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uncertainty. We first define the action language £ for reasoning about actions with sensing, which
has a semantics based on the autoepistemic description logic ALCK arF, and which is given a
formal semantics via a system of deterministic transitions between epistemic states. As an im-
portant feature, the main computational tasks in £ can be done in linear and quadratic time. We
then introduce the action language £+ for reasoning about actions with sensing under qualitative
and probabilistic uncertainty, which is an extension of £ by actions with nondeterministic and
probabilistic effects, and which is given a formal semantics in a system of deterministic, nonde-
terministic, and probabilistic transitions between epistemic states. We also define the notion of
a belief graph, which represents the belief state of an agent after a sequence of deterministic,
nondeterministic, and probabilistic actions, and which compactly represents a set of unnormal-
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plan and its goodness for reasoning about actions under qualitative and probabilistic uncertainty.
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are cycle-free. The second algorithm is a sound and complete solution to the problem of finite-
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optimal finite-horizon conditional plan in polynomial time. We also describe an application of our
formalism in a robotic-soccer scenario, which underlines its usefulness in realistic applications.
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1. INTRODUCTION

Representation and reasoning about actions is a basic component for the design of cognitive
robots. In reasoning about the actions of mobile robots operating in real-world environ-
ments, one of the most crucial problems that we have to face is uncertainty, both about the
initial situation of the robot’s world and about the results of the actions taken by the robot.
One way of adding uncertainty to reasoning about actions is based on qualitative models,
in which all possible alternatives are equally considered. Another way is based on quanti-
tative models, where we have a probability distribution on the set of possible alternatives,
and thus can numerically distinguish between possible alternatives.

Well-known first-order formalisms for reasoning about actions, such as the situation
calculus [Reiter 2001], easily allow for expressing qualitative uncertainty about the initial
situation of the world and the effects of actions through disjunctive knowledge. Similarly,
recent formalisms for reasoning about actions that are inspired by the early action lan-
guage A [Gelfond and Lifschitz 1993], such as the action language C+ [Giunchiglia et al.
2004], and the planning language /C [Eiter et al. 2003], allow for qualitative uncertainty
in the form of incomplete initial states and nondeterministic effects of actions.

The need for dealing with quantitative uncertainty has lead to a number of proposals
for probabilistic reasoning about actions. They include probabilistic extensions of the
situation calculus [Bacchus et al. 1999; Mateus et al. 2001], of logic programming for-
malisms [Poole 1997], and of the action language .4 [Baral et al. 2002].

Even though there is extensive work on reasoning about actions under qualitative and
probabilistic uncertainty separately, there is relatively little work that orthogonally com-
bines qualitative and probabilistic uncertainty in a uniform framework for reasoning about
actions. One seminal such approach is due to Halpern and Tuttle [1993], which combines
nondeterminism and probabilistic uncertainty in a game-theoretic framework. In particular,
Halpern and Tuttle [1993] draw the following important conclusion:

“This discussion leads us to conclude that some choices in a distributed system
must be viewed as inherently nondeterministic (or, perhaps better, nonproba-
bilistic), and that it is inappropriate, both philosophically and pragmatically,
to model probabilistically what is inherently nondeterministic.”

This underlines the strong need for explicitly modeling qualitative uncertainty in addition
to probabilistic uncertainty in reasoning about actions. The following example illustrates
this strong need for modeling both qualitative and probabilistic uncertainty.

Example 1.1 (Robotic Soccer) In a robotic soccer domain, the action “align to ball” may
succeed resp. fail with the probability 0.7 resp. 0.3, while the goalkeeper’s action “open
legs” may either save the goal or not save the goal. That is, the former action has proba-
bilistic effects, while the latter action has nondeterministic effects. More precisely, in the
latter case, it may not be possible to assign probabilities to the possible effects, which in
fact depend on external factors (such as the speed and the kind of kick performed by an
opponent robot) and thus cannot be given a priori. That is, we only know that the goal-
keeper’s action “open legs” may save the goal resp. not save the goal with the probability p
resp. 1 — p, where the value p € [0, 1] is unknown. Hence, rather than having exactly one
probability distribution, we have the very different situation of a set of possible probabil-
ity distributions for the effects of an action. Observe in particular that we cannot simply
assume the uniform distribution, that is, that p=1 — p=0.5 holds.
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The work [Eiter and Lukasiewicz 2003] is among the few papers that orthogonally com-
bine qualitative and probabilistic uncertainty in a uniform framework for reasoning about
actions. However, this approach does not deal with the crucial issue of sensing in reasoning
about actions under qualitative and probabilistic uncertainty, which is needed to operate in
dynamic environments in which it is not possible to acquire all the necessary information
before executing a task (that is, in the initial state). In contrast to actions that change the
state of the world (which are thus also called physical actions), sensing actions in reason-
ing about actions (see especially [Levesque 1996; Lobo et al. 1997; Son et al. 2004]) are
actions that change the knowledge about the state of the world, that is, they allow an agent
or a robot to obtain information about certain properties of the world. Sensing actions are
strongly motivated by the overwhelming part of real-world applications where the initial
state of the world is not fully specified or where exogenous actions may occur, and conse-
quently an agent or a robot is forced to use sensors of some sort to determine the values
of certain properties of the world. One important way to represent the sensing capabilities
of the robotic agent is through an epistemic operator, which allows to distinguish what the
agent knows from what is true in the world [Levesque 1996; Iocchi et al. 2000].

In this paper, we develop a formalism that allows for sensing in reasoning about ac-
tions under qualitative and probabilistic uncertainty, thus formulating and addressing the
problem of conditional planning under qualitative and probabilistic uncertainty. The pro-
posed formalism provides a complete integration of the notion of qualitative belief, with
that of probabilistic belief. Furthermore, we show that, in this setting, under rather feasible
hypotheses, the basic reasoning task can be solved in polynomial time.

More specifically, the contributions of this paper can be summarized as follows:

—We present the action language £ for reasoning about actions with sensing. We define a
formal semantics of action descriptions in £ by systems of transitions between epistemic
states (or e-states), which are sets of possible states of the world. We show that all
basic computational tasks in & (among which there are especially the tasks of deciding
whether an action is executable in an e-state, and of computing the successor e-state
after executing an action in an e-state) can be done in linear resp. quadratic time.

—We define the action language £+ for reasoning about actions with sensing under qual-
itative and probabilistic uncertainty, which is an extension of the action language £ by
actions with nondeterministic and probabilistic effects. Note that such an extension can
also be defined for C+ and related action languages as core action language instead
of £. We define a formal semantics of action descriptions in £+ through systems of
deterministic, nondeterministic, and probabilistic transitions between e-states.

—We introduce the concept of a belief graph, which represents the belief state of an agent
after a sequence of deterministic, nondeterministic, and probabilistic actions. We also
define the notions of lower and upper probabilities of fluent formulas in belief graphs,
and we finally prove the important result that every belief graph is a compact represen-
tation of a set of unnormalized probability distributions, which intuitively shows that
combining nondeterminism with precise probabilities leads to imprecise probabilities.

—We introduce the concept of a conditional plan in our framework for reasoning about ac-
tions under qualitative and probabilistic uncertainty. We define the notion of goodness
of a conditional plan for achieving a goal from an initial observation, and the problems
of optimal and threshold conditional planning under qualitative and probabilistic uncer-
tainty. We then show that both problems are uncomputable in the general case.
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—We present an algorithm for cycle-free conditional planning under qualitative and prob-
abilistic uncertainty, which computes a set of conditional plans with goodness above
a given threshold 6 > 0. The algorithm is always sound, and it is also complete when
the relevant transition system between e-states is acyclic. That is, in the latter case, the
algorithm returns the set of all conditional plans with goodness above 6.

—We also present an algorithm for finite-horizon conditional planning under qualitative
and probabilistic uncertainty, which computes all optimal conditional plans of length
below a given horizon h > 0. An important feature of this algorithm is that every optimal
conditional plan can be computed in polynomial time, when the horizon is bounded by
a constant, which is a reasonable assumption in many applications in practice.

The concepts and techniques presented in this paper are illustrated along a robotic-soccer
scenario. The robotic application is implemented with a heterogeneous layered architecture
[Tocchi 1999], where the formalism presented in this article is used to drive the high-level
behavior of the system (that is, to select high-level actions to perform), while a numerical
level is responsible for sensor processing and action execution. The heterogenous repre-
sentation of the information within the system allows for appropriately integrating various
techniques (such as image processing, probabilistic localization, fuzzy control, path plan-
ning procedures, and specialized control techniques). The layered architecture also allows
for the effective implementation of complex behaviors, even though the used formalism is
propositional. Such a scenario thus gives evidence of the usefulness of our formalism in
realistic applications.

The rest of this paper is organized as follows. In Section 2, we define the action lan-
guage £. Section 3 extends £ by actions with nondeterministic and probabilistic effects. In
Section 4, we introduce the concept of a belief graph, and in Section 5, we formally define
the conditional planning problem in our framework. Sections 6 and 7 provide algorithms
for cycle-free and finite-horizon conditional planning in our framework, respectively. In
Section 8, we discuss related work. Section 9 summarizes the main results and gives an
outlook on future research. A notation table is given in Appendix A. To not distract from
the flow of reading, some technical details have been moved to Appendix B.

2. THE ACTION LANGUAGE &

In this section, we introduce the action language £, which is syntactically similar to the ac-
tion language A and its variants including the recent C+, but which has a formal semantics
in description logics. More precisely, it is equivalent to a fragment of the autoepistemic
description logic ALCK a7+ [Donini et al. 2002] for modeling dynamic systems (see [loc-
chi et al. 2006] for the proof that £ is semantically founded on ALCK n-r), which has been
successfully implemented and used for a robotic soccer team [Iocchi et al. 2000].

As a central feature, the action language & allows for sensing actions and for modeling
the epistemic state of an agent, which is the set of all world states that the agent considers
possible in a given situation. Intuitively, the epistemic state encodes what the agent knows
about the world, in contrast to what is true in the world [Levesque 1996; Son and Baral
2001]. Reasoning about actions in the presence of sensing is then done by modeling the
dynamics of the agent’s epistemic state, rather than the dynamics of the world.

A dynamic system is specified in £ through an initial state description and an action
description, which express what an agent knows about the initial properties of the world
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and how this knowledge changes through the execution of actions, respectively. We now
describe the syntax and the semantics of initial state and action descriptions.

2.1 Syntax

An action description in £ consists of a set of formulas that encode dynamic knowledge
about the preconditions and effects of actions as well as static background knowledge about
the world. The states and properties of the world are described through fluent formulas,
which are Boolean combinations of elementary propositions, called fluents. They may
directly or indirectly change through the execution of actions.

We first define fluents, actions, and fluent formulas. We assume a nonempty finite set of
Sfluents F and a nonempty finite set of actions A, which are divided into physical actions
and sensing actions (with binary sensing outcome). We use L and T to denote the con-
stants false and true, respectively. The set of fluent formulas is the closure of FU{L, T}
under the Boolean operators — and A (that is, if ¢ and v are fluent formulas, then also
—¢ and (¢ A1p)). We use (¢ V 1)) and (1) < ¢) to abbreviate —~(—¢ A —1p) and —=(¢p A 1)),
respectively, and adopt the usual conventions to eliminate parentheses. A fluent literal ¢ is
either a fluent f or the negation of a fluent —f. A fluent conjunction ¢ is either L, or T, or
a fluent formula of the form ¢; A --- A{,,, where /1, ..., /, are fluent literals and n > 1.

We next introduce precondition, conditional effect, sensing effect, default frame, and
domain constraint axioms in the action language £. We use precondition axioms to encode
the preconditions of actions. They are expressions of the form

executable « if ¢, (1)

where ¢ is a fluent conjunction, and « is an action. Informally, the axiom (1) encodes that
the action « is executable in every state that satisfies ¢. In particular, if ¢ =T, then « is
always executable. We use conditional effect axioms to represent the different conditional
effects of physical actions. They are of the form

caused v after o when ¢, )

where ¢ and 1) are fluent conjunctions, and « is a physical action. Informally, the axiom
(2) encodes that if the current state of the world satisfies ¢, then the successor state after
executing the action « satisfies 1. If ¢ =TT, then the axiom (2) is also called an effect
axiom and abbreviated as caused v after a. Sensing effect axioms associate with sensing
actions their possible two sensing outcomes. They have the form

caused to know w or —w after o, 3)

where w is a fluent literal, and « is a sensing action. Informally, after executing «, the
agent knows that w is either true or false. Note that, for ease of presentation, we consider
only sensing actions with two outcomes, but the formalism and all our results can be easily
extended to sensing actions with more than two outcomes. Default frame axioms associate
with actions properties of the world that they generally do not change. They are of the form

inertial ¢ after o, 4

where ¢ is a fluent conjunction, and « is a physical action. Informally, if ¢ holds in
the current state of the world, then ¢ also holds in the successor state after executing the
action «, if this is consistent with the effects of «. Finally, domain constraint axioms
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describe background knowledge, and are of the form
caused ¢ if 7, 5)

where £ is a fluent literal, and 1) is a fluent conjunction. Informally, every state of the
world that satisfies ¢ should also satisfy ). Such an axiom (5) represents static background
knowledge about the world, which is invariant relative to the execution of actions.

We are now ready to define the notions of an initial state description and of an action
description as follows. An initial state description 0; is a fluent conjunction. An action
description AD is a finite set of precondition axioms, conditional effect axioms, sensing
effect axioms, default frame axioms, and domain constraint axioms.

The following example shows how some actions of a goalkeeper in robotic soccer (Robo-
Cup Four-Legged League) can be expressed in the action language £.

Example 2.1 (Robotic Soccer cont’d) The fluents are ballclose (the goalkeeper is close
to the ball), ballinarea (the ball is in the penalty area), freeahead (the space ahead the
goalkeeper is free), inposition (the goalkeeper is in the correct position), ballmoving (the
ball is moving towards the goal), alignedtoball (the goalkeeper is aligned with the direction
of the ball), and goalsaved (the goal has been saved). We assume the physical actions
gotoball (a movement towards the ball, which may touch the ball and move it outside
the penalty area), bodykick, straightkick, and sidekick (three different kinds of kicks with
different capabilities), openlegs (a position for intercepting a ball kicked towards the goal),
and aligntoball (a movement for aligning to the direction of the ball moving towards the
goalkeeper’s own goal), as well as several sensing actions for some of the properties.

An action description is shown in Fig. 1. In particular, the action gotoball is executable
only if the ball is in the penalty area and not moving towards the goal (1). The action
openlegs has the effect that the goalkeeper is able to save the goal when it is aligned to
the ball direction (8), which encodes a possible capability of saving the goal even when the
alignment is unknown. After the sensing action senseballclose, the goalkeeper knows if the
ball is close or not (9). All fluents are inertial (12), and thus they generally do not change
through the execution of an action. Finally, the ball is in the penalty area, if the goalkeeper
is close to the ball (13), since we assume that the goalkeeper is always in its own area.

2.2 Semantics

An initial state description d; represents an epistemic state, which is a set of possible states
of the world, while an action description AD encodes a system of transitions between
epistemic states (which forms a directed graph where the nodes represent epistemic states
and the arrows encode transitions between epistemic states through actions).

We first define states and epistemic states, which are truth assignments to the fluents resp.
sets of states that satisfy every domain constraint axiom in AD and that are representable
by a fluent conjunction. Formally, a state s of an action description AD is a truth assign-
ment to the fluents in F. A set of states S satisfies a fluent formula ¢, denoted S |= ¢, iff
every s € S satisfies ¢. It satisfies a domain constraint axiom caused 1 if ¢ iff either S [~ ¢
or SE=1.! An epistemic state (or e-state) S of AD is a nonempty set of states s of AD

I Notice that this definition provides an epistemic interpretation of domain constraints, which is different from the
usual interpretation. Based on such an interpretation, the constraint can be read as follows: if £ is known in the
epistemic state S (that is, is true in every state s belonging to S), then % is known in S.
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(i)  precondition axioms:

(1) executable gotoball if ballinareaA—ballmoving
2) executable bodykick if ballclose

3) executable straightkick if ballcloseAfreeahead
4) executable sidekick if ballcloseA—freeahead

5) executable aligntoball if ballmoving

6) executable openlegs if ballmoving

7) executable sensealignedtoball if ballmoving

(i) conditional effect axioms and effect axioms:

(8) caused goalsaved after openlegs when alignedtoball
(9) caused ballclose after gotoball

(10) caused —ballinarea after bodykick

(11) caused —ballinarea after straightkick

(12) caused —ballinarea after sidekick

(iii) sensing effect axioms:

(13) caused to know ballclose or —ballclose after senseballclose
(14) caused to know freeahead or —freeahead after sensefreeahead
(15) caused to know alignedtoball or —alignedtoball after sensealignedtoball

(iv) default frame axioms:
(16) inertial £ after o (for every fluent literal £ and every action c)
(v) domain constraint axioms:

(17) caused ballinarea if ballclose

Fig. 1. Robotic Soccer Example: Action description AD.

such that (i) S satisfies every domain constraint axiom in AD, and (ii) there exists a fluent
conjunction ¢ such that S is the set of all states s of AD that satisfy ¢.

We next define the executability of actions in e-states and the transitions between e-
states through the execution of physical and sensing actions. An action « is executable in
an e-state S of AD iff S |= ¢ for every precondition axiom executable « if ¢ in AD.

Given an e-state S of AD and a physical action « that is executable in S, let direct (S, @)
denote the conjunction of all ¢ such that caused v after « when ¢ is in AD and S |= ¢.
We say that S’ is a successor e-state of S under the physical action « iff S’ is an e-state
of AD such that (i) S’ satisfies direct(S, o), (ii) S’ satisfies every domain constraint ax-
iom in AD, and (iii) S’ satisfies a maximal subset of default frame axioms (that is, there
exists no S # () such that (1) S” C S, (2) S” satisfies direct(S, ), (3) S” satisfies ev-
ery domain constraint axiom in AD, and (4) there exists a default frame axiom inertial ¢
after o in AD such that S |= ¢, S’ [~ ¢ and S” |= ¢). Intuitively, a successor e-state of S
under « encodes the direct effects of « (expressed through direct(.S, o)), the indirect ef-
fects due to the domain constraint axioms, and a maximal propagation of inertial properties
that are consistent with these direct and indirect effects.

Analogously, S’ is a successor e-state of S under a sensing action « with outcome
0€{w,~w} iff S” is an e-state of AD such that (i) S’ satisfies o, (ii) S’ satisfies every
domain constraint axiom in AD, and (iii) S’ satisfies a maximal subset of default frame
axioms (that is, no S” # () exists such that (1) S” C S’, (2) S” satisfies o, (3) S” satisfies
every domain constraint axiom in AD, and (4) there is a default frame axiom inertial ¢
after « in AD with S'|= ¢, S" }= ¢ and S” |= ¢). Intuitively, a successor e-state of S under
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a sensing action « encodes the sensing outcome of «, the indirect effects due to the domain
constraint axioms, and the propagation of inertial properties consistent with them.

The following result shows an important uniqueness property for successor e-states,
namely that there exists at most one successor e-state of an e-state S of AD under a physi-
cal action « (resp., a sensing action « with outcome 0), denoted ®(S, ) (resp., (S, a,)).
Notice that we here use the notation «,, to denote the pair consisting of a sensing action «
and an outcome o. This notation allows for handling in a uniform way the two cases of a
physical action a (without outcome) and a sensing action o with outcome o.

Proposition 2.2 Let AD be an action description in &, let S be an e-state of AD, and
let o be a physical action (resp., sensing action with outcome o € {w, —w}). If a successor
e-state of S under « (resp., o with outcome o) exists, then it is unique.

We are now ready to define the formal semantics of action and initial state descriptions as
follows. An action description A D represents the directed graph G op = (N, E), where N
is the set of all e-states of AD, and E C N x N contains S — S’ labeled with “a” (resp.,
“a,”") iff (i) «v is a physical action (resp., sensing action with outcome o € {w, ~w}) that is
executable in S, and (ii) S" = ®(S, «) (resp., S' = ®(5, v, )). An initial state description 7
encodes the greatest e-state of AD that satisfies d, denoted Sj,, if it exists (if there is an
e-state that satisfies d7, then there is also a greatest such e-state). We denote by G 4p 5,
the subgraph of G 4 p consisting of all successors of S5, along with their incident arrows.

Example 2.3 (Robotic Soccer cont’d) Consider the action description A D shown in Fig. 1
and the initial state description d; = —ballmovingAballinarea, where the ball is in the
penalty area and not moving. A portion of the directed graph G 4p 5, is shown in Fig. 2.

We finally define the notion of consistency for action and initial state descriptions. An
action description is consistent iff it has at least one e-state and each action execution is
defined. An initial state description is consistent if its e-state is defined. Formally, an action
description AD is consistent iff (i) AD has at least one e-state S, (ii) (.5, «) is defined for
each e-state S of AD and each physical action « that is executable in .S, and (iii) ® (.S, cv,)
is defined for each e-state S of AD and each sensing action o with outcome o € {w, ~w}
that is executable in .S. An initial state description d; is consistent if S5, is defined. In the
sequel, we implicitly assume that all action and initial state descriptions are consistent.’

2.3 Computation

The main computational tasks related to action descriptions AD in & are (i) deciding
whether an action « is executable in an e-state .S, (ii) computing the e-state .S, for a fluent
conjunction ¢ (if it exists), (iii) deciding if an e-state S satisfies a fluent conjunction ¢,
and (iv) computing the successor e-state of an e-state S under an action « (if it exists). In
this section, we provide upper bounds for the complexity of these tasks, which show that
they all can be solved efficiently. In detail, (i)—(iii) can all be done in linear time in the
size of AD, while (iv) can be done in quadratic time in the size of AD.

For fluent literals £ = f (resp., £ =—f), we use —./ to denote - f (resp., f), and for sets
of fluent literals L, we define =.L = {—.£| £ € L}. For fluent conjunctions ¢, we denote by

20ur definition of consistency is thus stronger than simply requiring the existence of a model. This is analogous
to other approaches in reasoning about actions, e.g., [Pirri and Reiter 1999; Zhang et al. 2002; Lang et al. 2003].

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.



Reasoning about Actions under Qualitative and Probabilistic Uncertainty . 9

@ gotoball
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gotoball
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straightkick
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So = Ss5; [= —ballmovingAballinarea

S1 = —ballmovingAballinareaAfreeahead S7 |= —ballmovingAballinareaAballclose Afreeahead
Sa = —ballmovingAballinareaA —freeahead Ss [= —ballmovingAballinareaAballclose A —freeahead
S3 [= —ballmovingAballinareaA—ballclose S = —ballmovingA—ballinarea

S4 = —ballmovingAballinareaAballclose S10 = —ballmovingA—ballinareaAfreeahead

S5 = —ballmovingAballinareaA—ballclose Afreeahead S11 = —ballmovingA—ballinarea/A—freeahead

Se = —ballmovingAballinareaA —ballclose A —freeahead

Fig. 2. A part of the directed graph G s p s, for §; = —ballmovingAballinarea.

Lit(¢) the set of all fluent literals in ¢, if ¢ is satisfiable, and the set of all fluent literals,
otherwise. For e-states S, we denote by Lit(.S) the set of all fluent literals satisfied by S.

Given an action description AD, an e-state S of AD (represented by Lit(S)), and an
action «, deciding whether « is executable in .S can be done in linear time in the size of AD
along the set of all precondition axioms in AD using standard data structures. Similarly,
given AD and a fluent conjunction ¢, computing the e-state S, (represented by Lit(Sy))
of AD and deciding whether a given e-state S (represented by Lit(S)) of AD satisfies ¢
can also both be done in linear time in the size of AD using standard data structures.

In the rest of this section, we provide a quadratic-time algorithm for computing the
successor e-state of an e-state under a physical action (which can also easily be adapted to
compute the successor e-state of an e-state under a sensing action). The algorithm, called
Compute-Successor, is presented in Fig. 3. It takes as input an action description AD,
an e-state S of AD (represented by Lit(S)), and a physical action «, and it returns as
output the successor e-state S’ of S under « (represented by Lit(S’)). The set of fluent
literals L’ = Lit(S") is constructed as follows. We start by initializing L’ to an empty set,
which is first augmented with all the fluent literals corresponding to the direct effects of
the action « in S (steps 2-3 of the algorithm). Then, all the indirect effects due to the
domain constraint axioms are added to L’ (steps 4-8). Then, it is verified (step 9) whether
the set of literals L’ computed so far is consistent, that is, for each literal ¢ belonging
to L', the literal —.¢ does not belong to L’. Finally, the effects of the default frame axioms
are computed and added to L’ (steps 10-19). In particular, for each default frame axiom
inertial ¢ after « such that ¢ holds in the initial e-state S (step 11), the set of literals L.,
initially contains the inertial literals propagated by the default frame axiom (that is, the ones

ACM Transactions on Computational Logic, Vol. V, No. N, July 2007.



10 . L. locchi, T. Lukasiewicz, D. Nardi, and R. Rosati

Algorithm Compute-Successor

Input: action description AD, e-state S of AD (represented by Lit(.S)), and physical action cv.

Output: successor e-state S’ of S under « (represented by Lit(S”)), if it exists,
and “there exists no successor e-state of S under o, otherwise.

L' =0

for each conditional effect axiom “caused ) after o when ¢ in AD do
if Lit(¢) C Lit(S) then L' = L' U Lit(v);

repeat
L// — L/.

for each domain constraint axiom “caused v if £” in AD do
if ¢ € L' then L' = L' U Lit(v))
until L = L/;
9. if L’ is not consistent then return “there exists no successor e-state of .S under o”;
10. for each default frame axiom “inertial ¢ after o in AD do
11.  if Lit(¢p) C Lit(S) then begin

®© NNk W=

12. Lauz = Lit(¢);

13. repeat

14. L e = Lauas

15. for each domain constraint axiom “caused ¢ if £”” in AD do
16. if ¢ € Laua then Louz = Laua U Lit ()

17. until L/, . = Lauz;

18. if L’ U Lguyz is consistent then L' = L' U Loz

19. end;

20. return L.

Fig. 3. Algorithm Compute-Successor

occurring in ¢); then (steps 13—17), L, is closed with respect to the domain constraint
axioms (that is, it is augmented with the literals indirectly derived by the domain constraint
axioms); finally, it is verified (step 18) whether the set of literals L, thus computed is
consistent with L/, that is, the set of literals L' U L, is consistent: if this is the case,
then the default frame axiom can be applied and the literals in ¢ (and all their indirect
consequences) are propagated in the successor state L' by adding the literals in L, to the
set L. The following theorem shows that Compute-Successor is correct.

Proposition 2.4 Given an action description AD in the action language &, an e-state S
of AD (represented by Lit(S)), and a physical action o, Compute-Successor returns the
successor e-state S” of S under « (represented by Lit(S")), if it exists, and Compute-
Successor returns “there exists no successor e-state of S under o, otherwise.

Proof. First, it is easy to verify that there exists no successor e-state of .S under « iff the
set of fluent literals obtained by the union of the direct effects of « in .S and the indirect
effects given by the domain constraint axioms is unsatisfiable. Thus, the algorithm returns
no set of fluent literals (step 9) iff there exists no successor e-state of S under . Then,
we prove that, for each AD, S, and « as stated in the theorem, the algorithm returns the
set of fluent literals L' = Lit(S’), where S’ is the successor e-state of .S under «. First,
notice that, when ¢ is a fluent conjunction, then S |= ¢ iff Lit(¢) C Lit(S) (steps 3 and 11
of the algorithm). Now, the first for—each cycle at step 2 guarantees that the above e-state
represented by L’ satisfies direct(S, «), while the two repeat—until loops guarantee that
the e-state represented by L’ satisfies all domain constraint axioms in A D. Finally, the last
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for—each cycle at step 9 guarantees that the e-state represented by L’ satisfies a maximal
subset of default frame axioms as requested by the definition of successor e-state. Hence,
the returned L' is equal to Lit(.S”), where S’ is the successor e-state of S under «v. O

Finally, as an immediate consequence of the previous result, we state an important upper
bound for the complexity of computing successor e-states. The following theorem shows
that computing successor e-states can be done in quadratic time. Here, we denote by |AD)|
(resp., ||AD||) the number of elements in AD (resp., the size of AD).

Proposition 2.5 Let AD be an action description in the action language E, let o be a phys-
ical action, and let S be an e-state of AD (represented by Lit(S)). The successor e-state
S"'=®(S, a) (represented by Lit(S")) can be computed in time O(|AD| - ||AD||). More-
over, if ais a sensing action, and o is an outcome of «, the successor e-state S = ®(S, «,)
(represented by Lit(S")) can be computed in time O(|AD|-||AD||).

Proof. For physical actions «, the proof is an immediate consequence of the algorithm
Compute-Successor in Fig. 3. Indeed, it is easy to see that the algorithm runs in time
O(]AD|-||AD||) using standard data structures (note that the size of Lit(.S) is linearly
bounded by || AD||). The case when « is a sensing action can be proved analogously. O

3. THE ACTION LANGUAGE £+

In this section, we introduce the action language £+, which is an extension of the action
language £ by actions with nondeterministic and probabilistic effects. We define the syntax
and semantics of extended action descriptions in £+, which extend action descriptions in £
by axioms to encode nondeterministic and probabilistic effects of actions.

3.1 Syntax

We divide the set of physical actions into deterministic, nondeterministic, and probabilistic
physical actions. The nondeterministic and probabilistic conditional effects of the latter
two types of actions are encoded in nondeterministic and probabilistic conditional effect
axioms, respectively. A nondeterministic conditional effect axiom has the form

caused 1, ..., v, after « when ¢, (6)

where 11, ...,%, and ¢ are fluent conjunctions, « is a nondeterministic physical action,
and n > 2. Informally, if the current state of the world satisfies ¢, then the successor state
after executing « satisfies v; for some i € {1,...,n}. A probabilistic conditional effect
axiom is an expression of the form

caused 91 : p1,...,%,: Dy after a when ¢, @)

where ¢4, . .., 1, and ¢ are fluent conjunctions, « is a probabilistic physical action, p1, . . .,
pn >0, p1+---+p, =1, and n > 2. Informally, if the current state of the world satis-
fies ¢, then the successor state after executing « satisfies v; with the probability p;, for
alli € {1,...,n}. Note that similar specifications of probabilistic knowledge can also be
found in probabilistic reasoning about actions (see Section 8) and in probabilistic agent
systems (see, e.g., [Dix et al. 2006]). If ¢ =T, then (6) (resp., (7)) is also called a nonde-
terministic (resp., probabilistic) effect axiom, and we omit “when ¢” in (6) (resp., (7)).
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(vi) nondeterministic conditional effect axioms:

(18) caused goalsaved, —goalsaved after openlegs

(vii) probabilistic conditional effect axioms:

(19) caused ballclose: 0.8, —ballinarea: 0.1, —ballclose: 0.1 after gotoball

(20) caused —ballinareaA—inposition: 0.1, —ballinareaAinposition: 0.5,
—inposition: 0.1, T: 0.3 after bodykick

(21) caused —ballinarea: 0.9, T: 0.1 after straightkick

(22) caused —ballinarea: 0.7, T: 0.3 after sidekick

(23) caused alignedtoball: 0.7, —alignedtoball: 0.3 after aligntoball

Fig. 4. Robotic Soccer Example: Nondeterministic and probabilistic conditional effect axioms.

We define extended action descriptions as follows. An extended action description EAD
is a finite set of precondition, conditional effect, sensing effect, default frame, domain con-
straint, nondeterministic conditional effect, and probabilistic conditional effect axioms.

Example 3.1 (Robotic Soccer cont’d) The physical actions gotoball, bodykick, straight-
kick, sidekick, and aligntoball of the robotic soccer scenario in Example 2.1 have either
nondeterministic or probabilistic effects, and thus cannot be encoded in action descriptions
in £. However, using nondeterministic and probabilistic conditional effect axioms, they
can be easily be expressed in extended action descriptions in £+. More precisely, the
extended action description FAD is given by the precondition, conditional effect, sensing
effect, default frame, and domain constraint axioms in Fig. 1 and the nondeterministic
and probabilistic conditional effect axioms in Fig. 4. In particular, after executing the
nondeterministic physical action openlegs, the goal is saved or not (14). After executing
the probabilistic physical action gotoball, the ball is close with probability 0.8, or the ball is
not in the penalty area with probability 0.1, or the ball is not close with probability 0.1 (15).

3.2 Semantics

We define the semantics of an extended action description EA D by a system of determinis-
tic, nondeterministic, and probabilistic transitions between e-states. To this end, we extend
the transition system of an action description AD by nondeterministic and probabilistic
transitions between e-states through nondeterministic and probabilistic physical actions,
respectively. These transitions are defined by associating with each pair (S, ) of a current
e-state .S and a nondeterministic (resp., probabilistic) physical action « executable in S,
a set (resp., probability distribution on a set) of successor e-states after executing « in S.

Note that the above probabilistic transitions are similar to the probabilistic transitions
in fully observable Markov decision processes (MDPs) [Puterman 1994] and partially ob-
servable Markov decision processes (POMDPs) [Kaelbling et al. 1998]. However, they are
between e-states and thus involve sets of states rather than single states.

In the sequel, let FAD be an extended action description. We define states, e-states,
the executability of actions in e-states, and the transitions between e-states through the
execution of deterministic physical actions and sensing actions in the same way as in
Section 2.2, but relative to FAD instead of AD. Hence, it now only remains to define
the nondeterministic and probabilistic transitions between e-states through the execution
of nondeterministic and probabilistic physical actions, respectively.
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Let S be an e-state of FAD, and « be a nondeterministic (resp., probabilistic) physical
action executable in .S. We now define the set (resp., probability distribution on a set) of
successor e-states after executing «vin .S. We first collect the set of all axioms (6) (resp., (7))
in EAD that are relevant to S and «, that is, for which S |= ¢ holds. Let {caused ¢; 1, . . .,
Yjn, after o when ¢; [ j € J} (resp., {caused 1 1: pj1,...,Vjn,: Pjn, after « when
¢j|j € J}) denote this set. For every combination ¢ = (1) jcs = (¥;.i,)jes (called con-
text) from Cs o = {(¢j)jes | Vi€ je{tbj1,...,¥jn,}}. We then compute one suc-
cessor e-state (which is associated with the probability Prg (c) = e pj,i;» if o is prob-
abilistic). We thus assume that any two nondeterministic (resp., probabilistic) conditional
effect axioms relevant to .S and « are logically (resp., probabilistically) independent. For-
mally, the successor e-state of S after executing « in the context ¢ = (¢;);e € Cs.a,
denoted (S, o), is the e-state ®(.S, o) under the action description obtained from EAD
by removing all axioms (6) and (7) and adding caused /\ jes ¥; after o. We finally define
the overall nondeterministic (resp., probabilistic) transition as follows. If « is nondeter-
ministic, then the set of successor e-states of S under « is defined as F,, (S) = {®.(S, a) |
c € Cg.q }. If ais probabilistic, then the probability distribution on the successor e-states of
S under «, denoted Pr,(-|S), is defined by Pr,(S’|S) = D oceCs.n, /=0, (S,0) L TS,a(C)
for all e-states S” of EAD. Intuitively, executing a nondeterministic action « in an e-state S
nondeterministically leads to some S’ € F,(S), while executing a probabilistic action «
in S leads to S” with the probability Pr,(S’|.S).

We are now ready to define the semantics of an extended action description FAD in
terms of a system of deterministic, nondeterministic, and probabilistic transitions between
its e-states as follows. The extended action description FA D represents the directed graph
Ggap = (N, E), where N is the set of all e-states of FAD, and EC N x N contains
(i) an arrow S — S’ labeled with “a” for every e-state S € N and deterministic physi-
cal action « that is executable in S, where S' = ®(S, «), (ii) an arrow S — S’ labeled
with “a,” for every e-state S € N and sensing action « with outcome o € {w, —w} that
is executable in S, where S’ = ®(S, a,), (iii) an arrow S — S’ labeled with “«.” for ev-
ery e-state S € N, nondeterministic physical action « that is executable in S, and context
c€ Cg o, where S’ =®.(S, «), and (iv) an arrow S — S’ labeled with “a.., pr” for every
e-state S € N, probabilistic physical action « that is executable in .S, and context c € Cg 4,
where pr=Prg ,(c) and S’ = ®.(S, a)). We denote by Grap s, the subgraph of Ggap
that consists of all successors of Ss, along with their incident arrows.

We finally define the consistency of extended action descriptions. We say EAD is con-
sistent iff (i) EAD has at least one e-state S, (ii) ®(.5, «) is defined for every e-state S of
EAD and every deterministic physical action « that is executable in S, (iii) (5, a,) is
defined for every e-state S of EAD and every sensing action o with outcome o € {w, ~w}
that is executable in S, and (iv) ®.(S, «) is defined for every e-state S of EAD, nondeter-
ministic or probabilistic physical action « that is executable in .S, and context ¢ € C's . In
the sequel, we implicitly assume that all extended action descriptions are consistent.

Example 3.2 (Robotic Soccer cont’d) Let the extended action description FA D be given
by the axioms in Figs. 1 and 4 excluding the axioms (9) to (12). Furthermore, let the
initial state description be given by ¢; = —ballmovingAballinareaAinposition, where the
goalkeeper is in the correct position, and the ball is in the penalty area and not moving.
Then, a portion of the directed graph G gap s, is shown in Fig. 5.
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So = 551 |= —ballmovingAballinareaAinposition

S1 = —ballmoving A—ballinareaAinposition

Sa = —ballmovingAballinareaAinposition A—ballclose

S3 = —ballmovingAballinareaAinpositionAballclose

S4 = —ballmovingAballinareaAinpositionAballcloseAfreeahead
S5 [= —ballmovingAballinareaAinpositionAballclose A —~freeahead
Se |= —ballmovingA—ballinareaAinposition

S7 = —ballmovingA—ballinareaA—inposition

Sg = —ballmovingAballinareaA—inpositionAballclose
Sy = —ballmoving A—ballinareaAinposition Afreeahead
S10 = —ballmoving/A—ballinareaAinpositionA—freeahead
S11 = —ballmovingA—ballinareaAinposition A—ballclose

Fig. 5. A part of the directed graph Ggap,s, for §; = —ballmovingAballinareaAinposition.

3.3 Computation

The computational results of Section 2.3 about action descriptions A D in £ all carry over to
extended action descriptions FAD in £+. That is, (i) deciding if an action « is executable
in an e-state .S, (ii) computing the e-state Sy for a fluent conjunction ¢ (if it exists), and
(iii) deciding if an e-state .S satisfies a fluent conjunction ¢ can all be done in linear time
in the size of EA D, while (iv) computing the successor e-state (if it exists) of an e-state .S
under a (deterministic, nondeterministic, or probabilistic) physical action o and a context c,
if a is nondeterministic or probabilistic, along with its probability, if « is probabilistic, or
under a sensing action « with outcome o can be done in quadratic time in the size of EAD.

4. BELIEF GRAPHS

In this section, we define the notion of a belief graph and the concepts of lower and upper
probabilities of fluent formulas in belief graphs. We then show that every belief graph is
a compact representation of a finite set of unnormalized probability distributions over the
set of all e-states. In the sequel, let FAD be an extended action description.

4.1 Belief Graphs

Intuitively, a belief graph encodes the overall epistemic state of an agent after starting from
a single initial e-state and then performing a finite sequence of actions. A belief graph
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consists of a directed acyclic graph (which is a directed graph that does not contain any
directed path forming a cycle) in which every node represents an e-state and every arrow
represents a transition between two e-states. Given an initial e-state and a sequence of
actions asq, . . . , o, their belief graph is built by using the initial e-state as a root and then
adding for every action «;, i € {1,...,n}, a new layer of descendent nodes, namely, the
set of all possible successor e-states after executing «; in the e-states added before.

Formally, every belief graph B = (V, E, ¢, Pr) consists of a directed acyclic graph G =
(V, E), a labeling function ¢ that associates with every node v € V' an e-state /(v) =S5
of FAD, and a partial mapping Pr that associates with some arrows e € E' a real number
Pr(e) €[0,1]. Every belief graph B=(V, E, ¢, Pr) has exactly one node r € V' without
parents, called the root of B, and some nodes without children, called the leaves of B. A
deepest leaf of B is a leaf of B that has the maximum distance from the root of B. An
action « is executable in a belief graph B iff « is executable in the label S of some deepest
leaf v of B. More precisely, belief graphs are inductively defined as follows. Any node v
labeled with an e-state S of FAD is a belief graph. In particular, for fluent conjunctions ¢
such that Sy is defined, we denote by B the belief graph that consists of a single node v
labeled with Sy. If B is a belief graph and o is a deterministic (resp., nondeterministic)
physical action executable in B, then B o« is also a belief graph, which is obtained from B
by (i) adding a new node v’ labeled with S’ for every S’ = ®(.S, «) (resp., S’ € F,,(S)) such
that S is the label of a deepest leaf v of B in which « is executable, and (ii) connecting
the nodes v and v of such S and S’, respectively, by a new arrow v —v'. If B is a
belief graph and « is a probabilistic physical action executable in B, then B o « is also
a belief graph, which is obtained from B by (i) adding a new node v’ labeled with S’ for
every S’ =®.(S, «) such that (i.1) c€ Cg,, and (i.2) S is the label of a deepest leaf v
of B in which « is executable, and (ii) connecting the nodes v and v’ of such S and S’,
respectively, by a new arrow e =v — v’ with the probability Pr(e) = Pr,(5’|S). If B
is a belief graph and « is a sensing action with outcome o € {w, —w} executable in B,
then B o a, is also a belief graph, which is obtained from B by (i) adding a new node v’
labeled with S’ for every S’ = ®(S, a,) such that S is the label of a deepest leaf v of B in
which « is executable, and (ii) connecting the nodes v and v’ of such .S and S’, respectively,
by a new arrow e =v — v'. Informally, B o « (resp., B o «v,) is the successor belief graph
after executing the action « (resp.,  with outcome o) in B.

Example 4.1 (Robotic Soccer cont’d) Consider the fluent conjunction d; = ballinarea A
inposition A —ballmoving. Fig. 6, left side, shows the belief graphs after executing the fol-
lowing sequences of actions in By, (that is, the belief graph associated with d7): (1.a) goto-
ball and bodykick; (1.b) gotoball, sensefreeahead with outcome T, and straightkick; and
(1.c) gotoball, sensefreeahead with outcome F, and sidekick.

Consider next the fluent conjunction §; = ballmoving. Fig. 6, right side, shows the be-
lief graphs after executing the following sequences of actions in the belief graph Bs,:
(2.a) openlegs; (2.b) aligntoball and openlegs; (2.c) sensealignedtoball with outcome T
and openlegs; and (2.d) sensealignedtoball with outcome F, aligntoball, and openlegs.

Observe that the number of nodes np of a belief graph B depends on the length [ of its
sequence of actions and the width of its nondeterministic and probabilistic branchings.
Hence, np may be large. However, np is polynomial in the size of FAD under suitable
assumptions, that is, in the special case where [ is bounded by a constant and the maximal
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Fig. 6. Belief graphs and lower probabilities of fluent formulas.

number of nondeterministic and probabilistic conditional effect axioms (6) resp. (7) that
are relevant to some S and « is also bounded by a constant (see also Section 7).

4.2 Lower and Upper Probabilities of Fluent Formulas

We next evaluate the truth of fluent formulas in belief graphs. Since a belief graph as
an overall epistemic state of an agent contains qualitative and probabilistic uncertainty, it
specifies a set of probability values for the truth of a fluent formula, rather than an exact
binary truth value. We especially deal with the smallest and the largest probability value
of a fluent formula ¢ in a belief graph B, called the lower and the upper probability of ¢
in B, respectively. Intuitively, given the qualitative and probabilistic knowledge of B, the
fluent formula ¢ holds with at least (resp., most) its lower (resp., upper) probability in B.

Formally, let B=(V, E,{, Pr) be a belief graph with the root € V, and let ¢ be a
fluent formula. Let G4 = (Vg, E;) denote the subgraph of G = (V, E') where (i) Vj is the
set of all nodes v € V' on a path from r to a deepest leaf in G, and (ii) F is the restriction
of E to the nodes in V. Then, the lower probability of ¢ in B, denoted prob; 5(¢), is the
value prob, ,.(¢), where the function prob; .(¢): V4 — [0, 1] is defined as follows:
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—prob; ,(¢) is 1 for every leaf v € V; with £(v) |= ¢, and 0 for all other leaves v € V;
—prob, ,(¢) = mine—, ./ cg, prob, ., (¢) for every v € Vy where Pr(e) is undefined;
—prob, ,(¢)= > ._, .vcp, Pr(e)-prob, . (¢) forevery v € Vy where Pr(e) is defined.

Informally, the deepest leaves v of B whose e-state £(v) satisfies (resp., does not satisfy) ¢
associate with ¢ the lower probability 1 (resp., 0). We then propagate the lower probability
to every node of G4, using the lower probabilities of the children and the probabilities
that are associated with some arrows. The lower probability of ¢ in B is then the lower
probability that the root r associates with ¢. Similarly, the upper probability of ¢ in B,
denoted prob,, (), is the value prob,, ,.(¢), where prob,, (¢): Vi — [0, 1] is defined by:

—prob,, ,(¢) is 1 for every leaf v € V with £(v) = =¢, and O for all other leaves v € Vy;
—prob,, ,(#) = maxe—, /g, prob, ,(¢) for every v € V; where Pr(e) is undefined;
—prob, ()= > o_, _yecp, Pr(e)-prob, . (¢) forevery v € V; where Pr(e) is defined.

Finally, the executability probability of a belief graph B is defined as prob, z(T). Intu-
itively, this is the probability with which the sequence of actions behind B is executable.

Example 4.2 (Robotic Soccer cont’d) The lower probabilities of d; = —ballinarea A in-
position in the belief graphs of Fig. 6 (1.a), (1.b), and (1.c) are given by 0.4, 0.72, and 0.56,
respectively, while the lower probabilities of 6 = goalsaved in the belief graphs of Fig. 6
(2.a), (2.b), (2.c), and (2.d) are given by 0, 0.7, 1, and 0.7, respectively. The executability
probabilities of the belief graphs of Fig. 6 (1.a) to (1.c) are all 0.8, while the executability
probabilities of the belief graphs of Fig. 6 (2.a) to (2.d) are all 1.

The following lemma shows that the lower probability of a fluent formula ¢ in a belief
graph B is always below the upper probability of ¢ in B. This result can be easily proved
along the recursive definition of the lower and the upper probability of ¢ in B.

Lemma 4.3 If B is a belief graph and ¢ is a fluent formula, then prob, 5(¢) < prob,, (o).

4.3 Representation Results

We finally show that every belief graph is a compact representation of a set of unnormalized
probability distributions over the set S of all e-states of FAD. That is, every belief graph
can be associated with a set of unnormalized probability distributions such that (i) decid-
ing the executability of an action, (ii) executing an action, and (iii) evaluating the lower
and the upper probability of a fluent formula in a belief graph B can be defined in an
isomorphic way on the set of unnormalized probability distributions of B.

Let B= (V, E, £, Pr) be a belief graph with theroot r € V, and let G4 = (Vy, E4) be the
subgraph of G = (V, F') defined in Section 4.2. Then, the set of unnormalized probability
distributions associated with B, denoted pp, is defined as p,, where the function p .
associates with every node v € V;; a set of unnormalized probability distributions by:

—p,, = {y } for every leaf v € Vy, where 1, (¢(v)) =1 and p,, (S) =0 for all other S € S;
—p, = U {y | e=v—2" € Ey} for every node v € Vy such that Pr(e) is undefined;

—ty = UL ey vicr, Prie) - p | Ve=v—v € Eq: py €, } for every node v €
Va such that Pr(e) is defined, where (3, _, ,/cp, Pr(e) - po)(S)= >\ vem,
Pr(e) - py (S) for all e-states S € S.
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Example 4.4 (Robotic Soccer cont’d) The belief graph in Fig. 6 (1.a) has one unnormal-
ized probability distribution, which maps the e-states of the deepest leaves to the proba-
bilities 0.08, 0.4, 0.08, and 0.24, while the belief graph in Fig. 6 (2.a) has two probability
distributions, one that maps the first leaf to 1, and one that maps the second leaf to 1.

The following theorem shows that the executability of an action « in a belief graph B
can be expressed in terms of p1, that is, B’s set of unnormalized probability distributions
over the set S of all e-states of EAD. It also shows that there exists an operation o’ such
that g o' = pup,,, for all belief graphs B and all actions « that are executable in B.

Theorem 4.5 Let EAD be an extended action description, let B be a belief graph, and
let o be an action, which is executable in B for (b) to (e). Let S be the set of all e-states
of EAD, and let pu i be B’s set of unnormalized probability distributions over S. Then:

(a) The action « is executable in B iff it is executable in some e-state S € S such that
w1(S) >0 for some i € pg.

(b) If v is a deterministic physical action, then pgo, = {poa|u€ pg}, where (p o
a)(S") = Yges: sr—d(s,a) H(S) forall S'€ S.

(c) If ais a sensing action with outcome o € {w, —~w}, then pg., ={pow, | € pp},
where (j100,)(S") = D ges. si—a(5,0,) 1H(S) forall S"€S.

(d) If avis a nondeterministic physical action, then pg., ={poa| € pg, @ € inst(a)},
where (10 a)(S") = Y ges. si—a(s,a) H(S) for all S"€ S, and inst(c) denotes the
set of all actions & such that ®(S, @) € F,(S) forall S € S. Intuitively, inst(«) is the
set of all possible “deterministic instances” of c.

(e) If o is a probabilistic physical action, then pp,, ={poa|pepg}, where (u o
a)(5) = Xses: 3eeCs ot s1=t.(5.0) Pra(S|S) - p(S) for all S'€ S.

The next theorem shows that (i) lower and upper probabilities of fluent formulas in
a belief graph B and (ii) the executability probability of a belief graph B can also be
expressed in terms of B’s set of unnormalized probability distributions.

Theorem 4.6 Let EAD be an extended action description, let B be a belief graph, and
let ¢ be a fluent formula. Let S be the set of all e-states of EAD, and let pu g be the set of un-
normalized probability distributions over S associated with B. Then, (a) prob; () (resp.,
prob, p(¢)) is given by min,ep . Y ges s M) (resp, maXpep,, Y ges, speg H(S)),
and (b) the executability probability of B is given by min,c,, . > gc g p(S).

5. CONDITIONAL PLANNING

The conditional planning problem in our framework can be described as follows. Given an
extended action description £A D, an initial state description d1, and a goal description é¢,
which is a fluent conjunction, compute the best conditional plan to achieve §¢ from §;. We
first define conditional plans and their goodness for achieving §¢ from §;. We then for-
mally state the conditional planning problems and provide some uncomputability results.
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CPq
CPo

gotoball; bodykick
gotoball; sensefreeahead; if freeahead then {straightkick}
else {sidekick}
CP3 = gotoball; senseballclose; if ballclose then {sensefreeahead,; if freeahead then {straightkick}
else {sidekick}}

CP4 = openlegs
CPs = aligntoball; openlegs
CPg¢ = sensealignedtoball; if alignedtoball then {openlegs}

else {aligntoball; openlegs}

Fig. 7. Conditional plans.

5.1 Conditional Plans

Intuitively, a conditional plan (see especially [Levesque 1996; Lobo et al. 1997; Son et al.
2004]) is a binary directed tree where every arrow represents an action, and every branch-
ing expresses the two outcomes of a sensing action, which can thus be used to select the
proper actions. We recall that a directed tree is a directed acyclic graph in which every
node has exactly one parent, except for the rootf, which has no parents; nodes without
children are called leaves. Formally, a conditional plan CP is either (i) the empty con-
ditional plan, denoted A, or (ii) of the form «; CP’, or (iii) of the form 3;if w then
{CP,} else { CP_,}, where « is a physical action, /3 is a sensing action with outcomes w
and —w, and CP’, CP,,, and CP_,, are conditional plans. We call a and 3 in (i) and
(ii), respectively, the root action of CP, and we often abbreviate “w; \” in (i) by “7”.
The length of a conditional plan CP, denoted length(CP), is inductively defined by
(i) length(\) =0, (ii) length(a; CP') =1+ length(CP'), and (iii) length(3;if w then
{CP,} else {CP_,}) =1+ max(length(CP,), length(CP-,)).

Example 5.1 (Robotic Soccer cont’d) Consider first the following initial state description
07 = ballinarea A inposition A =ballmoving, which encodes the initial state where the robot
is in its standard position and the ball is in the robot’s own area and not moving, and the
goal description dg = —ballinarea A inposition, which encodes the goal state where the
robot should kick away the ball and remain in its position. Some potential conditional
plans CPy, CP5 and CP3 for achieving d from §; are shown in Fig. 7. Consider next an
initial state description d; = ballmoving, where the ball is moving, and a goal description
0c = goalsaved, where the goal has been saved. Some potential conditional plans CPy,
CPs5, and CPg for achieving d¢ from §; are also shown in Fig. 7.

5.2 Goodness of Conditional Plans

We next define the notion of goodness for conditional plans. Intuitively, the best condi-
tional plans are those that reach a goal state from an initial state with highest probability.
We first define the goodness of a conditional plan for achieving a goal state from a belief
graph. Given a belief graph B and a conditional plan CP, we say that CP is executable
in B iff either (i) CP =\, or (ii) CP =a; CP’ and o and CP’ are executable in B and
B o «, respectively, or (iii) CP = (; if w then {CP,} else {CP_,} and (3, CP,,, and
CP_,, are executable in B, Bo 3,, and B o (3, respectively. Given a belief graph B,
a conditional plan CP that is executable in B, and a goal description d¢, the goodness
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of CP for achieving d¢ from B, denoted goodness(CP, B, d¢), is defined as follows:

prob, p(dc) if CP=A\
goodness(CP', Boa,d¢) if CP =q; CP'
min(goodness(CP,,, Bo (,,0c),
goodness(CP_,, Bof—,,d¢)) if CP=(;if w then {CP,} else {CP_,}.

Informally, if C'P is empty, then its goodness for achieving d¢ from B is the lower prob-
ability of §g in B. Otherwise, if CP consists of a physical action « and a conditional
plan CP’, then its goodness for achieving d¢ from B is the goodness of CP’ for achiev-
ing ¢ from the successor belief graph of B after executing «. Finally, if CP consists of
a sensing action (3 and one conditional plan CP,, for each outcome o € {w, —w}, then its
goodness is the minimum of the goodness values of CP,, and CP_,, for achieving d from
the successor belief graphs of B after executing § and observing w and —w, respectively.
We next extend the notion of goodness for conditional plans from belief graphs to initial
state descriptions as follows. Given an initial state description d;, a conditional plan CP
that is executable in the belief graph Bs, (that is, the belief graph that consists only of the
e-state Ss,, which is the greatest e-state S5, of FAD that satisfies d;), and a goal descrip-
tion d¢, the goodness of CP for achieving d¢ from 6, denoted goodness(CP,dr,d¢), is
defined as the goodness of C'P for achieving d from B, .

Example 5.2 (Robotic Soccer cont’d) The goodness values of the conditional plans CP;
and CP, in Fig. 7 for achieving o = —ballinarea A inposition from ¢; = ballinarea A
inposition A —~ballmoving are given by 0.4 and min(0.72, 0.56) = 0.56, respectively, where
0.4 and 0.72 and 0.56 are the lower probabilities of d¢ in the belief graphs in Fig. 6
(1.a), (1.b), and (1.c), respectively. The conditional plan C'P3 has the goodness 0.56 for
achieving d¢ from d;. The goodness values of the conditional plans CP,, CPs5, and
CPg in Fig. 7 for achieving i = goalsaved from §; = ballmoving are given by 0, 0.7, and
min(1,0.7) = 0.7, respectively, where 0, 0.7, 1, and 0.7 are the lower probabilities of d¢
in the belief graphs in Fig. 6 (2.a), (2.b), (2.c), and (2.d), respectively.

The following result shows that the goodness of a conditional plan CP is the mini-
mum of the goodness values of all linearizations of C'P, which are roughly all possible
sequences of actions from the root to a leaf of C'P. Formally, linearizations of a condi-
tional plan CP are defined as follows. The only linearization of the empty conditional
plan CP = ) is \ itself. A linearization of CP = a; CP’ has the form o [, where [ is a
linearization of CP’. A linearization of CP = §3;if w then { CP_} else { CP_} has the
form f3,; l, where o € {w, ~w} and [, is a linearization of C'P,. The executability in belief
graphs and the goodness for achieving a goal description from a belief graph or an initial
state description are then naturally extended from conditional plans to their linearizations.

Proposition 5.3 Let EAD be an extended action description, let 0 be an initial state de-
scription, let g be a goal description, and let CP be a conditional plan that is executable
in Bs,. Then, the goodness of CP for achieving d¢ from 0r is the minimum of the good-
ness values of all the linearizations of CP for achieving d¢ from dj.
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5.3 Problem Statements

The conditional planning problem in our framework of extended action descriptions in £+
can now be formalized as the problem of finding a conditional plan with maximum possible
goodness for achieving a goal state from an initial state and as the problem of finding a
conditional plan with a goodness of at least a given threshold as follows:

OPTIMAL CONDITIONAL PLANNING: Given an extended action description FAD, an
initial state description d;, and a goal description ¢, compute a conditional plan CP that
has the maximal goodness among all conditional plans for achieving d¢ from d;.

THRESHOLD CONDITIONAL PLANNING: Given an extended action description EAD,
an initial state description 07, a goal description ¢, and a threshold 6 > 0, compute a
conditional plan CP that has a goodness g > 6 for achieving d¢ from 0 (if one exists).

Example 5.4 (Robotic Soccer cont’d) Some conditional plans of goodness g > 6 = 0.4
for achieving ¢ = —ballinareaAinposition from §; = ballinarea Ainposition A—=ballmoving
are given by CPq, CPs, and CP3. In fact, the latter two conditional plans have the maxi-
mum possible goodness, and thus they are both optimal.

Observe that THRESHOLD CONDITIONAL PLANNING can be easily reduced to OPTI-
MAL CONDITIONAL PLANNING by first computing a conditional plan of maximal good-
ness g and then checking whether g > 6. The following theorem shows that the above
two problems are both uncomputable. Its proof is similar to the undecidability proof of
the plan existence problem in sequential (unconditional) probabilistic planning given in
[Madani et al. 2003]. Note that the variant of THRESHOLD CONDITIONAL PLANNING
where the condition g > 6 (> 0) is replaced by g > 6 ( > 0) is also uncomputable.

Theorem 5.5 The two problems OPTIMAL CONDITIONAL PLANNING and THRESHOLD
CONDITIONAL PLANNING are both uncomputable.

6. CYCLE-FREE CONDITIONAL PLANNING

In this section, we show that OPTIMAL and THRESHOLD CONDITIONAL PLANNING are
both computable in the special case in which Ggap s, is acyclic. More precisely, we
present an algorithm for solving THRESHOLD CONDITIONAL PLANNING. For every given
problem instance, the algorithm terminates and returns some conditional plans of good-
ness g > 6 for achieving ¢ from ;. In the special case in which Ggap s, is acyclic, the
algorithm returns all conditional plans of goodness g > 6 for achieving ¢ from d;.

The algorithm is shown in Fig. 8. It uses the function find _all_cycle_free_paths, which
takes as input the directed graph Ggap,s,, an e-state Sy, and a fluent formula ¢, and
which returns as output the set of all paths without cycles from Sy to an e-state S,, that
satisfies ¢. Every such path P =Sy —,, S1 —a, 52+ Sn—1 —a, Sn is encoded as the
sequence av; g . . . ; uy, Of labels of the arrows of P. Recall that every «; is either (a) a de-
terministic physical action or a sensing action along with one of its outcomes, or (b) a
nondeterministic (resp., probabilistic) physical action along with one of its contexts (resp.,
one of its contexts and a probability value). We then write P* to denote the sequence of
actions of; ab; ... al,, where (a) of = o if «; is a deterministic physical action or a sens-
ing action along with one of its outcomes, and (b) «} is obtained from «; by removing the
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Algorithm Cycle-Free Conditional Planning

Input: extended action description EA D, initial state description 07, goal description d¢,
and threshold 6 > 0.

Output: set of conditional plans C'P such that goodness(CP,d1, ) = 0.

1. Sp = find_all_cycle_free_paths(Ggap.s;, Ss;,0aG);
2. Sy ={P*|Pe€SL, goodness(P*,0r,6¢c)>0};

3. Scp=15L;

4. while 3CP € S¢p such that ra, X CP but not ra—, X CP do begin
5. Lauz = {L€SL |ra-oxL};

6. Scp=Scp—{CP}:

7. for each L € L4y, do begin

8. CPrew = unify(CP,L);

9. SCP :SCPU{CPnew}
10. end
11. end;
12. return S¢p.

Fig. 8.  Algorithm Cycle-Free Conditional Planning

context (resp., the context and the probability value) if a; belongs to a nondeterministic
(resp., probabilistic) physical action. For sensing actions « with outcome o € {w, ~w}, we
write ~—w to denote w. For fragments of conditional plans C'P, we denote by p x CP that
p is a prefix of a linearization of CP. We define unify(CP, L) by unify(ca; CP',a; L") =
a; unify(CP', L) and unify(c,; CP',a_,; L") =« if o then { CP'} else {L'}.

The algorithm in Fig. 8 works as follows. Step 1 computes the set of all paths P without
cycles in Ggap,s, from S, to an e-state S that satisfies 6. By Proposition 6.2 below,
their sequences of actions P* are candidates for linearizations of the desired conditional
plans. In step 2, using Proposition 5.3, we keep only those linearizations with a goodness
of at least 6 for achieving d from d;. In steps 3—11, we then combine them to conditional
plans, and in step 12, we finally return these conditional plans.

Example 6.1 (Robotic Soccer cont’d) Consider the initial state description ¢; = ballin-
area A inposition A —ballmoving, where the ball is in the penalty area and not moving,
and the goalkeeper is in the correct position, and the goal description d = —ballinarea A
inposition, where the ball is outside the penalty area, and the goalkeeper is in the correct
position. By applying the algorithm in Fig. 8, supposing the threshold 8 = 0.5, we com-
pute the set of all cycle-free paths in Ggap s, from S5, to some e-state S satistying d¢.
Consider the two paths P}, Py € Sy, in step 2 given by P} = gotoball; sensefreeaheadr;
straightkick and P = gotoball; sensefreeaheadr; sidekick (with goodness 0.72 resp. 0.56
as shown in Fig. 6). The path CP = Py} satisfies the condition in step 4 of the algorithm,
thus entering the loop. In the next steps, L., contains P53 and these two paths are unified
through the unify function in step 8. The resulting CP,,,, which is included in the output,
is the conditional plan C'P5 shown in Fig. 7 with goodness 0.56.

The following result shows that linearizations from conditional plans of positive good-
ness for achieving d¢ from d; correspond to paths in Ggap s, from Ss, to an e-state S
that satisfies d¢, which essentially states the correctness of step 1 of the algorithm.
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Proposition 6.2 Let EAD be an extended action description, let 0 be an initial state de-
scription, and let §¢ be a goal description. Let CP be a conditional plan of positive good-
ness for achieving d¢c from 0;. Then, for every linearization L =aq;as; ... ;an of CP,
there exists a deepest leaf node in Bs, o o1 © aig © - - - © vy Whose e-state satisfies d¢.

The next result shows that the algorithm always terminates with some conditional plans
of goodness g > 6 for achieving 6 from 6; in its output. Moreover, if Ggap s, is acyclic,
then all conditional plans of goodness g > 6 for achieving d from §; are returned.

Theorem 6.3 Let EAD be an extended action description, let §; be an initial state de-
scription, let 0¢; be a goal description, and let 0 > 0 be a threshold. Then, (a) Cycle-Free
Conditional Planning terminates, and (b) the algorithm returns a set of conditional plans
of goodness g > 0 for achieving ¢ from 61, if Ggap.s, is acyclic, then it returns the set
of all conditional plans of goodness g > 6 for achieving 6 from J;.

As a corollary, we obtain that THRESHOLD CONDITIONAL PLANNING is computable
in the case in which G'g4p s, is acyclic. Observe that a variant of Cycle-Free Conditional
Planning where ““ > 0" is replaced by “ > 6 can be used for computing a set of conditional
plans of goodness g > 6 > 0, and thus in particular for computing the set of all conditional
plans of positive goodness in the acyclic case. Since we can then compute the goodness
of every such conditional plan and select the ones of maximal goodness, also OPTIMAL
CONDITIONAL PLANNING is computable in the case in which G gap s, is acyclic.

Corollary 6.4 OPTIMAL CONDITIONAL PLANNING and THRESHOLD CONDITIONAL
PLANNING are both computable for the class of all instances in which G gap s, is acyclic.

7. FINITE-HORIZON CONDITIONAL PLANNING

In this section, we define the problem of finite-horizon conditional planning, which is
roughly the problem of finding a conditional plan of bounded length with maximal good-
ness for achieving a goal description from an initial state description. We then show how
some (and even all) optimal conditional plans of bounded length can be computed, which
thus proves that this problem is computable. We also show that finite-horizon conditional
planning can be used to perform cycle-free conditional planning. Formally, the optimiza-
tion problem of finite-horizon conditional planning is defined as follows:

FINITE-HORIZON CONDITIONAL PLANNING: Given an extended action description EAD,
an initial state description d7, a goal description é¢, and a horizon h > 0, compute a con-
ditional plan CP of length [ < h with maximal goodness for achieving d¢ from d7.

We now show how to compute a solution to this problem. In the sequel, let FAD be an
extended action description, and let d¢ be a goal description. Let A" = AU {nop}, where
nop is a new deterministic physical action that is executable in every e-state S of EFAD
and that satisfies ®(.S, nop) =S for every such S. Informally, nop is the empty action,
which is always executable and does not change the e-state. It subsequently allows us to
consider only conditional plans that have a length [ of exactly the horizon h and whose
linearizations all have a length [ of exactly the horizon h, even if the optimal conditional
plans or some of their linearizations have a length [ < h, since we can always enlarge
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such shorter conditional plans and linearizations by filling in nop. We first define the
function V", n > 0, which associates with every belief graph B and goal description é¢
the maximal goodness of a conditional plan of length [ < n to achieve i from B:

prob; (dc) ifn=0
max {Q"(B,a,dg) | a€ A, aisexecutable in B} if n>0,

V™"(B,éq) = {

where Q" (B, a, d¢) denotes the maximal goodness of a conditional plan that starts with
the action « and has the length [ < n to achieve d¢ from B:

{V”_1 (Boa,dg) if « is a physical action
Qn (B7 «, (Sg) =
min {V""1(Boa,,dg)|o€ {w,~w}} otherwise.
Informally, V°(B, §¢g) is the lower probability of dg in B, while V"(B,dg), n >0, is
the maximum of Q™ (B, «, ) subject to all actions « € A’ that are executable in B. If «
is a physical action, then Q™ (B, «,d¢) is the maximal goodness of a conditional plan
of length [ <n—1 to achieve ¢ from Boa. If « is a sensing action with outcomes w
and —w, then Q™ (B, «, d¢ ) is the minimum of the maximal goodness of a conditional plan
of length [ < n—1 to achieve J¢ from B o «, subject to o € {w, —w}.

The following result shows that V™ (B, d¢) is indeed the maximal goodness of a condi-
tional plan of length [ < n to achieve the goal description d¢ from the belief graph B.

Theorem 7.1 Let EAD be an extended action description, and let 6 be a goal descrip-
tion. Let B be a belief graph, and let o€ A’ be an action that is executable in B. Then,
V™(B,dq) (resp., Q™(B,a,dq)) is the maximal goodness of a conditional plan (resp.,
a conditional plan that starts with the action o) of length | < n for achieving é¢ from B.

We next specify a solution to FINITE-HORIZON CONDITIONAL PLANNING in terms of
the function CP"™, n > 0, which assigns to every belief graph B and goal description d¢
a conditional plan of length [ =n with maximal goodness for achieving d¢ from B:

A ifn=0

CP"(B,0c) = { Auz™(B,w, d¢), where a € A’ such that (i) o is
executable in B and (ii)) V" (B, d¢) = Q™ (B, a, d¢) ifn>0,

where Auz"(B,a,dq) is the conditional plan that (i) starts with an optimal action a,
(ii) has the length [ = n, and (iii) has maximal goodness for achieving d¢ from B:

o; CP" Y (Boa,dq) if « is a physical action

Auz"(B,a,0c) = { a;if w then { CP" " (Boay,,dc)}
else {CP" ' (Boa_,,dq)} otherwise.

Informally, cp° (B, 0¢) is the empty conditional plan, while CP" (B, d¢), n >0, is the
conditional plan Auz™ (B, «,dc). If o is a physical action, then Auz"™ (B, a, ) is built
from « and one conditional plan of length [ =n—1. Otherwise, Auz™ (B, «,d¢) is con-
structed from « and two conditional plans of length [ =n—1, one for each outcome of «.
The following theorem shows that CP"(Bs,, d¢) provides indeed a conditional plan
of length [ < h with maximal goodness for achieving d¢ from d;, and thus the problem of
FINITE-HORIZON CONDITIONAL PLANNING can be solved by computing CP"(Bs,, dc).
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Theorem 7.2 Let EAD be an extended action description, let §; be an initial state de-
scription, let 0 be a goal description, and let h > 0 be a horizon. Then, the conditional
plan obtained from cpP’ "(Bs,,d¢) by removing all the occurrences of the action nop is a
conditional plan of length | < h with maximal goodness for achieving d¢ from ;.

As an immediate corollary of the previous theorem, we thus obtain that the problem of
FINITE-HORIZON CONDITIONAL PLANNING is computable.

Corollary 7.3 FINITE-HORIZON CONDITIONAL PLANNING is computable.

The next result provides an upper bound for the complexity of solving FINITE-HORIZON
CONDITIONAL PLANNING by using the function CP™ (as described in Theorem 7.2)
in terms of basic operations on belief graphs. In particular, it implies that for horizons
bounded by a constant, a polynomial number of such basic operations is sufficient.

Theorem 7.4 Let EAD be an extended action description, let §; be an initial state de-
scription, let ¢ be a goal description, and let h > 0 be a horizon. Then, the conditional
plan CP"(B;,,d¢) can be computed by (i) O(a - b'*+1) checks whether an action o € A is
executable in a belief graph, (ii) O(b"2) executions of an action o € A’ in a belief graph,
and (iii) O(b"+1) evaluations of 5 on a belief graph, where a = | A|, b=|Ac|+2 - |As|+1,
and A, and A, denote the set of all physical and sensing actions in A, respectively.

As a corollary, we also obtain an upper bound for the complexity of using the func-
tion CP" in terms of basic operations on e-states, which implies that for horizons bounded
by a constant, a polynomial number of basic operations on e-states is sufficient.

Corollary 7.5 Let EAD be an extended action description, let §; be an initial state de-
scription, let 6 be a goal description, and let h >0 be a horizon. Then, CPh(35 e))
can be computed by (i) O(a - b1 - o) checks whether an action o € A is executable in
an e-state, (ii) O(b"*2 . oh) executions of an action o € A’ in an e-state, and (iii) O(b"+1 -
oh) evaluations of ¢ on an e-state, where a and b are as in Theorem 7.4, and o is the
maximal number of alternatives of nondeterministic and probabilistic actions.

Since every basic operation on e-states can be done in linear or quadratic time in the
size of FAD (see Section 3.3), it thus follows that using the function CP" can be done
in polynomial time when the horizon is bounded by a constant. Furthermore, using CP"
can be done in polynomial time in the size of EAD, when the horizon is bounded by a
constant and the maximal number of nondeterministic and probabilistic conditional effect
axioms (6) resp. (7) that are relevant to some .S and « is also bounded by a constant.

We next show how to compute all conditional plans of length [ < h with maximal good-
ness for achieving d¢ from d;. To this end, we generalize the function CP™ to the follow-
ing function CP", which assigns to every belief graph B and goal description d¢ the set
of all conditional plans of length [ < n with maximal goodness for achieving d¢ from B:

A ifn=0

CP"(B,6c) = | J{Auz" (B, o, 6¢) | a € A, ais executable in B,
and V(B,dc) = Q"(B, a, 6¢)} ifn>0,
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Algorithm Finite-Horizon Conditional Planning
Input: extended action description EA D, initial state description 07, goal description d¢,
and horizon h > 0.
Output: set of all conditional plans CP of length I < h such that goodness(CP, dr, d) is maximal.
1. Scp:= CP"(Bs,,éc):
2. Scp :={CP'|CP & Scp, CP'is obtained from CP by removing all occurrences of nop} ;
3. return Scp.

Fig. 9. Algorithm Finite-Horizon Conditional Planning

where the sets of conditional plans Aux"™ (B, «, i) are defined as follows:

{a; CP|CPe CP" '(Boaw,dg)} if ais aphysical action
{a;if w then {CP,} else {CP_,} |

CP,€ CP" '(Boay,dq)

CP_,€ CP" (Boa_,, 0c)} otherwise.

Auz"(B,a,dg) =

The following result shows that CP h(B5 1, 0¢) provides indeed the set of all conditional
plans of length [ < h with maximal goodness for achieving d¢ from d;.

Theorem 7.6 Let EAD be an extended action description, let §; be an initial state de-
scription, let 6 be a goal description, and let h >0 be a horizon. Then, the set of condi-
tional plans obtained from CPh(B(; 1,0¢) by removing all the occurrences of nop is the
set of all conditional plans of length | < h with maximal goodness for achieving §¢ from d;.

An algorithm for computing the set of all optimal conditional plans of length | </ for
achieving d¢ from 07 using the function CP" is shown in Fig. 9. The following example
illustrates the underlying computation via the functions V" and Q".

Example 7.7 (Robotic Soccer cont’d) Consider again the initial state description ¢; = ball-
inarea A inposition A —ballmoving and the goal description 6 = —ballinarea A inposition.
For the horizon h =2, the algorithm in Fig. 9 computes the set of all conditional plans
of length [ <2 with maximal goodness for achieving d from J;. In particular, the re-
turned set of conditional plans contains C'P; = gotoball; bodykick, shown in Fig. 7, which
is computed via the functions V2, Q2, V!, Q', and V? as follows:

V2(Bs,;,0c) = max{Q?*(Bs,,,dc) | o € {gotoball, sensefreeahead, senseballclose, nop}}
= Q*(Bs,, gotoball, §c)
= V(Bs, ogotoball, §¢)
= max {Q"(Bs, o gotoball, o, §¢) | € {bodykick, gotoball, sensefreeahead,
senseballclose, nop}}
= Q'(Bs, o gotoball, bodykick, 6¢)
V°(Bs, o gotoball o bodykick, d¢)

prObl, B(;I o gotoball o bodykick(dg)
= 0.4 (see Fig. 6).

Note that a slightly modified version of the function CP" (resp., CP"), where the
condition “V™(B, dc) = Q" (B, a,dg)” is replaced by the condition “Q™(B, a, 0¢) = 6”
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can be used for computing a conditional plan (resp., the set of all conditional plans) of
length [ < h with goodness g > 0 > 0 for achieving d¢ from d;.

The next result shows that, if Grap s, is acyclic, then for sufficiently large horizons
h >0, the set of all solutions of an instance of FINITE-HORIZON CONDITIONAL PLAN-
NING coincides with the set of all solutions of the corresponding instance of OPTIMAL
CONDITIONAL PLANNING, which in turn is a subset of the set of all solutions of a corre-
sponding instance of THRESHOLD CONDITIONAL PLANNING (if it is solvable). Hence,
if Ggap,s, is acyclic, then the problems of OPTIMAL and THRESHOLD CONDITIONAL
PLANNING can both be reduced to FINITE-HORIZON CONDITIONAL PLANNING.

Theorem 7.8 Let FAD be an extended action description, let §; be an initial state de-
scription, let 0c be a goal description. Suppose that Ggap s, is acyclic. Then, there
exists a horizon h >0 such that the set of all conditional plans of maximal goodness for
achieving d¢; from 87 is given by the set of conditional plans obtained from CP" (Bs;,0¢)
by removing all the occurrences of the action nop.

8. RELATED WORK

The literature contains several probabilistic extensions of formalisms for reasoning about
actions. In particular, Bacchus et al. [1999] propose a probabilistic generalization of the
situation calculus, which is based on first-order logics of probability, and which allows
to reason about an agent’s probabilistic degrees of belief and how these beliefs change
when actions are executed. Poole’s independent choice logic [1997; 2000] is based on
acyclic logic programs under different “choices”. Each choice along with the acyclic logic
program produces a first-order model. By placing a probability distribution over the dif-
ferent choices, one then obtains a distribution over the set of first-order models. Mateus
et al. [2001] allow for describing the uncertain effects of an action by discrete, continu-
ous, and mixed probability distributions, and focus especially on probabilistic temporal
projection and belief update. Finzi and Pirri [2001] add probabilities to the situation cal-
culus to quantify and compare the safety of different sequences of actions. Boutilier et al.
[2001] introduce and explore an approach to first-order Markov decision processes (MDPs)
that are formulated in a probabilistic generalization of the situation calculus, and present
a dynamic programming approach for solving them. A companion paper by Boutilier et
al. [2000] presents a generalization of Golog, called DTGolog, that combines robot pro-
gramming in Golog with decision-theoretic planning in MDPs. Other probabilistic exten-
sions of the situation calculus and Golog are given in [Mateus et al. 2001; Grosskreutz and
Lakemeyer 2001]. A probabilistic extension of the action language A is given by Baral et
al. [2002], which aims especially at an elaboration-tolerant representation of MDPs and at
formulating observation assimilation and counterfactual reasoning.

Among the above approaches, the most closely related is perhaps Poole’s independent
choice logic (ICL) [1997], which uses a similar way of adding probabilities to an approach
based on acyclic logic programs. But, as a central conceptual difference, like all the other
above approaches, Poole’s ICL does not allow for qualitative uncertainty in addition to
probabilistic uncertainty. Poole circumvents the problem of dealing with qualitative uncer-
tainty by imposing the strong acyclicity condition on logic programs. Moreover, Poole’s
formalism is inspired more by the situation calculus and less by description logics.

Another closely related work is [Eiter and Lukasiewicz 2003], which proposes the ac-
tion language PC+ for probabilistic reasoning about actions, and which is among the few
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works in the literature that deal with both qualitative and probabilistic uncertainty in rea-
soning about actions. More precisely, PC+ allows for expressing nondeterministic and
probabilistic effects of actions as well as qualitative and probabilistic uncertainty about the
initial situation of the world. A formal semantics of PC+ is defined in terms of probabilis-
tic transitions between sets of states, and it is then shown how the problems of prediction,
postdiction, and unconditional planning under qualitative and probabilistic uncertainty can
be formulated in PC+. However, this work especially does not address sensing.

A further group of important related works is represented by the probabilistic agent pro-
grams in [Subrahmanian and Ward 1996; Dix et al. 2000; Dix et al. 2006], which also deal
with reasoning about actions in the context of multiple alternative possible world states.
More concretely, Subrahmanian and Ward [1996] present an approach to STRIPS-style
probabilistic planning and show that it can be equivalently expressed in terms of proba-
bilistic logic programs. Furthermore, Dix et al. [2000] present an approach to probabilistic
agent programs, which is based on the ordinary agent programs introduced by Fiter et
al. [1999], and which is similar in spirit to Poole’s ICL [1997]. Finally, [Dix et al. 2006] is
a generalization of [Dix et al. 2000] by temporal probabilistic knowledge. Similarly to our
work here, Dix et al. [2000; 2006] allow for dealing with probabilistic uncertainty about
the world state. However, differently from here, they do not additionally allow for deal-
ing with qualitative uncertainty about the world state, and they do not allow for directly
expressing nondeterministic and probabilistic effects of actions. Notice also that their mul-
tiple alternative possible world states are due to probabilistic initial states, while ours are
due to actions with nondeterministic and probabilistic effects. Differently from our work,
they also do not define a semantics based on autoepistemic description logics, they do not
consider belief trees, and they do not focus on solving the conditional planning problem.

From a more general perspective, our approach is also related to planning under un-
certainty in Al, since it can be roughly understood as a combination of (i) conditional
planning under nondeterministic uncertainty [Geffner 2002] with (ii) conditional planning
under probabilistic uncertainty, both in partially observable environments. Previous work
on planning under probabilistic uncertainty can be roughly divided into (a) generalizations
of classical planning and (b) decision-theoretic planning. The former (see for example
[Draper et al. 1994; Onder and Pollack 1999; Karlsson 2001]) typically considers the prob-
lem of determining a sequence of actions given a success threshold, with some extensions
that consider also sensing and conditional plans. Decision-theoretic planning, on the other
hand, deals with fully observable Markov decision processes (MDPs) [Puterman 1994] or
the more general partially observable Markov decision processes (POMDPs) [Kaelbling
et al. 1998], which also include costs and/or rewards associated with actions and/or states,
and their solutions are mappings from situations to actions of high expected utility, rather
than courses of actions achieving a goal with high probability. Summarizing, our approach
can perhaps best be seen as combining conditional planning under nondeterministic and
under probabilistic uncertainty, where the latter is perhaps closest to generalizations of
classical planning in Al In contrast to the decision-theoretic framework, we do not as-
sume costs and/or rewards associated with actions and/or states. Furthermore, sensing
actions in our approach are more flexible than observations in POMDPs, since they allow
for preconditions, and they can be performed at any time point when executable.
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9. CONCLUSION

In this paper, we have presented the language £+ for reasoning about actions with sensing
under qualitative and probabilistic uncertainty.

The proposed framework has several interesting features of reasoning about actions,
such as sensing, persistence, and static constraints, and it combines them with nondeter-
ministic and probabilistic effects of actions. The proposed formalism also provides a com-
plete integration of the epistemic and probabilistic beliefs of an agent.

We have formulated the problem of conditional planning under qualitative and proba-
bilistic uncertainty, and we have presented two algorithms for conditional planning in our
framework. The first one is always sound, and it is also complete for the special case where
the relevant transitions between epistemic states are cycle-free. The second algorithm is
a sound and complete solution to the problem of finite-horizon conditional planning. Un-
der the assumption that the horizon is bounded by a constant, it computes every optimal
finite-horizon conditional plan in polynomial time.

Finally, several examples have illustrated our formalism. They describe a robotic soccer
scenario in which we model at the same time the sensing abilities of a robot, as well as non-
deterministic and probabilistic uncertainty in the execution of its actions. More precisely,
the examples show how this scenario can be modeled in our formalism, and they illustrate
the concepts of belief graph and conditional plan, the evaluation of different possible con-
ditional plans, and their computation using the presented algorithms. They show not only
the need for an integrated formalism in realistic applications, but also that the choices in
modeling uncertainty in the actions affect the behavior of the robot.

While from the representation standpoint our formalism provides a rather rich frame-
work, a number of issues still deserve further investigation. Specifically, we are currently
addressing extensions of the proposed framework that generalize it by introducing noise
in sensing actions (for example, along the lines of [Bacchus et al. 1995; Shapiro 2005]),
as well as actions with costs and/or rewards (for example, such as in POMDPs [Kaelbling
et al. 1998]). Moreover, we are improving the implementation of the prototype planner to
make it suitable for quantitative experiments and performance evaluation.

Another interesting topic of future research would be to elaborate an extension of the
presented formalism to multi-agent systems. Furthermore, it would also be very interesting
to investigate whether £+ can be applied in web services: The semantic foundation of £+
on description logics is in spirit of a recent trend towards combining action languages
with description logics [Baader et al. 2005] for modeling web services in the Semantic
Web [Berners-Lee 1999; Fensel et al. 2002]. Here, description logics in general play a
crucial role as a formal foundation for the OWL Web Ontology Language [W3C 2004;
Horrocks et al. 2003] and autoepistemic description logics in particular as a mechanism
for combining rules and ontologies [Motik et al. 2006; Motik and Rosati 2007].
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A. APPENDIX: NOTATION TABLE

’ Symbol Description ‘ Section ‘
F set of fluents 2.1
A set of actions 2.1
¢, fluent formulas 2.1
i, w fluent literals 2.1
o action in A 2.1
or initial state description 2.1
AD action description 2.1
s state of AD 22
S epistemic state (or e-state) of AD 2.2
(S, ) successor e-state of an e-state S of AD under action « 22
Gap directed graph represented by AD 2.2
Ss, e-state encoded by d1 2.2
G aD,s; subgraph of G4 p with all successors of S5, 22
L set of fluent literals 23
Lit(¢) set of all fluent literals in ¢ 23
Lit(S) set of all fluent literals satisfied by S 23
Di probability value 3.1
EAD extended action description 3.1
Cs,a set of contexts when executing « in S 3.1
D.(S, a) the successor e-state of S after executing « in the context ¢ 3.1
F.(S) set of successor e-states of .S under « 3.1
Prq(-15) probability distribution on the successor e-state of S under « 3.1
GEap directed graph represented by FAD 3.1
GEap,s; subgraph of G g4p with all successors of S5, 3.1
B=(V,E, ¢, Pr) belief graph 4.1
prob; 5(¢) lower probability of ¢ in B 4.2
prob, 5(¢) upper probability of ¢ in B 42
Hp set of unnormalized probability distributions associated with B| 4.3
o goal description 5
cP conditional plan 5.1
A empty conditional plan 5.1
goodness(CP, B, da) goodness of CP for achieving d¢ from B 52
n maximal goodness of a conditional plan of length [ < n
V(B dc) ¢ to achieve d¢g frompB ¢ 7
O™ (B, a, 66) ma}imal goodness of a conditional plan. that starts with 7
Y action « and has the length [ < n to achieve d¢ from B
n conditional plan of length [ = n with maximal goodness
CP"(B,dc) b for achigeving é¢ from B ¢ 7
conditional plan that starts with an optimal action a,
Auz™ (B, o, 0c) has the length [ = n, and has maximal goodness 7
for achieving d¢ from B

Fig. 10. Notation
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B. APPENDIX: PROOFS

Proof of Proposition 2.2. It is sufficient to show that the default frame axioms in AD
do not produce any nondeterministic choice. Let I be the set of all default frame ax-
ioms inertial ¢ after o in AD that are applicable in S, that is, such that the set of
all fluent literals in ¢, denoted Lit(¢), is contained in the set of all fluent literals rep-
resenting S, denoted Lit(S). It then follows that also Lit*(¢) is contained in Lit(S),
for every inertial ¢ after « in I, where Lit*(¢) is the closure of Lit(¢) under all do-
main constraint axioms in AD. This shows in particular that the union of all Lit*(¢)
such that inertial ¢ after « is in I is consistent. It thus follows that for any consis-
tent set of fluent literals L, the set of fluent literals L U Lit*(¢1) U -+ U Lit*(¢y),
where inertial ¢; after o belongs to I for every i € {1,...,n}, is consistent iff every
L U Lit*(¢;) with i € {1,...,n} is consistent. Hence, any consistent set of fluent liter-
als L U Lit*(¢1) U - -+ U Lit*(¢,), where (i) inertial ¢; after o belongs to I for every
i€{1,...,n}, and (ii) {inertial ¢, after o|i € {1,...,n}} is maximal, is unique and ex-
actly given through all inertial ¢; after « in I such that L U Lit*(¢;) is consistent. O

Proof of Theorem 4.5. (a) Recall first that an action «v is executable in B iff it is executable
in the e-state £(v) = S of some deepest leaf v of B. Observe then that the e-states of the
deepest leaves of B are exactly the e-states S € S such that 1(.S) > 0 for some p € p .

(b) (resp., (c)) The set of unnormalized probability distributions over S associated with the
belief graph B o « (resp., B o a,) coincides with the set of unnormalized probability dis-
tributions over S associated with the belief graph obtained from B by replacing the e-state
¢(v) = S of every deepest leaf v such that « is executable in .S by the e-state S’ = ®(S, «)
(resp., S' = ®(S, a,)). The latter is given by the set of all 1z 0 «v (resp., j1 0 av,) with p1 € pu .

(d) The set of unnormalized probability distributions over S associated with Boa coincides
with the union of all p such that & € inst(«), where every i is the set of unnormalized
probability distributions over S associated with the belief graph obtained from B by re-
placing the e-state ¢(v) = S of every deepest leaf v such that « is executable in S by the
e-state S’ = (S, ). Every such p is given by the set of all ;10 @ with p € p .

(e) Recall that for every deepest leaf v of B, the set of unnormalized probability distribu-
tions p,, associated with v in B is given by the probability distribution i, that maps the
e-state £(v) =S to 1 and all other e-states S € S to 0. Observe then that for every deepest
leaf v of B such that « is executable in the e-state ¢(v) =S, the set of unnormalized prob-
ability distributions p,, associated with v in B o «v is given by the unnormalized probability
distribution p that maps every S’ € S for which some ¢ € Cg ,, exists with " = (S, «)
to Pr,(S’]S) and all other e-states S” € S to 0. Hence, the set of unnormalized probability
distributions over S associated with B o « is given by the set of all o a with p€ pug. O

Proof of Theorem 4.6. (a) Let B=(V, E, ¢, Pr), and let r € V be the root of B. Let the
subgraph G4 = (Vy, Eq) of G =(V, E) be defined as in Section 4.2. By induction on the
recursive structure of G4, we show that prob; ,(¢) = min,cp, > ges, gg #(S) for all
v € V. Analogously, it can be shown that prob,, ,,(¢) = max,cp, > ges, s #(S) for
all v € V;. Since the above holds in particular for the root r of B, this then proves (a).

Basis: Let v€ Vg be a leaf. Then, prob, ,(¢) is 1 if £(v) = ¢, and O otherwise. Fur-
thermore, p,, is given by {1, }, where p,,(¢(v)) =1 and p,,(S) = 0 for every other e-state
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S€S. Hence, mingey, Y ges sg 1(S) = Dses, 5o Mo (S) is 1if £(v) = ¢, and 0
otherwise. This shows that prob; ,,(¢) = min,e,, Y oges, 51 g 1(59)-

Induction: Let v € V; be a non-leaf node. Suppose first that Pr(e) is undefined for all
outgoing arrows e of v. Then, prob, ,(¢) = min, ., e g, prob, ,,(¢). By the induction
hypothesis, the latter coincides with min, .. e g, min,e,, , ZSGS’ Sk p(S) = min,e
2_ses, sig H(S). Suppose next that Pr(e) is defined for all outgoing arrows e of v. Then,
proby o (6) = >\ per, Pr(e)-prob,, (¢). By the induction hypothesis, the latter is
equal to Ze:v—w’EEd Pr(e) - minyey,, ZSGS, SkEe p(S) = mingep, ZSGS, Sk p(S).
In summary, this shows that prob; ,(¢) = minueu, D ges s H(S).

(b) Immediate by (a) and the definition of the executability probability of B. O

Proof of Proposition 5.3. By induction on the structure of conditional plans CP, we
show that for every belief graph B in which CP is executable, goodness(CP, B, d¢) is
the minimum of goodness(l, B, d¢) subject to all linearizations [ of CP.

Basis: Let CP = \. Since ) is the only linearization of CP, goodness(CP, B, d¢) is the
minimum of goodness(l, B, d¢) subject to all linearizations [ of CP.

Induction: Let CP = a; CP'. Then, goodness(CP, B,dg) = goodness(CP', Boa, 6¢).
By the induction hypothesis, the latter is the minimum of goodness(l’, B o «v,d¢) subject
to all linearizations I’ of CP’, which coincides with the minimum of goodness(l, B, i)
subject to all linearizations [ of CP. Finally, let CP = f3;if w then { CP,} else { CP_}.
Then, goodness(CP, B,d¢) is the minimum of goodness(CP,, Bo 3,,d¢c) subject to
o€ {w,~w}. By the induction hypothesis, each of the latter is given by the minimum
of goodness(l,, B o (3,,0¢) subject to all linearizations [, of CP,, which coincides with
the minimum of goodness(l, B, d¢) subject to all linearizations [ of CP. O

Proof of Theorem 5.5. Let THRESHOLD CONDITIONAL PLAN EXISTENCE denote the
following decision problem: Given an extended action description FAD, an initial state
description d;, a goal description d¢, and a threshold 6 > 0, decide whether there exists
a conditional plan CP that has a goodness of at least # for achieving 6 from é;. Ob-
serve then that THRESHOLD CONDITIONAL PLAN EXISTENCE can be easily reduced to
THRESHOLD CONDITIONAL PLANNING, which in turn can be easily reduced to OPTIMAL
CONDITIONAL PLANNING. It is thus sufficient to show that THRESHOLD CONDITIONAL
PLAN EXISTENCE is undecidable. We show this by a reduction from the language empti-
ness problem for probabilistic finite automata (PFA), which is undecidable by [Paz 1971]
and [Condon and Lipton 1989]. More precisely, a probabilistic finite automaton (PFA)
is a tuple (S, %, T, so, sq), where S is a nonempty finite set of states, ¥ is a finite in-
put alphabet, T'= {T, | a € ¥} where every T, is a transition function that associates with
every state s € S a probability distribution T, ( - |s) over the set of states S, sp € S is an
initial state, and s, € S is an accepting state. The language emptiness problem is the prob-
lem of deciding, given a PFA (S, 3, T, so, s,) and a threshold 6 > 0, whether there exists
an input string w € ¥* that the PFA accepts with a probability of at least 6 (that is, the
probabilities of all possible transitions from s( to s, on w sum up to a value of at least 6).

We reduce the language emptiness problem for PFAs to THRESHOLD CONDITIONAL
PLAN EXISTENCE as follows. Let (S, X, T, s¢, s, ) be a PFA, where S = {sq, ..., s, =S4}
and n >0, and let > 0 be a threshold. We then define the set of actions A as the input
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alphabet Y, where each a € A is a probabilistic physical action, and the set of fluents F as
the set of states S. The extended action description FAD contains one conditional prob-
abilistic effect axiom of the form caused ¢q: po, ..., ¢n: p, after a when ¢; for every
actiona € Aand j € {0,...,n}, where ¢; =s; A N\ycqo, . ny—iy 7Sk and p; =Ty (si]s;)
forall i€{0,...,n}. Let 5y =359 A /\ke{l,...,n} =5, and 0g = s, A /\ke{O,...,nfl} —S}.
Then, there is an input string w € ¥* that the PFA accepts with a probability of at least 6
iff there is a conditional plan C'P with a goodness of at least 6 for achieving d¢ from 7. O

Proof of Proposition 6.2. Towards a contradiction, suppose that there exists a lineariza-
tion L =ay; aa;. .. ; o, of CP such that the e-state £(v) = S of every deepest leaf node v
in Bs, oy og 0 - - - 0 vy, does not satisty d. Hence, the goodness of L for achieving d¢
from 07 is given by 0. Thus, by Proposition 5.3, the goodness of CP for achieving é¢
from d7 is also given by 0. But this contradicts C'P having a positive goodness for achiev-
ing d¢ from d;. This shows that for every linearization L = a5 «ua; . . . au, of CP, there
exists a deepest leaf node in B, o a; o g © - - - © o, Whose e-state satisfies . O

Proof of Theorem 6.3. (a) Immediate by the observation that (i) there are only finitely
many acyclic paths in Ggap s, from Ss, to some e-state .S that satisfies ¢, and thus
(ii) both the while-loop and the for-loop terminate after a finite number of iterations.

(b) We now prove that for all conditional plans CP, it holds that CP is returned by the
algorithm iff C'P has a goodness of at least 6 for achieving di from 07, where the “<="-
part of the statement holds only in the special case in which Ggap s, is acyclic.

(=) Suppose CP is a conditional plan returned by the algorithm. By step 2, CP con-
sists only of linearizations of goodness of at least 6 for achieving 6 from ;. Hence,
by Proposition 5.3, CP has also a goodness of at least § for achieving d¢ from ¢ .

(<=) Suppose CP is a conditional plan of goodness of at least 6 for achieving d¢ from d;.
By Proposition 6.2, for every linearization L = a1 a; . . . ; , of CP, there exists a deep-
est leaf node in Bs, o oy o ag 0 - -- 0 v, Whose e-state satisfies d¢. Thus, every such
linearization L of C'P has a corresponding path P in Ggap s, from Ss, to some e-state S
that satisfies d¢. Since Ggap,s, is acyclic, also P is acyclic, and thus P is included in Sy,
in step 1 of the algorithm. By Proposition 5.3, L has a goodness of at least 6 for achiev-
ing d¢ from d7, and thus L is included in Sz, in step 2 of the algorithm. It thus follows that
Scp and Sy, in step 3 contain all linearizations of C'P, and thus CP is constructed in steps
4—11 and included in the set of conditional plans returned in step 12. O

Proof of Theorem 7.1. We prove by induction on n > 0 that, for every belief graph B
and goal description d¢, it holds that V™ (B, d¢) (resp., Q" (B, a, 0¢)) is the maximal
goodness of a conditional plan (resp., a conditional plan that starts with the action o) over
A'=AU{nop} of length I =n to achieve d¢ from B. This then proves that, for every
belief graph B and goal description d¢, it holds that V" (B, ds) (resp., Q" (B, «,dq))
is the maximal goodness of a conditional plan (resp., a conditional plan that starts with the
action «) over A of length [ < n to achieve d¢ from B.

Basis: For n =0, only the empty conditional plan A has the length [ =0. Since A has the
goodness prob; p(d¢) for achieving ¢ from B, it follows that VO(B, é¢) = prob; p(dc)
is the maximal goodness of a conditional plan of length [ =0 to achieve é¢ from B.
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Induction: Letn > 0. By the induction hypothesis, V"~ 1(B’, i) is the maximal goodness
of a conditional plan of length [ =n — 1 to achieve d¢ from the belief graph B’. This shows
that Q™ (B, «, d¢) is the maximal goodness of a conditional plan that starts with o of
length I =n to achieve d¢ from B. It thus follows that V" (B, d¢) (which is the maximum
of Q"(B, «,d¢) subject to all actions o € A’ that are executable in B) is the maximal
goodness of a conditional plan of length [ =n to achieve dg from B. O

Proof of Theorem 7.2. We prove by induction on & > 0 that, for every belief graph B
and goal description d¢, it holds that CP" (B,d¢) is a conditional plan of length [ <h
with maximal goodness for achieving d¢ from B. This then shows that CP"(Bjs,, d¢) is
a conditional plan of length [ < A with maximal goodness for achieving d¢ from d;.

Basis: For h =0, only the empty conditional plan ) is of length 0. Thus, CP°(B,dg) = A
is a conditional plan of length [ < 0 with maximal goodness for achieving d¢ from B.

Induction: Let h>0. By the induction hypothesis, for every belief graph B’, it holds
that C’Phil(B’ ,0¢) is a conditional plan of length [ <h — 1 with maximal goodness for
achieving 6 from B’. By Theorem 7.1, V*(B, §g) (resp., Q" (B, o, §¢)) is the maximal
goodness of a conditional plan (resp., a conditional plan that starts with the action «)
of length [ < h to achieve dg from B. It thus follows that CP"(B, d¢) is a conditional
plan of length [ < h with maximal goodness for achieving dg from B. O

Proof of Theorem 7.4. The value V" (B, d¢) and all values Q™ (B, «, d¢) such that (a)
a e A’ and (b) « is executable in B can be computed by (i) at most a - b™ checks whether
an action a € A is executable in a belief graph, (ii) at most b”*! executions of an action
a € A’ in abelief graph, and (iii) at most b™ evaluations of d on a belief graph. Hence, if A
is nonempty, then CP" (B, ) can be computed by (i) at most a - b"*! checks whether an
action o € A is executable in a belief graph, (ii) at most b"*2 + 2" executions of an action
a € A in a belief graph, and (iii) at most "1 evaluations of d¢ on a belief graph. O

Proof of Theorem 7.6. Immediate by the proof of Theorem 7.2. O

Proof of Theorem 7.8. Since the subgraph of G4 p that consists of all successors of S5,
is finite and has no cycles, the set of all conditional plans is finite. Thus, some h > 0 exists
such that every conditional plan has a length [ < h. By Theorem 7.6, the set of conditional
plans obtained from CP" (Bs,, d0¢) by removing all the occurrences of the action nop is
the set of all conditional plans with maximal goodness for achieving d¢ from d;. O
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