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Abstract

In this paper we address ground logics, a family of nonmonotonic modal logics, and their usage in knowledge rep-
resentation. In such a setting non-modal sentences are used to represent the knowledge of an agent about the world,
while an epistemic operator provides the agent with autoepistemic or introspective knowledge. Ground logics are
based on the idea of characterizing the knowledge of the agent by allowing it to make nonmonotonic assumptions
only with respect to the knowledge about the world, i.e. expressed by nonmodal formulae. They are characterized
by a fix-point equation which determines the set of formulae derivable from the agent’s initial knowledge and which
can be applied to different normal modal systems to obtain a variety of nonmonotonic modal logics. In the paper
we address the semantical, computational and epistemological properties of ground logics. We provide a semantic
characterization of ground logics by defining a preference relation on possible-world models based on the minimiza-
tion of the knowledge expressed by nonmodal formulae. We analyze the computational complexity of reasoning in
ground logics, providing both a lower bound through a reduction from quantified boolean formulae and an upper
bound through an algorithm for computing logical entailment. We discuss the representational features of ground
logics, in particular defaults, and provide a thorough comparison with McDermott and Doyle’s logics.

Keywords:Knowledge representation, nonmonotonic reasoning, autoepistemic logics, computational complexity.

1 Introduction

The interplay between nonmonotonic reasoning and reasoning about knowledge and belief
has been recognized from the beginning of the research on commonsense reasoning. Since
then, modal epistemic logics have been studied with the aim of characterizing the reasoning
of an agent who is capable to perform introspective reasoning by making assumptions on
its own knowledge. Non-modal sentences represent the knowledge of the agent about the
world, while an epistemic operator provides the agent with auto-epistemic or introspective
knowledge.

The first formalizations of nonmonotonic reasoning based on the use of a modal operator
have been proposed in [22, 21, 24]. The knowledge of an agent is characterized in terms of
a fix-point equation which determines the set of formulae derivable from the agent’s initial
knowledge; such equation formalizes an agent having full introspective capabilities about its
own lack of knowledge. Ground logics [29, 33, 13, 36, 14] have later been defined by re-
stricting the introspection of the agent to nonmodal sentences. The term ground logic refers
to the idea of enabling the agent only to make assumptions that are grounded in the world’s
knowledge. The notion of groundedness has been introduced in [14] and has a rather intuitive
motivation: in fact, it corresponds to discarding any reasoning based on epistemic assump-
tions, which, for example, would enable the agent to conclude that something is true in the
world, by assuming to know it.

A different approach for defining nonmonotonic modal logics was taken in [11, 32, 15],
where the knowledge of the agent is characterized on a semantic basis, by means of a pref-
erence criterion among the models of the agent’s initial knowledge. Many of such criteria
follow the idea of selecting those models in which knowledge is minimal.
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Recently, there have been a number of attempts to reconcile fix-point and semantic char-
acterizations of modal nonmonotonic logics. In particular, Schwarz [30] proposed a seman-
tics for McDermott and Doyle’s logics. However, the notion of minimal knowledge under-
lying the above cited works is stronger than the one used to characterize McDermott and
Doyle’s logics. In particular, for the modal syste®b, McDermott and Doyle’s equation
does not provide a nonmonotonic logic, wh8& models of minimal knowledge have a nat-
ural interpretation as maximal sets of possible worlds.

The goal of our workis to study the family of ground logics, from the semantical, com-
putational and epistemological viewpoint. With respect to the first issue, we present an ap-
propriate semantic characterization for ground logics, that has been advocated in [31]. In
particular, our proposal is an instance of the preference semantics introduced by Shoham
[32], where the preference criterion is given by a partial ordering over possible-world models
and generalizes the idea of minimal knowledge as proposed in [11, 32, 15]. We show the cor-
respondence between such semantic characterization and the fix-point definition of ground
logics for a subclass of normal modal logics, called cluster-decomposable logics, which in-
cludes the most studied cases in nonmonotonic modal logics.

As for the computational properties of ground logics, we show that reasoning in ground
logics isIT5-hard. Comparing this result with computational complexity analyses of Mc-
Dermott and Doyle’s logics ([8, 26, 20]), it turns out that ground logics are computationally
harder than the corresponding McDermott and Doyle’s logics. We provélthatalso an up-
per bound for the major ground nonmonotonic logics, narSél\b4F, SW5 (the same result
for KD45 was shown in [5]), by providing an algorithm for computing logical entailment. In
particular, we provide the computational characterization of the logic of minimal knowledge
initially proposed in [11].

Based on the above characterization we discuss some properties of ground logics, specif-
ically addressing their semantics, the complexity of reasoning, the treatment of defaults and
the use of definitions—which has been considered a problematic aspect of these logics [31].
This discussion and a comparison with McDermott and Doyle’s logics show that the idea
of minimizing knowledge in terms of the world knowledge of the agent gives rise to sev-
eral interesting features from the viewpoint of knowledge representation. In particular, the
restriction to grounded assumptions can be regarded as a a refinement of the introspection
capabilities provided by McDermott and Doyle’s logics. The non-triviality of this additional
selection is confirmed both by the semantical and by the computational analysis: on the one
hand we have a greater variety of ground nonmonotonic logics, on the other hand reasoning
is harder. However, we identify some special cases of practical interest, where the complexity
of reasoning is lower than in the general case. The differences between ground logics and
McDermott and Doyle’s logics are further highlighted by their ability to represent defaults.
While in the general case they have a similar behaviour they are somewhat complementary
for special forms of defaults: Ground logics naturally capture justification-free defaults, while
McDermott and Doyle’s logics allow for a simple formalization of prerequisite-free defaults.

The paper is organized as follows. In the next section we report on previous work on non-
monotonic modal logics, including a fix-point definition of ground logics. We then present
our semantic characterization in terms of a preference criterion on possible-world structures.
In the subsequent section we address the computational aspects of reasoning in such log-
ics. We finally discuss some interesting properties of ground logics and compare them with
McDermott and Doyle’s logics.

1This work is an abridged and extended version of [25, 4].
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2 Nonmonotonic modal logics

In this section we recall the relevant background on nonmonotonic modal logics and introduce
ground logics.

2.1 Notation

We usel to denote a fixed propositional language with propositional connectiyas—, D,

and whose generic atoms are denoteg.asx, y, z (possibly with subscripts). Formulae
over £ will be often calledobjective because they do not contain occurrences of the modal
operator. A propositional valuation fdr is a function that assigns to every atom®bne of

the truth valuesrue, false. Propositional valuations are denoted with symhagls, and can

be extended to propositional formulae in the usual way.

We denote withC i the modal extension of with the only modalityK™ (for knowledge).
Generic formulae ovef x will be denoted a, v. A propositional valuation ovef k is a
function that assigns a truth value to every atonCofind to any formula of the forn .

Also these valuations are denoted with symhals, and are extended to modal formulae as
follows: first substitute the modal subformulae having the outermost modal operators (i.e.,
the subformulae of the for' ¢ not appearing in the scope of ah§) with their truth values,

then substitute the remaining propositional atoms with their truth values, and then compose
such values with the usual rules for propositional connectives.

For example, let be the formulap vV - K (2 A =Ky), and letv assign the truth values
v(p) = false, v(K(z A =Ky)) = true. Thenv(p) = false. Observe that values assigned to
z,y and Ky do not matter for propositional valuations of this formula.

Sometimes we use partial valuations, i.e., valuations assigning a truth value only to some
atoms and modal formulae. Given a formyland a partial valuation, we denote withp,
the formula obtained by substituting (as described above)those atoms and subformulae
defined inv with their truth values, and simplifying when possible. Obviously, whes a
(total) propositional valuationy, is just a truth value.

A propositional valuation over £ satisfies a formula if v(¢) = true. We say that a
formula ¢ over Ly is propositionally consisterif there is a propositional valuation over
Ly such that satisfiesp. Observe that there are modal formulae, such as-Kp, which
are propositionally consistent, although they are not consistent in any normal modal logic.
When we want to restrict a propositional valuatioover £y to propositional atoms only,
we writev) ..

We extend the above definitions to a set of formulaever L in the usual wayw(T)
is the logical conjunction of the values assigned«bto each formula ifl". Given a set
of formulaeT’, we denote withC'n(T") the set of all propositional consequences/ofi.e.,
formulae which are satisfied by every propositional valuation satisf§ing

A Kripke modelM is defined as usual by a triplgV, R, V'), whereW is a set (whose
elements are called worldsk, is a binary relation o¥” (called the accessibility relation on
M), andV is a function assigning a propositional valuation to each werld . WhenR
isW x W (i.e. M is a universal model) we simply writéV, V).

We define the satisfiability relation between a modal formubnd a worldw belonging
to the worlds of a Kripke modeM (denoted byM, w) | ¢) in the following way:

1. if  is a propositional symbol, thepM, w) = ¢ iff V(w)(yp) = true;
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2. if o = ), then(M,w) E ¢iff (M,w) = ¢ is not true;

3. if o =11 Voo, theniM, w) | ¢ iff (M, w) = 1 or (M, w) |= ¢u;

4. if o = 1 Ahg, then(M, w) | ¢ iff (M, w) = ¢ and(M,w) E 91;

5. if o = K¢, then(M, w) | ¢ iff for every w’ such thaf{w, w’) € R, (M, w’) E 9.

We say that a Kripke model1 satisfiesy (written M |= ) iff for all w € M, (M, w) E ¢.

We denote with'h (M) the set of formulae of i that are satisfied iM, i.e., Th(M) =
{pelr [ME o}

Given a modal logicS, we denote withCns the consequence operator in (classical)
modal logicS. Given two modal logicsS; andS,, by S; € S, we mean that all axioms of
logic S; are also axioms (or theorems) in lodie. E.g., it is known thakK C KD45 C S5.

In the following, we callS5-modela Kripke model whose accessibility relation is univer-
sal, i.e. each world is connected to all worlds of the model. The class of universal models
characterizes the logk5 (see for example [20, Theorem 7.52]).

Throughout the paper, the set of formulag€ L stands for the initial knowledge of the
agent.

2.2 McDermott and Doyle’s logics

We start by recalling McDermott and Doyle’s equation which applies to the consequence
operator of a monotonic modal logic [22, 21]. The equation is a general scheme for defin-
ing expansions, namely possible sets of sentences representing the knowledge of an agent
reasoning introspectively from an initial body of knowledge.

Given any modal logic, a consistent set of formulaéis anSy; p p-expansiorfor a set
of initial knowledgel C Ly if T satisfies the following equation:

T=Cns(IU{~K¢|p€Lx\T}), @

The resulting consequence operdtes,, ,, is defined as the intersection of &\, pp-
expansions fod. Such operator is in general nonmonotonic: thus for every modal 9gic
the (nonmonotonic) modal logi€y; pp is obtained by means of equation (1).

The McDermott and Doyle’s family of nonmonotonic modal logics has been extensively
studied [24, 19, 18, 20]. McDermott [21] analyzed the casé ef S5 and found out that
the resulting logicS5,,pp is monotonic, in the sense that the intersection oS&l}; p p-
expansions of a theor¥ is exactly the set of consequences/ah monotonicS5. Schwarz
[28] proved the equivalence of Moore’s autoepistemic logic [24] with &5, . He
also defined in [30] a preference semantics for McDermott and Doyle’s family, thus giving
a true possible-world semantic characterization of this class of modal honmonotonic for-
malisms.

This result allows one to study properties of logits p p by reasoning on possible-world
structures, which is often easier than analyzing infinite sets of modal formulae. From this
semantic viewpoint it is easy to show tt& ,;p p is not the only degenerate (i.e. monotonic)
case for logicsSy pp. More specifically, there is a whole class of logics in the McDermott
and Doyle’s family degenerating to monotor86, precisely the logics characterized by a
class of Kripke models whose accessibility relation is symmetric, i.e. all I&igsp such
that every instance of the modal axiom schemaB G K¢ D ¢) is valid in S.
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2.3 Ground logics

Let us now turn the attention to the nonmonotonic modal logics that have been proposed on
the basis of semantic considerations and, more precisely, on the intuition that in the models
the knowledge attributed to the agent should be minimal. This principle was introduced in

[11] and it was enforced by minimizing the set of objective (i.e. nonmodal) sentences known

by the agent. This notion of minimal knowledge can be stated in terms of a property on the

models of a logical theory as follows:

Definition 2.1 (Minimal Knowledge) A model M is a model of minimal knowledge for
I C Lk inthe logicS, if M is a model forl in S and for every modeM’ of I in S,
ThM'YNL ¢ Th(M)N L.

We say that a logic is a logic of minimal knowledge if for every theolyC L, every
model for! in S is a model of minimal knowledge fdrin S.

The first modal logic of minimal knowledge was introduced by Halpern and Moses in
[11], and is based on a simple and “natural” preference semantics on mod&33dgi, 15],
which realizes the intuitive principle of minimization of the knowledge of the agent modeled.
Such a logic, initially proposed for modeling knowledge and ignorance of processes in a
distributed computer system, constitutes the basis of several nonmonotonic modal formalisms
proposed in the literature [15, 17, 6, 23].

In [15] a possible-world semantics for this logic is given as follows. Let the possible
worlds be the propositional valuations owér Each modelM = (W, R, V') is such that
R =W x W andV (v) = v, i.e. V is the identity function. That isM is fully characterized
by its set of worldgi¥/. This amounts to considering univers&5) models, i.e. connected
structures whose accessibility relation is reflexive, symmetric and transitive. A setitence
is true in a worldw belonging toM if ¢ is true in all worldsw’ belonging toM. However,
not every universab5-structure that satisfies the initial assumptidnsf the agent is taken
into consideration: the interesting models are the maximal ones, namely those which do not
have any proper superset satisfyihgn other words, ai$5-model is of minimal knowledge
if it satisfiesI and cannot be extended by adding a new possible world (i.e. another proposi-
tional valuation ofZ). Therefore, minimization of knowledge is obtained by maximizing the
set of possible worlds, sometimes explained as maximizing ignorance. The nonmonotonic
character of this construction becomes evident when looking at the case in Wiidhe
empty set. In this case one can conclud€p for every atony, but this conclusion does not
hold anymore whep is added tdl.

This idea has been further developed by Lifschitz in [15] and by Lin and Shoham in [17],
where a bimodal logic that combines minimization of knowledge with justified assumptions is
proposed However, the more recent version [16] of Lifschitz’'s work [15] contains a technical
difference which makes the resulting logic a logic of “minimal belief”, that is no longer
captured by the above definition (see also [1] where such a logic is rephrased using a single
modal operator). In [31] the minimization of knowledge is formulated in terms of a preference
criterion on Kripke models which differs from the superset criterion presented above: notably,
the class of models taken into consideration is the class of models characterizing modal logic
S4F. However, this way of minimizing knowledge does not correspond to the minimization
of objective sentences, so this logic is not a logic of minimal knowledge in the sense of
Definition 2.1.

The idea of minimal knowledge can be naturally captured also by a fix-point equation
in the McDermott and Doyle’s style, by bounding introspection in the right-hand side of
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Equation (1) to objective formulae only. Given a normal modal Iggji@ consistent set of
formulae T is agroundS-expansior{from now on,Sa-expansion for short) for a sétC Lk
if T satisfies the following equation:

T=Cns(IU{~K¢|peL\T}). )

This equation, which was first used by Konolige in the c8se KD45 [14], defines a
family of logicsS¢ calledgroundnonmonotonic modal logics [29, 33, 13] (ground logics for
short).

Also in this case, the agent’s initial knowledgentails a formulap (written I =5, ¢)
if © belongs to all th&S¢-expansions for.

Every T' satisfying fix-point Equation (2) satisfies also Equation (1), i.e., ev&fy
expansion is also afiy;pp-expansion [20, Theorem 11.30]—but not vice versa, as shown
by examples below. Therefore ground logics are more selective than McDermott and Doyle’s
logics, since they admit fewer expansions.

In fact, ground logics are logics of minimal knowledge in the sense of Definition 2.1, as
stated by the following proposition, which directly follows from a property of minimality of
Si-expansions [20, Theorem 11.36].

Proposition 2.2 LetT' C L be a theory andM be a model such th&th(M) =T. If T'is
anSg-expansion fod C Lg, thenM is a model of minimal knowledge faf.

Therefore, ground logics are logics of minimal knowledge, while McDermott and Doyle’s
logics are not, as shown by the following example, where the agent is able to conclude that it
does not know a piece of world knowledge, when it lacks information about it.

Example 2.3 Let I be empty, i.el = . SinceS5,,pp degenerates t85, everyS5-model

is a model forl in S5,,pp, Whereas only the (maximaf5-model containing all possible
worlds is a (minimal-knowledge) model fdrin S5. Therefore, for every which is not
anS5 theorem, we havé fss,,,,, “K¢ while I |=s5, =K. This captures the intuition
that, without any premises, the agent can prove that it does not know any formuts5 but
theorems.

The different behaviour of ground logics and McDermott and Doyle’s logics is further illus-
trated by the following examples, that are related to the notion of groundedness.

Example 2.4 Let I = {Kp D p}. For every logicS containing the modal axiom schema 5,
we show that there are at least tWg, p p-expansions fof, namely, T} = {p, Kp, ...} and
Ty, = {—-Kp,...}. Infact, ifp € T then:
(a) Kp € Ty (by necessitation)
(b) -Kp & T, (by consistency of})
() "K-Kpe€ Cns(IU{-Ky|lp € Lx\T1})
(d) Kp € Cns(IU{-Ky|p € Lk \T1}) (from axiom 5, by contraposition)
e)peCns(IU{-Kplp e Lk \T}) (from1I),
henceT} is a fix-point of (1). To verify thafl is a fixpoint, it is sufficient to observe that if
p & Ty then—Kp € T, then premisé{p O p cannot be used to deriye From the fact that
Ty is anSy pp-expansion] Fs,,,, 7KpwhenS contains schema 5.

On the other hand, for every ground lodig, T} is hot anSg-expansion forl, because
step (c) is not valid for Equation (2):Kp ¢ £\ T. Thus,T5 is the onlySs-expansion and
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therefore, there is nS-expansion in whiclp is true, hencd =5, —Kp. Observe that this
agrees with the intuition that, is a minimal-knowledge expansion (it contains no objective
theorems but tautologies).

As pointed out in [14], in this case the reasoning that leads the agent to dénvene
Sy pp-expansion is ungrounded, since by assuming to kmtive agent derivesitself. Also
in the next example, the agent, by making assumptions on its epistemic knowledge,about
achieve® as a conclusion and thus fails to derivé& p.

Example 2.5 Let I = {-K—-Kp D p}. For every logicSy;pp we have that there exists
an Sy pp-expansion fod containingp, i.e. I f~s,,,, —Kp. On the other hand, for every
ground logicS¢ there is naSg-expansion fol containingp, hencel =g, ~Kp.

The above examples point out some differences between ground logics and McDermott
and Doyle’s logics, which motivate the study of ground logics. A more detailed comparison
between the two is deferred after addressing the preference semantics (in the next section)
and the computational complexity of reasoning in ground logics (in Section 4).

3 Minimal model semantics

We now present the semantic characterization for a relevant subset of ground nonmonotonic
modal logics, by providing a preference relation on Kripke models. The path we follow is
similar to the one used in [30, 20], to provide a semantic characterization for the McDermott
and Doyle’s family of logics. We first recall some definitions and previous results that are
used in the rest of the section. Then, we introduce a notion of ground-intended model, that
constitutes a first step towards the semantic characterization of theories formulated through
a fix-point equation. Subsequently, we focus on the preference relation, starting from the in-
tuition that the syntactic notion of minimization of objective sentences can be formulated in
terms of a partial ordering relation on Kripke models. We strengthen the preference relation
defined in [30], by weakening the preconditions for the comparison of Kripke models and thus
allowing more models to be compared. The preference relation is then used to characterize
ground-minimal models. The final step shows the correspondence between ground-intended
and ground-minimal models and therefore between the theory defined by the fix-point equa-
tion and the preferred possible-world models.

3.1 Preliminary definitions and previous results

In order to make the paper self-contained we recall some basic definitions and theorems
which are referred to in the following (see [20] for further details).
We start with the definition of stable theory and of its canonical model.

Definition 3.1 AtheoryT C L is stableif
1. T is closed under propositional consequence;
2. foreveryp € Lk, if o € TthenKp € T;
3. foreveryp € Lk, if o & T then—-Kp € T.
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LetS C L. We denoteST'(S) the (unique) stable theof§ such thatl’ N £ = Cn(5).

Definition 3.2 Thecanonical model for a stable theoTyis a Kripke modelM = (W, R, V)
such thatV consists of all propositional valuations in which all formulae frém L are true,
R is the universal relation oW (henceM is an S5-model) antl (w) = w for everyw € W.

We recall the following properties of stable theories.
Proposition 3.3 [20, 8.10] LetM be anS5-model. Theril'h (M) is a stable theory.

Stable models are strictly related both to MDD-expansions and to ground expansions.

Proposition 3.4 If T C L is anSy;pp-expansion for somé C L, thenT is a stable
theory.

Proposition 3.5 Let S be a modal logic such thé¢ C S C S5 and let] C Lk. A theory
T C Lk is anSg-expansion fod iff T is stable, consistenf, C T'and7 N £ C Cngs(I U

(=Ko |pe L\T}).

Proposition 3.6 Given two modal logicss’” andS” such thak C &’ C §” C S5, and given
atheoryl C Lg, everySg-expansion fot is also anS/:-expansion fot.

We also need the following property, which relates stable theories with Kripke models.

Proposition 3.7 [20, 8.16] LetT" C Lk be a stable theory. Lett be a Kripke model such
that M = (TNL)U{=Ky | p € L\T}. Then, foreveryp € Lk, p € T iff M | ¢,
namelyT = Th(M).

The following definition characterizes the class of modal logics satisfying the terminal
cluster property. The importance of such logics, as stated by subsequent Proposition 3.9,
is that, for such logics, ground expansions coincide with those theories that ar85eth
expansions and; p p-expansions.

Definition 3.8 A logic S characterized by a clagsof models satisfies thierminal cluster
propertyif for every M = (W, R, V) € C and for every worldv € W there is a terminal
cluster forw, i.e. a maximal subséft of W such thatt” x Y C R and:

1. foreveryw’ € Y, (w,w’) € R;
2. foreveryw’ € Y and everyw” ¢ W\Y, (v',w"”) ¢ R.

Proposition 3.9 Given a modal logicS such thatk C S C S5, if S satisfies the terminal
cluster property then a theofly is anS-expansion for a theory C L iff T is both an
Sy pp-expansion fod and anS54-expansion for .

Notice that modal logic&D45, S4F andSW5 satisfy the terminal cluster property.

Finally, to define a possible-world semantics based on a preference relation we need
the ability to compare Kripke models. For this purpose we introduce an operation between
Kripke models, called@oncatenationwhich returns a Kripke model.
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Definition 3.10 Given Kripke modelsM; = (W1, Ry, Vi), My = (Ws, Ra, Va), such that
W1 N Wy = ), the concatenation 0%1; and Mo, written asM; ® M, is the Kripke model
M= (W,R,V)suchthatV =W, UW,, V =V, UV, andR = R; U (W7 x Ws) U Rs.

In addition, we identify the Kripke models which can be decomposed in a particular form,
namely in such a way that every model can be defined as the composition of two models, the
second one being a univer&i-model.

Definition 3.11 A classC of Kripke models iscluster-decomposabiéevery model inC is

of the form M ® M,, where M, is a universal Kripke model, and for every such model
M; ® M and every universal modgéit}, whose set of worlds is disjoint from that 8,

the modelM; © MY isinC.

Itis easy to see that most of the modal logics studied in the nonmonotonic setting, in particular
the logicsS5, KD45, S4F andSWS5, are all characterized by a cluster-decomposable class of
Kripke models.

3.2 Ground-intended models

Our first goal is to establish a correspondence between the solutions of the fix-point definition
of ground logics and their intended models. Therefore, we introduce the notignowrid-
intendedmodel, which follows from the properties a reasoning agent should satisfy, namely
the initial knowledgel is satisfied and the introspection capability of the agent is restricted
to objective formulae only.

Definition 3.12 Given a normal modal logi€ C S5 characterized by the clagsof Kripke
models and a theory C L, a modelM € C is groundC-intendedfor I iff:

1. MET

2. forevery modelV € C,if N E TU{=Kp | ¢ € L\ Th(M)}, thenTh(M) =
Th(N).

Then, we show that the notion of grou@entended model exactly corresponds to that of
Sg-expansion, it is the class of Kripke models characterizing modal laglic

Theorem 3.13 Given a modal logicS such thatKk C S C S5, let C be the class of Kripke
models characterizing. An S5-model M is a groundC-intended model fod C L iff
Th(M) is anSg-expansion fol .

Proof We abbreviateT'h(M) asT in the proof.

Only-if part. AssumeM is groundC-intended forl. SinceM is anS5-model, by Propo-
sition 3.3,T" is stable; henc& D {—K¢ | ¢ € L\ T'}. Besides, from\ = I it follows that
I CT. SinceS C Sb, it follows that

T2Cns(IU{-Kp|peL\T})

Since M is groundC-intended, every model dfU {-K¢ | ¢ € L\ T} in C is a model of
T, therefore
TCCns(IU{-Kp|pel\T})
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Hence,T' is anSg-expansion fol.

If part. Assume thal” = Th(M) is anSg-expansion fod. Then,T' = Cns(IU{-K |
p € L\ T}). Consider amodeV € C suchthat\' = TU{=K¢ | ¢ € L\ T}; it follows
thatT C Th(N). Andif o € L\ T, thenN |= =K, which implies that\" [~ ¢. Therefore
L\T C {p € L|N ¢}, from which we obtaiilh(N)N L C TN L. ButT C Th(N),
consequenthyT’ N £ = Th(N) N L, and sincel is stable, from Proposition 3.7 we can
concludel’ = Th(N'). ThereforeM is a ground’-intended model for . O

3.3 Possible-world semantics

The notion of ground’-intended model defined above provides a first preference semantics
for ground logics. However, the preference criterion is based on the syntactic notion of
comparing the theorems in two Kripke models. In the following we define a true possible-
world semantics for ground logics, i.e. we define a notion of minimality of Kripke models
which directly derives from the structure of the models.

First, we need to define a relation between Kripke models that differ only with respect to
the accessibility relation.

Definition 3.14 Given two Kripke models\M; = (W3, Ry, V1) and My = (Ws, Ry, Va),
Mo Dg M if Wy =Ws, Vi =V5andRy D R;.

Using theD¢ relation, we are now able to define a partial ordering relation on Kripke
models.

Definition 3.15 Let My, M5 be two Kripke models. Them, Cg M; if there exists a
Kripke modelM such that:

1. My Dag Mo M;;
2. there exists a world € W5\ W; such that for each world’ € Wy, Vo (w') # Va(w).

The above notion of partial ordering among Kripke models can informally be explained
as follows: M, is preferred toM if M is built starting fromM, by adding in front of it at
least one world whose corresponding interpretation is different from those containdd,in
in such a way that each new world must be connected to all the worlds belongintj to
Moreover, connections between worlds belongingte and the new worlds are allowed.

Finally, minimal models are characterized using the ordering, as a special case of
Shoham'’s preference semantics [32].

Definition 3.16 Given a normal modal logi§ characterized by the class of Kripke models
C,amodelM € C is agroundC-minimal modefor I if M = I and for every modeM’ € C
such thatM’ =1, M’ ¢ M.

The preference criterion obtained through the relatigncan be seen as a stronger ver-
sion of the minimality criterion found by Schwarz for McDermott and Doyle’s logics [30].
The idea is the following: roughly speaking, Schwarz compare$Sheodel M with all
S-modelsN such that\' = M’ ® M, therefore\ is such that

1. every world ofM’ is connected to every world int;
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2. no world inM is connected to any world iM’.

The difference between Schwarz’s ordering relation andis that in the ground case the
second condition does not hold, therefore connections between wotld and worlds in
M are allowed (this is the intuitive meaning &f > M’ © M).

Therefore, when checking for the minimality of a modef, the ground criterion allows
more models of the theory to be compared with Hence, every model which is minimal
in the class of model§ according to the ground criterion, is minimal ¢haccording to
Schwarz'’s criterion as well, while the converse in general does not hold.

In the rest of this section we show the correspondence between the notion of ground ex-
pansion and the semantic notion of ground-minimal model, which in turn establishes a pref-
erence semantics for ground nonmonotonic modal logics. To prove such a correspondence,
we need the following lemmata.

Lemma 3.17 Let A be a Kripke model and1 be anS5-model such that:
LN E{-K¢|pe L\Th(M)};
2. ThR(NYNL=Th(M)N L.

Then,Th(N) = Th(M).

Proof The proof easily follows from the fact th@th (M) is a stable theory and from Propo-
sition 3.7. |

Lemma 3.18 Let M’, M"” be S5-models. fTh(M') N L = Th(M") N L thenTh(N ©
M) = Th(N & M") for any Kripke modelV.

Proof Since M’ and M" areS5-models, it follows thafl'h(M’) andTh(M'') are stable
theories, henc&h(M') N L = Th(M") N L impliesTh(M') = Th(M"), which in turn
impliesTh(N ® M’) = Th(N ® M") (see [20, Lemma 9.19]). O

Finally, we state the equivalence between the syntactic and semantic characterizations de-
fined above. This equivalence is proved under the restriction of cluster-decomposable classes
of Kripke models.

Theorem 3.19 Given a normal modal logi§, characterized by a cluster-decomposable class
of Kripke modelsC, a theoryl C L and a stable theory, let M be the canonical model
for T'. ThenT is anSg-expansion fot if and only if M is a ground’-minimal model for!.

Proof The proof makes use of the intermediate semantic notion of ground-intended model
previously defined. From Theorem 3.13 it follows that the®rys anSg-expansion forl
if and only if M is a groundC-intended model fod, hence we only have to show that the
modelM is groundC-intended forl if and only if M is a groundC-minimal model forl.

Only-if part. AssumeM = (W, R, V) is groundC-intended forI. ThenM = I and
foranyM’ € C,if M' E TU{=Kp | ¢ € L\ Th(M)}, thenTh(M) = Th(M’).
Now, supposeM is not groundC-minimal for I. Then, there exists a Kripke mod&f =
(Wn, Ry, Vy) € Csuch that\' = I and N Cg M. This last fact impliesV > NV © M
for someN”, i.e. every world of\/ is connected to every world 01, consequentiV' |=
{=Ke¢|pe L\Th(M)}.
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Since M is groundC-intended for/ and V' = I, from the above fact it follows that

Th(M) = Th(N), hence

Th(M)NL=ThN)NL (3)
On the other hand, sinc&” ¢ M, Condition 2 of Def. 3.15 implies that there exists a
world w € Wy such thaty (w) # V(w’) for eachw’ € W. Now, if Viy (w) satisfied every
formula in the seT"h (M) N £, then such a valuation would belong.Ad, becauseM is the
canonical model fof" = Th(M). ThereforeVy (w) does not satisfy at least one formula
of the setlI'’h(M) N L, consequenthI’h(M) N L # Th(N) N L, which contradicts (3).
Therefore, M must be a ground-minimal model forl, which proves the first part of the
theorem.

If part. AssumeM = (W, R, V) is groundC-minimal for I, i.e. M = I and for any
M e, if M' = 1I,thenM’ /g M. Then, supposé is not groundC-intended forl, i.e.
there exists amodél” = (Wy, Ry, Vi) € CsuchthatV' = TU{-K¢ | p € L\Th(M)}
andTh(M) # Th(N). SinceN = {-Ky¢ | ¢ € L\ Th(M)}, it follows that if p €
Th(N)NL,theny € Th(M)NL (otherwiseN = —~K ), hencel'h(N)NL C Th(M)NL.
Now, it cannot be the case thah(N) N L = Th(M) N L, otherwise by Lemma 3.17 we
would concludel'h(N) = Th(M), which contradicts the hypothesis. Therefore,

Th(N)NL CTh(M)NL 4)

Now, the clasg¥ is cluster-decomposable, therefore there exists a modeind anS5-
model M’ such that\" = N/ ©® M'. SinceN E T U{-K¢ | p € L\ Th(M)} and
N =N o M, it follows that

M ETU{=K¢|pe L\Th(M)} (6)

This in turnimpliesT’h(M’)NL C Th(M)NL, otherwise there would exist a formutac £

such thatp € Th(M’) andy & Th(M). Now, sinceM’ is anS5-model, by Proposition 3.3

it follows thatTh(M’) is a stable theory. HenceK ¢ ¢ Th(M’), thus contradicting (5).
Now, there are two possible cases:

1. Th(M')N L C Th(M) N L. In this casel'h(M') is a stable theory which has a
smaller objective part thafi = Th(M). Moreover, (5) implies thdf'h(M”) contains
1, thus contradicting the hypothesis thfats anS54-expansion fod (see Proposition
2.2);

2. Th(M')NL = Th(M)NL. This, together with (4) implieFh(N')NL € Th(M)NL,
which in turn implies that the mod&V” = (V};, R}y, W};) contains at least one world
w such thatV};(w) # V(w’) for each worldw’ in M. Consequently, the model
M" = N"® M is such thatm” =g M. Moreover, sinc€ is cluster-decomposable,
it follows that M” € C. Finally, Lemma 3.18 implies th&h(N) = Th(M"), hence
M"” = I. From the three above facts it follows th&t is not a ground’-minimal
model for7, thus contradicting the hypothesis.

Therefore , M must be a ground-intended model fof, which proves the second part of the
theorem. O

The above theorem provides a semantic characterization for a subset of the family of
ground nonmonotonic logicS¢, since it relates the solutions of Equation (2) to ground-
minimal models. In particular, the correspondence is shown to hold for the ground logics
built from modal logicsS5, KD45, S4F, SW5.
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4 Reasoning

After providing a semantic account of ground logics, we now address reasoning in these
logics. Since we are studying ground logics as a knowledge representation formalism, we
focus our analysis on logical entailmesis ., which is usually considered the basis for the
realization of the deductive services of a knowledge-based system.

Moreover, from the knowledge representation perspective it is interesting to look at the
computational adequacy of reasoning procedures. This requires not only to provide algo-
rithms for computing entailment in ground logics, but also to characterize its computational
complexity. To this end, we briefly recall some basic notions from complexity theory (see
[12]). We denote as P the class of problems solvable in polynomial time by a deterministic
Turing machine. The class NP contains all problems that can be solved by a nondeterminis-
tic Turing machine in polynomial time. The class coNP comprises all problems that are the
complement of a problem in NP. A probleR is said to be NP-complete if it is in NP and
for every problemP, in NP, there is a polynomial-time reduction froRy to P;. If there
is a polynomial-time reduction from an NP-complete problBsrto a problemP;, thenP;
is said to be NP-hard. With a slight abuse of terminology, we call NP-algorithm a nonde-
terministic algorithm that runs in polynomial time ARNP*) is the class of problems that
are solved in polynomial time by deterministic (nondeterministic) Turing machines using an
oracle forA (i.e. that solves in constant time any problen¥ip Finally, the classex?, IT}
andA? of the polynomial hierarchy (PH) are defined B = IIf, = A{ = P, and fork > 0,
$P ., =NP¥, I, | =coXl, andA?, =P

The complexity analysis of logical entailment in ground logics is developed as follows.
We first provide lower bounds: we prove that entailmer§sg; is IT5-hard, and extend this
result to the other ground logics. Secondly, we provide upper bounds: we give a finitary char-
acterization ofS,; p p-expansions, then we show that verifying that&mp p-expansion is
not ground is a problem irt} for logics S5, KD45, S4F, SW5, and finally we give a non-
deterministic algorithm for non-entailment which uses the above check as an oracle. This
proves that non-entailment is %, hence entailment i$I5-complete for ground logics
S5¢,KD454, S4F ¢, SW5, thus extending the results presented in [5]K@r45.

4.1 Lower bounds

Below we provide lower bounds for logical entailment in ground logics by reducingfhe
complete problem of deciding validity afv3-quantified boolean formulael{3-QBF) to
non-entailment. We first address the casg%®f, then extend the result D45, S4F o, SW5.
Let ¢ be a propositional formula ovef = {z1,...,%n, Y1, Yms 21, .-, 21}, and letF
be theadv3-QBF

dxy ... 3z, VY1 . Yy 3z .. 3210

It is well known that deciding validity of such formulae i$4-complete problem [12].
Theorem 4.1 Entailment inS5; is IT;-hard.

Proof Let p be a new atom which we add . We show thatF is valid if and only if
I }£ss.. ~Kp, wherel contains the three formulae

Il = (K!Ez \/K"LL'Z') (6)

~.

i=1
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L = (Kp> N\w) @)
j=1
Iy = (KpVv—y) (8)

and is the formula (overL ) obtained by replacing eacly with Ky; in . Clearly,
I Fss., —Kp iff there exists arb5;-expansionl” for I such thatp € T. Moreover, since
I> € T, such & must also contaimy, . ..,y,. Finally, sincel; € T, for eachi = 1..n
eitherxz; € T or ~z; € T'. Hencel -ss,, — K iff there exists arb5;-expansion containing
D, Y1,---,Ym, and fori = 1..n exactly one between;, —z;.

From the definition of validity for QBFF is valid iff there exists a (partial) propositional
valuationv to the atomsy, . . ., x,, such that the formula

F,=Vy .. Yyn3zi...3z1.0,

is valid. Define the stable expansi@iiv) = ST ({z; | v(z;) = true} U {-z; | v(z;) =
false} U{p,y1,...,ym}). Clearly,I C T'(v).

We show thatF” is valid iff there exists a such thafl'(v) is anS54-expansion foll .

Only-if part. First, supposé is valid, i.e., there exists@asuch thatF, is valid. We show
thatT'(v) is ground forI, i.e. there does not exist a stable theSrgontaining/ such that
SNL c T(v)NL. Infact, suppose such a thed¥yexists. Then, sincé containsl;, either
x; of ~x; isin S, fori = 1.n. SinceSNL C T(v)NL, foreachi = 1.n, x; € S iff
z; € T(v) and—x; € Siff ~z; € T'(v). Moreover,p ¢ S, otherwise it would follow that
y1,...,ym € S, thereforeSN L ¢ T(v) N L, contradicting the hypothesis.

SinceS is stable,p ¢ S implies—Kp € S hence—y € S. Since for eachi = 1..n,
x; € Siff v(x;) = true and—z; € S iff v(z;) = false, also(—), € S. Letwu be the partial
valuation ovefy, ..., ym }x such that:

o u(y;) = u(Ky;) =trueiff y; € S (hence iffKy; € S by stability of 5);
o u(y;) = u(Ky;) = falseiff y; ¢ S (in this casernKy; € 5).

Since(—¢), € S, also((—),)., € S. Now observe that(—¢), ), is an objective formula
over{zi,...,z}. Moreover, sincd(v) contains no theorems ovéz,, ..., z;} but tautolo-
gies, alsaS does not, thereforg—1), )., is a tautology; this implies that the formula, ).,
is unsatisfiable.

By hypothesisF, is valid, hence considering the above defined valuatiover{y., ..., ym } x,
formula3z; ... 3z (v ). is valid—that is, the propositional formula,, )., over{zy,...,z}
is satisfiable. Now observe thatassigns the same truth valuegtcand Ky;, for j = 1..m,
hence(y, ), and(1,), are the same formula, which should be both satisfiable and unsatisfi-
able. Therefore, such @hdoes not exists, arifi(v) is anS5s-expansion.

If part. Supposef’ is not valid. Then, for every valuation over x+, ... z,, F, iS not
valid, hence formula-F,, is valid, where-F,, can be rewritten as

Fy1 .. Fym Va1 .. Va0,

Hence, for every there exists an assignmento y, . . ., y, such thatvz; ... Vz;.(—py)y
is valid—that is, the propositional formulay, ), over{z,..., z;} is a tautology.

We show thafl'(v) is not anS54-expansion forl. Define the stable expansidt{v) =
ST{z; | v(z;) = true} U {—-x; | v(x;) = false} U {y; | u(y;) = true}). Observe that
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S(v)N L C T(v)N L. Hence this part is proven if C S(v). In fact,I; € S(v), and since
p & S(v), then-Kp € S(v), thenlz € S(v).
Extend the partial valuation in this way:

o u(Ky;) =trueiff y; € S(v) (hence iffu(y;) = true);
o u(Ky;) = false iff ~Ky; € S(v) (in this caseyu(y;) = false).

Now observe that(—), ), and(—, ), are the same formula, henge),,),, is a tautology,
hence((—%),). € S(v). Butfrom the definition ob andu, ((—t), ). € S(v) iff = € S(v).
Therefore, alsds € S(v). We conclude that for eveny, T'(v) is not anS54-expansion for
1, which concludes the proof. |

We now extend the above result to the other ground logics.

Theorem 4.2 Given a modal logicS such thatK C & C S5 andS satisfies the terminal
cluster property, entailment if; is IT5-hard.

Proof For each logicS, the reduction follows the one given f85.
Given anav3-QBF formulaF = 31 ...3x,Yy1 ... Yym 321 ... 321.¢, We definel’” as
the set containingdy, I», I3, defined as in (6), (7), (8) respectively, and the formulae

Iy, = /\I(ZL'Z D x;
=1

I; = /\K—!l‘i D xy
=1

Is = KpDp

I; = —-K-Kp>Kp

Then we show thak’ is valid iff I’ j£s, ~Kp.

If part. By contraposition: ifF' is not valid, from the previous theorem 66,-expansion
for I = {I, I, I3} containsp. Sincely, I5, I andI; are theorems i85, it follows thatI’
is S5-equivalent tol, in the sense thal’ and ] are satisfied by the same setS¥ models.
Consequently, from Proposition 3.6;-expansions fod’ are a subset of the set 664-
expansions fof, and thereford’ =5, ~Kp.

Only-if part. SupposeF' is valid. Define bothy (a particular propositional valuation to
x1,...,2,) @andT(v) as in the proof of the previous theorem. Lt = (W, R, V') be the
canonical model fofl'(v) andC be the class of models characterizing lo§icand suppose
T'(v) is not anSg-expansion fod’. Then, from Theorem 3.13\1 is not groundC-intended
for I, which implies that there exists a mod€lin C such that

L NETIU{=Kplpe L\Th(M)};
2. Th(N) # Th(M).

we divide the rest of the proof in four parts:

(A) First of all, we show that foi = 1,...,n if M & z; thenN | z;. Infact, M | x;
implies M £ —a; implies (from Condition 1.)V = —~K—x;. SinceN |= I3, alsoN =
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Kz;, and fromN = I, one concludes that/ |= z;. An analogous proof shows that for
i=1,...,nif M —x; then\ & —z;.

(B) Given any worldw of A/, letY be the terminal cluster fan mentioned in Definition 3.8,
and letT’h(Y") denote the formulae which are true in all worldstafWe prove thaf'h(Y) N
L=Th(M)NL.

Infact, Th(Y') N L C Th(M) N L can be proven by contradiction: suppose there exists
a formulay such thatp € Th(Y) N £ andy ¢ Th(M) N L; then from Condition 2. of
Definition 3.8 K¢ € Th(Y), but from Condition 1. abovd/ = —K¢, and again from
Condition 2. of Definition 3.8 it follows-K¢ € Th(Y'), which is a contradiction. Then
Th(Y)N L ¢ Th(M) n L follows from the fact thaf’(v) = Th(M) is anS54-expansion
for I, hence there can not exist 86-model(Y, Y x Y, Vi) with fewer objective theorems.
Therefore,Th(Y) N L = Th(M) N L. Observe that this together with the fact thais a
terminal cluster implies thafh(Y) = Th(M).

(C) Then we show that/ = p:

Sincep € Th(M)N L, alsop € Th(Y)N L, and sinc&” is a terminal cluster alsf’p €
Th(Y). Hence(N,w) = -~K—-Kp. Sincew is arbitrary, we conclude thad{' = -K—-Kp.
Now from I and s we derive thai\' = p.

(D) Finally, we prove thatV" = p contradicts Condition 2. above:

In fact, from A |= I and part (A) above it follows thaf'h(M) N L C Th(N) N L.
Now Th(M) N L ¢ Th(N) N £ can proved by contradiction: it € Th(N) N £ and
» & Th(M) N L, then from necessitatioR ¢ € Th(/N'), but from Condition 1. abovad/ =
- K¢, which is a contradiction. Combining these two facts yidldg M)NL = Th(N)NL.

Therefore, each valuation of a world .M coincides with some valuation of a world in
M. Moreover, from part (B) every world in A is connected to a clust&f having the same
theorems ag\1. These two facts impl§'h(N) = Th(M) thus contradicting Condition 2.

From (A)—(D),T'(v) is aSg-expansion fold’, consequently’ (~s., —Kp. O

The above theorems show that in many cases reasoning in ground logics is harder than in
McDermott and Doyle’s logics. In the following subsection we show that this fact is due to
an additional step which makes a selection avgr, p-expansions.

4.2 Upper bounds

Now we consider the upper bounds of complexity of reasoning in ground logics. Clearly,
proving I [~s.. ¢ amounts to exhibiting as;-expansion forl which does not contaip.
Hence, the first point is to give a finitary characterization of ground expansions. This is done
by restricting the attention to all the subformulaelotet I C L. We denote with\f A(I)
the following set of formulae:M A(I) = {p | Ky is a subformula of a formula from
I}. Moreover, we say that a modal formufais anl-formula if it is a formula built from
propositional variables of and from modal atoms of the fori#i ), wherey € M A(I).

Then, following [20], we introduce the notion of introspection-consistency on pairs whose
elements are subsets bf A(T).

Definition 4.3 Let I C L. A pair (®, V) of subsets of\Mf A(I) is calledintrospection-
consistentvith I iff the following conditions hold:
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1. dUY =MA()and®N¥ =( (i.e. (P, V) is a partition of M A(T));
2. TUYU{-K¢|pe ®tU{Kp |y c T} is propositionally consistent;
3. foreachp € @, ¢ Cn(IUTU{-Kp|pe PtU{Kyp|pe T}).

Note that since only propositional consistency and non-implication are involved in the
above definition, introspection consistency can be decided with a polynomial number of calls
to an NP-oracle. Note also that a partitionMfA(I) has polynomial size wit.

The idea is to identify particular introspection-consistent partitions, that are appropriate to
give a finite characterization of ground expansions. In order to study the relationship between
introspection-consistent partitions and ground logics, we need to address the relationship
between partitions and with stable theories. To this end, we recall the following definitions.

Definition 4.4 Let] C Lg and letthe partitiof®, ¥) of M A(I) be introspection-consistent
with 7. Then:

1. we callM;(®, ¥) the set of all the propositional valuation®f £ x satisfyingl U ¥ U
{~K¢|pe@tU{Kp|pe T}

2. for a valuatiorv € M;(®, ¥) we callU(®, ¥)(v) a propositional valuation of such
thatU (®, V) (v) = v)z;

3. anS5-model M (P, ¥) = (M (P, V), U (P, ¥)) is calledcanonicalfor the partition
(®,W);

4. the theornyT'h(M;(®, ¥)) is calledcanonicalfor (®, ¥) and is denoted by (@, ¥).

Proposition 4.5 [20, 9.36] Letl C Lx and letT’ C Lk be a stable and consistent theory
containingl. Then the partitiofM A(I) \ T, M A(I) N T') is introspection-consistent with
1.

Proposition 4.6 [20, 9.39] Let] C L. If a partition (®, ¥) of M A([) is introspection-
consistent with/, then:

1. the theoryl;(®, V) is stable;

2. for everyI-formula ¢ and for every worldy € M;(®, V), (M (®,¥),v) | ¢ iff
v(p) = true;

3. TUVU{-Kg|pe®tU{Kp|pec W} CTi(PV),
4. & = MAI)\ T;(®,¥) and¥ = MA(I) N T;(®, ¥);
5. T1(®,0) =ST(Cn(IUTPU{-Kp|pePtU{Kp|peT})NL).

We can now provide a finite characterization of ground expansions in terms of particular
introspection-consistent partitions.

Theorem 4.7 Let S be a modal logic such th#t C S C S5. LetT be anSg-expansion of
atheoryl C Lk. Let® = MA(I)\T, VY = MA(I)nT. Then the partitio®, ¥) is
introspection-consistent withandT' = T (®, ¥).
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Proof SinceT is stable and consistent (Proposition 3.5), from Proposition 4.5 it follows that
(@, W) is introspection-consistent with Therefore we have to show that = T;(®, ¥).
SinceT (P, U) is also stable, it is sufficient to show tHEN £ = T7 (P, ¥) N L.

First, consider aformulg € T7(®, ¥). Then,yy € Cn(IUYU{-Kp | p € P}U{Kp |
© € U}). By hypothesis] C T. By definition of @, if ¢ € ® theny ¢ T, consequently,
by stability of T, =Ky € T. Analogously, by definition ofl, if ¢ € ¥ thenyp € T,
consequently, by stability &F, K¢ € T. Thereforel D TUP U {-K¢ | ¢ € P} U{K¢y |
p € ¥}, and sincel" is stable T D Cn(IUT U{-Kp | p € P} U{K¢ | ¢ € T}), hence
peT.

Now suppose) € T'N L. Then,yy € Cnss(I U{—~Ky | ¢ € L\ T}). From Point 3. in
the previous Proposition 4.6,C T7(®, ). Moreover, from the first part of this proof — by
contraposition —ifp € L\ T thenyp ¢ T7(®, ¥), and sincel; (P, ¥) is stable (Point 1. in the
previous Proposition 4.63K ¢ € T1(®, V). Therefore{—-Ky | p € L\ T} C T;(P, ¥).
SinceT; (P, ¥) is closed under consequenceSh [20, Theorem 8.4y € T; (P, V). O

We point out that this result provides for a finite characterization of expansioesdoy
ground logic. In this sense it strengthens an analogous result (see Prop. 4.9) obtained for
MDD logics, which does not include e.g. t68 case.

We can finally turn the correspondence between introspection-consistent partitions of
M A(T) and ground expansions into an actual characterization of the expansions of the ground
logic S5, thus obtaining a finitary characterization ff;-expansions.

Theorem4.8Let I C Lg. Let (P, V) be a partition of M A(I). Then,T;(®,¥) is an
S5q-expansion forl iff (®,¥) is introspection-consistent with and there does not ex-
ist a partition(®’, ¥’) of M A(I) such that(®’, ¥') is introspection-consistent with and
T(®, 9N L CTH(®, V)N L.

Proof Only-if part. Supposel;(®, ¥) is an S54-expansion forl. Then, from Theorem
4.7 it follows that(®, ¥) is introspection-consistent with. Now, suppose there exists a
partition (®’, ¥’) which is introspection-consistent withand such thaf;(®’,¥') N £ C
T;(®,T) N L. The existence of such a thedfy(®’, ¥’) contradicts Proposition 3.9, since
by hypothesig; (@, ¥) is anS54-expansion for .

If part. Suppos€®, ¥) is introspection-consistent withand there does not exist a parti-
tion (®’, ¥’) of M A(I) such tha{®’, ¥') is introspection-consistent withand7; (®’, ¥/)N
L C Ti(®,¥) N L. Now, suppose thaf; (P, ¥) is not anS5;-expansion fol. Therefore,
there exists a stable thedFy containingl and such thaf” N £ c T'N L. By Proposition 4.5
the partition(®’, ¥') = (M A(I)\T', MA(I)NT") is introspection-consistent with More-
over, Proposition 4.6 implieB; (¢, U') = T”, consequentl{; (®', ¥ )NL C T;(P, ¥)NL,
which contradicts the hypothesis. |

The above theorem gives a (hondeterministic) method to show that, given an introspection-
consistent partitioi®, ¥) of M A(I), T; (P, ¥) is notanS5;-expansion fol: guess another
partition (®’, ¥’) of M A(I), and verify that(®’, ¥’) is introspection-consistent withand
T(®, 9 )N L C Tr(P,T) N L. It can be shown [3] that both checks can be done with a
polynomial (wrt the size of) number of calls to an NP-oracle, hence the problem 4n

We now want to extend this method to other ground logics. To this end, we exploit the
following property.
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Proposition 4.9 [20, 9.41] LetS be a modal logic such th#t C S C KD450orK C S C
SW5. Let] C Lk. IfatheoryT C Lk is anSypp-expansion foll, then(®, ¥), where
& = MA(I)\T and¥ = M A(I)NT, is introspection-consistent withandT = T;(®, ¥).

We call EXPANSIONSG, I, (®, ¥)) an algorithm that given a modal logi§ among
S4F, KD45, SW5, a theoryl and a partition®, ') of M A(I) introspection-consistent with
I, checks whethef; (@, ¥) is anSy, pp-expansion. It is known [20, Section 11.1] that for
each of the three modal logics, EXPANSION can be computed by a polynomial-time algo-
rithm which makes a polynoial number of calls to an NP-oracle. S#%Gep p-expansions
for I correspond to stable theories containihgwe can extend EXPANSION also to the
(trivial) case ofS = S5. Then we can use it as a subroutine in the following algorithm.

Theorem 4.10 Given a modal logicS amongS5, S4F, KD45, SW5, a theoryl and a partition
(@, W) of MA(I), deciding whethef; (P, ¥) is not anSg-expansion fod is a problem in
5.

Proof We exhibit the following nondeterministic algorithm:
Algorithm Not-Ground§, I, (®, ¥))
Input: modal logicS € {S5, S4F, KD45,SW5}, theoryl, partition(®, ) of M A(I);
Output: true if T7(®, ¥) is notanSg-expansion fold, false otherwise;
(1) if (@, ) is notintrospection-consistent withthen return true;
(2)if EXPANSION(S,I,(®,¥)) returnsfalse then return true;
(3) if there existspartition (&', ¥') #£ (&, ¥) such that:
(3.1) (@', ¥') is introspection-consistent withand
(3.2)T7(®',9')N L C Ty (P, ¥) N L then return true;
(4) return false

Correctness of the algorithm follows from the theorems of this section and from Proposition
3.9. Regarding complexity, Steps 1 and 2 can be performed with a polynomial number of
calls to an NP-oracle. Step 3 can be done by nondeterministically choesing’), and

then verifying Conditions 3.1 and 3.2 again with a polynomial number of calls to an NP-
oracle. In particular, Condition 3.2 is verified by extracting the polynomial-size formulae
representing the objective part6f(®’, ¥') andT; (P, ¥), respectively, then using proposi-
tional entailment. O

The above result implies that groundedness can be decided Wiffosacle. We use this
fact for establishing the upper bound on the complexity of reasoniS§dn S4F, KD45¢
or SW5¢.

Theorem 4.11 Let S be one of the modal logicSs, S4F, KD45 or SW5. Entailment inS¢
is in II%.
Proof We exhibit the following nondeterministic algorithm, which checks non-entailment:
Algorithm Not-Entails(S, I, ¢)
Input: modal logicS € {S5,KD45, S4F, SW5}, theory!, formulay;
Output: true if I }£s,, ¢, false otherwise.

(1) computeM A(I);

(2) if there existspartition (®, ¥) of M A(I) such that

(2.1) Not-Ground§, I, (®, 1)) returnsfalse and

(2.2)—¢p € Ty (P, ¥) then return true;

(3) return false
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Correctness of the algorithm immediately follows from the definition of entailment and the
correctness of the previous algorithm Not-Ground. Step 1 is performed in polynomial time,
and Step 2 can be accomplished by nondeterministically choosing a partitdd¢f ), and
verifying that (2.1) it identifies a-expansion ofl with a 35-oracle, and (2.2)¢ can

be deduced 7} (P, ¥) with a polynomial number of calls to an NP-oracle [20, Theorem
13.10]. Therefore, non-entailment is a problentiy hence entailment is if%. O

Corollary 4.12 Let S be one of the modal logicss, S4F, KD45 or SW5. Entailment inS¢g
is IT;-complete.

5 Representing knowledge

In this section we discuss merits and drawbacks of ground logics as knowledge representa-
tion formalisms, through a comparison with McDermott and Doyle’s logics. In particular,
we address some features of these logics arising from both semantical and computational
considerations, consider the representation of defaults and the use of explicit definitions.

5.1 Semantics

In Section 3 we have discussed the differences between the semantical definition of ground
logics and McDermott and Doyle’s logics. The criterion for choosing the preferred model is
more selective in the case of ground logics since more monotonic models of the theory can
be compared. Hence, evefy:-expansion for is also anS,;p p-expansion fod, while the
converse in general does not hold.

A number of properties of ground logics, that we briefly outline in the following, can be
derived from semantical considerations:

e none of the ground logics collapses into a monotonic logic (in particulas fer S5
the logic defined in [11] is obtained, as stated in [29]);

e S5, shows monotonicity with respect to objective formulae, in the sense that for each
I,¢ € Lk and foreach) € L, if I |=ss,, ¢ thenl U {¢} =ss5, 9. Therefore, when
adding new information irb55, only modal formulae can be lost, no longer being
derivable in the resulting theory (see Example 2.3);

o the family S shows more variety than the famil§y; pp, in the sense thaangesof
logics, that is, classes of modal logics with the same nonmonotonic counterpart (see
[20, par.11.2]), are more common (and larger) in MDD logics than in ground logics. In
other words, two ground logics hardly collapse in the same nonmonotonic logic.

5.2 Computation

In Section 4 we have shown that complexity of deduction in the family of ground logics is
I1%-hard. Hence, from the computational point of view, reasoning in a ground &gis in
general harder than reasoning in the corresponding p logic (unlesslly = II;, = PH),

since entailment i84F y;pp, KD45,,pp andSW5,, pp is T15-complete ([8, 26, 20]). This
increase in the complexity of reasoning is explained by the extra work which is necessary to
make a further selection amoy, p p-expansions so to restrict only to the ground ones.
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However, this source of complexity can be easily avoided when unnecessary. For exam-
ple, it is well known that cautious reasoning in default logic i§%acomplete problem [8].
Hence, the translation of a default theory into a ground logic (see next subsection) seems
to be disadvantageous, since it introduces an additional degree of complexity. On the other
hand, the Not-Entails algorithm for ground logics presented above can be easily modified to
make it work inX% in the 'easy’ cases, i.e. for theories whetg p p-expansions andg-
expansions coincide. In fact, in such cases the groundedness check for the partition which
identifies anSy,pp-expansion (Step 3 of the algorithm Not-Ground) can be skipped, thus
turning Not-Ground to & *-algorithm, and Not-Entails to B5-algorithm. Since for the-
ories obtained through a translation of a default theory we apriori knowShaxpansions
and S, p p-expansions for such theories coincide, reasoning in a ground logic setting does
not introduce additional complexity.

Moreover, there are other interesting cases in which the reasoning task is easier than in
the general case. As pointed out in [11], entailmer§dg is in PVZ| if the theory admits
only oneS54-expansion. Such theories are callezhest The problem of deciding whether
atheoryI is honest is inPV? as well. In particular, in [9] it is shown that deciding whether
I |=ss.. @ When[ is the empty set is V7 [0(log n)]-complete problem.

Finally, in [2] a first-order version 085 is used to formalize some non-first-order fea-
tures of frame systems, in particular procedural rules and a form of closed-world reasoning.
It is shown that such restricted modal extension of a subset of first-order logic does not affect
computational complexity of reasoning, which is PSPACE-complete both in the first-order
and in the extended modal framework.

5.3 Defaults

In this section we discuss whether defaults are representable as epistemic sentences in ground
logics. We show that logi§5¢ does not admit any modular translation for default theories,
while such a translation is possible in the case of ground logics built from modal systems
different fromS5.

We first briefly recall default logic [27]. A propositional default theory is a gait W),
such thatD is a set of defaults, i.e. inference rules of the form

a:MpBy,...,MpB,
v

wherea, 8;,~v € L, W is atheory in andM g is interpreted as: “it is consistent to assume
5", A justification-free defaults a default where the justification part is empty, i.e. of the
form

Qo

~
A prerequisite-frealefault is a default of the form
Y
We are interested in the translation of a default theory into a modal theory. Therefore we
give the following definitions (taken from [10]) and recall some properties.

Definition 5.1 A faithful translation from default logic to a ground nonmonotonic lagi¢
is a mappingr which transforms each default thedi®, W) into a modal theoryr (D, W)
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such that the objective (i.e. non-modal) parts of Saeexpansions ofr(D, W) are exactly
the default extensions ¢D, W).

However, not every translation that is faithful is useful in practice. In particular, we would
like to be able to turn each default into a modal sentence, independently of other defaults and
of the theory. Such translations are called modular.

Definition 5.2 A translationtr from default logic to a modal nonmonotonic logicis mod-
ular iff for each default seD and eachV C L it holds thattr(D, W) = tr(D,0) U W.

We shall use the modular translatiemb introduced in [34].
emb(d) = Kae NK-K-0 A...NK-K=(3, D~

emb(D, W) =W U{emb(d) | d € D}

whered is a default.

Proposition 5.3 [20, 12.1] LetS be a modal logic such th#t C S C S4F. LetS C L be
consistent and closed under propositional consequence. 9 ieean extension for a default
theory(D, W) iff ST(S) is anSy; pp-expansion foemb(D, W).

We now show some properties of ground logics with respect to the representation of
defaults.

A first interesting result concerns the existence of modular translations for justification-
free defaults. In particular, we have thatb(D, W) provides the desired result fany
ground nonmonotonic logic. Notice that the same translation is used in [2] to formalize
procedural rules of frame systems within a concept language augmented by a modal operator
interpreted irS5¢.

Theorem 5.4 There exists a faithful modular translation from justification-free default theo-
ries to any ground nonmonotonic logic.

Proof Let (D, W) be a default theory such th@ is a collection of justification-free de-
faults. Then(D, W) has exactly one default extensiSnThe theoryemb(D, W) hasST(S)
as its onlyKs-expansion (see Theorem 5.6 below). Moreover, it can be shown that$rery
model M for emb(D, W) is such thats C Th(M) N L. This implies thatST'(S) is the
only S54-expansion foemb(D, W). Thus, for every logicS such thakK C S C S5, theory
emb(D, W) admits exactly on&;-expansionST(S). Therefore for such logicemb is a
faithful translation for justification-free defaults. |

It is interesting to compare this result with an analogous property of McDermott and
Doyle’s logics, which states that every lodig; p p contained irb5 admits a faithful modular
translation for prerequisite-free default theories [10]. On the other hand, there exist logics
Sy pp for which a faithful modular translation from justification-free default theories to
Sy pp is impossible. Therefore, McDermott and Doyle’s logics and ground logics show a
complementary behaviour in that the former can always represent prerequisite-free defaults,
while the latter can always represent justification-free defaults. We provide futher evidence
to this phenomenon by first showing that defaults cannot be represented in th&3egic
then showing that prerequisite-free defaults can be represenidoliby; .
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Theorem 5.5 There exists no faithful modular translation from default logi&$e;.

Proof Consider the default theoD, W) such that
p
D={—
=

Wo=10

Supposer is a faithful modular translation from default logic §6. Faithfulness ofr
implies thattr(D, Wy) has only on&5¢-expansiorl” = ST ({p}). Therefore, in evergs-
model M for tr(D, W) it holds thatM = p. Now, giveniV; = {—p}, by the hypothesis of
modularity oftr it follows thattr (D, W1) = tr(D, Wy) U Wy. Consequentlytr(D, W) is

an S5-inconsistent theory, and hence it hasSig;-expansions, while on the other hand the
default theory(D, W7) has the default extensidrin({—p}), thus contradicting the hypothe-
sis of faithfulness ofr. |

The impossibility of a faithful modular translation from default theorieS3g originates
from the monotonicity of this particular logic with respect to objective formulae (see Section
5.1): inS54 only modal formulae can change their validity when new information is added.
Since no other ground logic shares this characteristic $8ith this negative behaviour seems
to be restricted to the logis5 only. In fact, for a wide class of ground logics we obtain the
following positive resuft (analogous to that obtained for McDermott and Doyle’s logics in
[34]).

Theorem 5.6 Given a modal logicS such thaK C S C S4F, there exists a faithful modular
translation from default logic to the ground nonmonotonic lagjic

Proof First, we show that ifS is a default extension for the default thed, W), then
ST(S) is anSg-expansion foemb(D, W) for any modal logicS such thak C S C S5. In
fact, it can be easily shown that

1. S C Cnk(emb(D,W)U{=Kyp | @€ L\S});
2. emb(D,W) C ST(S).

And sinceST(S) is stable and consistent, it follows from Proposition 3.5 that.S) is a
K-expansion foemb(D, W).

Then, we prove that i67(S) is anS4F g-expansion foemb(D, W), thenS is a default
extension fo( D, W). This is obtained by exploiting a correspondence between minimal ex-
pansions in McDermott and Doyle’s logics and ground expansions. In fact, from Proposition
5.3 it follows thatemb is a faithful translation fo64F ; pp. Moreover, logicS4F satisfies
the terminal cluster property, therefore by TheoremS3B;-expansions exactly correspond
to minimal S4F ,; p p-expansions. Now, the default extensions(fbr, W) correspond to the
objective parts of th&4F ,; p p-expansions foemb(D, W), and since every default exten-
sion is minimal (i.e. it cannot be the case that. S’ for any pair of default extensior S’),
it follows that theS4F -expansions foemb(D, W) are exactly th&4F , , p-expansions for
emb(D,W). And sinceemd is a faithful translation fo64F ,; p p, this proves that i67(.S)
is aS4F g-expansion foemb(D, W), thenS is a default extension fdiD, ).

2This theorem was independently proved in [35].
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Now, from Proposition 3.6, it follows that for every modal logicsuch thatk C S C
S4F, if ST(S) is anSg-expansion foemb(D, W), then itis arb4F -expansion foemb(D, W),
which implies thatS is a default extension ofD, W).

The two above results imply that, for each modal lo§isuch thatk C S C S4F, emb
is a faithful translation foS; sinceemb is modular, this concludes the proof. |

The next result concerns a class of logics compri&ibgd5¢, i.e. Konolige’smoderately
groundedversion of autoepistemic logic [14].

Theorem 5.7 For every logicS such thatKk C S C KD45, there exists a faithful modular
translation from prerequisite-free default theories to ground nonmonotonicSegic

Proof Theorem 2.2 in [10], states that the following modular translation
Y
T(D,W)=WU{r(d) | d e D}

( )= =K=Bi A... A=K=f, O~

is a faithful translation from prerequisite-free default theorieKat5,, pp. Besides, logic
KD45 satisfies the terminal cluster property, therefore by TheorenkKB45,-expansions
exactly correspond to minim&fD45,,pp-expansions. Following the proof of previous
theorem, in an analogous way we come to the conclusion thakih& .-expansions for
7(D, W) are exactly th&D45, p p-expansions for (D, W). Moreover, following the proof
given for the translatiommyd, it can easily be shown that translatiens such that, ifS' is a
default extension of the default theoty, W), then ST(S) is a Kg-expansion of theory
7(D,W). This proves that is a faithful translation of prerequisite-free default theories for
every logicS such thaK C S C KD45. |

5.4 Definitions

Finally, we addess an issue arising with definitions and outlined by the following example
[31]. LetI = {). Clearly, according to minimal knowledge X p can be concluded for every
propositional lettep. Now, if the sentencg = Kp is added tal, —Kp can no longer be
concluded, which is undesirable, becayse Kp is regarded as thexplicit definitionof ¢,
which should leave everything not concerningnchanged.

As admitted in [31] the example is “controversial”, and it requires a better understanding
of the intuition of this kind of formulae. In fact, sentences of the fayre= Kp can be
rephrased a<p O ¢)A(—Kp D —q), which can be seen as the conjunction of the translation
of two defaults: a justification-free and a prerequisite-free one. Therefore, it seems that one
can hardly consider the combination of the two as a definition in the classical sense. Sentences
of the formg = Kp should thus be treated as a special class of epistemic sentences whose
role still appears unclear. In fact, we believe that the unpleasant behaviour of ground logics
in the example above is not to be interpreted as a fault of the logic, but rather as a loss of
definitions as double implications. In practical environments this would simply mean that
definitions in the classical fashion are appropriate for objective sentences, while the role of
implications involving modal formulae is currently understood only for particular sentences,
such as those arising from the translation of defaults.
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6 Conclusions

Ground logics are defined following the intuition that the nonmonotonic assumptions made
by an agent should be done by minimizing the set of objective sentences known by the agent
itself. We have discussed the features of ground logics with regard to their use in knowledge
representation. In particular, we have investigated their semantics and both their computa-
tional and epistemological properties.

The results of this work can be given a twofold reading: as a complete semantical and
computational characterization of ground logics; as a generalization of the semantical ap-
proach to nonmonotonic modal logics based on the minimization of the knowledge of the
agent.

The main conclusion of the work is that ground logics are more powerful than McDer-
mott and Doyle’s logics. In fact, they allow the agent to derive statements about its lack of
knowledge, or ignorance, which cannot be obtained in McDermott and Doyle’s logics. This
additional expressivity is further demonstrated by a more complex reasoning required in the
general case. Moreover, ground logics can be regarded as an incremental refinement of Mc-
Dermott and Doyle’s logics, since they simply discard some of their models, while showing
a similar behaviour in many of their uses, such as for example the representation of defaults.

Finally, the ground logic fo65, which has no counterpart in the McDermott and Doyle’s
family, is interesting in its own. Such a logic, based on the idea of minimal knowledge [11],
has both an intuitive interpretation and has been successfully applied in the formalization of
several features of knowledge representation systems based on description logics [2].
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