with an optimal action α,

(ii) has the length l=n, and (iii) has maximal goodness for achieving δG from B:

Auxn(B,α, δG) =





α;CPn−1(B ◦α, δG) if α is a physical action

α; if ω then {CPn−1(B ◦αω, δG)}
else {CPn−1(B ◦α¬ω, δG)} otherwise.

Informally, CP0(B, δG) is the empty conditional plan, while CPn(B, δG), n> 0, is the

conditional plan Auxn(B,α, δG). If α is a physical action, then Auxn(B,α, δG) is built

from α and one conditional plan of length l=n−1. Otherwise, Auxn(B,α, δG) is con-

structed from α and two conditional plans of length l=n−1, one for each outcome of α.

The following theorem shows that CPn(BδI
, δG) provides indeed a conditional plan

of length l6h with maximal goodness for achieving δG from δI , and thus the problem of

FINITE-HORIZON CONDITIONAL PLANNING can be solved by computing CPn(BδI
, δG).

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 25

Theorem 7.2 Let EAD be an extended action description, let δI be an initial state de-

scription, let δG be a goal description, and let h> 0 be a horizon. Then, the conditional

plan obtained from CPh(BδI
, δG) by removing all the occurrences of the action nop is a

conditional plan of length l6h with maximal goodness for achieving δG from δI .

As an immediate corollary of the previous theorem, we thus obtain that the problem of

FINITE-HORIZON CONDITIONAL PLANNING is computable.

Corollary 7.3 FINITE-HORIZON CONDITIONAL PLANNING is computable.

The next result provides an upper bound for the complexity of solving FINITE-HORIZON

CONDITIONAL PLANNING by using the function CPn (as described in Theorem 7.2)

in terms of basic operations on belief graphs. In particular, it implies that for horizons

bounded by a constant, a polynomial number of such basic operations is sufficient.

Theorem 7.4 Let EAD be an extended action description, let δI be an initial state de-

scription, let δG be a goal description, and let h> 0 be a horizon. Then, the conditional

plan CPh(BδI
, δG) can be computed by (i) O(a · bh+1) checks whether an action α∈A is

executable in a belief graph, (ii) O(bh+2) executions of an action α∈A′ in a belief graph,

and (iii)O(bh+1) evaluations of δG on a belief graph, where a= |A|, b= |Ae|+2 · |As|+1,

and Ae and As denote the set of all physical and sensing actions in A, respectively.

As a corollary, we also obtain an upper bound for the complexity of using the func-

tion CPn in terms of basic operations on e-states, which implies that for horizons bounded

by a constant, a polynomial number of basic operations on e-states is sufficient.

Corollary 7.5 Let EAD be an extended action description, let δI be an initial state de-

scription, let δG be a goal description, and let h> 0 be a horizon. Then, CPh(BδI
, δG)

can be computed by (i) O(a · bh+1 · oh) checks whether an action α∈A is executable in

an e-state, (ii) O(bh+2 · oh) executions of an action α∈A′ in an e-state, and (iii) O(bh+1 ·
oh) evaluations of δG on an e-state, where a and b are as in Theorem 7.4, and o is the

maximal number of alternatives of nondeterministic and probabilistic actions.

Since every basic operation on e-states can be done in linear or quadratic time in the

size of EAD (see Section 3.3), it thus follows that using the function CPn can be done

in polynomial time when the horizon is bounded by a constant. Furthermore, using CPn

can be done in polynomial time in the size of EAD , when the horizon is bounded by a

constant and the maximal number of nondeterministic and probabilistic conditional effect

axioms (6) resp. (7) that are relevant to some S and α is also bounded by a constant.

We next show how to compute all conditional plans of length l6h with maximal good-

ness for achieving δG from δI . To this end, we generalize the function CPn to the follow-

ing function CP
n, which assigns to every belief graph B and goal description δG the set

of all conditional plans of length l6n with maximal goodness for achieving δG from B:

CP
n(B, δG) =





λ if n= 0
⋃
{Aux

n(B,α, δG) |α∈A′, α is executable in B,

and V n(B, δG)=Qn(B,α, δG)} if n> 0,

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

26 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

Algorithm Finite-Horizon Conditional Planning

Input: extended action description EAD , initial state description δI , goal description δG,

and horizon h>0.

Output: set of all conditional plans CP of length l6h such that goodness(CP , δI , δG) is maximal.

1. SCP := CP
h(BδI

, δG) ;

2. SCP := {CP ′ |CP ∈SCP , CP ′ is obtained from CP by removing all occurrences of nop} ;

3. return SCP .

Fig. 9. Algorithm Finite-Horizon Conditional Planning

where the sets of conditional plans Aux
n(B,α, δG) are defined as follows:

Aux
n(B,α, δG) =





{α;CP |CP ∈CP
n−1(B ◦α, δG)} if α is a physical action

{α; if ω then {CPω} else {CP¬ω} |

CPω ∈CP
n−1(B ◦αω, δG)

CP¬ω ∈CP
n−1(B ◦α¬ω, δG)} otherwise.

The following result shows that CP
h(BδI

, δG) provides indeed the set of all conditional

plans of length l6h with maximal goodness for achieving δG from δI .

Theorem 7.6 Let EAD be an extended action description, let δI be an initial state de-

scription, let δG be a goal description, and let h> 0 be a horizon. Then, the set of condi-

tional plans obtained from CP
h(BδI

, δG) by removing all the occurrences of nop is the

set of all conditional plans of length l6h with maximal goodness for achieving δG from δI .

An algorithm for computing the set of all optimal conditional plans of length l6h for

achieving δG from δI using the function CP
h is shown in Fig. 9. The following example

illustrates the underlying computation via the functions V h and Qh.

Example 7.7 (Robotic Soccer cont’d) Consider again the initial state description δI = ball-

inarea∧ inposition∧¬ballmoving and the goal description δG =¬ballinarea∧ inposition.

For the horizon h= 2, the algorithm in Fig. 9 computes the set of all conditional plans

of length l6 2 with maximal goodness for achieving δG from δI . In particular, the re-

turned set of conditional plans contains CP1 = gotoball; bodykick, shown in Fig. 7, which

is computed via the functions V 2, Q2, V 1, Q1, and V 0 as follows:

V 2(BδI
, δG) = max {Q2(BδI

, α, δG) |α∈{gotoball, sensefreeahead, senseballclose,nop}}

= Q2(BδI
, gotoball, δG)

= V 1(BδI
◦ gotoball, δG)

= max {Q1(BδI
◦ gotoball, α, δG) |α ∈ {bodykick, gotoball, sensefreeahead,

senseballclose,nop}}
= Q1(BδI

◦ gotoball, bodykick, δG)

= V 0(BδI
◦ gotoball ◦ bodykick, δG)

= probl, BδI
◦ gotoball ◦ bodykick(δG)

= 0.4 (see Fig. 6).

Note that a slightly modified version of the function CPh (resp., CP
h), where the

condition “V n(B, δG)=Qn(B,α, δG)” is replaced by the condition “Qn(B,α, δG)> θ”

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 27

can be used for computing a conditional plan (resp., the set of all conditional plans) of

length l6h with goodness g> θ > 0 for achieving δG from δI .

The next result shows that, if GEAD,δI
is acyclic, then for sufficiently large horizons

h> 0, the set of all solutions of an instance of FINITE-HORIZON CONDITIONAL PLAN-

NING coincides with the set of all solutions of the corresponding instance of OPTIMAL

CONDITIONAL PLANNING, which in turn is a subset of the set of all solutions of a corre-

sponding instance of THRESHOLD CONDITIONAL PLANNING (if it is solvable). Hence,

if GEAD,δI
is acyclic, then the problems of OPTIMAL and THRESHOLD CONDITIONAL

PLANNING can both be reduced to FINITE-HORIZON CONDITIONAL PLANNING.

Theorem 7.8 Let EAD be an extended action description, let δI be an initial state de-

scription, let δG be a goal description. Suppose that GEAD,δI
is acyclic. Then, there

exists a horizon h> 0 such that the set of all conditional plans of maximal goodness for

achieving δG from δI is given by the set of conditional plans obtained from CP
h(BδI

, δG)
by removing all the occurrences of the action nop.

8. RELATED WORK

The literature contains several probabilistic extensions of formalisms for reasoning about

actions. In particular, Bacchus et al. [1999] propose a probabilistic generalization of the

situation calculus, which is based on first-order logics of probability, and which allows

to reason about an agent’s probabilistic degrees of belief and how these beliefs change

when actions are executed. Poole’s independent choice logic [1997; 2000] is based on

acyclic logic programs under different “choices”. Each choice along with the acyclic logic

program produces a first-order model. By placing a probability distribution over the dif-

ferent choices, one then obtains a distribution over the set of first-order models. Mateus

et al. [2001] allow for describing the uncertain effects of an action by discrete, continu-

ous, and mixed probability distributions, and focus especially on probabilistic temporal

projection and belief update. Finzi and Pirri [2001] add probabilities to the situation cal-

culus to quantify and compare the safety of different sequences of actions. Boutilier et al.

[2001] introduce and explore an approach to first-order Markov decision processes (MDPs)

that are formulated in a probabilistic generalization of the situation calculus, and present

a dynamic programming approach for solving them. A companion paper by Boutilier et

al. [2000] presents a generalization of Golog, called DTGolog, that combines robot pro-

gramming in Golog with decision-theoretic planning in MDPs. Other probabilistic exten-

sions of the situation calculus and Golog are given in [Mateus et al. 2001; Grosskreutz and

Lakemeyer 2001]. A probabilistic extension of the action language A is given by Baral et

al. [2002], which aims especially at an elaboration-tolerant representation of MDPs and at

formulating observation assimilation and counterfactual reasoning.

Among the above approaches, the most closely related is perhaps Poole’s independent

choice logic (ICL) [1997], which uses a similar way of adding probabilities to an approach

based on acyclic logic programs. But, as a central conceptual difference, like all the other

above approaches, Poole’s ICL does not allow for qualitative uncertainty in addition to

probabilistic uncertainty. Poole circumvents the problem of dealing with qualitative uncer-

tainty by imposing the strong acyclicity condition on logic programs. Moreover, Poole’s

formalism is inspired more by the situation calculus and less by description logics.

Another closely related work is [Eiter and Lukasiewicz 2003], which proposes the ac-

tion language PC+ for probabilistic reasoning about actions, and which is among the few

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

28 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

works in the literature that deal with both qualitative and probabilistic uncertainty in rea-

soning about actions. More precisely, PC+ allows for expressing nondeterministic and

probabilistic effects of actions as well as qualitative and probabilistic uncertainty about the

initial situation of the world. A formal semantics of PC+ is defined in terms of probabilis-

tic transitions between sets of states, and it is then shown how the problems of prediction,

postdiction, and unconditional planning under qualitative and probabilistic uncertainty can

be formulated in PC+. However, this work especially does not address sensing.

A further group of important related works is represented by the probabilistic agent pro-

grams in [Subrahmanian and Ward 1996; Dix et al. 2000; Dix et al. 2006], which also deal

with reasoning about actions in the context of multiple alternative possible world states.

More concretely, Subrahmanian and Ward [1996] present an approach to STRIPS-style

probabilistic planning and show that it can be equivalently expressed in terms of proba-

bilistic logic programs. Furthermore, Dix et al. [2000] present an approach to probabilistic

agent programs, which is based on the ordinary agent programs introduced by Eiter et

al. [1999], and which is similar in spirit to Poole’s ICL [1997]. Finally, [Dix et al. 2006] is

a generalization of [Dix et al. 2000] by temporal probabilistic knowledge. Similarly to our

work here, Dix et al. [2000; 2006] allow for dealing with probabilistic uncertainty about

the world state. However, differently from here, they do not additionally allow for deal-

ing with qualitative uncertainty about the world state, and they do not allow for directly

expressing nondeterministic and probabilistic effects of actions. Notice also that their mul-

tiple alternative possible world states are due to probabilistic initial states, while ours are

due to actions with nondeterministic and probabilistic effects. Differently from our work,

they also do not define a semantics based on autoepistemic description logics, they do not

consider belief trees, and they do not focus on solving the conditional planning problem.

From a more general perspective, our approach is also related to planning under un-

certainty in AI, since it can be roughly understood as a combination of (i) conditional

planning under nondeterministic uncertainty [Geffner 2002] with (ii) conditional planning

under probabilistic uncertainty, both in partially observable environments. Previous work

on planning under probabilistic uncertainty can be roughly divided into (a) generalizations

of classical planning and (b) decision-theoretic planning. The former (see for example

[Draper et al. 1994; Onder and Pollack 1999; Karlsson 2001]) typically considers the prob-

lem of determining a sequence of actions given a success threshold, with some extensions

that consider also sensing and conditional plans. Decision-theoretic planning, on the other

hand, deals with fully observable Markov decision processes (MDPs) [Puterman 1994] or

the more general partially observable Markov decision processes (POMDPs) [Kaelbling

et al. 1998], which also include costs and/or rewards associated with actions and/or states,

and their solutions are mappings from situations to actions of high expected utility, rather

than courses of actions achieving a goal with high probability. Summarizing, our approach

can perhaps best be seen as combining conditional planning under nondeterministic and

under probabilistic uncertainty, where the latter is perhaps closest to generalizations of

classical planning in AI. In contrast to the decision-theoretic framework, we do not as-

sume costs and/or rewards associated with actions and/or states. Furthermore, sensing

actions in our approach are more flexible than observations in POMDPs, since they allow

for preconditions, and they can be performed at any time point when executable.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 29

9. CONCLUSION

In this paper, we have presented the language E+ for reasoning about actions with sensing

under qualitative and probabilistic uncertainty.

The proposed framework has several interesting features of reasoning about actions,

such as sensing, persistence, and static constraints, and it combines them with nondeter-

ministic and probabilistic effects of actions. The proposed formalism also provides a com-

plete integration of the epistemic and probabilistic beliefs of an agent.

We have formulated the problem of conditional planning under qualitative and proba-

bilistic uncertainty, and we have presented two algorithms for conditional planning in our

framework. The first one is always sound, and it is also complete for the special case where

the relevant transitions between epistemic states are cycle-free. The second algorithm is

a sound and complete solution to the problem of finite-horizon conditional planning. Un-

der the assumption that the horizon is bounded by a constant, it computes every optimal

finite-horizon conditional plan in polynomial time.

Finally, several examples have illustrated our formalism. They describe a robotic soccer

scenario in which we model at the same time the sensing abilities of a robot, as well as non-

deterministic and probabilistic uncertainty in the execution of its actions. More precisely,

the examples show how this scenario can be modeled in our formalism, and they illustrate

the concepts of belief graph and conditional plan, the evaluation of different possible con-

ditional plans, and their computation using the presented algorithms. They show not only

the need for an integrated formalism in realistic applications, but also that the choices in

modeling uncertainty in the actions affect the behavior of the robot.

While from the representation standpoint our formalism provides a rather rich frame-

work, a number of issues still deserve further investigation. Specifically, we are currently

addressing extensions of the proposed framework that generalize it by introducing noise

in sensing actions (for example, along the lines of [Bacchus et al. 1995; Shapiro 2005]),

as well as actions with costs and/or rewards (for example, such as in POMDPs [Kaelbling

et al. 1998]). Moreover, we are improving the implementation of the prototype planner to

make it suitable for quantitative experiments and performance evaluation.

Another interesting topic of future research would be to elaborate an extension of the

presented formalism to multi-agent systems. Furthermore, it would also be very interesting

to investigate whether E+ can be applied in web services: The semantic foundation of E+
on description logics is in spirit of a recent trend towards combining action languages

with description logics [Baader et al. 2005] for modeling web services in the Semantic

Web [Berners-Lee 1999; Fensel et al. 2002]. Here, description logics in general play a

crucial role as a formal foundation for the OWL Web Ontology Language [W3C 2004;

Horrocks et al. 2003] and autoepistemic description logics in particular as a mechanism

for combining rules and ontologies [Motik et al. 2006; Motik and Rosati 2007].

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

30 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

A. APPENDIX: NOTATION TABLE

Symbol Description Section

F set of fluents 2.1

A set of actions 2.1

φ, ψ fluent formulas 2.1

ℓi, ω fluent literals 2.1

α action in A 2.1

δI initial state description 2.1

AD action description 2.1

s state of AD 2.2

S epistemic state (or e-state) of AD 2.2

Φ(S, α) successor e-state of an e-state S of AD under action α 2.2

GAD directed graph represented by AD 2.2

SδI
e-state encoded by δI 2.2

GAD,δI
subgraph of GAD with all successors of SδI

2.2

L set of fluent literals 2.3

Lit(φ) set of all fluent literals in φ 2.3

Lit(S) set of all fluent literals satisfied by S 2.3

pi probability value 3.1

EAD extended action description 3.1

CS,α set of contexts when executing α in S 3.1

Φc(S, α) the successor e-state of S after executing α in the context c 3.1

Fα(S) set of successor e-states of S under α 3.1

Prα(· |S) probability distribution on the successor e-state of S under α 3.1

GEAD directed graph represented by EAD 3.1

GEAD,δI
subgraph of GEAD with all successors of SδI

3.1

B= (V,E, ℓ,Pr) belief graph 4.1

probl,B(φ) lower probability of φ in B 4.2

probu,B(φ) upper probability of φ in B 4.2

µB set of unnormalized probability distributions associated with B 4.3

δG goal description 5

CP conditional plan 5.1

λ empty conditional plan 5.1

goodness(CP , B, δG) goodness of CP for achieving δG from B 5.2

V n(B, δG)
maximal goodness of a conditional plan of length l6 n

to achieve δG from B
7

Qn(B,α, δG)
maximal goodness of a conditional plan that starts with
action α and has the length l6 n to achieve δG from B

7

CPn(B, δG)
conditional plan of length l=n with maximal goodness

for achieving δG from B
7

Auxn(B,α, δG)
conditional plan that starts with an optimal action α,

has the length l=n, and has maximal goodness
for achieving δG from B

7

Fig. 10. Notation

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 31

B. APPENDIX: PROOFS

Proof of Proposition 2.2. It is sufficient to show that the default frame axioms in AD

do not produce any nondeterministic choice. Let I be the set of all default frame ax-

ioms inertial φ after α in AD that are applicable in S, that is, such that the set of

all fluent literals in φ, denoted Lit(φ), is contained in the set of all fluent literals rep-

resenting S, denoted Lit(S). It then follows that also Lit⋆(φ) is contained in Lit(S),
for every inertial φ after α in I , where Lit⋆(φ) is the closure of Lit(φ) under all do-

main constraint axioms in AD . This shows in particular that the union of all Lit⋆(φ)
such that inertial φ after α is in I is consistent. It thus follows that for any consis-

tent set of fluent literals L, the set of fluent literals L ∪ Lit⋆(φ1) ∪ · · · ∪ Lit⋆(φn),
where inertial φi after α belongs to I for every i∈{1, . . . , n}, is consistent iff every

L ∪ Lit⋆(φi) with i∈{1, . . . , n} is consistent. Hence, any consistent set of fluent liter-

als L ∪ Lit⋆(φ1) ∪ · · · ∪ Lit⋆(φn), where (i) inertial φi after α belongs to I for every

i∈{1, . . . , n}, and (ii) {inertial φi after α | i∈{1, . . . , n}} is maximal, is unique and ex-

actly given through all inertial φi after α in I such that L∪Lit⋆(φi) is consistent. 2

Proof of Theorem 4.5. (a) Recall first that an action α is executable inB iff it is executable

in the e-state ℓ(v)=S of some deepest leaf v of B. Observe then that the e-states of the

deepest leaves of B are exactly the e-states S ∈S such that µ(S)> 0 for some µ∈µB .

(b) (resp., (c)) The set of unnormalized probability distributions over S associated with the

belief graph B ◦ α (resp., B ◦ αo) coincides with the set of unnormalized probability dis-

tributions over S associated with the belief graph obtained from B by replacing the e-state

ℓ(v)=S of every deepest leaf v such that α is executable in S by the e-state S′ = Φ(S, α)
(resp., S′ = Φ(S, αo)). The latter is given by the set of all µ ◦α (resp., µ ◦αo) with µ∈µB .

(d) The set of unnormalized probability distributions over S associated withB◦α coincides

with the union of all µeα such that α̃∈ inst(α), where every µeα is the set of unnormalized

probability distributions over S associated with the belief graph obtained from B by re-

placing the e-state ℓ(v)=S of every deepest leaf v such that α is executable in S by the

e-state S′ = Φ(S, α̃). Every such µeα is given by the set of all µ ◦ α̃ with µ∈µB .

(e) Recall that for every deepest leaf v of B, the set of unnormalized probability distribu-

tions µv associated with v in B is given by the probability distribution µv that maps the

e-state ℓ(v)=S to 1 and all other e-states S ∈S to 0. Observe then that for every deepest

leaf v of B such that α is executable in the e-state ℓ(v)=S, the set of unnormalized prob-

ability distributions µv associated with v in B ◦α is given by the unnormalized probability

distribution µ that maps every S′ ∈S for which some c∈CS,α exists with S′ = Φc(S, α)
to Prα(S′|S) and all other e-states S′ ∈S to 0. Hence, the set of unnormalized probability

distributions over S associated with B ◦ α is given by the set of all µ ◦α with µ∈µB . 2

Proof of Theorem 4.6. (a) Let B=(V,E, ℓ,Pr), and let r∈V be the root of B. Let the

subgraph Gd = (Vd, Ed) of G= (V,E) be defined as in Section 4.2. By induction on the

recursive structure of Gd, we show that probl,v(φ)= minµ∈µv

∑
S∈S, S|=φ µ(S) for all

v ∈Vd. Analogously, it can be shown that probu,v(φ)= maxµ∈µv

∑
S∈S, S 6|=¬φ µ(S) for

all v ∈Vd. Since the above holds in particular for the root r of B, this then proves (a).

Basis: Let v ∈Vd be a leaf. Then, probl,v(φ) is 1 if ℓ(v) |=φ, and 0 otherwise. Fur-

thermore, µv is given by {µv}, where µv(ℓ(v))= 1 and µv(S)= 0 for every other e-state

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

32 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

S ∈S. Hence, minµ∈µv

∑
S∈S, S|=φ µ(S)=

∑
S∈S, S|=φ µv(S) is 1 if ℓ(v) |=φ, and 0

otherwise. This shows that probl,v(φ)= minµ∈µv

∑
S∈S, S|=φ µ(S).

Induction: Let v ∈Vd be a non-leaf node. Suppose first that Pr(e) is undefined for all

outgoing arrows e of v. Then, probl,v(φ)= minv→v′∈Ed
probl,v′(φ). By the induction

hypothesis, the latter coincides with minv→v′∈Ed
minµ∈µv′

∑
S∈S, S|=φ µ(S) = minµ∈µv∑

S∈S, S|=φ µ(S). Suppose next that Pr(e) is defined for all outgoing arrows e of v. Then,

probl,v(φ)=
∑

e=v→v′∈Ed
Pr(e) · probl,v′(φ). By the induction hypothesis, the latter is

equal to
∑

e=v→v′∈Ed
Pr(e) · minµ∈µv′

∑
S∈S, S|=φ µ(S) = minµ∈µv

∑
S∈S, S|=φ µ(S).

In summary, this shows that probl,v(φ) = minµ∈µv

∑
S∈S, S|=φ µ(S).

(b) Immediate by (a) and the definition of the executability probability of B. 2

Proof of Proposition 5.3. By induction on the structure of conditional plans CP , we

show that for every belief graph B in which CP is executable, goodness(CP , B, δG) is

the minimum of goodness(l, B, δG) subject to all linearizations l of CP .

Basis: Let CP =λ. Since λ is the only linearization of CP , goodness(CP , B, δG) is the

minimum of goodness(l, B, δG) subject to all linearizations l of CP .

Induction: Let CP =α;CP ′. Then, goodness(CP , B, δG)= goodness(CP ′, B ◦α, δG).
By the induction hypothesis, the latter is the minimum of goodness(l′, B ◦α, δG) subject

to all linearizations l′ of CP ′, which coincides with the minimum of goodness(l, B, δG)
subject to all linearizations l of CP . Finally, let CP =β; if ω then {CPω} else {CP¬ω}.

Then, goodness(CP , B, δG) is the minimum of goodness(CPo, B ◦βo, δG) subject to

o∈{ω,¬ω}. By the induction hypothesis, each of the latter is given by the minimum

of goodness(lo, B ◦βo, δG) subject to all linearizations lo of CPo, which coincides with

the minimum of goodness(l, B, δG) subject to all linearizations l of CP . 2

Proof of Theorem 5.5. Let THRESHOLD CONDITIONAL PLAN EXISTENCE denote the

following decision problem: Given an extended action description EAD , an initial state

description δI , a goal description δG, and a threshold θ > 0, decide whether there exists

a conditional plan CP that has a goodness of at least θ for achieving δG from δI . Ob-

serve then that THRESHOLD CONDITIONAL PLAN EXISTENCE can be easily reduced to

THRESHOLD CONDITIONAL PLANNING, which in turn can be easily reduced to OPTIMAL

CONDITIONAL PLANNING. It is thus sufficient to show that THRESHOLD CONDITIONAL

PLAN EXISTENCE is undecidable. We show this by a reduction from the language empti-

ness problem for probabilistic finite automata (PFA), which is undecidable by [Paz 1971]

and [Condon and Lipton 1989]. More precisely, a probabilistic finite automaton (PFA)

is a tuple (S,Σ, T, s0, sa), where S is a nonempty finite set of states, Σ is a finite in-

put alphabet, T = {Ta | a∈Σ} where every Ta is a transition function that associates with

every state s∈S a probability distribution Ta(· |s) over the set of states S, s0 ∈S is an

initial state, and sa ∈S is an accepting state. The language emptiness problem is the prob-

lem of deciding, given a PFA (S,Σ, T, s0, sa) and a threshold θ > 0, whether there exists

an input string w∈Σ⋆ that the PFA accepts with a probability of at least θ (that is, the

probabilities of all possible transitions from s0 to sa on w sum up to a value of at least θ).

We reduce the language emptiness problem for PFAs to THRESHOLD CONDITIONAL

PLAN EXISTENCE as follows. Let (S,Σ, T, s0, sa) be a PFA, where S= {s0, . . . , sn = sa}
and n> 0, and let θ > 0 be a threshold. We then define the set of actions A as the input

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 33

alphabet Σ, where each a∈A is a probabilistic physical action, and the set of fluents F as

the set of states S. The extended action description EAD contains one conditional prob-

abilistic effect axiom of the form caused φ0 : p0, . . . , φn : pn after a when φj for every

action a∈A and j ∈{0, . . . , n}, where φi = si ∧
∧

k∈{0,...,n}−{i} ¬sk and pi =Ta(si|sj)

for all i∈{0, . . . , n}. Let δI = s0 ∧
∧

k∈{1,...,n} ¬sk and δG = sn ∧
∧

k∈{0,...,n−1} ¬sk.

Then, there is an input string w∈Σ⋆ that the PFA accepts with a probability of at least θ

iff there is a conditional plan CP with a goodness of at least θ for achieving δG from δI . 2

Proof of Proposition 6.2. Towards a contradiction, suppose that there exists a lineariza-

tion L=α1;α2; . . . ;αn of CP such that the e-state ℓ(v)=S of every deepest leaf node v

in BδI
◦α1 ◦α2 ◦ · · · ◦αn does not satisfy δG. Hence, the goodness of L for achieving δG

from δI is given by 0. Thus, by Proposition 5.3, the goodness of CP for achieving δG
from δI is also given by 0. But this contradicts CP having a positive goodness for achiev-

ing δG from δI . This shows that for every linearization L=α1;α2; . . . ;αn of CP , there

exists a deepest leaf node in BδI
◦ α1 ◦ α2 ◦ · · · ◦ αn whose e-state satisfies δG. 2

Proof of Theorem 6.3. (a) Immediate by the observation that (i) there are only finitely

many acyclic paths in GEAD,δI
from SδI

to some e-state S that satisfies δG, and thus

(ii) both the while-loop and the for-loop terminate after a finite number of iterations.

(b) We now prove that for all conditional plans CP , it holds that CP is returned by the

algorithm iff CP has a goodness of at least θ for achieving δG from δI , where the “⇐”-

part of the statement holds only in the special case in which GEAD,δI
is acyclic.

(⇒) Suppose CP is a conditional plan returned by the algorithm. By step 2, CP con-

sists only of linearizations of goodness of at least θ for achieving δG from δI . Hence,

by Proposition 5.3, CP has also a goodness of at least θ for achieving δG from δI .

(⇐) Suppose CP is a conditional plan of goodness of at least θ for achieving δG from δI .

By Proposition 6.2, for every linearization L=α1;α2; . . . ;αn of CP , there exists a deep-

est leaf node in BδI
◦ α1 ◦ α2 ◦ · · · ◦ αn whose e-state satisfies δG. Thus, every such

linearization L of CP has a corresponding path P in GEAD,δI
from SδI

to some e-state S

that satisfies δG. Since GEAD,δI
is acyclic, also P is acyclic, and thus P is included in SL

in step 1 of the algorithm. By Proposition 5.3, L has a goodness of at least θ for achiev-

ing δG from δI , and thus L is included in SL in step 2 of the algorithm. It thus follows that

SCP and SL in step 3 contain all linearizations of CP , and thus CP is constructed in steps

4–11 and included in the set of conditional plans returned in step 12. 2

Proof of Theorem 7.1. We prove by induction on n> 0 that, for every belief graph B

and goal description δG, it holds that V n(B, δG) (resp., Qn(B,α, δG)) is the maximal

goodness of a conditional plan (resp., a conditional plan that starts with the action α) over

A′ =A∪{nop} of length l=n to achieve δG from B. This then proves that, for every

belief graph B and goal description δG, it holds that V n(B, δG) (resp., Qn(B,α, δG))
is the maximal goodness of a conditional plan (resp., a conditional plan that starts with the

action α) over A of length l6n to achieve δG from B.

Basis: For n= 0, only the empty conditional plan λ has the length l= 0. Since λ has the

goodness probl,B(δG) for achieving δG from B, it follows that V 0(B, δG)= probl,B(δG)
is the maximal goodness of a conditional plan of length l=0 to achieve δG from B.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

34 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

Induction: Let n> 0. By the induction hypothesis, V n−1(B′, δG) is the maximal goodness

of a conditional plan of length l=n− 1 to achieve δG from the belief graphB′. This shows

that Qn(B,α, δG) is the maximal goodness of a conditional plan that starts with α of

length l=n to achieve δG from B. It thus follows that V n(B, δG) (which is the maximum

of Qn(B,α, δG) subject to all actions α∈A′ that are executable in B) is the maximal

goodness of a conditional plan of length l=n to achieve δG from B. 2

Proof of Theorem 7.2. We prove by induction on h> 0 that, for every belief graph B

and goal description δG, it holds that CPh(B, δG) is a conditional plan of length l6h

with maximal goodness for achieving δG from B. This then shows that CPh(BδI
, δG) is

a conditional plan of length l6h with maximal goodness for achieving δG from δI .

Basis: For h= 0, only the empty conditional plan λ is of length 0. Thus, CP0(B, δG)=λ

is a conditional plan of length l6 0 with maximal goodness for achieving δG from B.

Induction: Let h> 0. By the induction hypothesis, for every belief graph B′, it holds

that CPh−1(B′, δG) is a conditional plan of length l6h− 1 with maximal goodness for

achieving δG from B′. By Theorem 7.1, V h(B, δG) (resp., Qh(B,α, δG)) is the maximal

goodness of a conditional plan (resp., a conditional plan that starts with the action α)

of length l6h to achieve δG from B. It thus follows that CPh(B, δG) is a conditional

plan of length l6h with maximal goodness for achieving δG from B. 2

Proof of Theorem 7.4. The value V n(B, δG) and all values Qn(B,α, δG) such that (a)

α∈A′ and (b) α is executable in B can be computed by (i) at most a · bn checks whether

an action α∈A is executable in a belief graph, (ii) at most bn+1 executions of an action

α∈A′ in a belief graph, and (iii) at most bn evaluations of δG on a belief graph. Hence, if A
is nonempty, then CPh(B, δG) can be computed by (i) at most a · bh+1 checks whether an

action α∈A is executable in a belief graph, (ii) at most bh+2 + 2h executions of an action

α∈A′ in a belief graph, and (iii) at most bh+1 evaluations of δG on a belief graph. 2

Proof of Theorem 7.6. Immediate by the proof of Theorem 7.2. 2

Proof of Theorem 7.8. Since the subgraph of GEAD that consists of all successors of SδI

is finite and has no cycles, the set of all conditional plans is finite. Thus, some h> 0 exists

such that every conditional plan has a length l6h. By Theorem 7.6, the set of conditional

plans obtained from CP
h(BδI

, δG) by removing all the occurrences of the action nop is

the set of all conditional plans with maximal goodness for achieving δG from δI . 2

REFERENCES

BAADER, F., LUTZ, C., MILICIC, M., SATTLER, U., AND WOLTER, F. 2005. Integrating description logics

and action formalisms: First results. In Proceedings AAAI-2005. AAAI Press / MIT Press, 572–577.

BACCHUS, F., HALPERN, J. Y., AND LEVESQUE, H. J. 1995. Reasoning about noisy sensors and effectors in

the situation calculus. In Proceedings IJCAI-1995. Morgan Kaufmann, 1933–1940.

BACCHUS, F., HALPERN, J. Y., AND LEVESQUE, H. J. 1999. Reasoning about noisy sensors and effectors in

the situation calculus. Artif. Intell. 111, 171–208.

BARAL, C., TRAN, N., AND TUAN, L.-C. 2002. Reasoning about actions in a probabilistic setting. In Proceed-

ings AAAI-2002. AAAI Press, 507–512.

BERNERS-LEE, T. 1999. Weaving the Web. Harper, San Francisco, CA.

BOUTILIER, C., REITER, R., AND PRICE, B. 2001. Symbolic dynamic programming for first-order MDPs. In

Proceedings IJCAI-2001. Morgan Kaufmann, 690–700.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

Reasoning about Actions under Qualitative and Probabilistic Uncertainty · 35

BOUTILIER, C., REITER, R., SOUTCHANSKI, M., AND THRUN, S. 2000. Decision-theoretic, high-level agent

programming in the situation calculus. In Proceedings AAAI-2000. AAAI Press / MIT Press, 355–362.

CONDON, A. AND LIPTON, R. 1989. On the complexity of space bounded interactive proofs. In Proceedings

FOCS-1989. IEEE Computer Society, 462–467.

DIX, J., KRAUS, S., AND SUBRAHMANIAN, V. S. 2006. Heterogeneous temporal probabilistic agents. ACM

Trans. Comput. Log. 7, 1, 151–198.

DIX, J., NANNI, M., AND SUBRAHMANIAN, V. S. 2000. Probabilistic agent programs. ACM Trans. Comput.

Log. 1, 2, 208–246.

DONINI, F. M., NARDI, D., AND ROSATI, R. 2002. Description logics of minimal knowledge and negation as

failure. ACM Trans. Comput. Log. 3, 2, 1–49.

DRAPER, D., HANKS, S., AND WELD, D. S. 1994. Probabilistic planning with information gathering and

contingent execution. In Proceedings AIPS-1994. AAAI Press, 31–36.

EITER, T., FABER, W., LEONE, N., PFEIFER, G., AND POLLERES, A. 2003. A logic programming approach

to knowledge-state planning, II: The DLVK system. Artif. Intell. 144, 1-2, 157–211.

EITER, T. AND LUKASIEWICZ, T. 2003. Probabilistic reasoning about actions in nonmonotonic causal theories.

In Proceedings UAI-2003. Morgan Kaufmann, 192–199.

EITER, T., SUBRAHMANIAN, V. S., AND PICK, G. 1999. Heterogeneous active agents, I: Semantics. Ar-

tif. Intell. 108, 1–2, 179–255.

FENSEL, D., WAHLSTER, W., LIEBERMAN, H., AND HENDLER, J., Eds. 2002. Spinning the Semantic Web:

Bringing the World Wide Web to Its Full Potential. MIT Press.

FINZI, A. AND PIRRI, F. 2001. Combining probabilities, failures and safety in robot control. In Proceedings

IJCAI-2001. Morgan Kaufmann, 1331–1336.

GEFFNER, H. 2002. Perspectives on artificial intelligence planning. In Proceedings AAAI-2002. AAAI Press,

1013–1023.

GELFOND, M. AND LIFSCHITZ, V. 1993. Representing action and change by logic programs. J. Logic Pro-

gram. 17, 301–322.

GIUNCHIGLIA, E., LEE, J., LIFSCHITZ, V., MCCAIN, N., AND TURNER, H. 2004. Nonmonotonic causal

theories. Artif. Intell. 153, 1–2, 49–104.

GROSSKREUTZ, H. AND LAKEMEYER, G. 2001. Belief update in the pGOLOG framework. In Proceedings

KI / ÖGAI-2001. LNCS, vol. 2174. Springer, 213–228.

HALPERN, J. Y. AND TUTTLE, M. R. 1993. Knowledge, probability, and adversaries. J. ACM 40, 4, 917–962.

HORROCKS, I., PATEL-SCHNEIDER, P. F., AND VAN HARMELEN, F. 2003. From SHIQ and RDF to OWL:

The making of a web ontology language. J. Web Semantics 1, 1, 7–26.

IOCCHI, L. 1999. Design and Development of Cognitive Robots. Ph.D. thesis, University of Rome “La

Sapienza”, Rome, Italy. Available at www.dis.uniroma1.it/˜iocchi/publications.html.

IOCCHI, L., LUKASIEWICZ, T., NARDI, D., AND ROSATI, R. 2006. Reasoning about actions with sensing

under qualitative and probabilistic uncertainty. Tech. Rep. INFSYS RR-1843-03-05, Institut für Informations-

systeme, Technische Universität Wien. March.

IOCCHI, L., NARDI, D., AND ROSATI, R. 2000. Planning with sensing, concurrency, and exogenous events:

Logical framework and implementation. In Proceedings KR-2000. Morgan Kaufmann, 678–689.

KAELBLING, L. P., LITTMAN, M. L., AND CASSANDRA, A. R. 1998. Planning and acting in partially observ-

able stochastic domains. Artif. Intell. 101, 1–2, 99–134.

KARLSSON, L. 2001. Conditional progressive planning under uncertainty. In Proceedings IJCAI-2001. Morgan

Kaufmann, 431–438.

LANG, J., LIN, F., AND MARQUIS, P. 2003. Causal theories of action: A computational core. In Proceedings

IJCAI-2003. Morgan Kaufmann, 1073–1078.

LEVESQUE, H. J. 1996. What is planning in presence of sensing? In Proceedings AAAI-1996. AAAI Press / MIT

Press, 1139–1149.

LIFSCHITZ, V. 1994. Minimal belief and negation as failure. Artif. Intell. 70, 1–2, 53–72.

LOBO, J., MENDEZ, G., AND TAYLOR, S. R. 1997. Adding knowledge to the action description language A.

In Proceedings AAAI-1997. AAAI Press / MIT Press, 454–459.

MADANI, O., HANKS, S., AND CONDON, A. 2003. On the undecidability of probabilistic planning and related

stochastic optimization problems. Artif. Intell. 147, 1–2, 5–34.

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

36 · L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati

MATEUS, P., PACHECO, A., PINTO, J., SERNADAS, A., AND SERNADAS, C. 2001. Probabilistic situation

calculus. Ann. Math. Artif. Intell. 32, 393–431.

MOTIK, B., HORROCKS, I., ROSATI, R., AND SATTLER, U. 2006. Can OWL and logic programming live

together happily ever after? In Proceedings ISWC-2006. LNCS, vol. 4273. Springer, 501–514.

MOTIK, B. AND ROSATI, R. 2007. A faithful integration of description logics with logic programming. In

Proceedings IJCAI-2007. 477–482.

ONDER, N. AND POLLACK, M. E. 1999. Conditional, probabilistic planning: A unifying algorithm and effective

search control mechanisms. In Proceedings AAAI-1999. AAAI Press / MIT Press, 577–584.

PAZ, A. 1971. Introduction to Probabilistic Automata. Academic Press, New York.

PIRRI, F. AND REITER, R. 1999. Some contributions to the metatheory of the situation calculus. J. ACM 46, 3,

325–361.

POOLE, D. 1997. The independent choice logic for modelling multiple agents under uncertainty. Ar-

tif. Intell. 94, 1-2, 7–56.

POOLE, D. 2000. Logic, knowledge representation, and Bayesian decision theory. In Proceedings CL-2000.

LNCS, vol. 1861. Springer, 70–86.

PUTERMAN, M. L. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley.

REITER, R. 2001. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical

Systems. MIT Press.

SHAPIRO, S. 2005. Belief change with noisy sensing and introspection. In Proceedings NRAC-2005.

SON, T. C. AND BARAL, C. 2001. Formalizing sensing actions: A transition function based approach. Ar-

tif. Intell. 125, 1–2, 19–91.

SON, T. C., TU, P. H., AND BARAL, C. 2004. Planning with sensing actions and incomplete information using

logic programming. In Proceedings LPNMR-2004. LNCS/LNAI, vol. 2923. Springer, 261–274.

SUBRAHMANIAN, V. S. AND WARD, C. 1996. A deductive database approach to planning in uncertain envi-

ronments. In Proceedings LID-1996. LNCS, vol. 1154. Springer, 83–98.

W3C. 2004. OWL web ontology language overview. W3C Recommendation (10 February 2004). Available at

www.w3.org/TR/2004/REC-owl-features-20040210/.

ZHANG, D., CHOPRA, S., AND FOO, N. Y. 2002. Consistency of action descriptions. In Proceedings PRICAI-

2002. LNCS/LNAI, vol. 2417. Springer, 70–79.

Received March 2006; revised March 2007; accepted July 2007

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.

