GENERAZIONE DI PIANI CICLICI CON CONOSCENZA
INCOMPLETA E PERCEZIONE
GENERATION OF STRONG CYCLIC PLANS WITH
INCOMPLETE INFORMATION AND SENSING

Luca locchi, Daniele Nardi, Riccardo Rosati
Dipartimento di Informatica e Sistemistica
Universit di Roma “La Sapienza”
E-mail: <iocchi,nardi,rosati>@dis.uniromal.it



SOMMARIO/ ABSTRACT ments, for which human control or supervision is either im-
possible or very expensive, as in rescue operations, space
Considerare conoscenza incompleta e percezéofien-  applications, etc. Such robots need thus the ability of rea-
damentale per la realizzazione di agenti che operano igoning on the limited knowledge they have, accomplishing
domini dove le proprie capaeitdi acquisizione delle actions to acquire new knowledge during task execution,
informazioni sono limitate e I'ambiente puevolvere and devising conditional plans (or contingent plans), that
in maniera non prevedibile. Questi aspetti di rappretake into account the possibility of acquiring knowledge
sentazione sono stati studiati sia dai lavori nel camp@uring task execution.
del ragionamento sulle azioni, sia dal punto di vista The recent literature on planning shows several contri-
dei sistemi di pianificazione automatica. Lo scopo dipytions that aim at extending the classical planning domain
questo articole di presentare un linguaggio in grado  py relaxing some of the underlying assumptions, specif-
di descrivere domini di pianificazione con conoscenzacally: complete informatiorabout the environment and
incompleta e percezione e di fornire una nuova tecnica p&(y|| observability In this extended setting, actions may
la generazione di piani ciclici in condizioni di osservaBilit have non-deterministic effects and it becomes possible to
parziale per tale formalismo. deal with sensing, i.e. knowledge acquisition. To this end,
a substantial amount of work has been accomplished in or-
Dealing with incomplete information and sensing is ger to develop models, languages and algorithms for plan-
needed in order to design agents that operate in domainging in the presence of incomplete information and sensing
where their information acquisition capabilities are re- (see for example [16, 2, 1]).
stricted and the environment may evolve in unpredictable However, the problem of reasoning witicomplete in-

ways. These representation issues have been studiggmationhas been also the subject of a large body of re-
both by the work on reasoning about actions and from &g4rch on reasoning about actions, that has developed sev-
planning perspective. The aim of this paper is to presenf g gpproaches to reconstruct the agent's world represen-
a languageCL for expressing planning domains With (o410 after the execution of actions: Situation Calculus
mcomplete_ knowledge a”‘?' sensing and by PVOV'O“”Q é[‘12], A-languages [4], dynamic logics [13]. In these for-
new technique for generating cyclic plans under partial yjisms; the representation of actions allows to specify not
observability in such a framework. only the persistence of properties, but also sensing actions
[14,9, 3, 10, 8, 15, 11].

The ability of a reasoning agent to generate plans in
presence of incomplete knowledge and sensing requires a
common view of the problem. The basic idea is to charac-
1 Introduction terize the knowledge of the agent about the situation and

to distinguish it from the actual world state, that cannot be
In many different domains and application scenarios an awsompletely perceived. However, the two approaches differ
tonomous reasoning agent must deal both witomplete  in the representation: i) a logic-based representation of the
information about the environment and wighartial ob- ~ agent's knowledge in the first group [14, 9, 3, 10, 8, 15, 11];
servability i.e. limited capabilities to gather information. ii) specialized structures denoting sets of possible states
In particular, these assumption are required for robotidbelief states) in the second one [16, 2, 1].
agents that must execute complex tasks in hostile environ- On the basis of these two kinds of representations, dif-
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ferent algorithms have been proposed for plan generation e A transition functionf, (b) = b2 that for every action
and plan verification. In both cases, the presence of sens- a € A(b) non-deterministically maps a belief stdte
ing actions, that have different outcomes depending onthe into a belief staté? for each observation € O(a, b).
state of the world during their execution, naturally gives ) . .
rise to branches in the plan, introducing the notion of con- ® The observatiom € O(a, b) obtained after executing
ditional plans or contingent plans. the actionu in the belief staté.

The aim of this paper is to show that the use of a logic-
based approach to contingent planning is both expressive
from a representation viewpoint and may gain compu-
tational leverage. Specifically, it allows for considering A planis a solution of this planning problem and can
more complex planning domains, in which the solutionspe represented as a graph, in which nodes are labeled with
are given in terms oftrong cyclic plansi.e. plans with  pelief states, edges are labeled with actions executed in
loops whose termination conditions are checked at runthe outgoing belief state(b), and every nodé has suc-
time, and that thus may not terminate. This notion of plarcessor nodes correspondingitpfor everyo € O(a,b),
has been commonly addressed in domains with complei@at are defined by the transition functign(b). The graph
knowledge (see for example [5]), while we believe that it ishas a single source node, that corresponds to the initial be-
very relevant also in domains with incomplete knowledgelief stateb,, and all the terminal nodes correspond to goal
and sensing, since it allows for synthesizing plans containpelief states, i.e. they belong to the &&.
ing not onlyif-then-else structures, but alsahile Given this general framework that defines contingent
loops. planning, authors have attacked the problem from two dif-

In the paper, we propose a logic-based language for agerent points of view: on the one end, there have been so-
tion representation, which is based on the representation @ftions to the general problem formulated as above, con-
the knowledge of the agent through an epistemic logic, andidering both acyclic and cyclic plans (e.g. [6]), on the
an algorithm for the generation of cyclic plans under parother hand, other authors focussed on defining languages
tial observability. The formalization is illustrated through afor describing such prob|em in a more compact (a|th0ugh
pedagogical example and experimental results of plan geryso restricted) way, and on the definition of efficient al-

e A cost functione(a), expressing the cost of executing
the action.

eration are discussed. gorithms for solving a variant of the general problem (e.g.
[16, 2, 1, 11]).
2 A Planning Language with Incomplete In- The approach presented in this paper follows the second
formation and Sensing line and it presents a language for representing the “non-

deterministic control problem over belief space” in a com-

Dealing with incomplete information about the environ- pact, but also restricted way and an algorithm for efficient
ment requires to distinguish the representation of what iplanning. With respect to other related approaches, we in-
true in the world from what the agent knows about thetroduce two novel aspects: 1) the representation is given
world. A common way to do this is to represent the agent’sn terms of the knowledge of the agent, as in [11], and it is
knowledge in terms obelief states A belief state is a set significantly more efficient than the representation given in
of states that the agent considers possible in a particulderms of possible worlds; 2) the generation of strong cyclic
situation. The agent thus does not have complete knowplans under partial observability, that allows for consider-
edge since it does not know which is the actual state of thing more complex domains and plans.
world. In the following of this section we describe a language

Contingent planning can be modeled as“ron-  for representing planning domains with incomplete knowl-
deterministic control problem over belief spacf?], as  edge and sensing (we calkitC?), that is based on the abil-
follows: ity to model the agent’s knowledge. Then in the next sec-

o ) tions we present the algorithm for generating cyclic plans
o Afinite spaces3 of belief state$ over the set of states  5,¢4 experimental results.

S.
¢ An initial situation given a the belief statg. 2.1 The languageCL
o A goal situation being a set of belief statBs. Thg languagéCL makes use of epi_stemic formula_s_ of the
logic ALCK + (see [3, 8] for details). More specifically,
e A set of actionsA. we introduce a set of primitive properties (or flueni)

that will be used to characterize the possible states of the
world. The primitive fluents? may be either predicates
or terms containing variables ranging over finite domains,

e A subset of actionsi(b) C A for each belief staté,
denoting the actions that are executablé.in

A set (?f observationﬁ)(a, b) for each execution of 1we have also defined a PDDL-like syntax for the languiigt see
the actiona from the belief staté. [71.



in such a way that the set of belief stat8semains fi-
nite. Notice that these variables are typically used only for
describing domains in a more compact way, but do not in-
crease the representation power of the language. For exam-
ple, the termin(z, y) with z € {1,2} andy € {1,2} can
be replaced by the four predicatés;, inio,ins1, inos.
Also fluents with multiple finite values can be treated in
the same way. Therefore, we can limit the description to
the use of propositional formulas, since its extension to the
case of terms with finite variables and fluents with multiple
finite values is quite straightforward. In our framework, a
belief stateh can be represented through an epistemic for-
mulaKgy, such that, is a propositional formula, denot-
ing the agent’s knowledge.

The language presented here allows for defining a re-
stricted domain, with respect to the general one presented ¢
before, in the sense that not every belief states 5 can

the actior; 4) a set of static axioms that describe do-
main constraints to be applied in every belief state; 5)
the default inertial propagation of all the fluents that
do not affect consistency of the successor state. The
resulting belief staté? is represented by an epistemic
formula that is build by appropriately computing the
above effects. In case the actianhas no sensing
effects, then the successor belief state is unique, i.e.
|O(a,b)| = 1, while in the case of a sensing effect on
a fluentP we will have two successor belief states ac-
cording to the two possible values of the observation
of P,i.e.|O(a,b)| = 2. Obviously, this can be gener-
alized to a combination of sensing effects on different
fluents.

The observatiom € O(a, b) obtained after executing
the actiona will thus be given by the knowledge of

be represented through epistemic formulas. In addition, as  the value of a fluenf’.
commonly done in reasoning about action, we restrict the
formulas that are used for expressing the effects of an ac- ®
tion to be a conjunction of literals, i.e. we do not allow o ] .
epistemic disjunctive formulas (except for the sensing ef- 1he above definition of planning problem relies on ex-
fects of an action) [3, 8]. In fact, epistemic disjunction is PresSing the qulcal axioms for defining t.hetransmon func-
used to model that after the execution of a sensing actiolion f«(b)- While other choices are possible, we have used
a property is either known to be true or known to be false@ framework able to characterize in a very compact and
This form of epistemic disjunction is specifically treated in €fféctive way the dynamics of a system. The ability of
our algorithm (see [3, 8]), while other forms of epistemiccompUt'ng the successor pehef stgte is fundamental in our
disjunction are not allowed. Notice also that this notion is@PProach and further details are given in [3, 8].

different from that of noisy sensors that instead model the

possibility of having a different result with respect to the3 Planning

actual state of the world. In this paper we will not deal

with noisy sensors. In this section we address planning for ti& language.

More specifically, referring to the general definition of |, particular, we define a planning algorithm that is able
the problem: to generate strong cyclic plans in domains with incom-
plete knowledge and sensing. This allows for considering
a larger set of domain problems for planning, namely all
those problems for which a conditional solution does not
exist, but that admit a strong cyclic plan.

The construction of the plan can be decomposed into
two basic tasks: (i) the generation of successor belief states
and (ii) the search for the plan in the belief state space.

With respect to the first task, we can further decompose
the problem into: verification of the precondition for action
execution and computation of the effects, i.e. construction
of the successor belief state. In [3, 8] a solution to the
problem of generating the successor belief (or epistemic)
state is provided, by presenting an algorithm for construct-
e The transition functiory, (b) = b is defined through ing a complete representation of the belief states reach-

the combination of: 1) deterministic effects of the able from a given initial belief state. Such a representa-

form post, : Ni(Ka; — Kf;) (i.e. a conjunction of tion is called First-Order Extension (FOE) and implements
generally conditional effects, in which we often sim- the epistemic reasoning that allows for dealing with tran-
plify KT — Kg; with K3;); 2) sensing effects of sition between belief states, without considering explicitly
the forms:sense, : P, whereP is a fluent inP, that  the possible states included in these belief states. More-
will be known after the execution af; 3) forgetting  over, the FOE is shown to provide a correct and complete
effects of the formspost, : “KP, expressing that representation of the set of belief states for the purpose of
the fluentP will be unknown after the execution of finding the plans for the given goal.

In this paper we do not consider costs of the actions.

e The initial belief statehy, € B is represented by an
epistemic formul& ¢y 7.

e A goal Bg is the set of belief stateld € B | K¢y, =
Kvycoar}-

e Given a set of precondition termse, : Ka for the
actionsa € A, the subset of actiond(b) applicable
from the staté is A(b) = {a € A | K¢p = Ka}.

e The set of observation8(a, b) are not modelled ex-
plicitly within our logical framework, but are consid-
ered as shown below.



The algorithm for strong cyclic plan generation pre- More specifically, this algorithm uses the function
sented in this paper exploits our previous work on reafindLinearPath(X, b, vcoar,S) that returns a linear
soning with epistemic states [3, 8], adding the ability ofpath (a sequence of actions without cycles and branches)
dealing with cyclic plans and to integrate heuristics in thefrom the belief staté to a goal belief state, that is either
search space that can significantly improve the computaa state in which the goatso 41 holds or a state included

tional performance of the planner. in the setS. The search strategy used by this function can
be implemented in different ways. In our implementation,
Algorithm 1 Plan Generation called C-Planner, we have used an heuristic search based
ProceduréLAN_GENERATION(X, b;., Yaoar:S) on a simple metric that measures the “distance” of a belief

Input: Domainy, initial belief stateby, goal descrip- ~ state from the goal. S
tion Yoo ar, Set of states in the current plan S (initially ~ Since a linear path is a sequence of actions, in this func-

empty). tion only one outcome of a sensing action is considered,
Output: Plarll = {< b;, a;,b; >} and thus the returned path may have states that must be fur-
ther expanded. This is taken into account by the multiple
IT = findLinearPath(X, by, Ygoar,S) recursive calls of the function in the loop, that is executed
while II # 0 and3 < b;,a;,b; > € II, such that until either the plan is complete (and hence a solution has
O(as,b;) = {b;, b} and< b, a;,b; >¢ 1T do peen computed) or the plgn I'etumedﬂimd]l_.inearpath
S'=8SU{bi| <bi,-,->e MV < -, b >e T} is empty (thus the solution does not exist). Moreover,
IT" = PLAN_GENERATION(X, b, ¥coar, S') the functionfindLinearPath(X, b, Ygoar,S) “marks”
if I’ # ( then those linear paths for which it was not possible a complete
T =ITU{< b, a;, b > UTT expansion, to avoid reconsidering them in the future. In
else other words, the function returns different paths if called
IT = findLinearPath(X, by, Ygoar,S) multiple times with the same parameters.
end if The ability to verify the equivalence of belief states
end while through epistemic formulas is essential in the algorithm:
return II 1) during the execution of th&indLinearPath function

in order to guarantee that the returned path does not contain

The Plan Generation algorithm shown in Figure 1 take$YClesS; 2) in combining two plans in order to build graphs
as input akC.£ domain descriptioi, an initial belief state  fTom the paths extracted, and thus introducing loops; 3)
by and a description of the goglo 41, and returns aplan 1N determining that there are no solutions to the planplng
(possibly cyclic) that is a solution of the planning problemProblem, when all the belief states have been examined.
as defined in Section 2. The plan is a graph representetf @ difference with previous work done in this direction
by a set of tuples< b;,a;,b; >, whose meaning is that " [11], our formalism exploits this cape_xblllty to prowde.a
from the belief state; it is possible to execute the action Sound and completmethod for generation of both condi-
a; leading to the successor belief stateThe actiors; can ~ tional plans and strong cyclic plans.
be either an action without sensing effects, in which case 'he termination of the algorithm is a consequence of
b; is unique, or an action with sensing effects, in whichthe following observations: i) the complete expansion of a

the observation seb(a;, b;) is given by two belief states single path initially generated tindLinearPath termi-

{b;,¥.}, and thus both the tuples b;,a;,b; > and<  Nates since the algorithm expands each state only once for
b, Ja. Ty > must be present in the plan ! every graph generated during the process; i) the number of
(] .

The algorithm is based on the idea of finding linear pathaths generated by the different callstahdLinearPath
from an initial belief state to a goal state (without consid-1S finite.
ering multiple effects of sensing actions), and then com-
pleting these paths by considering the different effects of} Experiments in Cyclic Plan Generation
sensing. To this end, we make use of a set of stétes
containing the belief states considered in the plan unddn this section, we describe a planning domain for which
construction. Since, during the execution of the algorithma conditional solution does not exists. More specifically,
a partial plan contains all paths that lead to goal states, thibe goal is not guaranteed to be reached, unless some ac-
setS always contains belief states from which it is possibletions are repeated more times. This kind of domains thus
to reach a goal state. Therefore, during the search for a liredmit only a strong cyclic solution, that is a plan contain-
ear path, if there exists a path that leads to a belief state iimg loops, that when executed it may not terminate and if
8, then this path can be chosen and the search interruptéderminates then the goal is achieved.
since from the subsequent belief state a path to a goal stateThe cleaning domain (see Table 1) describes a world in
has already been computed. This mechanism not only prevhich a robot is involved in a cleaning task in an office-like
vents to repeat the same computation at different times, b&nvironment, that is formed by a number of different rooms
also allows for generating direct acyclic and cyclic plans. R; connected through a corrida. In the environment



Actiona preg post, senseg,
enter _Rj Kin(C) Kin(R;)
exit _Rj Kin(R;) Kin(C)
takeout _Rj | Kin(R;) AKobj_in(R;) | Kin(C) A —-Kobj_in(R;)
scan _Rj Kin(R;) obj_in(R;)

Table 1: Cleaning domain description

there are some objects in unknown positions and quantfor completing this path generating the strong cyclic plan
ties in the rooms and the robot has sensing capabilities fqthird column). Notice that the completion of the first lin-
identifying such objects. The robot can move through thisear path is substantially linear in the size of the domain,
environment énter , exit in the rooms), move objects while the generation of the first linear path obviously is not.
out of a room {ake _out ), and search for objects in the The presented algorithm shows very good performance in
rooms 6can ). those domains in which the solution is composed by: i) a

Notice that the fact that an unknown number of objectdirst linear path obtained with a particular configuration of
can be present in a room is modelled through the effectensing results, ii) several paths that consider all the other
of the actiontake _out , expressing that after an object is sensing results that are connected to the first linear path or
taken out from a room, it is not known if the room is cleananyway reach the goal with a limited nhumber of steps.
(i.e. if there are other objects).

The planning problem defined for this domain is defineds Experiments in Conditional Planning
by ¢rvir = Kin(C) andygoar = NiK—obj_in(R;),
in which the robot knows to be in the corridor in the initial We have performed some tests to evaluate the behaviour
state (no knowledge about objects in the rooms is given)f our planner also on some standard domains for con-
and the goal is reached when all the rooms have beeditional planning and compared the performance of our
cleaned. Such a domain does not admit any valid condiplanner with well-known similar approaches: PKS [11],
tional plan, unless loops are considered. In fact, due to thihat makes use of a modal logic based representation of
presence of an undefined number of objects in every roonthe agent’s knowledge, and MBP [1], that instead repre-
the actiontake _out may need to be executed more timessent knowledge in terms of sets of possible states.
in order to achieve the goal. The strong cyclic plan gen- The results of these experiments show that the heuristic
erated by oukC-Planner (when considering 3 rooms in the search in our algorithm is very efficient, when the structure
environment) is reported in the Figure 1. The robot will of the solution comprises a linear concatenation of simi-
examine one room at a time and will take out from it all |ar blocks, as in the reported cases. As already discussed,
the objects. The goal is achieved when all the three roomig our algorithm when a linear path is initially found to
have no objects inside. reach the goal, then the completion of this partial solution

The computational properties of our algorithm allowsis usually achieved very quickly. However, there are sit-
for a good scalability in the size of the domain. In fact, uations in which the algorithm does not present this nice
the algorithm is based on first finding a linear partial so-computational property: namely, those domains such that,
lution: in the example the linear path from the initial statefor every path to be completed, it is necessary to generate
to the goal considering all sensing resultdasewill be  a new path that cannot be connected to the previous gener-
returned first. Then from this linear solution a completionated paths and whose length is comparable with the other
is computed for every sensing: in the example the thregaths. In other words, in those problems in which the solu-
loops are added on thieue branches of sensing actions. It tion cannot be represented as a DAG, but instead must be
is important to highlight here that the ability of comput- represented as an almost complete tree, then the proposed
ing equivalence of belief states allows (when possible) foalgorithm does not present the benefits described above.
generating only a few action steps to form a loop. In the The behaviour shown in this paper also confirms the re-
above example, when the sensing actiotrie only the  sults reported in [11], showing that the ability of explic-
linear path fake _out _Rj; enter _Rj) is computed by itly representing the knowledge of the agent allows for a
the algorithm and merged to the current partial plan. Inmore efficient implementation of a planner, with respect to
this way with increasing number of rooms, once the firsthose implementations that model the knowledge in terms
linear path is found (this can be done with different heuris-of sets of possible states (e.g. [16, 2, 1]) In fact, in the con-
tics), then the completion of the plan is usually performedsidered problems, planners based on the explicit represen-
very quickly. tation of the agent’s knowledgéC(Planner and PKS) can

In Fig. 2 we summarize computational time for the easily deal with larger domains as opposed to those plan-
Cleaning domain, distinguishing time needed for findingners (e.g. MBP) that use sets of possible states (see [1] for
the first linear path (second column) from time requireda comparison among these planners). As an example, we



Rooms First Complete
Linear Path Linear Path
10 60 3
20 240 8
30 1040 35
40 3230 60
50 7900 85

Figure 2: Cleaning domain search (ms)

llinesses| K-Planner| PKS [11] | MBP [1]
4 1 - 10
6 2 - 300
8 4 - 11500
10 8 - ?
20 65 80 ?
50 620 1610 ?
100 4620 20390 ?

Figure 3: Medical domain search (ms)
Figure 1: Strong cyclic plan for cleaning domain

report in Fig. 3 the performance in the medical dordain  planning problem, and we have presented an algorithm for
Finally, as already mentioned, our language allows for dhe generation of strong cyclic plans and some experiments
more compact representation of a domain, but is not abla plan generation.
to deal with some specific representation of planning do- |n K £ one can express the mostimportant forms of sens-
mains (namely the ones that require reasoning by caseshg actions and incomplete information proposed in the
For example, the Ring domain, as modeled in [1], requiresecent planning literature: e.g., [16, 1, 11]. Similarly to
reasoning by cases in order to generate a plan in which thgur approach, in [11] the authors presents a method for
robot visits all the rooms connected in a ring without know-planning in the presence of sensing based on the explicit
ing and sensing its initial location. In our formalism, we representation of the epistemic state of the agent, through
have to model the domain by introducing a sensing actiotthe use of a very expressive first-order modal epistemic
the expresses the capability of the robot to localize itself ifgrmalism. Epistemic states are logically formalized by
the environment. The Ring domain with Localization ca-knowledge bases (i.e., sets of formulas) in such a logic,
pabilities considered in our framework has computationahctions are specified by means of updates (deletions and
properties similar to the medical domain and thus compuinsertions) over such knowledge bases, hence the seman-
tational performance with respect to the original Ring do+ics of transitions between epistemic states is expressed at a
main in MBP is similar to the one shown in Fig. 3. meta-logical level. However, the main difference between
Summarizing, our formalism provides for a more effi- their method and the one proposed in this paper, is that we
cient planning method in those domains that do not requirgrovide asound and completelanning algorithm, able to
reasoning by cases. Notice also that this limitation in theyenerate both conditional plans and strong cyclic plans.
representation power is not very restrictive from a repre- The present work can be extended in several directions.
sentational viewpoint (in fact, we can represent aimost all, particular, we are currently working on extending our
the example domains given in [16, 2, 1, 11]), while it pro- framework in order to allow for the representation of both
vides substantial computational advantages. qualitative and quantitative uncertainty in the effects of ac-
tions.
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