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Abstract

The focus of current research in cognitive
robotics is both on the realization of sys-
tems based on known formal settings and on
the extension of previous formal approaches
to account for features that play a signifi-
cant role for autonomous robots, but have
not yet received an adequate treatment. In
this paper we adopt a formal framework de-
rived from Propositional Dynamic Logics by
exploiting their formal correspondence with
Description Logics, and present an extension
of such a framework obtained by introducing
both concurrency on primitive actions and
autoepistemic operators for explicitly repre-
senting the robot’s epistemic state. We show
that the resulting formal setting allows for
the representation of actions with context-
dependent effects, sensing actions, and con-
current actions, and address both the pres-
ence of exogenous events and the characteri-
zation of the notion of executable plan in such
a complex setting. Moreover, we present an
implementation of this framework in a system
which is capable of generating plans that are
actually executed on mobile robots, and illus-
trate the experimentation of such a system
in the design and implementation of soccer
players for the 1999 Robocup competition.

1 INTRODUCTION

The focus of research in Cognitive Robotics is in de-
vising actual implementations of reasoning about ac-
tions and action planning on top of mobile robots. To
this purpose, several approaches have been proposed,
based on various extensions of the Situation Calculus

[Lesperance et al.,1998], Propositional Dynamic Log-
ics (PDLs) [De Giacomo et al.,1996; 1997b], the Event
Calculus [Shanahan,1997], and A-languages and logic
programming [Gelfond and Lifschitz,1993]. In pursu-
ing this goal, two kinds of difficulties arise. On the
one hand, the practical realization of formalisms on
top of mobile robots requires the designer to put re-
strictions either on the expressiveness of the language
or on the role played by automated reasoning. On
the other hand, several features that have often been
neglected by previous work on representation of dy-
namic systems and reasoning about actions are now re-
ceiving attention, because they are needed in practice:
e.g., reasoning about the concurrent execution of ac-
tions [Lin and Shoham,1992; Baral and Gelfond,1993],
sensing actions [Levesque,1996), and exogenous events
[De Giacomo et al.,1997a).

In this paper we follow the approach to the rep-
resentation of dynamic systems based on PDLs
[Rosenschein,1981] and its extension based on the cor-
respondence with Description Logics [De Giacomo et
al.,1996; 1997b]. In fact, we extend such an approach
in order to address action planning in the presence
of sensing actions, concurrent actions and exogenous
events, in the realm of Cognitive Robotics, namely
with the goal of implementing it on top of a mobile
robot.

An analysis of the state of the art in Cognitive
Robotics shows that, while several semantic ques-
tions concerning the representation of complex dy-
namic domains have been addressed (see e.g. [Lin and
Shoham,1992; Baral and Gelfond,1993; Reiter,1996;
Pinto,1998] for the issue of representing concurrent ac-
tions), the problem of generating plans which can be
actually executed by a robotic architecture is generally
not considered. We thus propose a rich formal set-
ting, where one can deal with sensing actions and con-
current execution of actions, and express static con-
straints and frame axioms with different flavors, still



retaining the ability of generating plans which can be
actually executed by mobile robots. Moreover, we
have experimented our approach in a real Cognitive
Robotics application, namely the RoboCup99 F-2000
competition for soccer-playing robots, within the Az-
zurra Robot Team [Nardi et al.,1999)].

The paper is organized as follows. In the next sec-
tion we summarize the main features of the epistemic
approach to representing dynamic systems. Then we
discuss the representational features of our framework
and, subsequently, reasoning. Finally, we report on
the experimentation of our approach in the RoboCup
competition.

2 AUTOEPISTEMIC APPROACH
TO ACTION REPRESENTATION

Generally speaking, our work on the definition of the
logical framework is based on the idea of using a non-
monotonic formalism in order to logically reconstruct
a number of expressive features for action representa-
tion. More specifically, we have analyzed the modal
nonmonotonic logic ALCK 7, and experimented its
adequacy in the formalization of dynamic systems.
Notably, it can be shown that such a formalism is able
to logically capture and extend several formal frame-
works for action representation (e.g., STRIPS and the
language A).

We start by pointing out the main capabilities that
the logical framework has to provide, in order to fully
support a suitable representation for the Cognitive
Robotics applications under our examination.

Epistemic abilities First of all, we require a formal-
ism in which it is possible to explicitly represent the
robot’s epistemic state. The reason for such a require-
ment is twofold:

1. an explicit representation of the robot’s epistemic
state allows for an easy characterization of effec-
tive plans, i.e. plans which can be actually exe-
cuted by the robot (see Section 4);

2. as shown e.g. in [Scher]l and Levesque,1993], an
explicit representation of the robot’s epistemic
state allows for a natural formalization of sens-
ing (or knowledge-producing) actions, namely ac-
tions which allow the robot to know the value of
a property in the current state of the world. The
peculiarity of such actions lies in the fact that
their execution only affects the robot’s knowledge
about the world, without changing the state of
the external world.

Indeed, several epistemic approaches to reasoning
about actions have been proposed in the literature, as
well as the use of epistemic modalities for dealing with
the representation of sensing actions (see e.g. [Scherl
and Levesque,1993; Lakemeyer and Levesque,1998;
Lobo et al.,1997]). However, such proposals do not
address the issue of characterizing effective plans by
exploiting the use of epistemic modal formalisms.

Concurrency We require the formalism to allow for
reasoning about the concurrent execution of primi-
tive actions, without introducing the notion of time
to specify the start and the end of an action such as in
[Pinto,1998; Reiter,1996] or adopting interleaving se-
mantics [De Giacomo et al.,1997a]. We remark that
we do not want to treat in an ad-hoc way each pos-
sible concurrent execution of actions, i.e., we do not
define specific axioms for each possible combination of
primitive actions: instead, we want to treat concur-
rency in a systematic way, deriving the possibility of
concurrently executing two or more primitive actions
directly from the specification of such actions.

Our formalization of concurrent actions is based on the
following simple principle (for ease of exposition, below
we illustrate the case of n = 2 concurrent actions: the
case of an arbitrary n is obtained by a straightforward
generalization).

Definition 1 Two actions ay, as can be concurrently
executed in a state s if and only if the following con-
ditions hold: (i) both a1 and as can be executed in s;
(i) the effects of ay and as are mutually consistent.

Thus, as mentioned above, the possibility of concur-
rently executing two primitive actions only depends on
the specification (in terms of preconditions and post-
conditions) of such primitive actions. In particular,
the first condition imposes that a; and as can be ex-
ecuted in s only if they can be individually executed
in s, while the second condition prevents the concur-
rent execution of actions whose effects are not jointly
consistent. We stress the fact that, while the first con-
dition is independent of the current state s, the second
condition actually depends on s, if, in the formaliza-
tion, we allow context-dependent effects of actions (see
next section) and/or inertia laws.

Other approaches have proposed the formaliza-
tion of concurrency of primitive actions [Baral
and Gelfond,1993; Giordano et al.,1998; Lin and
Shoham,1992]. A novel feature of our approach is
the possibility of modeling the concurrent execution
of primitive actions and sensing actions.

Persistence and exogenous events We also require



the formalism to allow for the specification of suitable
mechanisms (frame axioms) for expressing persistence
of properties. In particular, we want to be able to for-
malize both deterministic frame azxioms, stating that
a certain property is guaranteed to persists (in the
robot’s epistemic state) after the execution of an ac-
tion, and default frame axioms, stating that a property
persists after the execution of an action if it is consis-
tent with the effects of the action.

In this way, the formalism is able to represent both
monotonic and nonmonotonic solutions to the frame
problem, based on the automatic generation of frame
axioms starting from the specification of the dynamic
system (e.g. see [Reiter,1991]). However, we recall that
such automatic solutions are effective only in simple
dynamic settings satisfying severe restrictions on both
the effects of actions and the static relationships be-
tween properties. Furthermore, we are interested in
dynamic environments in which some properties may
change due to events (usually called exogenous events)
that cannot be predicted by the robot. As we shall see
in next section, this requires the possibility of formal-
izing non-inertial properties as well.

State and causal constraints Finally, we require
the possibility of expressing both state constraints [Lin
and Reiter,1994], that is, ordinary first-order sentences
expressing static relationships between dynamic prop-
erties, and epistemic constraints, which can be seen as
relationships which must be satisfied in each robot’s
epistemic state. In the following we will show that
some forms of constraints that take into account causal
dependencies between properties [Lin,1995; Mc Cain
and Turner,1995; Thielscher,1997] can be considered
as special forms of epistemic constraints, and will use
such form of rules for specifying special kinds of frame
axioms (epistemic frame axioms). Both ordinary state
constraints and casual constraints enforce ramifica-
tions, e.g. indirect effects of actions.

Summarizing, to our knowledge none of the existing
formal approaches to reasoning about actions in Cog-
nitive Robotics is able to address all the above require-
ments for action representation.

The logic ALCK 7 The formalism we employ for
representing actions is basically the one presented in
[De Giacomo et al.,1997b], extended with role conjunc-
tion in order to formalize the concurrent execution of
primitive actions. Such a formalism is based on propo-
sitional dynamic logics (PDLs), and makes use of the
tight correspondence between PDLs and description
logics (DLs) [De Giacomo and Lenzerini,1994] that al-
lows for considering PDLs and DLs as notational vari-

ants of each other. We use the notation of DLs, fo-
cusing on the well-known DL ALC, corresponding to
the standard PDL with atomic programs only. In ad-
dition, we use two nonmonotonic modal operators: a
minimal knowledge operator K and a default assump-
tion operator A. These are interpreted according to
the nonmonotonic modal logic MKNF [Lifschitz,1994],
and give rise to the so-called autoepistemic description
logic ALCK n7 [Donini et al.,1997], which thus corre-
sponds to a fragment of first-order MKNF'.

Due to space limitations, we only briefly introduce
ALCK pr7, and refer to [Donini et al.,1997] for a de-
tailed introduction to such a formalism. The logic
ALCK nr7 allows for representing a domain of inter-
est in terms of concepts and roles. Concepts model
classes of individuals, while roles model relationships
between classes. Starting with atomic concepts and
atomic roles, which are concepts and roles described
simply by a name, complex concepts and roles can be
built by means of the following abstract syntax:

C o= T|J_|A‘Cl|702|cl|_|02|—\0|
3R.C |VR.C | KC | AC
R = P|PnNn...NP,|KR|AR

where A denotes an atomic concept, C' (possibly with
a subscript) denotes a concept, P (possibly with a sub-
script) denotes an atomic role, and R denotes a role.
An ALCK n 7-knowledge base is the union of a set of
inclusion assertions (called the TBox) and a set of in-
stance assertions (called the ABox). Inclusion asser-
tions have the form C T D, where C, D are concept
expressions. Instance assertions have the form C(a) or
R(a,b), where C is a concept, R is a role, and a,b are
names of individuals. We assume that different names
denote different individuals.

As for the semantics (which is formally defined in the
appendix), an interpretation structure in ALCKyr
corresponds to a possible-world (Kripke-style) struc-
ture, in which each world corresponds to an interpreta-
tion of standard DLs. The interpretation structures of
DLs are essentially graphs labeled both on nodes and
edges. Nodes correspond to individuals: each node is
labeled by concepts that denote the properties of the
individual. Edges (called links in DL) are labeled by
roles. To our purposes, it is important to point out
how such interpretation structures can be put in cor-
respondence with the states of a dynamic system (due
to space limitations, we refer [De Giacomo et al.,1997b]
for a more detailed description of this aspect).

Due to the form of the assertions used in the formaliza-
tion of the dynamic system, ALCK »rF models of a KB
3. can be interpreted as graphs. In particular, individ-
uals represent states of the system and are labeled by



concepts representing the properties (or fluents) that
hold in that state; edges between individuals represent
transitions between system states, and are labeled by
roles representing the actions that cause the state tran-
sition. More specifically, each node (individual) de-
notes a different epistemic state of the robot: an edge
labeled by an action R connects two such states (in-
dividuals) s, s’ if the execution of R, when the robot’s
epistemic state is s, changes its epistemic state to s’.

As shown in [De Giacomo et al.,1997b], an epistemic
inclusion assertion KC T D can be naturally inter-
preted in ALCK+ in terms of a rule, i.e. a forward
reasoning mechanism. For this reason, there is a strict
semantic analogy between the sentence KC' C D and
a causal Tule [Mc Cain and Turner,1995] of the form
C = D, and, in general, between epistemic constraints
and causal relationships. Moreover, the default as-
sumption operator A allows for expressing justifica-
tions of default rules, and the combined usage of K and
A allows for formalizing defaults in terms of modal for-
mulas [Lifschitz,1994]. In particular, the default rule
% (which can be interpreted as a special infer-
ence rule stating that, for each individual z, if C(x)
holds and it is consistent to assume D(z), then E(x)
must be derived) can be represented in ALCKn £z by
means of the inclusion assertion KC C A-D UKE.

We can thus summarize the main features of ALCK pr 7
for action representation:

(i) it allows for representing actions (through roles),
states (through individuals), and state properties
(through concepts);

(ii) it allows for explicitly representing the robot’s
knowledge, by means of two distinct autoepistemic
modalities in the language;

(iii) it allows for a representation of sensing actions,
through the use of the minimal knowledge operator;
(iv) it allows for the representation of concurrent ac-
tions, by allowing conjunction of binary roles;

(v) it allows for the representation of both default per-
sistence of properties, through the use of the autoepis-
temic modalities, and non-inertial properties;

(vi) it allows for the representation of both ordinary
state constraints and casual constraints.

3 REPRESENTING ACTIONS

In this section we present our formalization of actions
in the ALCK nr# framework. Specifically, we represent
a dynamic system in terms of an ALCK »rx knowledge
base ¥ =T's UI'yUT'p UT'g UTl'ppr U 'grr, where
each I'y is defined below. In the following, we assume
to deal with a set of primitive actions, partitioned into

a set of ordinary actions, which are assumed to be de-
terministic actions with (possibly) context-dependent
effects, and sensing actions, which are assumed to be
actions able to sense boolean properties of the envi-
ronment. We represent primitive actions in ALCKn#
through a set of atomic role symbols, which we call
action-roles.

State constraints

We call I'g the set of state constraints (also known as
domain constraints) of our formalization. State con-
straints are used for representing background knowl-
edge, which is invariant with respect to the execution
of actions. We formalize state constraints as general
ALC inclusion assertions, not involving action-roles,
although in general they can involve other roles used
for structuring concept (i.e. property) descriptions and
form complex taxonomies of properties that are typical
of DLs.

Initial state We denote as I'; the specification of the
initial state in our formalization. Such a specification
is given in terms of an instance assertion of the form
C(init), where C is an ALC concept, and init is the
constant denoting the initial state. This axiom can be
read as: C holds in the state init in every possible
interpretation.

Precondition axioms for primitive actions We
denote as I'p the set of precondition axioms which
specify sufficient conditions for the execution of prim-
itive actions in a state. Precondition axioms are ex-
pressed through autoepistemic sentences of the form:

KC C 3KR.T (1)

where C is an ALC concept and R is a primitive action
(either an ordinary or a sensing action). This axiom
can be read as: if C' holds in the current state s, then
there exists a state s’ which is the R-successor of s.

We remark the fact that the use of such form of pre-
condition axioms assumes the possibility of identifying
sufficient conditions for the execution of an action.
Hence, this formalization is not able to deal with im-
plicit qualifications: namely, if the execution of R in
a state in which C holds gives rise to an inconsistent
successor state (which can be caused by the interaction
of action effects and state and epistemic constraints),
then there is no interpretation structure satisfying the
ALCK nr7 knowledge base, since the above precondi-
tion axiom enforces the existence of a successor state.
Therefore, we conclude that the specification of the
dynamic system is inconsistent.

Precondition axioms for concurrent actions In



order to formalize concurrent actions according to Def-
inition 1, we introduce in our formalization of the dy-
namic system an autoepistemic axiom schema which
states the preconditions under which two or more ac-
tions can be concurrently executed. In particular, we
enforce the following axiom schema:

JKR;. TMNFKR,. TM-A(VRiMRy.L) C IK(R1MRs). T

(2)
which encodes the preconditions for the concurrent
execution of primitive actions R; and Ry according
to Definition 1. In fact, for each pair of actions Ry,
Ry, and for each state s, Ry and Ry are concurrently
executed in s if and only if both Ry and Ry are exe-
cuted in s, and it is consistent to assume -VRiMRy. L,
i.e. the effects of R; and Rs in s are mutually consis-
tent. In the following, we implicitly assume that each
ALCK nr7 knowledge base representing a dynamic sys-
tem with primitive actions Ry, ..., R, contains all in-
stances of the axiom schema
JKR,;,.TN...N3IKR,;, . TN-AVR;;N...MNR;,.L)C
AK(R;, M...MR;, ). T, for 1<k <n 1<i <...<
i < n.

Notice that the above axiom schema is the only one
needed in order to model concurrent actions in our
formalization. In fact, due to the semantics of role
conjunction, Ry M Ry(s, s’) implies both R;(s,s’) and
Rs(s,8"), hence (due to the form of effect axioms) the
effect of the concurrent execution of actions is modeled
by the effect axioms relative to the primitive actions
Ry and R,. For the same reason, persistence of prop-
erties during the concurrent execution of Ry and Rs is
modeled by the frame axioms for R; and Rs.

Effect axioms Effect axioms specify the effects of ex-
ecuting an action in a given state. In order to specify
the effects of actions, we distinguish between ordinary
actions and sensing actions. First, ordinary effect ax-
ioms specify the effects of the execution of an ordinary
action in a state satisfying given conditions. In our
framework, we have that, if in the current state the
property C' holds, then, after the execution of the ac-
tion R, the property D holds, in the following way:

KC CVR.D

Notice that, since we allow multiple effect axioms for
the same action, we are able to formalize context-
dependent actions, that is, the effect of an action may
be different in two different states. Moreover, effect
axioms for sensing axioms are of the form

T C K(VRs.D) UK(VRg.—D),

and specify the fact that, after the execution of the

sensing action Rg, the robot knows whether the prop-
erty D is true or false.

We call I'g the set of effect axioms in the formalization
of the dynamic system.

Frame axioms Using the autoepistemic operators, it
is possible to enforce different forms of inertia laws. In
particular, we are able to specify default frame axioms
i.e. default persistence rules which state that, if in the
current state the property C' holds, then, after the ex-
ecution of the action R, the property C holds, if it is
consistent with the effects of R. Due to the above men-
tioned possibility of expressing defaults in ALCK £,
such a rule can be represented in our framework by
the inclusion axiom

KC CVKR.A-CUKC

and call I'prg the set of default frame axioms in our
specification. We also use epistemic frame azioms in
our specification, which are able to express “causal”
persistence rules. Such an axiom has the form

KC CVKR.-KDUKC

and expresses the fact that property C is propagated
only if property D holds in the successor state. We
call I'grgr the set of epistemic frame axioms in X.

By suitably instantiating the above kinds of axioms in
our system specification, we are able to formalize both
inertial and non-inertial properties, and both iner-
tial and non-inertial actions, thus addressing both the
frame problem and the presence of exogenous events
in our framework.

Notice that this kind of formalization correctly ad-
dresses the concurrent execution of a sensing action
and an ordinary action, which is illustrated by the fol-
lowing example.

Example 2 Suppose the ordinary action R has the
effect =C, while the sensing action S allows for know-
ing the truth value of the property D, and suppose
both actions can be executed in those states in which
the property C holds. Hence, ¥ includes the precon-
dition axioms KC C JKR.T and KC C dKS.T, and
the effect axioms T C VR.—~C and T C (KVS.D) U
(KVS.—D). Now suppose that all sensing actions are
inertial: This can be formalized by adding to the spec-
ification a set of frame axioms of the form

KC C VKS.A~C UKC (3)

for each property C' and for each sensing action S.

Suppose now that, in the current state (s) C' is known
by the robot: hence, both R (with successor state s;)



and S (with successor state s3) can be executed. Then,
by Definition 1, the concurrent execution of R and
S can be done in the current state (with successor
state s3). The effect of RM S in s3 is ~C M D (or
—C M =D). Given our action formalization, the frame
axiom (3) affects both sy and sg, since both KS(s, s2)
and KS(s,s3) hold. However, such an axiom causes
the propagation of the property C only in the state s
and not in s3, since in s3 it is not consistent to assume
that C holds, thus obtaining the desired behavior. [J

Therefore, the ALCK nr£-based framework for action
formalization matches the representational require-
ments illustrated in Section 2. Hence, it constitutes
the first formal framework that allows for represent-
ing all the required features of a dynamic system, and
provides for reasoning methods applicable to plan gen-
eration, as shown in the next section.

4 PLANNING IN ALCK \#

In this section we study planning in the ALCK 7
framework and present a reasoning method for gen-
erating both conditional and concurrent plans.

The planning problem The classical formulation of
the notion of plan existence corresponds to the follow-
ing: given the specification of the dynamic system and
of the initial state, and a goal (property) G, there ex-
ists a plan for G if and only if there is a sequence of
actions S such that the execution of S leads to a state
s in which the goal G holds.

In order to have an effective notion of plan in our
framework, we have to modify the above notion in
many respects.

1. We require that the robot is aware of the fact that
the goal is reached, i.e. we want the robot to know
that G holds after the execution of S.

2. We require that the plan can be effectively exe-
cuted by the robot: this implies that, for each 4,
if s;41 is the state resulting from the execution of
the i-th action of the sequence S in state s;, then
the robot knows that the action can be executed
in s; (i.e. it knows that the precondition of the
action holds in state s;).

3. The execution of a sensing action in a given state
may have in general multiple outcomes. Hence,
the presence of sensing actions requires to refor-
mulate the above notion of planning problem. In
particular, following [Levesque,1996], in presence
of boolean sensing actions we define a plan as
a conditional plan, that is a program composed

of action statements and if-then-else statements,
such that each if-then-else statement occurs right
after a sensing action statement, and is condi-
tioned by the truth value of the sensed property.
A plan for G is a conditional plan Sg such that
the execution of Sg leads to a state in which G
is known to hold for each possible outcome of the
sensing actions in Sg.

4. The possibility of having concurrent executions of
actions further extends the above notion of con-
ditional plan to programs containing statements
denoting the concurrent execution of primitive ac-
tions.

It can be shown that the above notion of plan exis-
tence can be reduced in the ALCK 7 framework to a
reasoning problem:

S = Cg(init) (4)

where Cqg is any concept belonging to the set Pg
defined inductively as follows: (i) KG € Pg; (ii) if
Cy,...,Cp € Po, then AK(Ryy, || --- || Ras, || Rsy ||
o]l Rg).(KS1m...nKS NCy)U...U (K-S M
.MK=85MCy) € Pe for each 0 < k,I < n, where
m = 28+ each R)y, is an ordinary action and each
Rg, is a sensing action for the property S;.

Remark. The above characterization intentionally
does not take into account implicit (or indirect) forms
of nondeterminism in the execution of an action in a
given state. In fact, due to the presence of both state
(and epistemic) constraints and default frame axioms,
even primitive, ordinary actions may give rise in gen-
eral to multiple possible epistemic states. Such a form
of nondeterminism is not handled by our notion of ef-
fective plan, and we make the assumption that the
specification ¥ does not give rise to implicit nondeter-
minism." Indeed, it may be possible that a conditional
plan, dealing with this form of nondeterminism, exists
in such cases. However, in the present work we are
not interested in these situations, since we want to en-
force non-sensing actions to be deterministic (although
context-dependent) actions.

Reasoning method To the aim of generating con-
ditional plans with concurrent execution of actions in
the proposed framework, we extend the algorithm de-
scribed in [De Giacomo et al.,1997b] for computing the
first-order extension (FOE) of an ALCK »r7 knowledge

Tt can be effectively checked whether ¥ satisfies such
a property, by verifying, in the algorithm reported in Fig-
ure 1, whether there exist two (or more) different default
propagations of properties in the generation of the succes-
sor state.



base ¥ =T'sUT'pUT' g Ul prrUT' grrUT' 1 containing
the formalization of the dynamic system in the terms
described above. Informally, given a specification X
and a goal G, FOE(X,G) is an ALC knowledge base
which consists of: (1) the static axioms in I'g; (2) the
specification of the initial state (the assertions on init
in I'y) augmented by the assertions which are conse-
quences (up to renaming of individuals) of the epis-
temic sentences in Y. The FOE of X provides a unique
characterization of the knowledge that is shared by all
the models of ¥, which is relevant with respect to the
planning problem for the goal G.

The FOE of ¥ for G is computed by the algorithm
shown in Fig. 1. Roughly speaking, the algorithm,
starting from the initial state init, applies to each state
which does not satisfy the goal G the rules in the sets
T'g, I'prr, and 'grpr which are triggered by such a
state, generating a new successor state, unless one with
the same properties has already been created. The
effects of the epistemic axioms are thus computed, and
a non-epistemic “completion” of the knowledge base is
obtained. In the algorithm,

CONCEPTS(I's UA,s) = {C |TsUA [ C(s)}

denotes the set of concepts that are valid for the explic-
itly named individual s, occurring in the set of instance
assertions A, wrt the ALC knowledge base I's U A,
and POST(s,R,T's UA,T,) = {D | KC C VKR.KD €
I, and s UA = C(s)} denotes the effect of the appli-
cation of all the triggered rules belonging to the set I',,
involving the action R in the state s, namely the set
of postconditions (concepts) of the rules in T, which
are triggered by s.

With respect to the algorithm described in [De Gia-
como et al.,1997b] the following new issues have to be
taken into account: (i) adding new transitions repre-
senting concurrent actions; (ii) verifying consistency
of concurrent action execution; (iii) applying the new
form of frame axioms. Hence the algorithm, for each
subset of the set of possible actions in a given state s,
attempts to create a new successor state with respect
to the concurrent action. To this end, effect axioms are
first applied for each single action, then consistency of
the union of the sets of axioms obtained for each single
action is verified.

It can be shown that the FOE is unique, that is,
every order of extraction of states from the set AC-
TIVE_STATES and of the frame axioms from I'prgr
and T'gppr produces the same set of assertions,? up

to renaming of states.  Moreover, the condition

2This property is a consequence of the assumption that
3. does not allow for implicit nondeterminism.

ALGORITHM FOE
INPUT: X =TsUl'pUl'eUl'prrUT'Err U, goal G
OUTPUT: FOE(X,G) if ¥ is consistent,

ERROR otherwise

PROCEDURE CreateNewState(s, {R1, ..
begin
s’ = NEW state name;
A =AU{R1M...MRi(s,s')}U
{D(s') |1 <i<kADEPOST(s,R;,Ts UA,Tg)};
if T UA B L
then begin
for each axiom KC C VKR;. A-CUKC € I'prr
such that 1 <i<kATsUA = C(s) do
ifTsUA £ —-C(s") then A" = A" U{C(s')};
for each axiom KC C VKR;.-KDUKC € 'grgr
such that 1 <i<kATsUAE C(s) do
ifTs UA = D(s') then A = A" U {C(s")};
if there exists a state s”” € ALL_STATES
such that
CONCEPTS(T's U A, s”)=CONCEPTS(I's U A’, s")
then A= AU{R:M...M Rk(s,s")}
else begin
A=A
ACTIVE_STATES = ACTIVE_STATES U{s'};
ALL_STATES = ALL_STATES U{s'}
end
end
else if £k = 1 then EXIT WITH ERROR;
end;

begin
A=T;; ACTIVESTATES = {init};
ALL_STATES = {init};
repeat
s = choose(ACTIVE_STATES); EXEC = (;
if I's UA B G(s)
then begin
for each ordinary action Ry do
if there exists KC C dKRy. T € I'p
such that I's U A |= C(s)
then begin
CreateNewState(s, { R });
EXEC = EXEC U{Rum}
end;
for each sensing action Rs do
if there exists KC C dJKRs.T € I'p
such that Ts UA = C(s)
and I's U A}~ S(s)
and I's UA £ —S(s)
then begin
CreateNewState(s, {R{});
CreateNewState(s, {Rg });
EXEC = EXEC U{R{,R5}
end;
for each subset Ri,..., Ry (k> 2) of EXEC do
CreateNewState(s, {R1, ..., R });
ACTIVE_STATES = ACTIVE_STATES —{s}
end
until ACTIVE_STATES = 0;
return 's U A
end.

Figure 1: Algorithm computing FOE(X)



CONCEPTS(T's U A,s) =CONCEPTS(T's U A’,s")
can be checked by verifying whether, for each con-
cept C such that either C(init) € T'; or C is in the
postcondition of some axiom in ' UT'grr U prg,
FsUAEC(s) it Ts UA' |= C(s'). Finally, it is easy
to see that the total number of different instances of
the above sets of concepts is finite (exponential in the
number of axioms in ¥). Hence, the condition AC-
TIVE_STATES= 0 is eventually reached, which im-
plies that the algorithm terminates.

The notion of first-order extension constitutes the ba-
sis of a sound and complete planning method for the
ALCK nr7 framework. More specifically, we show that
the planning problem in X expressed by (4) can be
reduced to an entailment problem for FOE(X, G), by
making use of the following translation function 7(-).

Definition 3 Let C be a concept expression represent-
ing a plan (i.e. belonging to the set Pc). Then, 7(C)
is the concept expression obtained as follows:

(i) if C = KG then 7(C) = KG;

(i) if C = 3K R, .Ch then 7(C) = KRy, .7(Ch);

(ii3) if C = FKRs,.(KS; M C1) U (K~S;MCs) then 7(C) =
IKR{ .7(C1) M 3KRg, .7(Ca);

(iv) if C = 3K(Rar, || ... | Rasy || Bs, | .. |
RSl)~(KSi1 ... M KSij M K—\Sij+1 ... K_‘Sil m 01)
then 7(C) = SK(Rary || - || Ran | B3, - RS,
R, e Rg, )r(Ch).

Theorem 4 Let C € Pc.
FOE(X,G) E 7(C)(init).

Then, ¥ = C(init) iff

In this way the planning problem consists of gener-
ating a constructive proof of the logical entailment
FOE(X,G) [ Hg(init), where Ilg is a concept ex-
pression representing a plan for achieving the goal G
from the initial situation init.

Planner implementation The framework and the
algorithm described in the previous sections have been
actually implemented and used to describe the knowl-
edge of actual mobile robots embedded in real envi-
ronments. The current implementation of the plan-
ner is built on top of the reasoning services provided
by the well-known DL system CLASSIC [Borgida et
al.,1989]. In particular, we make use of its built-in
instance checking mechanism to check the validity of
a concept in a state, and of triggering of rules to prop-
agate effects. However, CLASSIC does not provide for
a full implementation of the formalism. In particular,
the epistemic operators K and A are handled by ad
hoc attached procedures, the union operator is allowed
only in the preconditions of the axioms, and negation
is dealt with by the use of additional concepts.

The planning procedure, given an initial state and
a goal, generates a conditional plan with concurrent
actions that, when executed starting from the initial
state, leads to a state in which the goal is satisfied.
This procedure is based on the result of Theorem 4
and, specifically, aims at building a term (concept) Ilg
such that the implication FOE(Y) = I1g(init) holds.

Such a plan could in principle be generated in two
steps. First, the FOE of the knowledge base is gen-
erated (using the algorithm above): such a knowledge
base can be seen as an action graph representing all
possible plans starting from the initial state. Then,
such a graph is visited, building a term (the plan) rep-
resenting a tree in which: (i) sensing actions generate
branches; (ii) concurrent actions are explicitly repre-
sented in the arcs; (iii) each branch leads to a state
satisfying the goal. Obviously, several strategies can
be applied to implement this method, and they are not
addressed in this paper.

5 APPLICATION DOMAINS

In this section we present some examples of applica-
tion of the above formalism, addressing its most rel-
evant features. On the one hand, we refer to clas-
sical examples such as the vase-on-the-table [Lin and
Shoham,1992; Gelfond and Lifschitz,1993; Giordano et
al.,1998]. The formalization of this example, which
is omitted here for lack of space, shows that, in our
framework, the correct plan can be obtained by com-
bining the use of epistemic and state constraints with
the possibility of executing concurrent actions. On
the other hand, we discuss a concrete application do-
main. The framework and the planning system pre-
sented above have been used to describe the knowledge
of actual mobile robots embedded in dynamic office-
like environments (see [Iocchi,1999] for a detailed de-
scription of the integration of the framework within
the mobile robots) and in the scenario of robotic soc-
cer players provided by RoboCup competitions. In the
implementation, our planner generates Colbert activ-
ities (control programs) that can be directly executed
by the Saphira system [Konolige et al.,1997], which
controls the mobile base.

Before we introduce the examples, it is worth point-
ing out that our aim here is not to describe the full
implementation, but rather to focus on the genera-
tion of plans that highlight the features of the formal-
ism. In particular, we do not address here the ex-
ecution mechanism and the problem of splitting the
tasks to be accomplished between the reasoning com-
ponent and the underlying control level. By exploiting
the proposed approach, we have been able to formal-



K(=BallClose M =OpponentOnBall) C

K (BallClose M OpponentOnBall) C IKtackle. T
K(=BallClose M OpponentOnBall)3Kintercept. T
K (BallClose M ~OpponentOnBall) C 3Kkick. T
K(=BallClose M =OpponentOnBall) C IKgoToBall. T

KT C Vtackle.Goal Protected

KT C Vintercept.Goal Protected

KT C Vkick.(Goal Protected M = BallClose)
KT C VgoToBall.(Goal Protected M BallClose)

KBallInLPS C dKsenseBallClose. T
KT CK(VsenseBallClose.BallClose)L
K (VsenseBallClose.~BallClose)
KBallInLPS C FKopponentOnBall. T
KT CK(VsenseOpponentOnBall.OpponentOnBall)Ll
K(VsenseOpponentOnBall.~OpponentOnBall)

Figure 2: ALCK xr7-KB for Example 1.

ize at the logical level several situations arising in the
RoboCup scenario and to generate, through the plan-
ner, a significant portion of the control programs that
were executed on some of the soccer players that par-
ticipated, within the ART team, in the RoboCup-99
F-2000 league [Nardi et al.,1999].

Example 1: Planning defensive actions In the
first example we consider the case of two actions which
sense fluents that can change by the effect of exoge-
nous events (i.e., non-persistent fluents), and, there-
fore, may need to be executed concurrently.

Suppose that one wants to represent a defensive situ-
ation, where the goal of the robot is to protect its own
goal. The robot can see the ball BallInLPS, and there
are two sensing actions that allow to decide whether
the ball is close (BallClose) and whether there is an
opponent which is on the ball performing some offen-
sive action (OpponentOnBall). Moreover, there are
various actions that the robot can take to properly
defend its goal: tackle, which is required when both
robots are next to the ball; intercept, (i.e. put itself
between the opponent and the goal) which must be
preferred when the opponent is on the ball and the
robot is not; kick, which can be accomplished when
the robot is close to the ball and the opponent is not;
goToBall, which should be chosen when the opponent
is not on the ball. It is worth mentioning that there
are real differences in the effectiveness of the above ac-
tions depending on the situation. For example when
the ball is in between the robot and the opponent kick-
ing (forward) is usually not very effective and may lead
to a foul and a tackling action is more appropriate.

The knowledge base reported in Figure 2 reports pre-
condition and effect axioms for moving and sensing

actions. Given the initial situation BallInLPS and
the goal Goal Protected, the system generates the fol-
lowing conditional plan:

senseBallClose | | senseOpponentOnBall;
if (BallClose and not OpponentOnBall)
{ kick; }
else { if (BallClose and OpponentOnBall)
{ tackle; }
else { if (not BallClose and OpponentOnBall)
{ intercept; }
else { goToBall; }

Notice that if the two sensing actions are not exe-
cuted concurrently, there is no plan, because neither
BallClose nor OpponentOnBall persists after the ex-
ecution of a sensing action. Furthermore, the goal is
achieved whatever is the result of the sensing actions.
It is worth emphasizing that, in general, the condition
that the plan always leads to satisfy the goal is very
strong. In fact, it is often the case that only certain
paths in the action graph generated by computing the
FOE lead to a state satisfying the goal. In such cases
one can still extract from the FOE indications to drive
the actions of the robot, but we cannot further exploit
this issue here. Moreover, in practice, the execution
of plans may fail due to the uncertainty and dynamics
of the domain. The verification of such failures is em-
bedded into the execution mechanism, whose details
again cannot be provided here.

Example 2: Planning the pass In the RoboCup
scenario, coordination among the robots is a critical
issue, and we want to represent the robot’s knowledge
that allows for reasoning about concurrent actions per-
formed by two or more robots. In particular, we shall
refer to one of the challenges that have been proposed
for coordinating players in RoboCup, namely the pass.
We consider a situation in which two players P1 and
P2 are executing an offensive action towards the op-
ponent goal. Initially, P1 has possession of the ball
(BallPoss1) and can freely move ahead towards the
opponent goal (FreeAhead;). The idea is that P1 can
move forward till it reaches a good position to shoot.
At this point, it can check whether there is still the
possibility to kick forward (FreeAhead; still holds)
or else decide to pass to P2 to have a better chance
to score. From this specification, it follows that each
robot must be able to perform the following actions:
fwdKeepingBall to move forward trying to keep ball
possession, positionForPass to get to a proper posi-
tion to receive a pass and conclude the action, kick for
kicking the ball, pass to pass the ball, receiveAndKick
to get the pass and conclude the action, and finally
senseFreeAhead for detecting whether there are obsta-
cles between itself and the opponent goal. We model



K(BallPoss; M~ FreeAhead; M ShootPsn;) C

K(BallPoss; M FreeAhead;) C 3K fwdKeepingBall,. T
K(BallPoss; M ShootPsn; M FreeAhead;) C IKkick;. T
K(BallPoss; M ShootPsn; M —FreeAhead;) C FKpass]. T
K(BallClose; M ShootPsn;) C FKreceive AndKick;. T
KBallPoss; C EIKpositionForPassj.T

KT C VfwdKeepingBall,.(BallPoss; M Shoot Psn;)
KT C Vkick;.BallKicked

KT C Vpass!.BallClose;

KT C VreceiveAndKick;.Ball Kicked

KT C VpositionForPass;.ShootPsn;

KT C dKsenseFreeAhead;. T
KT CK(VsenseFreeAhead;.FreeAhead;)U
K(VsenseFreeAhead;.—~FreeAhead)

KShootPsn; C VKpassj-.AﬂShootPsni L KShootPsn;

Figure 3: ALCK y#-KB for Example 2.

this scenario through the ALCKn #-KB reported in
Figure 3, in which the subscript 7,5 € {1,2} A7 # j
denotes actions and conditions concerning each robot.

Notice that the fluent representing the possession of
the ball (BallPoss) does not persist, and, unless ex-
plicitly specified, as in the case of fwdKeepingBall,
it must be verified by a sensing action; instead,
ShootPsn (representing the property of being in a
good position for shooting) persists when a pass is ex-
ecuted, and persists by default during the execution of
other actions.

Given the initial state in which BallPossy I
FreeAhead; holds and the goal BallKicked, we ob-
tain the following plan.

senseFreeAheadl || fwdKeepingBalll || positionForPass2;
if (FreeAheadl)

{ kickl }

else { passl2; receiveAndKick2;}

We remark that the two actions fwdKeepingBall,
and senseFreeAhead; must be executed concurrently,
because FreeAhead does not persist; moreover, the
previous actions must be executed concurrently with
positionForPass,, because in any of the two corre-
sponding sequences of moves of the two players, there
is the possibility that an opponent moves the ball while
P1 is waiting for the positioning of P2.

Plan execution. The introduction of a system that
generates plans with concurrent actions requires the
robotic architecture to be able to schedule and man-
age concurrent behaviors and to provide synchroniza-
tion among such behaviors. Concurrent plans are ac-

tually executed on a single player by making use of the
Saphira built-in mechnisms for activating concurrent
behaviors and for monitoring their end before starting
the next action in the plan. The execution of global
concurrent plans (that concern more than one robot)
is instead realized by means of explicit communication
among players. Observe that in this case all the play-
ers share the same plan, and each player is able to
identify the actions that must be executed. For exam-
ple, the execution of the action A;||Bs is obtained by
performing A on P1 and B on P2 and by a broadcast
notification when actions terminate. In this way, all
the robots involved in the global plan can detect when
it is possible to start the next action in the plan.

6 CONCLUSIONS

In this paper we have presented a new framework for
representing actions and generating plans, that can
be executed by a (cognitive) mobile robot, from a
declarative specification of the knowledge about the
dynamic system. We believe that the most relevant
aspects of the work presented in the paper are es-
sentially two. The first one is the expressiveness of
the proposed framework, which allows for representing
epistemic states of the agent, sensing actions, primitive
concurrent actions, state constraints. Many such fea-
tures had been considered by previous work, however
their combination gives rise to a new effective charac-
terization of context-dependent actions and exogenous
events. In addition, we have addressed plan generation
in such a rich framework, which is often not considered
by previous work, focusing mainly on the epistemolog-
ical aspects of the formalization.

The second aspect worth remarking is that the frame-
work has been implemented and used to generate plans
for a concrete multi-robot scenario, provided by the
RoboCup mid-size competition for robotic soccer. The
examples presented should provide enough evidence
that the representational features of the formalism are
necessary in order to correctly model such a domain.

Several issues arising from the work presented in the
paper could be investigated following the proposed ap-
proach. One interesting question, we believe, is how
to embed the plans obtained from the specification
into the execution mechanism. More precisely, the
programs executed on the robots take the form of a
transition graph. Even though we can currently gener-
ate portions of such a graph from the extracted plans,
there are aspects of the actual execution, such as mon-
itoring the failure and the termination of actions, that
we deal with by ad-hoc ways, while a more systematic
treatment would be needed.
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Appendix: ALCK 7 semantics

Since the logic ALCK 7 is a particular case of Lifs-
chitz’s logic MKNF |Lifschitz,1994], the semantics of
ALCK 7 is obtained by interpreting concepts and
roles on possible-world structures corresponding to
sets of first-order interpretations. Non-epistemic con-
cepts are interpreted as subsets of a domain, while
non-epistemic roles are interpreted as binary rela-
tions over such a domain. Formally, an interpretation
T = (A, YD) consists of a domain of interpretation
A, and an interpretation function Y@ mapping each
concept to a subset of A (we assume TYZ) = A and
1Y@ = () and each role to a subset of A x A as fol-
lows (A denotes an atomic concept, C, possibly with a
subscript, denotes a concept, P, possibly with a sub-
script, denotes an atomic role, and R denotes a role):

AYD A

(-O)VD = A\ Y@
(CNo)Y® = YD aer®
(CLUCHYD = VD Y@
BRrR.CO)YE = {deA|3d.(d,d)eRrR"D
and d’ € CV(I)}
(VR.C)VY® = ({deA|vd.if(dd)eR'D
then d' € CV®)}
pv@ AxA

(Pn...nP)YE = P)VB . n@e)'P

The semantics of epistemic sentences is based on
the following Common Domain Assumption: in each
possible-world structure, each interpretation is de-
fined over the same, fixed, countable-infinite domain
of individuals A. We define an epistemic interpre-
tation as a triple (Z, M,N) where Z is an inter-
pretation and M, N are sets of interpretations such
that Z = (A,-Y™@)) and all interpretations in M and
N are defined over the domain A. Epistemic sen-
tences are interpreted on epistemic interpretations as

follows (again, we assume that (T)ZMN = A and
(LA = 0y

(A)I,M,N —  AVD

(o)A AN (C)FMN
(€ ne)t MY = (PN ne) P MY
(C1uCa) MY

— (Cl)I,M,N U (02)1',/\/1‘./\/'
(AR.C)TMN =

{deA|3d.(d,d) e RTMN
and d’ € ()T MMy

{dea|vd.if (dd)e RN
then d’ € (C)TMN}

(VR.C)TMN =

(KC)TMN - m ()T MN
TeM

(AC)TMN m ()T MN
TEN
(P)Z,M,N - pv@D

(Pym...nP)TMN = (p)TMN AL (Rt

m (R)TMN

(KR)TMN  —
Tem

(ARTMN  _ m(R)J‘M,N
TeN

Intuitively, an individual d € A is an instance of a
concept C iff d € (C’)I’MW in the particular inter-
pretation Z. An individual d € A is an instance of a
concept KC (i.e. d € (KO)TMNYiff d € CTMN for
all interpretations J € M. That is, d is “known” to
be an instance of concept C' if it belongs to the con-
cept interpretation of each possible world in M. An
individual d € A is an instance of a concept —AC
(ie. d € (FAC)TMNYiff d € =CTMN for at least
one interpretation J € N. Namely, an individual is
“by default” not an instance of a concept if it belongs
to the concept interpretation in at least one possible
world of /. Similarly, an individual d € A is an in-
stance of a concept IKR.T iff there is an individual
d' € A such that (d,d’) € R7MN for all 7 € M.

An inclusion assertion C' C D is satisfied in (Z, M, N)
iff (C)TMN C (D)TMAN | while an instance assertion
C(a) is satisfied in (Z, M, N) iff a € (C)TMA and
R(a,b) is satisfied in (Z, M, N) iff (a,b) € (R)TMN,
An inclusion C C D is satisfied by a structure (M, N)
iff each interpretation Z € M is such that (Z, M, N)
satisfies C C D. An assertion C(a) (resp. R(a,b)) is
satisfied by (M, N) iff each interpretation Z € M is
such that (Z, M, N) satisfies C(a) (resp. R(a,b)). An
ALCK yr7-knowledge base ¥ is satisfied by a structure
(M, N) iff each sentence (inclusion or membership as-
sertion) of X is satisfied by (M, N).

Then, a preference semantics is defined over the struc-
tures satisfying ¥. Precisely, a set of interpretations
M is a model for ¥ iff the structure (M, M) satisfies
3 and, for each set of interpretations M’, if M C M’
then (M’, M) does not satisfy X.

The ALCK yr7-knowledge base ¥ is consistent if there
exists a model for ¥, inconsistent otherwise. ¥ log-
ically implies an inclusion assertion C' C D, denoted
as X = C C D, if C £ D is true in each model for
Y. Analogously, instance checking in ¥ of an asser-
tion C(a) is defined as follows: ¥ = C(a) iff C(a) is
satisfied by each model of 3.



