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Abstract
In this paper we address ground logics, a family of nonmonotonic modal logics, and their usage in knowledge rep-
resentation. In such a setting non-modal sentences are used to represent the knowledge of an agent about the world,
while an epistemic operator provides the agent with autoepistemic or introspective knowledge. Ground logics are
based on the idea of characterizing the knowledge of the agent by allowing it to make nonmonotonic assumptions
only with respect to the knowledge about the world, i.e. expressed by nonmodal formulae. They are characterized
by a fix-point equation which determines the set of formulae derivable from the agent’s initial knowledge and which
can be applied to different normal modal systems to obtain a variety of nonmonotonic modal logics. In the paper
we address the semantical, computational and epistemological properties of ground logics. We provide a semantic
characterization of ground logics by defining a preference relation on possible-world models based on the minimiza-
tion of the knowledge expressed by nonmodal formulae. We analyze the computational complexity of reasoning in
ground logics, providing both a lower bound through a reduction from quantified boolean formulae and an upper
bound through an algorithm for computing logical entailment. We discuss the representational features of ground
logics, in particular defaults, and provide a thorough comparison with McDermott and Doyle’s logics.

Keywords:Knowledge representation, nonmonotonic reasoning, autoepistemic logics, computational complexity.

1 Introduction

The interplay between nonmonotonic reasoning and reasoning about knowledge and belief
has been recognized from the beginning of the research on commonsense reasoning. Since
then, modal epistemic logics have been studied with the aim of characterizing the reasoning
of an agent who is capable to perform introspective reasoning by making assumptions on
its own knowledge. Non-modal sentences represent the knowledge of the agent about the
world, while an epistemic operator provides the agent with auto-epistemic or introspective
knowledge.

The first formalizations of nonmonotonic reasoning based on the use of a modal operator
have been proposed in [22, 21, 24]. The knowledge of an agent is characterized in terms of
a fix-point equation which determines the set of formulae derivable from the agent’s initial
knowledge; such equation formalizes an agent having full introspective capabilities about its
own lack of knowledge. Ground logics [29, 33, 13, 36, 14] have later been defined by re-
stricting the introspection of the agent to nonmodal sentences. The term ground logic refers
to the idea of enabling the agent only to make assumptions that are grounded in the world’s
knowledge. The notion of groundedness has been introduced in [14] and has a rather intuitive
motivation: in fact, it corresponds to discarding any reasoning based on epistemic assump-
tions, which, for example, would enable the agent to conclude that something is true in the
world, by assuming to know it.

A different approach for defining nonmonotonic modal logics was taken in [11, 32, 15],
where the knowledge of the agent is characterized on a semantic basis, by means of a pref-
erence criterion among the models of the agent’s initial knowledge. Many of such criteria
follow the idea of selecting those models in which knowledge is minimal.
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Recently, there have been a number of attempts to reconcile fix-point and semantic char-
acterizations of modal nonmonotonic logics. In particular, Schwarz [30] proposed a seman-
tics for McDermott and Doyle’s logics. However, the notion of minimal knowledge under-
lying the above cited works is stronger than the one used to characterize McDermott and
Doyle’s logics. In particular, for the modal systemS5, McDermott and Doyle’s equation
does not provide a nonmonotonic logic, whileS5 models of minimal knowledge have a nat-
ural interpretation as maximal sets of possible worlds.

The goal of our work1 is to study the family of ground logics, from the semantical, com-
putational and epistemological viewpoint. With respect to the first issue, we present an ap-
propriate semantic characterization for ground logics, that has been advocated in [31]. In
particular, our proposal is an instance of the preference semantics introduced by Shoham
[32], where the preference criterion is given by a partial ordering over possible-world models
and generalizes the idea of minimal knowledge as proposed in [11, 32, 15]. We show the cor-
respondence between such semantic characterization and the fix-point definition of ground
logics for a subclass of normal modal logics, called cluster-decomposable logics, which in-
cludes the most studied cases in nonmonotonic modal logics.

As for the computational properties of ground logics, we show that reasoning in ground
logics isΠp

3-hard. Comparing this result with computational complexity analyses of Mc-
Dermott and Doyle’s logics ([8, 26, 20]), it turns out that ground logics are computationally
harder than the corresponding McDermott and Doyle’s logics. We prove thatΠp

3 is also an up-
per bound for the major ground nonmonotonic logics, namelyS5,S4F,SW5 (the same result
for KD45 was shown in [5]), by providing an algorithm for computing logical entailment. In
particular, we provide the computational characterization of the logic of minimal knowledge
initially proposed in [11].

Based on the above characterization we discuss some properties of ground logics, specif-
ically addressing their semantics, the complexity of reasoning, the treatment of defaults and
the use of definitions—which has been considered a problematic aspect of these logics [31].
This discussion and a comparison with McDermott and Doyle’s logics show that the idea
of minimizing knowledge in terms of the world knowledge of the agent gives rise to sev-
eral interesting features from the viewpoint of knowledge representation. In particular, the
restriction to grounded assumptions can be regarded as a a refinement of the introspection
capabilities provided by McDermott and Doyle’s logics. The non-triviality of this additional
selection is confirmed both by the semantical and by the computational analysis: on the one
hand we have a greater variety of ground nonmonotonic logics, on the other hand reasoning
is harder. However, we identify some special cases of practical interest, where the complexity
of reasoning is lower than in the general case. The differences between ground logics and
McDermott and Doyle’s logics are further highlighted by their ability to represent defaults.
While in the general case they have a similar behaviour they are somewhat complementary
for special forms of defaults: Ground logics naturally capture justification-free defaults, while
McDermott and Doyle’s logics allow for a simple formalization of prerequisite-free defaults.

The paper is organized as follows. In the next section we report on previous work on non-
monotonic modal logics, including a fix-point definition of ground logics. We then present
our semantic characterization in terms of a preference criterion on possible-world structures.
In the subsequent section we address the computational aspects of reasoning in such log-
ics. We finally discuss some interesting properties of ground logics and compare them with
McDermott and Doyle’s logics.

1This work is an abridged and extended version of [25, 4].
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2 Nonmonotonic modal logics

In this section we recall the relevant background on nonmonotonic modal logics and introduce
ground logics.

2.1 Notation

We useL to denote a fixed propositional language with propositional connectives∨,∧,¬,⊃,
and whose generic atoms are denoted asp, q, x, y, z (possibly with subscripts). Formulae
overL will be often calledobjective, because they do not contain occurrences of the modal
operator. A propositional valuation forL is a function that assigns to every atom ofL one of
the truth valuestrue, false. Propositional valuations are denoted with symbolsu, v, and can
be extended to propositional formulae in the usual way.

We denote withLK the modal extension ofL with the only modalityK (for knowledge).
Generic formulae overLK will be denoted asϕ,ψ. A propositional valuation overLK is a
function that assigns a truth value to every atom ofL, and to any formula of the formKϕ.
Also these valuations are denoted with symbolsu, v, and are extended to modal formulae as
follows: first substitute the modal subformulae having the outermost modal operators (i.e.,
the subformulae of the formKϕ not appearing in the scope of anyK) with their truth values,
then substitute the remaining propositional atoms with their truth values, and then compose
such values with the usual rules for propositional connectives.

For example, letϕ be the formulap ∨ ¬K(z ∧ ¬Ky), and letv assign the truth values
v(p) = false, v(K(z ∧ ¬Ky)) = true. Thenv(ϕ) = false. Observe that values assigned to
z, y andKy do not matter for propositional valuations of this formula.

Sometimes we use partial valuations, i.e., valuations assigning a truth value only to some
atoms and modal formulae. Given a formulaϕ and a partial valuationv, we denote withϕv

the formula obtained by substituting (as described above) inϕ those atoms and subformulae
defined inv with their truth values, and simplifying when possible. Obviously, whenv is a
(total) propositional valuation,ϕv is just a truth value.

A propositional valuationv overLK satisfies a formulaϕ if v(ϕ) = true. We say that a
formulaϕ overLK is propositionally consistentif there is a propositional valuationv over
LK such thatv satisfiesϕ. Observe that there are modal formulae, such asp ∧ ¬Kp, which
are propositionally consistent, although they are not consistent in any normal modal logic.
When we want to restrict a propositional valuationv overLK to propositional atoms only,
we writev|L.

We extend the above definitions to a set of formulaeT overLK in the usual way:v(T )
is the logical conjunction of the values assigned byv to each formula inT . Given a set
of formulaeT , we denote withCn(T ) the set of all propositional consequences ofT , i.e.,
formulae which are satisfied by every propositional valuation satisfyingT .

A Kripke modelM is defined as usual by a triple〈W,R, V 〉, whereW is a set (whose
elements are called worlds),R is a binary relation onW (called the accessibility relation on
M), andV is a function assigning a propositional valuation to each worldw ∈ W . WhenR
is W ×W (i.e.M is a universal model) we simply write〈W,V 〉.

We define the satisfiability relation between a modal formulaϕ and a worldw belonging
to the worlds of a Kripke modelM (denoted by〈M, w〉 |= ϕ) in the following way:

1. if ϕ is a propositional symbol, then〈M, w〉 |= ϕ iff V (w)(ϕ) = true;
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2. if ϕ = ¬ψ, then〈M, w〉 |= ϕ iff 〈M, w〉 |= ψ is not true;

3. if ϕ = ψ1 ∨ ψ2, then〈M, w〉 |= ϕ iff 〈M, w〉 |= ψ1 or 〈M, w〉 |= ψ1;

4. if ϕ = ψ1 ∧ ψ2, then〈M, w〉 |= ϕ iff 〈M, w〉 |= ψ1 and〈M, w〉 |= ψ1;

5. if ϕ = Kψ, then〈M, w〉 |= ϕ iff for every w′ such that(w,w′) ∈ R, 〈M, w′〉 |= ψ.

We say that a Kripke modelM satisfiesϕ (writtenM |= ϕ) iff for all w ∈M, 〈M, w〉 |= ϕ.
We denote withTh(M) the set of formulae ofLK that are satisfied inM, i.e.,Th(M) =

{ϕ ∈ LK | M |= ϕ}.
Given a modal logicS, we denote withCnS the consequence operator in (classical)

modal logicS. Given two modal logicsS1 andS2, by S1 ⊆ S2 we mean that all axioms of
logic S1 are also axioms (or theorems) in logicS2. E.g., it is known thatK ⊆ KD45 ⊆ S5.

In the following, we callS5-modela Kripke model whose accessibility relation is univer-
sal, i.e. each world is connected to all worlds of the model. The class of universal models
characterizes the logicS5 (see for example [20, Theorem 7.52]).

Throughout the paper, the set of formulaeI ⊆ LK stands for the initial knowledge of the
agent.

2.2 McDermott and Doyle’s logics

We start by recalling McDermott and Doyle’s equation which applies to the consequence
operator of a monotonic modal logic [22, 21]. The equation is a general scheme for defin-
ing expansions, namely possible sets of sentences representing the knowledge of an agent
reasoning introspectively from an initial body of knowledge.

Given any modal logicS, a consistent set of formulaeT is anSMDD-expansionfor a set
of initial knowledgeI ⊆ LK if T satisfies the following equation:

T = CnS(I ∪ {¬Kϕ | ϕ ∈ LK \ T}), (1)

The resulting consequence operator|=SMDD
is defined as the intersection of allSMDD-

expansions forI. Such operator is in general nonmonotonic: thus for every modal logicS,
the (nonmonotonic) modal logicSMDD is obtained by means of equation (1).

The McDermott and Doyle’s family of nonmonotonic modal logics has been extensively
studied [24, 19, 18, 20]. McDermott [21] analyzed the case ofS = S5 and found out that
the resulting logicS5MDD is monotonic, in the sense that the intersection of allS5MDD-
expansions of a theoryI is exactly the set of consequences ofI in monotonicS5. Schwarz
[28] proved the equivalence of Moore’s autoepistemic logic [24] with logicKD45MDD. He
also defined in [30] a preference semantics for McDermott and Doyle’s family, thus giving
a true possible-world semantic characterization of this class of modal nonmonotonic for-
malisms.

This result allows one to study properties of logicsSMDD by reasoning on possible-world
structures, which is often easier than analyzing infinite sets of modal formulae. From this
semantic viewpoint it is easy to show thatS5MDD is not the only degenerate (i.e. monotonic)
case for logicsSMDD. More specifically, there is a whole class of logics in the McDermott
and Doyle’s family degenerating to monotonicS5, precisely the logics characterized by a
class of Kripke models whose accessibility relation is symmetric, i.e. all logicsSMDD such
that every instance of the modal axiom schema B (¬K¬Kϕ ⊃ ϕ) is valid inS.
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2.3 Ground logics

Let us now turn the attention to the nonmonotonic modal logics that have been proposed on
the basis of semantic considerations and, more precisely, on the intuition that in the models
the knowledge attributed to the agent should be minimal. This principle was introduced in
[11] and it was enforced by minimizing the set of objective (i.e. nonmodal) sentences known
by the agent. This notion of minimal knowledge can be stated in terms of a property on the
models of a logical theoryI as follows:

Definition 2.1 (Minimal Knowledge) A modelM is a model of minimal knowledge for
I ⊆ LK in the logicS, if M is a model forI in S and for every modelM′ of I in S,
Th(M′) ∩ L 6⊂ Th(M) ∩ L.

We say that a logicS is a logic of minimal knowledge if for every theoryI ⊆ LK , every
model forI in S is a model of minimal knowledge forI in S.

The first modal logic of minimal knowledge was introduced by Halpern and Moses in
[11], and is based on a simple and “natural” preference semantics on modal logicS5 [32, 15],
which realizes the intuitive principle of minimization of the knowledge of the agent modeled.
Such a logic, initially proposed for modeling knowledge and ignorance of processes in a
distributed computer system, constitutes the basis of several nonmonotonic modal formalisms
proposed in the literature [15, 17, 6, 23].

In [15] a possible-world semantics for this logic is given as follows. Let the possible
worlds be the propositional valuations overL. Each modelM = 〈W,R, V 〉 is such that
R = W ×W andV (v) = v, i.e. V is the identity function. That is,M is fully characterized
by its set of worldsW . This amounts to considering universal (S5) models, i.e. connected
structures whose accessibility relation is reflexive, symmetric and transitive. A sentenceKϕ
is true in a worldw belonging toM if ϕ is true in all worldsw′ belonging toM. However,
not every universalS5-structure that satisfies the initial assumptionsI of the agent is taken
into consideration: the interesting models are the maximal ones, namely those which do not
have any proper superset satisfyingI. In other words, anS5-model is of minimal knowledge
if it satisfiesI and cannot be extended by adding a new possible world (i.e. another proposi-
tional valuation ofL). Therefore, minimization of knowledge is obtained by maximizing the
set of possible worlds, sometimes explained as maximizing ignorance. The nonmonotonic
character of this construction becomes evident when looking at the case in whichI is the
empty set. In this case one can conclude¬Kp for every atomp, but this conclusion does not
hold anymore whenp is added toI.

This idea has been further developed by Lifschitz in [15] and by Lin and Shoham in [17],
where a bimodal logic that combines minimization of knowledge with justified assumptions is
proposed However, the more recent version [16] of Lifschitz’s work [15] contains a technical
difference which makes the resulting logic a logic of “minimal belief”, that is no longer
captured by the above definition (see also [1] where such a logic is rephrased using a single
modal operator). In [31] the minimization of knowledge is formulated in terms of a preference
criterion on Kripke models which differs from the superset criterion presented above: notably,
the class of models taken into consideration is the class of models characterizing modal logic
S4F. However, this way of minimizing knowledge does not correspond to the minimization
of objective sentences, so this logic is not a logic of minimal knowledge in the sense of
Definition 2.1.

The idea of minimal knowledge can be naturally captured also by a fix-point equation
in the McDermott and Doyle’s style, by bounding introspection in the right-hand side of
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Equation (1) to objective formulae only. Given a normal modal logicS, a consistent set of
formulae T is agroundS-expansion(from now on,SG-expansion for short) for a setI ⊆ LK

if T satisfies the following equation:

T = CnS(I ∪ {¬Kϕ | ϕ ∈ L \ T}). (2)

This equation, which was first used by Konolige in the caseS = KD45 [14], defines a
family of logicsSG calledgroundnonmonotonic modal logics [29, 33, 13] (ground logics for
short).

Also in this case, the agent’s initial knowledgeI entails a formulaϕ (written I |=SG
ϕ)

if ϕ belongs to all theSG-expansions forI.
Every T satisfying fix-point Equation (2) satisfies also Equation (1), i.e., everySG-

expansion is also anSMDD-expansion [20, Theorem 11.30]—but not vice versa, as shown
by examples below. Therefore ground logics are more selective than McDermott and Doyle’s
logics, since they admit fewer expansions.

In fact, ground logics are logics of minimal knowledge in the sense of Definition 2.1, as
stated by the following proposition, which directly follows from a property of minimality of
SG-expansions [20, Theorem 11.36].

Proposition 2.2 Let T ⊆ LK be a theory andM be a model such thatTh(M) = T . If T is
anSG-expansion forI ⊆ LK , thenM is a model of minimal knowledge forI.

Therefore, ground logics are logics of minimal knowledge, while McDermott and Doyle’s
logics are not, as shown by the following example, where the agent is able to conclude that it
does not know a piece of world knowledge, when it lacks information about it.

Example 2.3 Let I be empty, i.e.I = ∅. SinceS5MDD degenerates toS5, everyS5-model
is a model forI in S5MDD, whereas only the (maximal)S5-model containing all possible
worlds is a (minimal-knowledge) model forI in S5G. Therefore, for everyϕ which is not
anS5 theorem, we haveI 6|=S5MDD ¬Kϕ while I |=S5G ¬Kϕ. This captures the intuition
that, without any premises, the agent can prove that it does not know any formula, butS5
theorems.

The different behaviour of ground logics and McDermott and Doyle’s logics is further illus-
trated by the following examples, that are related to the notion of groundedness.

Example 2.4 Let I = {Kp ⊃ p}. For every logicS containing the modal axiom schema 5,
we show that there are at least twoSMDD-expansions forI, namely,T1 = {p,Kp, . . .} and
T2 = {¬Kp, . . .}. In fact, if p ∈ T1 then:
(a)Kp ∈ T1 (by necessitation)
(b)¬Kp 6∈ T1 (by consistency ofT1)
(c)¬K¬Kp ∈ CnS(I ∪ {¬Kϕ|ϕ ∈ LK \ T1})
(d) Kp ∈ CnS(I ∪ {¬Kϕ|ϕ ∈ LK \ T1}) (from axiom 5, by contraposition)
(e)p ∈ CnS(I ∪ {¬Kϕ|ϕ ∈ LK \ T}) (from I),
henceT1 is a fix-point of (1). To verify thatT2 is a fixpoint, it is sufficient to observe that if
p 6∈ T2 then¬Kp ∈ T2, then premiseKp ⊃ p cannot be used to derivep. From the fact that
T1 is anSMDD-expansion,I 6|=SMDD ¬Kp whenS contains schema 5.

On the other hand, for every ground logicSG, T1 is not anSG-expansion forI, because
step (c) is not valid for Equation (2):¬Kp 6∈ L \ T . Thus,T2 is the onlySG-expansion and
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therefore, there is noSG-expansion in whichp is true, henceI |=SG ¬Kp. Observe that this
agrees with the intuition thatT2 is a minimal-knowledge expansion (it contains no objective
theorems but tautologies).

As pointed out in [14], in this case the reasoning that leads the agent to derivep in one
SMDD-expansion is ungrounded, since by assuming to knowp the agent derivesp itself. Also
in the next example, the agent, by making assumptions on its epistemic knowledge aboutp,
achievesp as a conclusion and thus fails to derive¬Kp.

Example 2.5 Let I = {¬K¬Kp ⊃ p}. For every logicSMDD we have that there exists
anSMDD-expansion forI containingp, i.e. I 6|=SMDD

¬Kp. On the other hand, for every
ground logicSG there is noSG-expansion forI containingp, henceI |=SG

¬Kp.

The above examples point out some differences between ground logics and McDermott
and Doyle’s logics, which motivate the study of ground logics. A more detailed comparison
between the two is deferred after addressing the preference semantics (in the next section)
and the computational complexity of reasoning in ground logics (in Section 4).

3 Minimal model semantics

We now present the semantic characterization for a relevant subset of ground nonmonotonic
modal logics, by providing a preference relation on Kripke models. The path we follow is
similar to the one used in [30, 20], to provide a semantic characterization for the McDermott
and Doyle’s family of logics. We first recall some definitions and previous results that are
used in the rest of the section. Then, we introduce a notion of ground-intended model, that
constitutes a first step towards the semantic characterization of theories formulated through
a fix-point equation. Subsequently, we focus on the preference relation, starting from the in-
tuition that the syntactic notion of minimization of objective sentences can be formulated in
terms of a partial ordering relation on Kripke models. We strengthen the preference relation
defined in [30], by weakening the preconditions for the comparison of Kripke models and thus
allowing more models to be compared. The preference relation is then used to characterize
ground-minimal models. The final step shows the correspondence between ground-intended
and ground-minimal models and therefore between the theory defined by the fix-point equa-
tion and the preferred possible-world models.

3.1 Preliminary definitions and previous results

In order to make the paper self-contained we recall some basic definitions and theorems
which are referred to in the following (see [20] for further details).

We start with the definition of stable theory and of its canonical model.

Definition 3.1 A theoryT ⊆ LK is stableif

1. T is closed under propositional consequence;

2. for everyϕ ∈ LK , if ϕ ∈ T thenKϕ ∈ T ;

3. for everyϕ ∈ LK , if ϕ 6∈ T then¬Kϕ ∈ T .



530 Ground Nonmonotonic Modal Logics

Let S ⊆ L. We denoteST (S) the (unique) stable theoryT such thatT ∩ L = Cn(S).

Definition 3.2 Thecanonical model for a stable theoryT is a Kripke modelM = 〈W,R, V 〉
such thatW consists of all propositional valuations in which all formulae fromT ∩L are true,
R is the universal relation onW (henceM is an S5-model) andV (w) = w for everyw ∈ W .

We recall the following properties of stable theories.

Proposition 3.3 [20, 8.10] LetM be anS5-model. ThenTh(M) is a stable theory.

Stable models are strictly related both to MDD-expansions and to ground expansions.

Proposition 3.4 If T ⊆ LK is anSMDD-expansion for someI ⊆ LK , thenT is a stable
theory.

Proposition 3.5 Let S be a modal logic such thatK ⊆ S ⊆ S5 and letI ⊆ LK . A theory
T ⊆ LK is anSG-expansion forI iff T is stable, consistent,I ⊆ T andT ∩ L ⊆ CnS(I ∪
{¬Kϕ | ϕ ∈ L \ T}).

Proposition 3.6 Given two modal logicsS ′ andS′′ such thatK ⊆ S ′ ⊆ S ′′ ⊆ S5, and given
a theoryI ⊆ LK , everyS ′G-expansion forI is also anS ′′G-expansion forI.

We also need the following property, which relates stable theories with Kripke models.

Proposition 3.7 [20, 8.16] LetT ⊆ LK be a stable theory. LetM be a Kripke model such
thatM |= (T ∩ L) ∪ {¬Kϕ | ϕ ∈ L \ T}. Then, for everyϕ ∈ LK , ϕ ∈ T iff M |= ϕ,
namelyT = Th(M).

The following definition characterizes the class of modal logics satisfying the terminal
cluster property. The importance of such logics, as stated by subsequent Proposition 3.9,
is that, for such logics, ground expansions coincide with those theories that are bothS5G-
expansions andSMDD-expansions.

Definition 3.8 A logic S characterized by a classC of models satisfies theterminal cluster
property if for everyM = 〈W,R, V 〉 ∈ C and for every worldw ∈ W there is a terminal
cluster forw, i.e. a maximal subsetY of W such thatY × Y ⊆ R and:

1. for everyw′ ∈ Y, (w, w′) ∈ R;

2. for everyw′ ∈ Y and everyw′′ ∈ W \ Y, (w′, w′′) 6∈ R.

Proposition 3.9 Given a modal logicS such thatK ⊆ S ⊆ S5, if S satisfies the terminal
cluster property then a theoryT is anSG-expansion for a theoryI ⊆ LK iff T is both an
SMDD-expansion forI and anS5G-expansion forI.

Notice that modal logicsKD45,S4F andSW5 satisfy the terminal cluster property.

Finally, to define a possible-world semantics based on a preference relation we need
the ability to compare Kripke models. For this purpose we introduce an operation between
Kripke models, calledconcatenation, which returns a Kripke model.
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Definition 3.10 Given Kripke modelsM1 = 〈W1, R1, V1〉, M2 = 〈W2, R2, V2〉, such that
W1 ∩W2 = ∅, the concatenation ofM1 andM2, written asM1¯M2, is the Kripke model
M = 〈W,R, V 〉 such thatW = W1 ∪W2, V = V1 ∪ V2 andR = R1 ∪ (W1 ×W2) ∪R2.

In addition, we identify the Kripke models which can be decomposed in a particular form,
namely in such a way that every model can be defined as the composition of two models, the
second one being a universalS5-model.

Definition 3.11 A classC of Kripke models iscluster-decomposableif every model inC is
of the formM1 ¯M2, whereM2 is a universal Kripke model, and for every such model
M1 ¯M2 and every universal modelM′

2 whose set of worlds is disjoint from that ofM1,
the modelM1 ¯M′

2 is in C.

It is easy to see that most of the modal logics studied in the nonmonotonic setting, in particular
the logicsS5,KD45, S4F andSW5, are all characterized by a cluster-decomposable class of
Kripke models.

3.2 Ground-intended models

Our first goal is to establish a correspondence between the solutions of the fix-point definition
of ground logics and their intended models. Therefore, we introduce the notion ofground-
intendedmodel, which follows from the properties a reasoning agent should satisfy, namely
the initial knowledgeI is satisfied and the introspection capability of the agent is restricted
to objective formulae only.

Definition 3.12 Given a normal modal logicS ⊆ S5 characterized by the classC of Kripke
models and a theoryI ⊆ LK , a modelM∈ C is groundC-intendedfor I iff:

1. M |= I;

2. for every modelN ∈ C, if N |= I ∪ {¬Kϕ | ϕ ∈ L \ Th(M)}, thenTh(M) =
Th(N ).

Then, we show that the notion of groundC-intended model exactly corresponds to that of
SG-expansion, ifC is the class of Kripke models characterizing modal logicS.

Theorem 3.13 Given a modal logicS such thatK ⊆ S ⊆ S5, let C be the class of Kripke
models characterizingS. An S5-modelM is a groundC-intended model forI ⊆ LK iff
Th(M) is anSG-expansion forI.

Proof We abbreviateTh(M) asT in the proof.
Only-if part.AssumeM is groundC-intended forI. SinceM is anS5-model, by Propo-

sition 3.3,T is stable; henceT ⊇ {¬Kϕ | ϕ ∈ L\T}. Besides, fromM |= I it follows that
I ⊆ T . SinceS ⊆ S5, it follows that

T ⊇ CnS(I ∪ {¬Kϕ | ϕ ∈ L \ T})

SinceM is groundC-intended, every model ofI ∪ {¬Kϕ | ϕ ∈ L \ T} in C is a model of
T , therefore

T ⊆ CnS(I ∪ {¬Kϕ | ϕ ∈ L \ T})
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Hence,T is anSG-expansion forI.
If part. Assume thatT = Th(M) is anSG-expansion forI. Then,T = CnS(I∪{¬Kϕ |

ϕ ∈ L \ T}). Consider a modelN ∈ C such thatN |= I ∪ {¬Kϕ | ϕ ∈ L \ T}; it follows
thatT ⊆ Th(N ). And if ϕ ∈ L\T , thenN |= ¬Kϕ, which implies thatN 6|= ϕ. Therefore
L \ T ⊆ {ϕ ∈ L | N 6|= ϕ}, from which we obtainTh(N ) ∩ L ⊆ T ∩ L. But T ⊆ Th(N ),
consequentlyT ∩ L = Th(N ) ∩ L, and sinceT is stable, from Proposition 3.7 we can
concludeT = Th(N ). ThereforeM is a groundC-intended model forI.

3.3 Possible-world semantics

The notion of groundC-intended model defined above provides a first preference semantics
for ground logics. However, the preference criterion is based on the syntactic notion of
comparing the theorems in two Kripke models. In the following we define a true possible-
world semantics for ground logics, i.e. we define a notion of minimality of Kripke models
which directly derives from the structure of the models.

First, we need to define a relation between Kripke models that differ only with respect to
the accessibility relation.

Definition 3.14 Given two Kripke modelsM1 = 〈W1, R1, V1〉 andM2 = 〈W2, R2, V2〉,
M2 ⊃G M1 if W1 = W2, V1 = V2 andR2 ⊃ R1.

Using the⊃G relation, we are now able to define a partial ordering relation on Kripke
models.

Definition 3.15 Let M1, M2 be two Kripke models. ThenM2 <G M1 if there exists a
Kripke modelM such that:

1. M2 ⊃G M¯M1;

2. there exists a worldw ∈ W2 \W1 such that for each worldw′ ∈ W1, V2(w′) 6= V2(w).

The above notion of partial ordering among Kripke models can informally be explained
as follows:M2 is preferred toM1 if M2 is built starting fromM1, by adding in front of it at
least one world whose corresponding interpretation is different from those contained inM1,
in such a way that each new world must be connected to all the worlds belonging toM1.
Moreover, connections between worlds belonging toM1 and the new worlds are allowed.

Finally, minimal models are characterized using the<G ordering, as a special case of
Shoham’s preference semantics [32].

Definition 3.16 Given a normal modal logicS characterized by the class of Kripke models
C, a modelM∈ C is agroundC-minimal modelfor I if M |= I and for every modelM′ ∈ C
such thatM′ |= I,M′ 6<G M.

The preference criterion obtained through the relation<G can be seen as a stronger ver-
sion of the minimality criterion found by Schwarz for McDermott and Doyle’s logics [30].
The idea is the following: roughly speaking, Schwarz compares theS5-modelM with all
S-modelsN such thatN = M′ ¯M, thereforeN is such that

1. every world ofM′ is connected to every world inM;
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2. no world inM is connected to any world inM′.

The difference between Schwarz’s ordering relation and<G is that in the ground case the
second condition does not hold, therefore connections between worlds inM′ and worlds in
M are allowed (this is the intuitive meaning ofN ⊃G M′ ¯M).

Therefore, when checking for the minimality of a modelM, the ground criterion allows
more models of the theory to be compared withM. Hence, every model which is minimal
in the class of modelsC according to the ground criterion, is minimal inC according to
Schwarz’s criterion as well, while the converse in general does not hold.

In the rest of this section we show the correspondence between the notion of ground ex-
pansion and the semantic notion of ground-minimal model, which in turn establishes a pref-
erence semantics for ground nonmonotonic modal logics. To prove such a correspondence,
we need the following lemmata.

Lemma 3.17 LetN be a Kripke model andM be anS5-model such that:

1. N |= {¬Kϕ | ϕ ∈ L \ Th(M)};
2. Th(N ) ∩ L = Th(M) ∩ L.

Then,Th(N ) = Th(M).

Proof The proof easily follows from the fact thatTh(M) is a stable theory and from Propo-
sition 3.7.

Lemma 3.18 LetM′, M′′ beS5-models. IfTh(M′) ∩ L = Th(M′′) ∩ L thenTh(N ¯
M′) = Th(N ¯M′′) for any Kripke modelN .

Proof SinceM′ andM′′ areS5-models, it follows thatTh(M′) andTh(M′′) are stable
theories, henceTh(M′) ∩ L = Th(M′′) ∩ L impliesTh(M′) = Th(M′′), which in turn
impliesTh(N ¯M′) = Th(N ¯M′′) (see [20, Lemma 9.19]).

Finally, we state the equivalence between the syntactic and semantic characterizations de-
fined above. This equivalence is proved under the restriction of cluster-decomposable classes
of Kripke models.

Theorem 3.19 Given a normal modal logicS, characterized by a cluster-decomposable class
of Kripke modelsC, a theoryI ⊆ LK and a stable theoryT , letM be the canonical model
for T . ThenT is anSG-expansion forI if and only ifM is a groundC-minimal model forI.

Proof The proof makes use of the intermediate semantic notion of ground-intended model
previously defined. From Theorem 3.13 it follows that theoryT is anSG-expansion forI
if and only if M is a groundC-intended model forI, hence we only have to show that the
modelM is groundC-intended forI if and only ifM is a groundC-minimal model forI.

Only-if part. AssumeM = 〈W,R, V 〉 is groundC-intended forI. ThenM |= I and
for anyM′ ∈ C, if M′ |= I ∪ {¬Kϕ | ϕ ∈ L \ Th(M)}, thenTh(M) = Th(M′).
Now, supposeM is not groundC-minimal for I. Then, there exists a Kripke modelN =
〈WN , RN , VN 〉 ∈ C such thatN |= I andN <G M. This last fact impliesN ⊃G N ′ ¯M
for someN ′, i.e. every world ofN is connected to every world ofM, consequentlyN |=
{¬Kϕ | ϕ ∈ L \ Th(M)}.
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SinceM is groundC-intended forI andN |= I, from the above fact it follows that
Th(M) = Th(N ), hence

Th(M) ∩ L = Th(N ) ∩ L (3)

On the other hand, sinceN <G M, Condition 2 of Def. 3.15 implies that there exists a
world w ∈ WN such thatVN (w) 6= V (w′) for eachw′ ∈ W . Now, if VN (w) satisfied every
formula in the setTh(M) ∩ L, then such a valuation would belong toM, becauseM is the
canonical model forT = Th(M). ThereforeVN (w) does not satisfy at least one formula
of the setTh(M) ∩ L, consequentlyTh(M) ∩ L 6= Th(N ) ∩ L, which contradicts (3).
Therefore,M must be a groundC-minimal model forI, which proves the first part of the
theorem.

If part. AssumeM = 〈W,R, V 〉 is groundC-minimal for I, i.e. M |= I and for any
M′ ∈ C, if M′ |= I, thenM′ 6<G M. Then, supposeM is not groundC-intended forI, i.e.
there exists a modelN = 〈WN , RN , VN 〉 ∈ C such thatN |= I ∪{¬Kϕ | ϕ ∈ L\Th(M)}
andTh(M) 6= Th(N ). SinceN |= {¬Kϕ | ϕ ∈ L \ Th(M)}, it follows that if ϕ ∈
Th(N )∩L, thenϕ ∈ Th(M)∩L (otherwiseN |= ¬Kϕ), henceTh(N )∩L ⊆ Th(M)∩L.
Now, it cannot be the case thatTh(N ) ∩ L = Th(M) ∩ L, otherwise by Lemma 3.17 we
would concludeTh(N ) = Th(M), which contradicts the hypothesis. Therefore,

Th(N ) ∩ L ⊂ Th(M) ∩ L (4)

Now, the classC is cluster-decomposable, therefore there exists a modelN ′ and anS5-
modelM′ such thatN = N ′ ¯M′. SinceN |= I ∪ {¬Kϕ | ϕ ∈ L \ Th(M)} and
N = N ′ ¯M′, it follows that

M′ |= I ∪ {¬Kϕ | ϕ ∈ L \ Th(M)} (5)

This in turn impliesTh(M′)∩L ⊆ Th(M)∩L, otherwise there would exist a formulaϕ ∈ L
such thatϕ ∈ Th(M′) andϕ 6∈ Th(M). Now, sinceM′ is anS5-model, by Proposition 3.3
it follows thatTh(M′) is a stable theory. Hence¬Kϕ 6∈ Th(M′), thus contradicting (5).

Now, there are two possible cases:

1. Th(M′) ∩ L ⊂ Th(M) ∩ L. In this caseTh(M′) is a stable theory which has a
smaller objective part thanT = Th(M). Moreover, (5) implies thatTh(M′) contains
I, thus contradicting the hypothesis thatT is anS5G-expansion forI (see Proposition
2.2);

2. Th(M′)∩L = Th(M)∩L. This, together with (4) impliesTh(N ′)∩L ⊂ Th(M)∩L,
which in turn implies that the modelN ′ = 〈V ′

N , R′N ,W ′
N 〉 contains at least one world

w such thatV ′
N (w) 6= V (w′) for each worldw′ in M. Consequently, the model

M′′ = N ′ ¯M is such thatM′′ <G M. Moreover, sinceC is cluster-decomposable,
it follows thatM′′ ∈ C. Finally, Lemma 3.18 implies thatTh(N ) = Th(M′′), hence
M′′ |= I. From the three above facts it follows thatM is not a groundC-minimal
model forI, thus contradicting the hypothesis.

Therefore,M must be a groundC-intended model forI, which proves the second part of the
theorem.

The above theorem provides a semantic characterization for a subset of the family of
ground nonmonotonic logicsSG, since it relates the solutions of Equation (2) to ground-
minimal models. In particular, the correspondence is shown to hold for the ground logics
built from modal logicsS5,KD45, S4F, SW5.
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4 Reasoning

After providing a semantic account of ground logics, we now address reasoning in these
logics. Since we are studying ground logics as a knowledge representation formalism, we
focus our analysis on logical entailment|=SG

, which is usually considered the basis for the
realization of the deductive services of a knowledge-based system.

Moreover, from the knowledge representation perspective it is interesting to look at the
computational adequacy of reasoning procedures. This requires not only to provide algo-
rithms for computing entailment in ground logics, but also to characterize its computational
complexity. To this end, we briefly recall some basic notions from complexity theory (see
[12]). We denote as P the class of problems solvable in polynomial time by a deterministic
Turing machine. The class NP contains all problems that can be solved by a nondeterminis-
tic Turing machine in polynomial time. The class coNP comprises all problems that are the
complement of a problem in NP. A problemP1 is said to be NP-complete if it is in NP and
for every problemP2 in NP, there is a polynomial-time reduction fromP2 to P1. If there
is a polynomial-time reduction from an NP-complete problemP2 to a problemP1, thenP1

is said to be NP-hard. With a slight abuse of terminology, we call NP-algorithm a nonde-
terministic algorithm that runs in polynomial time. PA (NPA) is the class of problems that
are solved in polynomial time by deterministic (nondeterministic) Turing machines using an
oracle forA (i.e. that solves in constant time any problem inA). Finally, the classesΣp

k, Πp
k

and∆p
k of the polynomial hierarchy (PH) are defined byΣp

0 = Πp
0 = ∆p

0 = P, and fork ≥ 0,
Σp

k+1 = NPΣp
k , Πp

k+1 = coΣp
k+1 and∆p

k+1 = PΣp
k .

The complexity analysis of logical entailment in ground logics is developed as follows.
We first provide lower bounds: we prove that entailment inS5G is Πp

3-hard, and extend this
result to the other ground logics. Secondly, we provide upper bounds: we give a finitary char-
acterization ofSMDD-expansions, then we show that verifying that anSMDD-expansion is
not ground is a problem inΣp

2 for logics S5, KD45,S4F, SW5, and finally we give a non-
deterministic algorithm for non-entailment which uses the above check as an oracle. This
proves that non-entailment is inΣp

3, hence entailment isΠp
3-complete for ground logics

S5G, KD45G, S4FG, SW5G, thus extending the results presented in [5] forKD45G.

4.1 Lower bounds

Below we provide lower bounds for logical entailment in ground logics by reducing theΣp
3-

complete problem of deciding validity of∃∀∃-quantified boolean formulae (∃∀∃-QBF) to
non-entailment. We first address the case ofS5G, then extend the result toKD45G, S4FG, SW5G.
Let ϕ be a propositional formula overL = {x1, . . . , xn, y1, . . . , ym, z1, . . . , zl}, and letF
be the∃∀∃-QBF

∃x1 . . . ∃xn∀y1 . . . ∀ym∃z1 . . . ∃zl.ϕ

It is well known that deciding validity of such formulae is aΣp
3-complete problem [12].

Theorem 4.1 Entailment inS5G is Πp
3-hard.

Proof Let p be a new atom which we add toL. We show thatF is valid if and only if
I 6|=S5G ¬Kp, whereI contains the three formulae

I1 =
n∧

i=1

(Kxi ∨K¬xi) (6)
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I2 = (Kp ⊃
m∧

j=1

yj) (7)

I3 = (Kp ∨ ¬ψ) (8)

and ψ is the formula (overLK) obtained by replacing eachyj with Kyj in ϕ. Clearly,
I 6|=S5G

¬Kp iff there exists anS5G-expansionT for I such thatp ∈ T . Moreover, since
I2 ∈ T , such aT must also containy1, . . . , ym. Finally, sinceI1 ∈ T , for eachi = 1..n
eitherxi ∈ T or¬xi ∈ T . HenceI 6|=S5G ¬Kp iff there exists anS5G-expansion containing
p, y1, . . . , ym, and fori = 1..n exactly one betweenxi,¬xi.

From the definition of validity for QBF,F is valid iff there exists a (partial) propositional
valuationv to the atomsx1, . . . , xn such that the formula

Fv = ∀y1 . . . ∀ym∃z1 . . . ∃zl.ϕv

is valid. Define the stable expansionT (v) = ST ({xi | v(xi) = true} ∪ {¬xi | v(xi) =
false} ∪ {p, y1, . . . , ym}). Clearly,I ⊆ T (v).

We show thatF is valid iff there exists av such thatT (v) is anS5G-expansion forI.
Only-if part.First, supposeF is valid, i.e., there exists av such thatFv is valid. We show

thatT (v) is ground forI, i.e. there does not exist a stable theoryS containingI such that
S ∩L ⊂ T (v)∩L. In fact, suppose such a theoryS exists. Then, sinceS containsI1, either
xi or ¬xi is in S, for i = 1..n. SinceS ∩ L ⊂ T (v) ∩ L, for eachi = 1..n, xi ∈ S iff
xi ∈ T (v) and¬xi ∈ S iff ¬xi ∈ T (v). Moreover,p 6∈ S, otherwise it would follow that
y1, . . . , ym ∈ S, thereforeS ∩ L 6⊂ T (v) ∩ L, contradicting the hypothesis.

SinceS is stable,p 6∈ S implies¬Kp ∈ S hence¬ψ ∈ S. Since for eachi = 1..n,
xi ∈ S iff v(xi) = true and¬xi ∈ S iff v(xi) = false, also(¬ψ)v ∈ S. Let u be the partial
valuation over{y1, . . . , ym}K such that:

• u(yi) = u(Kyj) = true iff yi ∈ S (hence iffKyj ∈ S by stability ofS);

• u(yi) = u(Kyj) = false iff yi 6∈ S (in this case,¬Kyj ∈ S).

Since(¬ψ)v ∈ S, also((¬ψ)v)u ∈ S. Now observe that((¬ψ)v)u is an objective formula
over{z1, . . . , zl}. Moreover, sinceT (v) contains no theorems over{z1, . . . , zl} but tautolo-
gies, alsoS does not, therefore((¬ψ)v)u is a tautology; this implies that the formula(ψv)u

is unsatisfiable.
By hypothesis,Fv is valid, hence considering the above defined valuationu over{y1, . . . , ym}K ,

formula∃z1 . . . ∃zl(ϕv)u is valid—that is, the propositional formula(ϕv)u over{z1, . . . , zl}
is satisfiable. Now observe thatu assigns the same truth values toyj andKyj , for j = 1..m,
hence(ϕv)u and(ψv)u are the same formula, which should be both satisfiable and unsatisfi-
able. Therefore, such anS does not exists, andT (v) is anS5G-expansion.

If part. SupposeF is not valid. Then, for every valuationv over x1, . . . xn, Fv is not
valid, hence formula¬Fv is valid, where¬Fv can be rewritten as

∃y1 . . . ∃ym∀z1 . . . ∀zl.¬ϕv

Hence, for everyv there exists an assignmentu to y1, . . . , ym such that∀z1 . . . ∀zl.(¬ϕv)u

is valid—that is, the propositional formula(¬ϕv)u over{z1, . . . , zl} is a tautology.
We show thatT (v) is not anS5G-expansion forI. Define the stable expansionS(v) =

ST ({xi | v(xi) = true} ∪ {¬xi | v(xi) = false} ∪ {yi | u(yi) = true}). Observe that
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S(v) ∩ L ⊂ T (v) ∩ L. Hence this part is proven ifI ⊆ S(v). In fact,I1 ∈ S(v), and since
p 6∈ S(v), then¬Kp ∈ S(v), thenI2 ∈ S(v).

Extend the partial valuationu in this way:

• u(Kyj) = true iff yi ∈ S(v) (hence iffu(yi) = true);

• u(Kyj) = false iff ¬Kyj ∈ S(v) (in this case,u(yi) = false).

Now observe that((¬ψ)v)u and(¬ϕv)u are the same formula, hence((¬ψ)v)u is a tautology,
hence((¬ψ)v)u ∈ S(v). But from the definition ofv andu, ((¬ψ)v)u ∈ S(v) iff ¬ψ ∈ S(v).
Therefore, alsoI3 ∈ S(v). We conclude that for everyv, T (v) is not anS5G-expansion for
I, which concludes the proof.

We now extend the above result to the other ground logics.

Theorem 4.2 Given a modal logicS such thatK ⊆ S ⊆ S5 andS satisfies the terminal
cluster property, entailment inSG is Πp

3-hard.

Proof For each logicS, the reduction follows the one given forS5G.
Given an∃∀∃-QBF formulaF = ∃x1 . . . ∃xn∀y1 . . . ∀ym∃z1 . . . ∃zl.ϕ, we defineI ′ as

the set containingI1, I2, I3, defined as in (6), (7), (8) respectively, and the formulae

I4 =
n∧

i=1

Kxi ⊃ xi

I5 =
n∧

i=1

K¬xi ⊃ ¬xi

I6 = Kp ⊃ p

I7 = ¬K¬Kp ⊃ Kp

Then we show thatF is valid iff I ′ 6|=SG
¬Kp.

If part. By contraposition: ifF is not valid, from the previous theorem noS5G-expansion
for I = {I1, I2, I3} containsp. SinceI4, I5, I6 andI7 are theorems inS5, it follows thatI ′

is S5-equivalent toI, in the sense thatI ′ andI are satisfied by the same set ofS5 models.
Consequently, from Proposition 3.6,SG-expansions forI ′ are a subset of the set ofS5G-
expansions forI, and thereforeI ′ |=SG

¬Kp.
Only-if part. SupposeF is valid. Define bothv (a particular propositional valuation to

x1, . . . , xn) andT (v) as in the proof of the previous theorem. LetM = 〈W,R, V 〉 be the
canonical model forT (v) andC be the class of models characterizing logicS, and suppose
T (v) is not anSG-expansion forI ′. Then, from Theorem 3.13,M is not groundC-intended
for I ′, which implies that there exists a modelN in C such that

1. N |= I ′ ∪ {¬Kϕ|ϕ ∈ L \ Th(M)};
2. Th(N ) 6= Th(M).

we divide the rest of the proof in four parts:

(A) First of all, we show that fori = 1, . . . , n if M |= xi thenN |= xi. In fact,M |= xi

impliesM 6|= ¬xi implies (from Condition 1.)N |= ¬K¬xi. SinceN |= I1, alsoN |=
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Kxi, and fromN |= I4 one concludes thatN |= xi. An analogous proof shows that for
i = 1, . . . , n if M |= ¬xi thenN |= ¬xi.

(B) Given any worldw ofN , let Y be the terminal cluster forw mentioned in Definition 3.8,
and letTh(Y ) denote the formulae which are true in all worlds ofY . We prove thatTh(Y )∩
L = Th(M) ∩ L.

In fact,Th(Y ) ∩ L ⊆ Th(M) ∩ L can be proven by contradiction: suppose there exists
a formulaϕ such thatϕ ∈ Th(Y ) ∩ L andϕ 6∈ Th(M) ∩ L; then from Condition 2. of
Definition 3.8Kϕ ∈ Th(Y ), but from Condition 1. aboveN |= ¬Kϕ, and again from
Condition 2. of Definition 3.8 it follows¬Kϕ ∈ Th(Y ), which is a contradiction. Then
Th(Y ) ∩ L 6⊂ Th(M) ∩ L follows from the fact thatT (v) = Th(M) is anS5G-expansion
for I, hence there can not exist anS5-model〈Y, Y × Y, VN 〉 with fewer objective theorems.
Therefore,Th(Y ) ∩ L = Th(M) ∩ L. Observe that this together with the fact thatY is a
terminal cluster implies thatTh(Y ) = Th(M).

(C) Then we show thatN |= p:
Sincep ∈ Th(M)∩L, alsop ∈ Th(Y )∩L, and sinceY is a terminal cluster alsoKp ∈

Th(Y ). Hence〈N , w〉 |= ¬K¬Kp. Sincew is arbitrary, we conclude thatN |= ¬K¬Kp.
Now from I7 andI6 we derive thatN |= p.

(D) Finally, we prove thatN |= p contradicts Condition 2. above:
In fact, fromN |= I2 and part (A) above it follows thatTh(M) ∩ L ⊆ Th(N ) ∩ L.

Now Th(M) ∩ L 6⊂ Th(N ) ∩ L can proved by contradiction: ifϕ ∈ Th(N ) ∩ L and
ϕ 6∈ Th(M)∩L, then from necessitationKϕ ∈ Th(N ), but from Condition 1. aboveN |=
¬Kϕ, which is a contradiction. Combining these two facts yieldsTh(M)∩L = Th(N )∩L.

Therefore, each valuation of a world inN coincides with some valuation of a world in
M. Moreover, from part (B) every worldw inN is connected to a clusterY having the same
theorems asM. These two facts implyTh(N ) = Th(M) thus contradicting Condition 2.

From (A)–(D),T (v) is aSG-expansion forI ′, consequentlyI ′ 6|=SG ¬Kp.

The above theorems show that in many cases reasoning in ground logics is harder than in
McDermott and Doyle’s logics. In the following subsection we show that this fact is due to
an additional step which makes a selection overSMDD-expansions.

4.2 Upper bounds

Now we consider the upper bounds of complexity of reasoning in ground logics. Clearly,
proving I 6|=SG

ϕ amounts to exhibiting anSG-expansion forI which does not containϕ.
Hence, the first point is to give a finitary characterization of ground expansions. This is done
by restricting the attention to all the subformulae ofI. Let I ⊆ LK . We denote withMA(I)
the following set of formulae:MA(I) = {ϕ | Kϕ is a subformula of a formula from
I}. Moreover, we say that a modal formulaϕ is an I-formula if it is a formula built from
propositional variables ofL and from modal atoms of the formKψ, whereψ ∈ MA(I).

Then, following [20], we introduce the notion of introspection-consistency on pairs whose
elements are subsets ofMA(I).

Definition 4.3 Let I ⊆ LK . A pair (Φ, Ψ) of subsets ofMA(I) is called introspection-
consistentwith I iff the following conditions hold:
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1. Φ ∪Ψ = MA(I) andΦ ∩Ψ = ∅ (i.e. (Φ, Ψ) is a partition ofMA(I));

2. I ∪Ψ ∪ {¬Kϕ | ϕ ∈ Φ} ∪ {Kϕ | ϕ ∈ Ψ} is propositionally consistent;

3. for eachϕ ∈ Φ, ϕ 6∈ Cn(I ∪Ψ ∪ {¬Kϕ | ϕ ∈ Φ} ∪ {Kϕ | ϕ ∈ Ψ}).

Note that since only propositional consistency and non-implication are involved in the
above definition, introspection consistency can be decided with a polynomial number of calls
to an NP-oracle. Note also that a partition ofMA(I) has polynomial size wrtI.

The idea is to identify particular introspection-consistent partitions, that are appropriate to
give a finite characterization of ground expansions. In order to study the relationship between
introspection-consistent partitions and ground logics, we need to address the relationship
between partitions and with stable theories. To this end, we recall the following definitions.

Definition 4.4 Let I ⊆ LK and let the partition(Φ, Ψ) of MA(I) be introspection-consistent
with I. Then:

1. we callMI(Φ, Ψ) the set of all the propositional valuationsv of LK satisfyingI ∪Ψ∪
{¬Kϕ | ϕ ∈ Φ} ∪ {Kϕ | ϕ ∈ Ψ});

2. for a valuationv ∈ MI(Φ, Ψ) we callU(Φ,Ψ)(v) a propositional valuation ofL such
thatU(Φ, Ψ)(v) = v|L;

3. anS5-modelMI(Φ, Ψ) = 〈MI(Φ, Ψ), U(Φ, Ψ)〉 is calledcanonicalfor the partition
(Φ,Ψ);

4. the theoryTh(MI(Φ, Ψ)) is calledcanonicalfor (Φ, Ψ) and is denoted byTI(Φ, Ψ).

Proposition 4.5 [20, 9.36] LetI ⊆ LK and letT ⊆ LK be a stable and consistent theory
containingI. Then the partition(MA(I) \ T, MA(I) ∩ T ) is introspection-consistent with
I.

Proposition 4.6 [20, 9.39] LetI ⊆ LK . If a partition (Φ,Ψ) of MA(I) is introspection-
consistent withI, then:

1. the theoryTI(Φ,Ψ) is stable;

2. for everyI-formula ϕ and for every worldv ∈ MI(Φ,Ψ), 〈MI(Φ, Ψ), v〉 |= ϕ iff
v(ϕ) = true;

3. I ∪Ψ ∪ {¬Kϕ | ϕ ∈ Φ} ∪ {Kϕ | ϕ ∈ Ψ} ⊆ TI(Φ, Ψ);

4. Φ = MA(I) \ TI(Φ, Ψ) andΨ = MA(I) ∩ TI(Φ, Ψ);

5. TI(Φ,Ψ) = ST (Cn(I ∪Ψ ∪ {¬Kϕ | ϕ ∈ Φ} ∪ {Kϕ | ϕ ∈ Ψ}) ∩ L).

We can now provide a finite characterization of ground expansions in terms of particular
introspection-consistent partitions.

Theorem 4.7 Let S be a modal logic such thatK ⊆ S ⊆ S5. Let T be anSG-expansion of
a theoryI ⊆ LK . Let Φ = MA(I) \ T , Ψ = MA(I) ∩ T . Then the partition(Φ, Ψ) is
introspection-consistent withI andT = TI(Φ,Ψ).
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Proof SinceT is stable and consistent (Proposition 3.5), from Proposition 4.5 it follows that
(Φ,Ψ) is introspection-consistent withI. Therefore we have to show thatT = TI(Φ,Ψ).
SinceTI(Φ, Ψ) is also stable, it is sufficient to show thatT ∩ L = TI(Φ, Ψ) ∩ L.

First, consider a formulaψ ∈ TI(Φ, Ψ). Then,ψ ∈ Cn(I∪Ψ∪{¬Kϕ | ϕ ∈ Φ}∪{Kϕ |
ϕ ∈ Ψ}). By hypothesis,I ⊆ T . By definition ofΦ, if ϕ ∈ Φ thenϕ 6∈ T , consequently,
by stability of T , ¬Kϕ ∈ T . Analogously, by definition ofΨ, if ϕ ∈ Ψ thenϕ ∈ T ,
consequently, by stability ofT , Kϕ ∈ T . ThereforeT ⊇ I ∪Ψ ∪ {¬Kϕ | ϕ ∈ Φ} ∪ {Kϕ |
ϕ ∈ Ψ}, and sinceT is stable,T ⊇ Cn(I ∪Ψ ∪ {¬Kϕ | ϕ ∈ Φ} ∪ {Kϕ | ϕ ∈ Ψ}), hence
ψ ∈ T .

Now supposeψ ∈ T ∩ L. Then,ψ ∈ CnS5(I ∪ {¬Kϕ | ϕ ∈ L \ T}). From Point 3. in
the previous Proposition 4.6,I ⊆ TI(Φ,Ψ). Moreover, from the first part of this proof – by
contraposition – ifϕ ∈ L\T thenϕ 6∈ TI(Φ, Ψ), and sinceTI(Φ, Ψ) is stable (Point 1. in the
previous Proposition 4.6)¬Kϕ ∈ TI(Φ,Ψ). Therefore,{¬Kϕ | ϕ ∈ L \ T} ⊆ TI(Φ,Ψ).
SinceTI(Φ, Ψ) is closed under consequence inS5 [20, Theorem 8.4],ψ ∈ TI(Φ, Ψ).

We point out that this result provides for a finite characterization of expansions forevery
ground logic. In this sense it strengthens an analogous result (see Prop. 4.9) obtained for
MDD logics, which does not include e.g. theS5 case.

We can finally turn the correspondence between introspection-consistent partitions of
MA(I) and ground expansions into an actual characterization of the expansions of the ground
logic S5, thus obtaining a finitary characterization forS5G-expansions.

Theorem 4.8 Let I ⊆ LK . Let (Φ, Ψ) be a partition ofMA(I). Then,TI(Φ, Ψ) is an
S5G-expansion forI iff (Φ, Ψ) is introspection-consistent withI and there does not ex-
ist a partition(Φ′, Ψ′) of MA(I) such that(Φ′, Ψ′) is introspection-consistent withI and
TI(Φ′, Ψ′) ∩ L ⊂ TI(Φ,Ψ) ∩ L.

Proof Only-if part. SupposeTI(Φ, Ψ) is anS5G-expansion forI. Then, from Theorem
4.7 it follows that(Φ, Ψ) is introspection-consistent withI. Now, suppose there exists a
partition (Φ′, Ψ′) which is introspection-consistent withI and such thatTI(Φ′,Ψ′) ∩ L ⊂
TI(Φ,Ψ) ∩ L. The existence of such a theoryTI(Φ′, Ψ′) contradicts Proposition 3.9, since
by hypothesisTI(Φ,Ψ) is anS5G-expansion forI.

If part. Suppose(Φ, Ψ) is introspection-consistent withI and there does not exist a parti-
tion (Φ′,Ψ′) of MA(I) such that(Φ′,Ψ′) is introspection-consistent withI andTI(Φ′, Ψ′)∩
L ⊂ TI(Φ, Ψ) ∩ L. Now, suppose thatTI(Φ,Ψ) is not anS5G-expansion forI. Therefore,
there exists a stable theoryT ′ containingI and such thatT ′∩L ⊂ T ∩L. By Proposition 4.5
the partition(Φ′, Ψ′) = (MA(I)\T ′,MA(I)∩T ′) is introspection-consistent withI. More-
over, Proposition 4.6 impliesTI(Φ′, Ψ′) = T ′, consequentlyTI(Φ′,Ψ′)∩L ⊂ TI(Φ,Ψ)∩L,
which contradicts the hypothesis.

The above theorem gives a (nondeterministic) method to show that, given an introspection-
consistent partition(Φ, Ψ) of MA(I), TI(Φ, Ψ) is notanS5G-expansion forI: guess another
partition (Φ′, Ψ′) of MA(I), and verify that(Φ′, Ψ′) is introspection-consistent withI and
TI(Φ′, Ψ′) ∩ L ⊂ TI(Φ, Ψ) ∩ L. It can be shown [3] that both checks can be done with a
polynomial (wrt the size ofI) number of calls to an NP-oracle, hence the problem is inΣp

2.
We now want to extend this method to other ground logics. To this end, we exploit the

following property.
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Proposition 4.9 [20, 9.41] LetS be a modal logic such thatK ⊆ S ⊆ KD45 or K ⊆ S ⊆
SW5. Let I ⊆ LK . If a theoryT ⊆ LK is anSMDD-expansion forI, then(Φ,Ψ), where
Φ = MA(I)\T andΨ = MA(I)∩T , is introspection-consistent withI andT = TI(Φ,Ψ).

We call EXPANSION(S, I, (Φ, Ψ)) an algorithm that given a modal logicS among
S4F,KD45, SW5, a theoryI and a partition(Φ, Ψ) of MA(I) introspection-consistent with
I, checks whetherTI(Φ, Ψ) is anSMDD-expansion. It is known [20, Section 11.1] that for
each of the three modal logics, EXPANSION can be computed by a polynomial-time algo-
rithm which makes a polynoial number of calls to an NP-oracle. SinceS5MDD-expansions
for I correspond to stable theories containingI, we can extend EXPANSION also to the
(trivial) case ofS = S5. Then we can use it as a subroutine in the following algorithm.

Theorem 4.10 Given a modal logicS amongS5, S4F, KD45, SW5, a theoryI and a partition
(Φ,Ψ) of MA(I), deciding whetherTI(Φ,Ψ) is not anSG-expansion forI is a problem in
Σp

2.

Proof We exhibit the following nondeterministic algorithm:
Algorithm Not-Ground(S, I, (Φ, Ψ))
Input: modal logicS ∈ {S5, S4F, KD45, SW5}, theoryI, partition(Φ, Ψ) of MA(I);
Output: true if TI(Φ, Ψ) is notanSG-expansion forI, false otherwise;

(1) if (Φ, Ψ) is not introspection-consistent withI then return true;
(2) if EXPANSION(S, I, (Φ, Ψ)) returnsfalse then return true;
(3) if there existspartition(Φ′, Ψ′) 6= (Φ, Ψ) such that:
(3.1)(Φ′,Ψ′) is introspection-consistent withI and
(3.2)TI(Φ′,Ψ′) ∩ L ⊂ TI(Φ, Ψ) ∩ L then return true;
(4) return false

Correctness of the algorithm follows from the theorems of this section and from Proposition
3.9. Regarding complexity, Steps 1 and 2 can be performed with a polynomial number of
calls to an NP-oracle. Step 3 can be done by nondeterministically choosing(Φ′, Ψ′), and
then verifying Conditions 3.1 and 3.2 again with a polynomial number of calls to an NP-
oracle. In particular, Condition 3.2 is verified by extracting the polynomial-size formulae
representing the objective part ofTI(Φ′,Ψ′) andTI(Φ,Ψ), respectively, then using proposi-
tional entailment.

The above result implies that groundedness can be decided with aΣp
2-oracle. We use this

fact for establishing the upper bound on the complexity of reasoning inS5G, S4FG, KD45G

or SW5G.

Theorem 4.11 Let S be one of the modal logicsS5, S4F, KD45 or SW5. Entailment inSG

is in Πp
3.

Proof We exhibit the following nondeterministic algorithm, which checks non-entailment:
Algorithm Not-Entails(S, I, ϕ)
Input: modal logicS ∈ {S5, KD45, S4F, SW5}, theoryI, formulaϕ;
Output: true if I 6|=SG

ϕ, false otherwise.
(1) computeMA(I);
(2) if there existspartition(Φ, Ψ) of MA(I) such that
(2.1) Not-Ground(S, I, (Φ,Ψ)) returnsfalse and
(2.2)¬ϕ ∈ TI(Φ, Ψ) then return true;
(3) return false
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Correctness of the algorithm immediately follows from the definition of entailment and the
correctness of the previous algorithm Not-Ground. Step 1 is performed in polynomial time,
and Step 2 can be accomplished by nondeterministically choosing a partition ofMA(I), and
verifying that (2.1) it identifies anSG-expansion ofI with a Σp

2-oracle, and (2.2)¬ϕ can
be deduced inTI(Φ, Ψ) with a polynomial number of calls to an NP-oracle [20, Theorem
13.10]. Therefore, non-entailment is a problem inΣp

3, hence entailment is inΠp
3.

Corollary 4.12 Let S be one of the modal logicsS5, S4F, KD45 or SW5. Entailment inSG

is Πp
3-complete.

5 Representing knowledge

In this section we discuss merits and drawbacks of ground logics as knowledge representa-
tion formalisms, through a comparison with McDermott and Doyle’s logics. In particular,
we address some features of these logics arising from both semantical and computational
considerations, consider the representation of defaults and the use of explicit definitions.

5.1 Semantics

In Section 3 we have discussed the differences between the semantical definition of ground
logics and McDermott and Doyle’s logics. The criterion for choosing the preferred model is
more selective in the case of ground logics since more monotonic models of the theory can
be compared. Hence, everySG-expansion forI is also anSMDD-expansion forI, while the
converse in general does not hold.

A number of properties of ground logics, that we briefly outline in the following, can be
derived from semantical considerations:

• none of the ground logics collapses into a monotonic logic (in particular forS = S5
the logic defined in [11] is obtained, as stated in [29]);

• S5G shows monotonicity with respect to objective formulae, in the sense that for each
I, ϕ ∈ LK and for eachψ ∈ L, if I |=S5G

ψ thenI ∪ {ϕ} |=S5G
ψ. Therefore, when

adding new information inS5G, only modal formulae can be lost, no longer being
derivable in the resulting theory (see Example 2.3);

• the familySG shows more variety than the familySMDD, in the sense thatrangesof
logics, that is, classes of modal logics with the same nonmonotonic counterpart (see
[20, par.11.2]), are more common (and larger) in MDD logics than in ground logics. In
other words, two ground logics hardly collapse in the same nonmonotonic logic.

5.2 Computation

In Section 4 we have shown that complexity of deduction in the family of ground logics is
Πp

3-hard. Hence, from the computational point of view, reasoning in a ground logicSG is in
general harder than reasoning in the correspondingSMDD logic (unlessΠp

2 = Πp
3 = PH),

since entailment inS4FMDD, KD45MDD andSW5MDD is Πp
2-complete ([8, 26, 20]). This

increase in the complexity of reasoning is explained by the extra work which is necessary to
make a further selection amongSMDD-expansions so to restrict only to the ground ones.
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However, this source of complexity can be easily avoided when unnecessary. For exam-
ple, it is well known that cautious reasoning in default logic is aΠp

2-complete problem [8].
Hence, the translation of a default theory into a ground logic (see next subsection) seems
to be disadvantageous, since it introduces an additional degree of complexity. On the other
hand, the Not-Entails algorithm for ground logics presented above can be easily modified to
make it work inΣp

2 in the ’easy’ cases, i.e. for theories whereSMDD-expansions andSG-
expansions coincide. In fact, in such cases the groundedness check for the partition which
identifies anSMDD-expansion (Step 3 of the algorithm Not-Ground) can be skipped, thus
turning Not-Ground to aPNP -algorithm, and Not-Entails to aΣp

2-algorithm. Since for the-
ories obtained through a translation of a default theory we apriori know thatSG-expansions
andSMDD-expansions for such theories coincide, reasoning in a ground logic setting does
not introduce additional complexity.

Moreover, there are other interesting cases in which the reasoning task is easier than in
the general case. As pointed out in [11], entailment inS5G is in PNP , if the theory admits
only oneS5G-expansion. Such theories are calledhonest. The problem of deciding whether
a theoryI is honest is inPNP as well. In particular, in [9] it is shown that deciding whether
I |=S5G

ϕ whenI is the empty set is aPNP [O(log n)]-complete problem.
Finally, in [2] a first-order version ofS5G is used to formalize some non-first-order fea-

tures of frame systems, in particular procedural rules and a form of closed-world reasoning.
It is shown that such restricted modal extension of a subset of first-order logic does not affect
computational complexity of reasoning, which is PSPACE-complete both in the first-order
and in the extended modal framework.

5.3 Defaults

In this section we discuss whether defaults are representable as epistemic sentences in ground
logics. We show that logicS5G does not admit any modular translation for default theories,
while such a translation is possible in the case of ground logics built from modal systems
different fromS5.

We first briefly recall default logic [27]. A propositional default theory is a pair(D, W ),
such thatD is a set of defaults, i.e. inference rules of the form

α : Mβ1, . . . , Mβn

γ

whereα, βi, γ ∈ L, W is a theory inL andMβ is interpreted as: “it is consistent to assume
β”. A justification-free defaultis a default where the justification part is empty, i.e. of the
form

α :
γ

A prerequisite-freedefault is a default of the form

: Mβ1 . . . Mβn

γ

We are interested in the translation of a default theory into a modal theory. Therefore we
give the following definitions (taken from [10]) and recall some properties.

Definition 5.1 A faithful translation from default logic to a ground nonmonotonic logicSG

is a mappingtr which transforms each default theory(D, W ) into a modal theorytr(D, W )
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such that the objective (i.e. non-modal) parts of theSG-expansions oftr(D,W ) are exactly
the default extensions of(D, W ).

However, not every translation that is faithful is useful in practice. In particular, we would
like to be able to turn each default into a modal sentence, independently of other defaults and
of the theory. Such translations are called modular.

Definition 5.2 A translationtr from default logic to a modal nonmonotonic logicS is mod-
ular iff for each default setD and eachW ⊆ L it holds thattr(D, W ) = tr(D, ∅) ∪W .

We shall use the modular translationemb introduced in [34].

emb(d) = Kα ∧K¬K¬β1 ∧ . . . ∧K¬K¬βn ⊃ γ

emb(D, W ) = W ∪ {emb(d) | d ∈ D}
whered is a default.

Proposition 5.3 [20, 12.1] LetS be a modal logic such thatK ⊆ S ⊆ S4F. Let S ⊆ L be
consistent and closed under propositional consequence. ThenS is an extension for a default
theory(D, W ) iff ST (S) is anSMDD-expansion foremb(D, W ).

We now show some properties of ground logics with respect to the representation of
defaults.

A first interesting result concerns the existence of modular translations for justification-
free defaults. In particular, we have thatemb(D,W ) provides the desired result forany
ground nonmonotonic logic. Notice that the same translation is used in [2] to formalize
procedural rules of frame systems within a concept language augmented by a modal operator
interpreted inS5G.

Theorem 5.4 There exists a faithful modular translation from justification-free default theo-
ries to any ground nonmonotonic logic.

Proof Let (D, W ) be a default theory such thatD is a collection of justification-free de-
faults. Then(D,W ) has exactly one default extensionS. The theoryemb(D,W ) hasST (S)
as its onlyKG-expansion (see Theorem 5.6 below). Moreover, it can be shown that everyS5-
modelM for emb(D, W ) is such thatS ⊆ Th(M) ∩ L. This implies thatST (S) is the
only S5G-expansion foremb(D,W ). Thus, for every logicS such thatK ⊆ S ⊆ S5, theory
emb(D, W ) admits exactly oneSG-expansionST (S). Therefore for such logicsemb is a
faithful translation for justification-free defaults.

It is interesting to compare this result with an analogous property of McDermott and
Doyle’s logics, which states that every logicSMDD contained inS5 admits a faithful modular
translation for prerequisite-free default theories [10]. On the other hand, there exist logics
SMDD for which a faithful modular translation from justification-free default theories to
SMDD is impossible. Therefore, McDermott and Doyle’s logics and ground logics show a
complementary behaviour in that the former can always represent prerequisite-free defaults,
while the latter can always represent justification-free defaults. We provide futher evidence
to this phenomenon by first showing that defaults cannot be represented in the logicS5G,
then showing that prerequisite-free defaults can be represented inKD45G.
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Theorem 5.5 There exists no faithful modular translation from default logic toS5G.

Proof Consider the default theory(D, W0) such that

D = { : p

p
}

W0 = ∅
Supposetr is a faithful modular translation from default logic toS5G. Faithfulness oftr
implies thattr(D, W0) has only oneS5G-expansionT = ST ({p}). Therefore, in everyS5-
modelM for tr(D,W0) it holds thatM |= p. Now, givenW1 = {¬p}, by the hypothesis of
modularity oftr it follows thattr(D, W1) = tr(D, W0) ∪W1. Consequently,tr(D,W1) is
anS5-inconsistent theory, and hence it has noS5G-expansions, while on the other hand the
default theory(D, W1) has the default extensionCn({¬p}), thus contradicting the hypothe-
sis of faithfulness oftr.

The impossibility of a faithful modular translation from default theories toS5G originates
from the monotonicity of this particular logic with respect to objective formulae (see Section
5.1): inS5G only modal formulae can change their validity when new information is added.
Since no other ground logic shares this characteristic withS5G, this negative behaviour seems
to be restricted to the logicS5G only. In fact, for a wide class of ground logics we obtain the
following positive result2 (analogous to that obtained for McDermott and Doyle’s logics in
[34]).

Theorem 5.6 Given a modal logicS such thatK ⊆ S ⊆ S4F, there exists a faithful modular
translation from default logic to the ground nonmonotonic logicSG.

Proof First, we show that ifS is a default extension for the default theory(D, W ), then
ST (S) is anSG-expansion foremb(D,W ) for any modal logicS such thatK ⊆ S ⊆ S5. In
fact, it can be easily shown that

1. S ⊆ CnK(emb(D, W ) ∪ {¬Kϕ | ϕ ∈ L \ S});
2. emb(D, W ) ⊆ ST (S).

And sinceST (S) is stable and consistent, it follows from Proposition 3.5 thatST (S) is a
KG-expansion foremb(D,W ).

Then, we prove that ifST (S) is anS4FG-expansion foremb(D, W ), thenS is a default
extension for(D, W ). This is obtained by exploiting a correspondence between minimal ex-
pansions in McDermott and Doyle’s logics and ground expansions. In fact, from Proposition
5.3 it follows thatemb is a faithful translation forS4FMDD. Moreover, logicS4F satisfies
the terminal cluster property, therefore by Theorem 3.9S4FG-expansions exactly correspond
to minimalS4FMDD-expansions. Now, the default extensions for(D, W ) correspond to the
objective parts of theS4FMDD-expansions foremb(D,W ), and since every default exten-
sion is minimal (i.e. it cannot be the case thatS ⊂ S′ for any pair of default extensionsS, S′),
it follows that theS4FG-expansions foremb(D, W ) are exactly theS4FMDD-expansions for
emb(D, W ). And sinceemb is a faithful translation forS4FMDD, this proves that ifST (S)
is aS4FG-expansion foremb(D, W ), thenS is a default extension for(D, W ).

2This theorem was independently proved in [35].
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Now, from Proposition 3.6, it follows that for every modal logicS such thatK ⊆ S ⊆
S4F, if ST (S) is anSG-expansion foremb(D,W ), then it is anS4FG-expansion foremb(D, W ),
which implies thatS is a default extension of(D,W ).

The two above results imply that, for each modal logicS such thatK ⊆ S ⊆ S4F, emb
is a faithful translation forS; sinceemb is modular, this concludes the proof.

The next result concerns a class of logics comprisingKD45G, i.e. Konolige’smoderately
groundedversion of autoepistemic logic [14].

Theorem 5.7 For every logicS such thatK ⊆ S ⊆ KD45, there exists a faithful modular
translation from prerequisite-free default theories to ground nonmonotonic logicSG.

Proof Theorem 2.2 in [10], states that the following modular translationτ :

τ(
: Mβ1 . . . Mβn

γ
) = ¬K¬β1 ∧ . . . ∧ ¬K¬βn ⊃ γ

τ(D, W ) = W ∪ {τ(d) | d ∈ D}
is a faithful translation from prerequisite-free default theories toKD45MDD. Besides, logic
KD45 satisfies the terminal cluster property, therefore by Theorem 3.9KD45G-expansions
exactly correspond to minimalKD45MDD-expansions. Following the proof of previous
theorem, in an analogous way we come to the conclusion that theKD45G-expansions for
τ(D, W ) are exactly theKD45MDD-expansions forτ(D, W ). Moreover, following the proof
given for the translationemb, it can easily be shown that translationτ is such that, ifS is a
default extension of the default theory(D, W ), thenST (S) is a KG-expansion of theory
τ(D, W ). This proves thatτ is a faithful translation of prerequisite-free default theories for
every logicS such thatK ⊆ S ⊆ KD45.

5.4 Definitions

Finally, we addess an issue arising with definitions and outlined by the following example
[31]. Let I = ∅. Clearly, according to minimal knowledge,¬Kp can be concluded for every
propositional letterp. Now, if the sentenceq ≡ Kp is added toI, ¬Kp can no longer be
concluded, which is undesirable, becauseq ≡ Kp is regarded as theexplicit definitionof q,
which should leave everything not concerningq unchanged.

As admitted in [31] the example is “controversial”, and it requires a better understanding
of the intuition of this kind of formulae. In fact, sentences of the formq ≡ Kp can be
rephrased as(Kp ⊃ q)∧(¬Kp ⊃ ¬q), which can be seen as the conjunction of the translation
of two defaults: a justification-free and a prerequisite-free one. Therefore, it seems that one
can hardly consider the combination of the two as a definition in the classical sense. Sentences
of the formq ≡ Kp should thus be treated as a special class of epistemic sentences whose
role still appears unclear. In fact, we believe that the unpleasant behaviour of ground logics
in the example above is not to be interpreted as a fault of the logic, but rather as a loss of
definitions as double implications. In practical environments this would simply mean that
definitions in the classical fashion are appropriate for objective sentences, while the role of
implications involving modal formulae is currently understood only for particular sentences,
such as those arising from the translation of defaults.
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6 Conclusions

Ground logics are defined following the intuition that the nonmonotonic assumptions made
by an agent should be done by minimizing the set of objective sentences known by the agent
itself. We have discussed the features of ground logics with regard to their use in knowledge
representation. In particular, we have investigated their semantics and both their computa-
tional and epistemological properties.

The results of this work can be given a twofold reading: as a complete semantical and
computational characterization of ground logics; as a generalization of the semantical ap-
proach to nonmonotonic modal logics based on the minimization of the knowledge of the
agent.

The main conclusion of the work is that ground logics are more powerful than McDer-
mott and Doyle’s logics. In fact, they allow the agent to derive statements about its lack of
knowledge, or ignorance, which cannot be obtained in McDermott and Doyle’s logics. This
additional expressivity is further demonstrated by a more complex reasoning required in the
general case. Moreover, ground logics can be regarded as an incremental refinement of Mc-
Dermott and Doyle’s logics, since they simply discard some of their models, while showing
a similar behaviour in many of their uses, such as for example the representation of defaults.

Finally, the ground logic forS5, which has no counterpart in the McDermott and Doyle’s
family, is interesting in its own. Such a logic, based on the idea of minimal knowledge [11],
has both an intuitive interpretation and has been successfully applied in the formalization of
several features of knowledge representation systems based on description logics [2].
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