
GENERAZIONE DI PIANI CICLICI CON CONOSCENZA
INCOMPLETA E PERCEZIONE

GENERATION OF STRONG CYCLIC PLANS WITH
INCOMPLETE INFORMATION AND SENSING

Luca Iocchi, Daniele Nardi, Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Universit̀a di Roma “La Sapienza”
E-mail: <iocchi,nardi,rosati>@dis.uniroma1.it

SOMMARIO/ ABSTRACT

Considerare conoscenza incompleta e percezioneè fon-
damentale per la realizzazione di agenti che operano in
domini dove le proprie capacità di acquisizione delle
informazioni sono limitate e l’ambiente può evolvere
in maniera non prevedibile. Questi aspetti di rappre-
sentazione sono stati studiati sia dai lavori nel campo
del ragionamento sulle azioni, sia dal punto di vista
dei sistemi di pianificazione automatica. Lo scopo di
questo articolòe di presentare un linguaggioKL in grado
di descrivere domini di pianificazione con conoscenza
incompleta e percezione e di fornire una nuova tecnica per
la generazione di piani ciclici in condizioni di osservabilità
parziale per tale formalismo.

Dealing with incomplete information and sensing is
needed in order to design agents that operate in domains
where their information acquisition capabilities are re-
stricted and the environment may evolve in unpredictable
ways. These representation issues have been studied
both by the work on reasoning about actions and from a
planning perspective. The aim of this paper is to present
a languageKL for expressing planning domains with
incomplete knowledge and sensing and by providing a
new technique for generating cyclic plans under partial
observability in such a framework.

Keywords: Planning under uncertainty, Conditional plan-
ning

1 Introduction

In many different domains and application scenarios an au-
tonomous reasoning agent must deal both withincomplete
information about the environment and withpartial ob-
servability, i.e. limited capabilities to gather information.
In particular, these assumption are required for robotic
agents that must execute complex tasks in hostile environ-

ments, for which human control or supervision is either im-
possible or very expensive, as in rescue operations, space
applications, etc. Such robots need thus the ability of rea-
soning on the limited knowledge they have, accomplishing
actions to acquire new knowledge during task execution,
and devising conditional plans (or contingent plans), that
take into account the possibility of acquiring knowledge
during task execution.

The recent literature on planning shows several contri-
butions that aim at extending the classical planning domain
by relaxing some of the underlying assumptions, specif-
ically: complete informationabout the environment and
full observability. In this extended setting, actions may
have non-deterministic effects and it becomes possible to
deal with sensing, i.e. knowledge acquisition. To this end,
a substantial amount of work has been accomplished in or-
der to develop models, languages and algorithms for plan-
ning in the presence of incomplete information and sensing
(see for example [16, 2, 1]).

However, the problem of reasoning withincomplete in-
formationhas been also the subject of a large body of re-
search on reasoning about actions, that has developed sev-
eral approaches to reconstruct the agent’s world represen-
tation after the execution of actions: Situation Calculus
[12], A-languages [4], dynamic logics [13]. In these for-
malisms, the representation of actions allows to specify not
only the persistence of properties, but also sensing actions
[14, 9, 3, 10, 8, 15, 11].

The ability of a reasoning agent to generate plans in
presence of incomplete knowledge and sensing requires a
common view of the problem. The basic idea is to charac-
terize the knowledge of the agent about the situation and
to distinguish it from the actual world state, that cannot be
completely perceived. However, the two approaches differ
in the representation: i) a logic-based representation of the
agent’s knowledge in the first group [14, 9, 3, 10, 8, 15, 11];
ii) specialized structures denoting sets of possible states
(belief states) in the second one [16, 2, 1].

On the basis of these two kinds of representations, dif-

ferent algorithms have been proposed for plan generation
and plan verification. In both cases, the presence of sens-
ing actions, that have different outcomes depending on the
state of the world during their execution, naturally gives
rise to branches in the plan, introducing the notion of con-
ditional plans or contingent plans.

The aim of this paper is to show that the use of a logic-
based approach to contingent planning is both expressive
from a representation viewpoint and may gain compu-
tational leverage. Specifically, it allows for considering
more complex planning domains, in which the solutions
are given in terms ofstrong cyclic plans, i.e. plans with
loops whose termination conditions are checked at run-
time, and that thus may not terminate. This notion of plan
has been commonly addressed in domains with complete
knowledge (see for example [5]), while we believe that it is
very relevant also in domains with incomplete knowledge
and sensing, since it allows for synthesizing plans contain-
ing not onlyif-then-else structures, but alsowhile
loops.

In the paper, we propose a logic-based language for ac-
tion representation, which is based on the representation of
the knowledge of the agent through an epistemic logic, and
an algorithm for the generation of cyclic plans under par-
tial observability. The formalization is illustrated through a
pedagogical example and experimental results of plan gen-
eration are discussed.

2 A Planning Language with Incomplete In-
formation and Sensing

Dealing with incomplete information about the environ-
ment requires to distinguish the representation of what is
true in the world from what the agent knows about the
world. A common way to do this is to represent the agent’s
knowledge in terms ofbelief states. A belief state is a set
of states that the agent considers possible in a particular
situation. The agent thus does not have complete knowl-
edge since it does not know which is the actual state of the
world.

Contingent planning can be modeled as a“non-
deterministic control problem over belief space”[2], as
follows:

• A finite spaceB of belief statesb over the set of states
S.

• An initial situation given a the belief stateb0.

• A goal situation being a set of belief statesBG.

• A set of actionsA.

• A subset of actionsA(b) ⊆ A for each belief stateb,
denoting the actions that are executable inb.

• A set of observationsO(a, b) for each execution of
the actiona from the belief stateb.

• A transition functionfa(b) = boa that for every action
a ∈ A(b) non-deterministically maps a belief stateb
into a belief stateboa for each observationo ∈ O(a, b).

• The observationo ∈ O(a, b) obtained after executing
the actiona in the belief stateb.

• A cost functionc(a), expressing the cost of executing
the actiona.

A plan is a solution of this planning problem and can
be represented as a graph, in which nodes are labeled with
belief statesb, edges are labeled with actions executed in
the outgoing belief statea(b), and every nodeb has suc-
cessor nodes corresponding toboa for everyo ∈ O(a, b),
that are defined by the transition functionfa(b). The graph
has a single source node, that corresponds to the initial be-
lief stateb0, and all the terminal nodes correspond to goal
belief states, i.e. they belong to the setBG.

Given this general framework that defines contingent
planning, authors have attacked the problem from two dif-
ferent points of view: on the one end, there have been so-
lutions to the general problem formulated as above, con-
sidering both acyclic and cyclic plans (e.g. [6]), on the
other hand, other authors focussed on defining languages
for describing such problem in a more compact (although
also restricted) way, and on the definition of efficient al-
gorithms for solving a variant of the general problem (e.g.
[16, 2, 1, 11]).

The approach presented in this paper follows the second
line and it presents a language for representing the “non-
deterministic control problem over belief space” in a com-
pact, but also restricted way and an algorithm for efficient
planning. With respect to other related approaches, we in-
troduce two novel aspects: 1) the representation is given
in terms of the knowledge of the agent, as in [11], and it is
significantly more efficient than the representation given in
terms of possible worlds; 2) the generation of strong cyclic
plans under partial observability, that allows for consider-
ing more complex domains and plans.

In the following of this section we describe a language
for representing planning domains with incomplete knowl-
edge and sensing (we call itKL1), that is based on the abil-
ity to model the agent’s knowledge. Then in the next sec-
tions we present the algorithm for generating cyclic plans
and experimental results.

2.1 The languageKL

The languageKL makes use of epistemic formulas of the
logicALCKNF (see [3, 8] for details). More specifically,
we introduce a set of primitive properties (or fluents)P ,
that will be used to characterize the possible states of the
world. The primitive fluentsP may be either predicates
or terms containing variables ranging over finite domains,

1We have also defined a PDDL-like syntax for the languageKL, see
[7].

in such a way that the set of belief statesB remains fi-
nite. Notice that these variables are typically used only for
describing domains in a more compact way, but do not in-
crease the representation power of the language. For exam-
ple, the termin(x, y) with x ∈ {1, 2} andy ∈ {1, 2} can
be replaced by the four predicatesin11, in12, in21, in22.
Also fluents with multiple finite values can be treated in
the same way. Therefore, we can limit the description to
the use of propositional formulas, since its extension to the
case of terms with finite variables and fluents with multiple
finite values is quite straightforward. In our framework, a
belief stateb can be represented through an epistemic for-
mulaKφb, such thatφb is a propositional formula, denot-
ing the agent’s knowledge.

The language presented here allows for defining a re-
stricted domain, with respect to the general one presented
before, in the sense that not every belief statesb ∈ B can
be represented through epistemic formulas. In addition, as
commonly done in reasoning about action, we restrict the
formulas that are used for expressing the effects of an ac-
tion to be a conjunction of literals, i.e. we do not allow
epistemic disjunctive formulas (except for the sensing ef-
fects of an action) [3, 8]. In fact, epistemic disjunction is
used to model that after the execution of a sensing action
a property is either known to be true or known to be false.
This form of epistemic disjunction is specifically treated in
our algorithm (see [3, 8]), while other forms of epistemic
disjunction are not allowed. Notice also that this notion is
different from that of noisy sensors that instead model the
possibility of having a different result with respect to the
actual state of the world. In this paper we will not deal
with noisy sensors.

More specifically, referring to the general definition of
the problem:

• The initial belief stateb0 ∈ B is represented by an
epistemic formulaKφINIT .

• A goalBG is the set of belief states{b ∈ B | Kφb ⇒
KψGOAL}.

• Given a set of precondition termsprea : Kα for the
actionsa ∈ A, the subset of actionsA(b) applicable
from the stateb isA(b) = {a ∈ A | Kφb ⇒ Kα}.

• The set of observationsO(a, b) are not modelled ex-
plicitly within our logical framework, but are consid-
ered as shown below.

• The transition functionfa(b) = boa is defined through
the combination of: 1) deterministic effects of the
form posta : ∧i(Kαi → Kβi) (i.e. a conjunction of
generally conditional effects, in which we often sim-
plify K> → Kβi with Kβi); 2) sensing effects of
the forms:sensea : P , whereP is a fluent inP, that
will be known after the execution ofa; 3) forgetting
effects of the forms:posta : ¬KP , expressing that
the fluentP will be unknown after the execution of

the actiona; 4) a set of static axioms that describe do-
main constraints to be applied in every belief state; 5)
the default inertial propagation of all the fluents that
do not affect consistency of the successor state. The
resulting belief stateboa is represented by an epistemic
formula that is build by appropriately computing the
above effects. In case the actiona has no sensing
effects, then the successor belief state is unique, i.e.
|O(a, b)| = 1, while in the case of a sensing effect on
a fluentP we will have two successor belief states ac-
cording to the two possible values of the observation
of P , i.e. |O(a, b)| = 2. Obviously, this can be gener-
alized to a combination of sensing effects on different
fluents.

• The observationo ∈ O(a, b) obtained after executing
the actiona will thus be given by the knowledge of
the value of a fluentP .

• In this paper we do not consider costs of the actions.

The above definition of planning problem relies on ex-
pressing the logical axioms for defining the transition func-
tion fa(b). While other choices are possible, we have used
a framework able to characterize in a very compact and
effective way the dynamics of a system. The ability of
computing the successor belief state is fundamental in our
approach and further details are given in [3, 8].

3 Planning

In this section we address planning for theKL language.
In particular, we define a planning algorithm that is able
to generate strong cyclic plans in domains with incom-
plete knowledge and sensing. This allows for considering
a larger set of domain problems for planning, namely all
those problems for which a conditional solution does not
exist, but that admit a strong cyclic plan.

The construction of the plan can be decomposed into
two basic tasks: (i) the generation of successor belief states
and (ii) the search for the plan in the belief state space.

With respect to the first task, we can further decompose
the problem into: verification of the precondition for action
execution and computation of the effects, i.e. construction
of the successor belief state. In [3, 8] a solution to the
problem of generating the successor belief (or epistemic)
state is provided, by presenting an algorithm for construct-
ing a complete representation of the belief states reach-
able from a given initial belief state. Such a representa-
tion is called First-Order Extension (FOE) and implements
the epistemic reasoning that allows for dealing with tran-
sition between belief states, without considering explicitly
the possible states included in these belief states. More-
over, the FOE is shown to provide a correct and complete
representation of the set of belief states for the purpose of
finding the plans for the given goal.

The algorithm for strong cyclic plan generation pre-
sented in this paper exploits our previous work on rea-
soning with epistemic states [3, 8], adding the ability of
dealing with cyclic plans and to integrate heuristics in the
search space that can significantly improve the computa-
tional performance of the planner.

Algorithm 1 Plan Generation

ProcedurePLAN GENERATION(Σ, b′j , ψGOAL,S)
Input: DomainΣ, initial belief stateb0, goal descrip-
tion ψGOAL, set of states in the current plan S (initially
empty).
Output: PlanΠ = {< bi, ai, bj >}

Π = findLinearPath(Σ, b0, ψGOAL,S)
while Π 6= ∅ and∃ < bi, ai, bj > ∈ Π, such that
O(ai, bi) = {bj , b′j} and< bi, ai, b

′
j >6∈ Π do

S ′ = S ∪ {bi| < bi, ·, · >∈ Π∨ < ·, ·, b′j >∈ Π}
Π′ = PLAN GENERATION(Σ, b′j , ψGOAL,S ′)
if Π′ 6= ∅ then

Π = Π ∪ {< bi, ai, b
′
j >} ∪Π′

else
Π = findLinearPath(Σ, b0, ψGOAL,S)

end if
end while
return Π

The Plan Generation algorithm shown in Figure 1 takes
as input aKL domain descriptionΣ, an initial belief state
b0 and a description of the goalψGOAL, and returns a plan
(possibly cyclic) that is a solution of the planning problem
as defined in Section 2. The plan is a graph represented
by a set of tuples< bi, ai, bj >, whose meaning is that
from the belief statebi it is possible to execute the action
ai leading to the successor belief statebj . The actionai can
be either an action without sensing effects, in which case
bj is unique, or an action with sensing effects, in which
the observation setO(ai, bi) is given by two belief states
{bj , b′j}, and thus both the tuples< bi, ai, bj > and<
bi, ai, b

′
j > must be present in the plan.

The algorithm is based on the idea of finding linear paths
from an initial belief state to a goal state (without consid-
ering multiple effects of sensing actions), and then com-
pleting these paths by considering the different effects of
sensing. To this end, we make use of a set of statesS,
containing the belief states considered in the plan under
construction. Since, during the execution of the algorithm,
a partial plan contains all paths that lead to goal states, the
setS always contains belief states from which it is possible
to reach a goal state. Therefore, during the search for a lin-
ear path, if there exists a path that leads to a belief state in
S, then this path can be chosen and the search interrupted
since from the subsequent belief state a path to a goal state
has already been computed. This mechanism not only pre-
vents to repeat the same computation at different times, but
also allows for generating direct acyclic and cyclic plans.

More specifically, this algorithm uses the function
findLinearPath(Σ, b, ψGOAL,S) that returns a linear
path (a sequence of actions without cycles and branches)
from the belief stateb to a goal belief state, that is either
a state in which the goalψGOAL holds or a state included
in the setS. The search strategy used by this function can
be implemented in different ways. In our implementation,
calledK-Planner, we have used an heuristic search based
on a simple metric that measures the “distance” of a belief
state from the goal.

Since a linear path is a sequence of actions, in this func-
tion only one outcome of a sensing action is considered,
and thus the returned path may have states that must be fur-
ther expanded. This is taken into account by the multiple
recursive calls of the function in the loop, that is executed
until either the plan is complete (and hence a solution has
been computed) or the plan returned byfindLinearPath
is empty (thus the solution does not exist). Moreover,
the functionfindLinearPath(Σ, b, ψGOAL,S) “marks”
those linear paths for which it was not possible a complete
expansion, to avoid reconsidering them in the future. In
other words, the function returns different paths if called
multiple times with the same parameters.

The ability to verify the equivalence of belief states
through epistemic formulas is essential in the algorithm:
1) during the execution of thefindLinearPath function
in order to guarantee that the returned path does not contain
cycles; 2) in combining two plans in order to build graphs
from the paths extracted, and thus introducing loops; 3)
in determining that there are no solutions to the planning
problem, when all the belief states have been examined.
As a difference with previous work done in this direction
in [11], our formalism exploits this capability to provide a
sound and completemethod for generation of both condi-
tional plans and strong cyclic plans.

The termination of the algorithm is a consequence of
the following observations: i) the complete expansion of a
single path initially generated byfindLinearPath termi-
nates since the algorithm expands each state only once for
every graph generated during the process; ii) the number of
paths generated by the different calls offindLinearPath
is finite.

4 Experiments in Cyclic Plan Generation

In this section, we describe a planning domain for which
a conditional solution does not exists. More specifically,
the goal is not guaranteed to be reached, unless some ac-
tions are repeated more times. This kind of domains thus
admit only a strong cyclic solution, that is a plan contain-
ing loops, that when executed it may not terminate and if
it terminates then the goal is achieved.

The cleaning domain (see Table 1) describes a world in
which a robot is involved in a cleaning task in an office-like
environment, that is formed by a number of different rooms
Ri connected through a corridorC. In the environment

Action a prea posta sensea

enter Rj Kin(C) Kin(Rj)

exit Rj Kin(Rj) Kin(C)

takeout Rj Kin(Rj) ∧Kobj in(Rj) Kin(C) ∧ ¬Kobj in(Rj)

scan Rj Kin(Rj) obj in(Rj)

Table 1: Cleaning domain description

there are some objects in unknown positions and quanti-
ties in the rooms and the robot has sensing capabilities for
identifying such objects. The robot can move through this
environment (enter , exit in the rooms), move objects
out of a room (take out), and search for objects in the
rooms (scan).

Notice that the fact that an unknown number of objects
can be present in a room is modelled through the effect
of the actiontake out , expressing that after an object is
taken out from a room, it is not known if the room is clean
(i.e. if there are other objects).

The planning problem defined for this domain is defined
by φINIT = Kin(C) andψGOAL = ∧iK¬obj in(Ri),
in which the robot knows to be in the corridor in the initial
state (no knowledge about objects in the rooms is given),
and the goal is reached when all the rooms have been
cleaned. Such a domain does not admit any valid condi-
tional plan, unless loops are considered. In fact, due to the
presence of an undefined number of objects in every room
the actiontake out may need to be executed more times
in order to achieve the goal. The strong cyclic plan gen-
erated by ourK-Planner (when considering 3 rooms in the
environment) is reported in the Figure 1. The robot will
examine one room at a time and will take out from it all
the objects. The goal is achieved when all the three rooms
have no objects inside.

The computational properties of our algorithm allows
for a good scalability in the size of the domain. In fact,
the algorithm is based on first finding a linear partial so-
lution: in the example the linear path from the initial state
to the goal considering all sensing results asfalsewill be
returned first. Then from this linear solution a completion
is computed for every sensing: in the example the three
loops are added on thetrue branches of sensing actions. It
is important to highlight here that the ability of comput-
ing equivalence of belief states allows (when possible) for
generating only a few action steps to form a loop. In the
above example, when the sensing action istrue only the
linear path (take out Rj ; enter Rj) is computed by
the algorithm and merged to the current partial plan. In
this way with increasing number of rooms, once the first
linear path is found (this can be done with different heuris-
tics), then the completion of the plan is usually performed
very quickly.

In Fig. 2 we summarize computational time for the
Cleaning domain, distinguishing time needed for finding
the first linear path (second column) from time required

for completing this path generating the strong cyclic plan
(third column). Notice that the completion of the first lin-
ear path is substantially linear in the size of the domain,
while the generation of the first linear path obviously is not.
The presented algorithm shows very good performance in
those domains in which the solution is composed by: i) a
first linear path obtained with a particular configuration of
sensing results, ii) several paths that consider all the other
sensing results that are connected to the first linear path or
anyway reach the goal with a limited number of steps.

5 Experiments in Conditional Planning

We have performed some tests to evaluate the behaviour
of our planner also on some standard domains for con-
ditional planning and compared the performance of our
planner with well-known similar approaches: PKS [11],
that makes use of a modal logic based representation of
the agent’s knowledge, and MBP [1], that instead repre-
sent knowledge in terms of sets of possible states.

The results of these experiments show that the heuristic
search in our algorithm is very efficient, when the structure
of the solution comprises a linear concatenation of simi-
lar blocks, as in the reported cases. As already discussed,
in our algorithm when a linear path is initially found to
reach the goal, then the completion of this partial solution
is usually achieved very quickly. However, there are sit-
uations in which the algorithm does not present this nice
computational property: namely, those domains such that,
for every path to be completed, it is necessary to generate
a new path that cannot be connected to the previous gener-
ated paths and whose length is comparable with the other
paths. In other words, in those problems in which the solu-
tion cannot be represented as a DAG, but instead must be
represented as an almost complete tree, then the proposed
algorithm does not present the benefits described above.

The behaviour shown in this paper also confirms the re-
sults reported in [11], showing that the ability of explic-
itly representing the knowledge of the agent allows for a
more efficient implementation of a planner, with respect to
those implementations that model the knowledge in terms
of sets of possible states (e.g. [16, 2, 1]) In fact, in the con-
sidered problems, planners based on the explicit represen-
tation of the agent’s knowledge (K-Planner and PKS) can
easily deal with larger domains as opposed to those plan-
ners (e.g. MBP) that use sets of possible states (see [1] for
a comparison among these planners). As an example, we

Figure 1: Strong cyclic plan for cleaning domain

Rooms
First

Linear Path
Complete

Linear Path
10 60 3
20 240 8
30 1040 35
40 3230 60
50 7900 85

Figure 2: Cleaning domain search (ms)

Illnesses K-Planner PKS [11] MBP [1]
4 1 - 10
6 2 - 300
8 4 - 11500
10 8 - ?
20 65 80 ?
50 620 1610 ?
100 4620 20390 ?

Figure 3: Medical domain search (ms)

report in Fig. 3 the performance in the medical domain2.
Finally, as already mentioned, our language allows for a

more compact representation of a domain, but is not able
to deal with some specific representation of planning do-
mains (namely the ones that require reasoning by cases).
For example, the Ring domain, as modeled in [1], requires
reasoning by cases in order to generate a plan in which the
robot visits all the rooms connected in a ring without know-
ing and sensing its initial location. In our formalism, we
have to model the domain by introducing a sensing action
the expresses the capability of the robot to localize itself in
the environment. The Ring domain with Localization ca-
pabilities considered in our framework has computational
properties similar to the medical domain and thus compu-
tational performance with respect to the original Ring do-
main in MBP is similar to the one shown in Fig. 3.

Summarizing, our formalism provides for a more effi-
cient planning method in those domains that do not require
reasoning by cases. Notice also that this limitation in the
representation power is not very restrictive from a repre-
sentational viewpoint (in fact, we can represent almost all
the example domains given in [16, 2, 1, 11]), while it pro-
vides substantial computational advantages.

6 Conclusions

In this paper, we have proposedKL, a logic-based lan-
guage for action representation, which allows for consider-
ing complex planning domains with incomplete knowledge
and sensing actions. In such scenarios, we have discussed
the need of cyclic plans in order to solve the contingent

2The value for PKS are taken by their paper [11], whileK-Planner
and MBP are evaluated on the same 2.5 GHz CPU.

planning problem, and we have presented an algorithm for
the generation of strong cyclic plans and some experiments
in plan generation.

InKL one can express the most important forms of sens-
ing actions and incomplete information proposed in the
recent planning literature: e.g., [16, 1, 11]. Similarly to
our approach, in [11] the authors presents a method for
planning in the presence of sensing based on the explicit
representation of the epistemic state of the agent, through
the use of a very expressive first-order modal epistemic
formalism. Epistemic states are logically formalized by
knowledge bases (i.e., sets of formulas) in such a logic,
actions are specified by means of updates (deletions and
insertions) over such knowledge bases, hence the seman-
tics of transitions between epistemic states is expressed at a
meta-logical level. However, the main difference between
their method and the one proposed in this paper, is that we
provide asound and completeplanning algorithm, able to
generate both conditional plans and strong cyclic plans.

The present work can be extended in several directions.
In particular, we are currently working on extending our
framework in order to allow for the representation of both
qualitative and quantitative uncertainty in the effects of ac-
tions.

REFERENCES

[1] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso.
Planning in nondeterministic domains under partial
observability via symbolic model checking. InProc.
of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2001), pages 473–478, 2001.

[2] B. Bonet and H. Geffner. Planning with incomplete
information as heuristic search in belief space. In
Proc. of Int. Conf. on AI Planning and Scheduling
(AIPS’00), pages 52–61, 2000.

[3] Giuseppe De Giacomo, Luca Iocchi, Daniele Nardi,
and Riccardo Rosati. Planning with sensing for a mo-
bile robot. InProc. of 4th European Conference on
Planning (ECP’97), 1997.

[4] M. Gelfond and V. Lifschitz. Representing action
and change by logic programs.Journal of Logic Pro-
gramming, 17:301–322, 1993.

[5] Fausto Giunchiglia and Paolo Traverso. Planning as
model checking. InProc. of the 5th Eur. Conf. on
Planning (ECP’99), 1999.

[6] E. Hansen and S. Zilberstein. Heuristic search in
cyclic AND/OR graphs. InProc. of AAAI-98, pages
412–418, 1998.

[7] L. Iocchi, D. Nardi, and R. Rosati. Strong cyclic plan-
ning with incomplete information and sensing. Tech-
nical Report 16-03, Dipartimento Informatica e Sis-
temistica Universit̀a di Roma La Sapienza, 2003.

[8] Luca Iocchi, Daniele Nardi, and Riccardo Rosati.
Planning with sensing, concurrency, and exogenous
events: logical framework and implementation. In
Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and Rea-
soning (KR’2000), pages 678–689, 2000.

[9] Hector .J. Levesque. What is planning in presence
of sensing? In AAAI Press/The MIT Press, editor,
Proc. of the 13th Nat. Conf. on Artificial Intelligence
(AAAI’96), pages 1139–1149, 1996.

[10] J. Lobo, G. Mendez, and S. Taylor. Adding knowl-
edge to the action description languageA. In
Proc. of the 14th Nat. Conf. on Artificial Intelligence
(AAAI’97), pages 454–459, 1997.

[11] R. P. A. Petrick and F. Bacchus. A knowledge-based
approach to planning with incomplete information
and sensing. InProc. of Sixth International Con-
ference on AI Planning and Scheduling (AIPS2002),
2002.

[12] R. Reiter.Knowledge in action: Logical foundations
for describing and implementing dynamical systems.
MIT Press, 2001.

[13] S. Rosenschein. Plan synthesis: a logical perspec-
tive. In Proc. of the 8th Int. Joint Conf. on Artificial
Intelligence, 1981.

[14] Richard Scherl and Hector J. Levesque. The frame
problem and knowledge producing actions. InProc.

of the 11th Nat. Conf. on Artificial Intelligence
(AAAI’93), pages 689–695, 1993.

[15] Michael Thielscher. Representing the knowledge of
a robot. InProc. of the International Conference on
Principles of Knowledge Representation and Reason-
ing (KR2000), pages 109–120, 2000.

[16] D. S. Weld, C. R. Anderson, and D. E. Smith. Ex-
tending graphplan to handle uncertainty & sensing
actions. InProc. of the 15th Nat. Conf. on Artificial
Intelligence (AAAI’98), 1998.

