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Abstract

A Description Logics knowledge base is constituted by two
components, called TBox and ABox, where the former ex-
presses general knowledge about the concepts and their rela-
tionships, and the latter describes the properties of instances
of concepts. We address the problem of how to deal with
changes to a Description Logic knowledge base, when these
changes affect only its ABox. We consider two types of
changes, namely update and erasure, and we characterize the
semantics of these operations on the basis of the approaches
proposed by Winslett and by Katsuno and Mendelzon. It is
well known that, in general, Description Logics are not closed
with respect to updates, in the sense that the set of models
corresponding to an update applied to a knowledge base in
a Description LogicZ may not be expressible by ABoxes in

L. We show that this is true also for erasure. To deal with
this problem, we introduce the notion of best approximation
of an update (erasure) in a DL, with the goal of character-
izing the £ ABoxes that capture the update (erasure) at best.
We then focus oDL-Liter, a tractable Description Logic,
and present polynomial algorithms for computing the best
approximation of updates and erasures in this logic, which
shows that the nice computational propertieBbfLiter are
retained in dealing with the evolution of the ABox.

Introduction

Recent years have witnessed a strong interest in Descrip-
tion Logics (Baadeet al. 2003) (DL). From one hand, DLs
are widely considered as the logical basis for representing
and reasoning over web ontologiesOn the other hand,
the use of DL systems such as RacerPro, FaCT++, Pellet,
QuOnt@ is becoming more and more common in various
application areas. These systems essentially provide basi
reasoning services over DL knowledge bases, such as con-
sistency checking, subsumption, instance checking, and, a
least some of them, query answering. However, the kind of
support they provide is somehow limited to reasoning over a
static knowledge base. This has to be contrasted with the in-
creasing interest in supporting theolutionof a DL knowl-

edge base. Indeed, recent papers, in particular, (Haase &
Stojanovic 2005; Litet al. 2006; De Giacomet al. 2006;
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Gutiérrez, Hurtado, & Vaisman 2006) have started to for-
mally address this issue.

In this paper, we study DL knowledge base evolution un-
der three main assumptions. First, as done in (De Giacomo
et al. 2006), we restrict our attention to the case where the
evolution concerns only thastance levebf the knowledge
base (ABox), and therefore the change to the knowledge
base does not modify its intensional level, i.e., the gdnera
knowledge about the concepts and their relationshipserepr
sented by the TBox. We share the view of (De Giacaho
al. 2006), that studying instance-level evolution is an inter-
esting starting point of a principled approach to the proble
as it is very common that the ABox will change much more
frequently than the TBox in many real-world contexts. Sec-
ond, we consider two basic evolution operations, called up-
date and erasure, roughly corresponding to the addition and
the deletion of a set of facts, respectively. Following (Etu
al. 2006; Guterrez, Hurtado, & Vaisman 2006; De Giacomo
et al. 2006), we base our investigation on a formal semantics
for these operations proposed by Winslett (Winslett 1988;
1990) and Katsuno and Mendelzon (Katsuno & Mendelzon
1991). Third, since every DL system is tailored to a specific
DL, we believe that the notion of evolution should be stud-
ied under the assumption that, given a fixed Dlthe result
of any evolution operation must be expressed.in

One of the main contributions of (Liet al. 2006) was to
show that there are cases where, for a fixed Dused to
express the knowledge base, the result of an instance level
evolution operation, in particular update interpretedamd
Winslett's semantics, is not expressibledn This is one of
the fundamental problems we want to address in this paper.
More precisely, we present the following contributions.

e We show that the non-expressibility problem arises also
for erasure, even in the context of very simple DLs, and
very simple forms of ABox assertions.

e To address the non-expressibility problem, we propose to
resort to the notion of maximal approximation of update
and erasure. Roughly speaking, given a fixed Qland

a knowledge basf£ in £ constituted by a TBox and an
ABox, the maximal approximation of an update (resp.,
erasure) oiC is the knowledge base ifithat has the same
TBox as the original knowledge base, and whose set of
models captures at best the set of models characterizing
the result of the update (resp., erasure). To the best of
our knowledge, this is the first proposal of dealing with
the non-expressibility problem by means of the notion of



approximation. In DL-Lite£ that is the logic originating the wholBL-Lite

« We consider th®L-Lites (Calvaneseet al. 2005) DL, family i.n (Calvaneseet al. 2005), concepts are defined as
where all reasoning tasks can be done in polynomial time follows:
with respect to the size of the knowledge base. We show B = A|3R
that, in general, the result of both an update and an era- C == B|-B
sure on aDL-Liter knowledge base is not expressible R == P|P~

in DL-Liter. We then present algorithms for both ap- . .

proximated update and approximated erasure in this logic. WhereA denotes an atomic concept,an atomic role5 a

We also show that these algorithms have polynomial time Pasic concept, and a general concept. A basic concept can
complexity, and that instance checking on the knowl- Pe€ either an atomic concept, a concept of the faif) i.e.
edge base resulting from an approximated update (resp., the standard DL construct of unqualified existential quan-
erasure) provides exactly the same answers as instancelification on roles, or a concept of the forf"~, which
checking over the set of models capturing the exact result involvesinverse roles A DL-Litex TBox is a finite set of

of the update (resp., erasure). Note that the same does notuniversal assertions of the form

hold for conjunctive query answering. B, C B, inclusion assertion

. . B; C —By disjointness assertion

Preliminaries (funct R)  functionality assertion
DL knowledge bases Description Logics (DLs) (Baader ) . ) - )
et al. 2003) are knowledge representation formalisms, tai- An inclusion assertion specifies that each instance of the ba
lored for representing the domain of interest in termsaof- sic conceptB, is also an instance of the basic concépi
cepts(or classes), which denote sets of objects, rates (or i.e., By is subsumed by3;. A disjointness assertion speci-
relations), which denote binary relations between objekts  fies that the set of instances Bf and B; are disjoint. Fi-
DL knowledge basékB) K = (T, .A) is formed by two nally, a functionality assertion expresses the functioyaf
distinct parts7 and.4, calledTBoxandABox respectively. an atomic role, or of the inverse of an atomic role. Note
The TBoxT is a finite set of assertions representingithe ~ that disjunction is disallowed, and that negation is used in
tensional levebf the KB, i.e., providing an intensional de- @ restricted way, in particular for asserting disjointnets

scription of the domain of interest. TH&BoxA is a finite concepts. Notably, if we remove either of these limitations

set of assertions about the extension of concepts and roles,reasoning becomes intractable — see (Calvaetak2006).

i.e., providing information on thanstance levebf the KB. A DL-Liter ABox is a finite set of membership assertions
The semantics of a DL KB is given in terms of interpreta-  of the form

tions over a fixed infinite domaif of objects. We assume to B(a), R(a,b)

have one constant for each objectirdenoting exactly that
object. In this way, we blur the distinction between cont#an  stating, respectively, that the objects an instance of the
and objects, so that we can use them interchangeably (with basic concep3, and that the pair of objects, b) is an in-
a little abuse of notation). An interpretatigh = (A, %) stance of the rol&.
consists of a first order structure ov&y where-Z is the in- Given an interpretatio = (A,-Z) the interpretation
terpretation function, i.e., a function mapping each cpbce  function-Z interprets the constructs BfL-Lite as follows:
to a subset ofA and each role to a subset&fx A. We say
thatZ is amodel of an assertiofi.e., either a TBox or an I T _ g( / s
ABox assertion)y if 7 satisfiesq, i.e., « is true inZ. We ‘;z % i < A gR))I :{{C(i ’3(;), |(c(cé,c> )GER];}}
say thatZ is amodel of the KBC = (7, A), if Z is a model ST T - R
of all the assertions iir and.A. (=B)" =A\B

Given a set of assertiols we denote ad/od(S) the set AN i ionT i del of inclusi :
of models of all assertions if. In particular, the set ahod- 4 mterpretaItlon 15 amodetot an Inciusion assertion
els of a KBK, denoted as/od(K), is the set of models of ~ B1 E Bz if B C By. T'is amodel of a disjointness asser-

all assertions i7" and A, i.e. Mod(K) = Mod((T, A)) = tion B; C =B, if Bf N B = (. T is a model of a func-
Mod(T U A). AKB K is consistentf Mod(K) # 0, i.e. it tionality assertior(funct R) if for all ¢,c,¢”, (¢,c') € RT
has at least one model. A set of modgislogically implies and(c,c”) € RT impliesc’ = ¢”. T is a model of a mem-

an assertiony, written M |= «, if for every interpretation bership assertiod resp.. R(a.b)) iff a € CZ (resp.
7T € M, we havel € Mod(«), i.e. all the models in\ are (a,b) epRI). (a) (resp., R{a,b) if a (resp.,

also models o, We say that a KB logically impliesan We observe that the form of tHeL-Liter ABox is that

assertior, written K- = o, if Mod(K) = o of the original proposal in (Calvanest¢al. 2005), and is a
restriction with respect to the one studied in (De Giacomo
DL-Liter In this paper, we focus on a particular DL, et al. 2006), where instance-level updates for Die-Lite
called DL-Liter, belonging to theDL-Lite family (Cal- family were first introduced. Specifically, here we do not
vaneseet al. 2005; 2006). DLs in this family are tailored  allow for negation or “variables” in the membership asser-
towards capturing conceptual modeling constructs (such as tions. We will see that, without these extensiobg;Lite
those typical of ontology languages, UML Class Diagrams is akin to the vast majority of DLs, see (Lt al. 2006), in
and Entity-Relationship Diagrams), while keeping reason- that the result of the update (or the erasure for the matter)
ing, including conjunctive query answering, tractable and is not expressible as a néL-Lite ABox, thus motivating
first-order reducible (i.e, LOGSPACE in data complexity). the need for approximation.



DL instance-level updates and erasure Several ap-

Observe that, from the above definition, erasing a set of

proaches for changing a knowledge base have been consid-assertions means simultaneously erasing each assertion in

ered in the literature, see, e.g., (Herzig & Rifi 1999), for a
survey. Following the work in (De Giacomet al. 2006),

we adopt the Winslett's notion of update (Winslett 1988;
1990) and its counterpart, defined in (Katsuno & Mendelzon
1991), as notion of erasure. However, as in (De Giacemo
al. 2006) we refine such notions to take into account that
we are interested in studying changes at the instance-level
while we insist that the intensional level of the knowledge
base is considered stable and hence remains invariant. Intu
itively the result of updating (erasing) a KB with a finite

set of formulasF, should be any KB that logically implies
(does not logically imply) all formulas itF, and whose set

of models minimally differs from the set of models &f
Taking into account that one of our basic assumption is to
maintain the TBox unchanged, the definitions of update and
erasure in our context are as follows.

Definiton 1 Let Z = (A, Z) andZ’ = (A,-Z') be two
interpretations over the same alphabet. We say Thit
contained inZ’, writenZ C 7', if Z,Z’ are such thati)

AT C AT, for every atomic concept, and (i) RZ C RZ,

for every atomic roleR. We say that is properly contained

', writenZ Cc 77, if Z C 7' andZ’ € 7.

Definition 2 LetZ = (A, 7)) andZ’ = (A,-Z') be two in-
terpretations (over the same alphabet). We defineliffier-
ence betweefi andZ’, writtenZ © 7', as the interpretation
(A, 29T such that:

o ATOT — AT 5 AT’ for every atomic concept

e RTST' — RT 5 RT' for every atomic roleR,

whereS & S’ denotes the symmetric difference between sets
Sands’,ie.S6 S8 =(SUS)\(SNS).

Definition 3 Let7 be a TBox in a DLL, Z a model of7,
andF a finite set of membership assertions expressed in
such thatMod(T U F) # (. The update ofZ with F,

denoted/? (Z, F), is defined as follows:
UT(T,F) {T' | T' € Mod(T U F) and
there exists n@”’ € Mod(T U F)
stZeI’"cIel'}

Observe that/7 (Z, F) is the set of models of both and
F whose difference with respect is C-minimal. With

the set. Note also that assertions in the-s&t might not be

in the languagé, in particular wherc is not closed with re-
spect to negation of membership assertions. However, even
in this case, the above semantics of erasure is well-defined,
provided that we refer to the traditional first-order serient

for negated membership assertions.

A basic question that arises when dealing with instance-
level update and erasure is whether the result of updat-
ing/erasing a KB in a given DLC can be expressed as a
new KB again expressed ifi (with the same TBox, since
the TBox is invariant). Unfortunately, as shown in (Let
al. 2006; De Giacomat al. 2006), in general the result
of update cannot be expressed in the same language as the
original KB. In particular, we will show in the next sections
that neither update nor erasure can always be expressed in
DL-Liter. This fundamental problem leads us to sty
proximatedinstance-level update and erasure.

Approximation

To study approximated instance-level update and erasure,
we first define a general notion of approximation (Schaerf
& Cadoli 1995) that is natural in our setting. What we aim

at is to approximate in the best possible way the actual up-
date and erasure, while still remaining in the language®f th
original KB. Since we cannot change the TBox, this means
that the approximated update and erasure must be encoded
in the ABOX.

Definition 6 (Sound (£, 7T )-Approximation) Let M be a
set of models, and” a TBox in a DL £ such thatM C
Mod(T). We say that a DL KBK is a sound (£, 7T)-
approximationof M in L, if (i) K isin L, (ii) K is of the
form (7, A), and {ii) M C Mod(K).

Definition 7 (Maximal (£, T )-Approximation) Let M be
a set of models, and” a TBox in a DL £ such that
M C Mod(T). We say that a DL KBK is a maximal
(L, T)-approximationof M if (i) K is a sound(L,T)-
approximation ofM, and (i) there exists no KB’ that
is a sound(L, T )-approximation of M, and is such that
Mod(K') € Mod(K).

Such a notion of approximation intuitively aims at the
best set of models which can be selected through a KB

these notions in place we can define instance-level update € = (7, A), with 7 fixed, expressed in the DL. The

and erasure.

Definition 4 (Update) Let L = (7,.A) be a KB expressed
ina DL £, andF a finite set of membership assertions ex-
pressed inC such thatMod(7 U F) # (). Theupdate ofC
with F, denotedC o F, is defined as follows:

KorF= J U™(Z7)
ZeMod(K)
Definition 5 (Erasure) Let = (7, .A) be a KB expressed
ina DL £, andF a finite set of membership assertions ex-
pressed inC such thatMod(7 U -~F) # 0, where—~F de-
notes the set of membership assertiong; | F; € F}. The
erasure offC with F, denotedCeF, is defined as follows:

KerF =Mod(K)U( | J UT(Z,~F)).
ZeMod(K)

set of models ofC must contain the setM to be approx-
imated (e.g., the one obtained through update or erasure),
and it should be as close as possible\to

Interestingly, when such a best approximation exists, it is
unique up to logical equivalence, as the following theorem
shows.

Theorem 1 Let M be a set of models, arifi a TBox in a
DL £ such thatM C Mod(T). If a KB K exists that is
a maximal(L, 7 )-approximation ofM, then all maximal
(L, T)-approximations of\ are equivalent taC.

Proof. Suppose thak’ = (7, A") is a maximal(L, T )-
approximation ofM that is not equivalent t&C = (7, A).
By definition of maximal(L, T )-approximation, we have
that both/C andK’ are sound £, T )-approximations of\1,
which implies thatM C Mod(K), and M C Mod(K').
Hence M C Mod(K)NMod(K'). Now, letXC"” be(7T, AU



A'). Itis easy to see thal od(K") = Mod(K)NMod(K'),
and therefore(” is also a sound£, 7)-approximation of
M. But then, sinceMod(K) # Mod(K'), we obtain that
Mod(K") € Mod(K), which contradicts the fact th&t is
a maximal(£L, 7)-approximation. O

The next theorem characterizes the kind of approxima-
tion we have defined in terms of logical implication: a (or,
with a slight abuse of terminology, “the”) maximéL, 7 )-
approximation captures exactly all membership assertions
the DL £ that are logically implied by\.

Theorem 2 Let M be a set of models, arl a TBox in a
DL £ such thatM C Mod(T). If K is a maximal(£, T )-
approximation ofM, then for every membership assertion
ain L itholds thatM = «iff K | «.

Proof. The if-direction is obvious. As for the only-if di-
rection, let us assume that there is a madel K such that
7 = K butZ [~ a. But thenk U o would be also a sound
(L, T)-approximation ofM, which contradicts the fact that
K is a maximal(L, T )-approximation ofM. O

Unfortunately, maximal £, 7')-approximations may not
exist, as the following example shows.

Example 1 Let = (7, A) be the ACCQTO KB (Baader
et al. 2003) defined as follows:

T . {E'Rl I _|A E HRQ, HRQ_ E E'Rh 3R1 E _EIRl_,
(<1Ry), TLC VR .{b}, ACVRy.A}
A: {R:(a,b), VR .—A(b)}

Now, consider the update &f with 7 = {A(a)}, and let
M = K oy F. We show that there exists no finite maximal
(ALCQTO, T)-approximation ofC with F. Clearly, each

Figure 1: Example of model g€

modelZ of K is such thati] the pair of objectqa,b) is

in R, and (i) each objectr such that(z,b) is in RZ, is
also in—AZ. Figure 1 shows a graphical representation of a
possible modef of IC, wherea € ~AZ, and, for alli, ¢; €
—-AZ. It can be shown that? (Z, F) is non-empty, and, for
everyJ € U?(Z,F), we have thatt ¢ A7 and either the
pair (a, c;) does not belong t&;, or all ¢;’s do not belong

to -A7 . Therefore, the update changes the interpretation of
—A by removing from—A only those objects: for which

there exists a path from to = through edges labeleR,.
Now let us define, fon, > 0:

A" = {A(a),YR; .(-AU || BRy) {a})(0)}
0<i<n

From the above observations it can be shown by in-
duction that for eachn: (i) K" (T,A™) is a
sound(ALCQTIO, T)-approximation oflC o F; and (i)
Mod(K") C Mod(K"*). Therefore, no finite set
of membership assertions is a maximad£LCQZO, T)-
approximation ofC o1 F.

With the notion of maximal £, 7')-approximation ofAm
in place, we can come back to the issue of approximating
instance-level update and erasure.

Definition 8 ((£,T)-Update) Let £ = (T, A), K* =

(T,A% be two KBs in a DLL and F a finite set of
membership assertions expressed isuch that\/ od(7) N

Mod(F) # (. We say thakC® is a(L, T )-update oflC with

F if K*is a maximal(L, 7)-approximation ofC o F.

Definition 9 ((£,7)-Erasure) Let K = (7, A), K*
(T,A”) be two KBs in a DLL and F a finite set of
membership assertions expressed isuch thatM od(7) N
Mod(—F) # (. We say thatC® is a (£, T )-erasure oftC
with F if £ is a maximal L, 7)-approximation ofCe,F.

From Theorem 1 we know that if &, 7')-update (resp.
(L, T)-erasure) ofC with F exists, it is unique up to logical
equivalence. Moreover, by Theorem 2 we know tt&t7 )-
update (resp(L, 7T )-erasure) captures exactly the logical
implication of the membership assertions of the “exact” up-
date (resp. erasure). Also the example above shows that in
general there are cases for whigh, 7 )-updates do not ex-
ist, and, in fact, the example above can be adapted to show
that also( L, 7')-erasures do not always exist.

Approximated updates in DL-Liter

In this section we focus our attention to updateBloLite »
KBs. This problem has been studied in the context of
the DL-Lite family in (De Giacomoet al. 2006), where

it is shown that, for eachZ in DL-Literg, the per-
fect(DL-Literg, 7 )-update exists, whef@L-Liter s differs
from DL-Liter because it allows for the presence of vari-
ables and negation in membership assertions.

In (De Giacomeet al. 2006) a sound and complete algo-
rithm, calledComputeUpdate(T, A, F) was presented, for
computing the update of BL-Liters KB K = (7, A) with
a set ofDL-Liters membership assertiorss. Specifically
we have the following theorem.

Theorem 3 ((De Giacomaet al. 2006)) Let £ = (7, .A)
be a DL-Literg KB, F a finite set of DL-Litgg mem-
bership assertions such that/od(7 U F) # @, and
let K? = (7,AP), where A? is the ABox returned by
ComputeUpdate(T, A, F). Then,Mod(K?) = K or F.

In other words foDL-Liters update and maximal approxi-
mation of the update coincide.

Observe thatDL-Liters TBoxes are alsoDL-Liter
TBoxes, whileDL-Literg ABoxes have a more general form
thanDL-Liter ones. As a result of this restriction we have
that the nice property above does not hold in general for
DL-Liter since to express the updated KB we have to re-
sort to variable and negation in the membership assertions
of the new ABox, which is not allowed iDL-Liter. The
following example illustrates this point.

Example 2 Let £ = (7, .A) be theDL-Liter KB such that
T = {A1 C —-3dP,dP C —-A,,dP~ C Ag} and A =
{3P(a)}. We want now to compute théDL-Liter, T)-
update oflC with 7 = {A;(a)}. Clearly, the set of models
that satisfyA; («) and minimally differs fromMod(K) is
obtained by modifying the interpretation éfin all models
of K so that there exists no couple of objegisx) that be-
longs to the interpretation aP. In particular, this means



that for each modef of K, there is no need to change
neither the interpretation ofi,, nor the interpretation of
Asz. Thus, we have that)(a should belong to-As, i.e.

K or F | =As(a), and {i) for each coupléa, z) that be-
longs to PZ, x should be still interpreted as belonging to
AZ, and henceA; cannot be interpreted as the empty set,
i.e. Koy F = JzAs(z). It can be easily shown that there
is no way to express IBL-Lite+ neither (), nor (i) through

a set ofDL-Liter membership assertions.

From the previous example, it follows that:

Theorem 4 The result of an update to a DL-LieKB may
not be expressible in DL-Liteitself.

Thus, in general we have to look for approximate repre-
sentations of the result of an updateDh-Liter. To this
aim, we define an algorithm name@ompute Update*PP
that takes as input a TBdk, an ABox.4 and a set of mem-
bership assertiong, where bothZ, A andF are expressed
in DL-Litex. Moreover, we assume thiit= (7, .A) is con-
sistent andVod(7 U F) # (. Then ComputeUpdate®P?
returns the ABoxA“ obtained as follows:

1. compute the ABoxd? = ComputeUpdate(7T, A, F);

2. return the projection ofi” to DL-Liter, i.e. the ABox
obtained by deleting fromd? all the assertions that are
not DL-Liter membership assertions.

Since the algorithmComputeUpdate(T, A, F) runs in
polynomial time (De Giacomet al. 2006), it follows that
the algorithmCompute Update PP also terminates and runs
in time polynomial with respect to the size of its input.

Example 3 Consider theDL-Litexr KB K = (7, A) in-
troduced of Example 2. Now suppose to compute
(DL-Liter, T)-update offC with F = {A;(a)}. First, we
apply the update algorithn@ompute Update of (De Gia-
comoet al. 2006). This returns BL-Liters ABox AP that
is obtained from4 by removing the assertiatP(a), and in-
troducing, besided; (a), the assertions A, (a) and A3(z),
where z is a new variable. Second, we perform the pro-
jection of AP in DL-Liter, and obtain theL-Liter ABOX

A = {A(a)}.

To prove the correctness of the above algorithm we need
the following preliminary lemma.

Lemmal LetK = (7, .A) be a DL-Literg KB, anda be a
DL-Liter assertion. IfiC = «, then there exists a DL-Lije
membership assertion’ in A such that{7, o’) = a.

Proof. The proof is based on the nice propertyif-Litegg
KBs of having a minimal model that is built by using a
chase-like techniqu@oggi 2006). |

the

Theorem 5 Let K = (7, A) be a DL-Liter KB, F a finite
set of DL-Lite- membership assertions such tldid(7 U

F) # 0, and letK* = (T, A%), where A* is the ABox
returned byComputeUpdate®? (T, A, F). Then,K* is a
(DL-Liter, 7)-update oflC with F.

Proof. Clearly the algorithmCompute Update®P? termi-
nates, since so doeSomputeUpdate. Now, let A¢ =
ComputeUpdate®? (T, A, F). We first show that7, .4%)
is a sound (DL-Liter, 7 )-approximation of £ or F,
then we show that it is a maximal one. Let?
ComputeUpdate(T, A, F). By construction,4* C AP

and therefore, sincBL-Liter is monotone,Mod(A?) C
Mod(A®*). Hence Mod({T,A?)) C Mod({T,A%)).
Moreover, by Theorem 3 od({T, AP)) = K o F. It fol-
lows that(7,.A4%) is a sound DL-Liter, 7" )-approximation
of K or F. Now, let us show thatC® = (7, A%) is the
maximal(DL-Liter, T )-approximation ofC o7 F. By con-
tradiction, let K’ (T,A’) be a soundDL-Liter,7)-
approximation ofC o7 F such thatM od(K') C Mod(K?).
Since Mod(K' U K*) = Mod(K') N Mod(K?*), we have
that Mod(K' U K*) = Mod(K'), which implies that that
K* c K', and thus that there exist£a.-Lite membership
assertiony such thaiv € A’, K or F = o andK® }~ a.
Let A? = ComputeUpdate(T, A, F) andCP = (T, AP).
By Theorem 3,Mod(K?) = K o7 F. Then we have that
KP = «a, wherea is a membership assertion BL-Liter.
By Lemma 1, there must existRL-Lite membership as-
sertiona’ in A? such that(7,o’) | «. But then, by con-
struction,o’ belongs ta4?, contradictinglC® = a. O

From Theorem 5 and Theorem 2, it follows that
Compute Update®PP captures, in a sound and complete way,
logical implication ofDL-Lite assertions after update.

Theorem 6 Let K = (7,.A) be a DL-Lite- KB, let F be

a finite set of DL-Litg- membership assertions such that
Mod(T U F) # 0, and letk* = (T,.A%), where.A® is
the ABox returned bfompute Update®? (7T, A, F). Then,
for every membership assertiarin DL-Lite~, we have that
Kor F E aiff K* = a.

Finally, we point out that the above results do not contra-
dict what is reported on (De Giacons al. 2006), where
it is shown that the result of an update to a KB expressed
in DL-Litepg is always expressible in this logic. Indeed,
DL-Literg is strictly more expressive thdblL-Liter, and
our result shows indeed that this extra expressive power is
crucial for expressing updates.

Approximated erasure in DL-Liter

We now study erasure iDL-Liter KB. We start by show-
ing that, inDL-Liter, the result of the erasure cannot be
always expressed in terms ofd_-Liter KB. To this aim,
we present the following example.

Example 4 Let £ = (7, .A) be theDL-Liter KB such that
T={AC B,AC C}andA = {A(a)}. LetF = {C(a)}.

By definition,KesF = Mod(K)U (K oz {-C(a)}). Thus,
each modell in ez F is obtained from a model of I

by either not modifying anything, or by modifying the inter-
pretation ofa so thata does not belong tel”. Hence, for
eachZ, eithera € AZ,a € CT ora ¢ AT a ¢ CL. Clearly
there is no way to express this set of models through a set of
DL-Liter membership assertions.

As an immediate consequence of the above example, we
get the following property.

Theorem 7 The result of an erasure to a DL-LiteKB may
not be expressible in DL-Liteitself.

Therefore, like in the case of update, i-Liter it is
interesting to look at maximal approximations of the era-
sure. For this purpose, we define an algorithm named
ComputeErasure®?, which takes as input a TBoX, an
ABox .4 and a set of membership assertidiiswhere both



T, AandF are expressed iDL-Liter. Moreover, we as-
sume that = (7, .A) is consistent and that/od(7 U
—-F) # 0. ThenComputeErasure®? returns the ABox4*
obtained as follows:

1. compute the ABoxA? = ComputeUpdate(T, A, ~F);

2. compute the projection ofi? to DL-Liter, i.e. delete
from AP all the assertions that are nBL-Litez mem-
bership assertions.

As mentioned in the previous section, the algorithm
ComputeUpdate(T, A, F) runs in polynomial time, there-
fore the algorithmCompute Erasure *PP terminates and runs
in time polynomial with respect to the size of its input.

Example 5 Consider theDL-Liter KB K = (7,A)
introduced in Example 4. Now suppose to compute
the (DL-Liter,7)-erasure of K with F = {C(a)}.

First, we apply the update algorithr@ompute Update
of (De Giacomoet al. 2006) and compute the ABox
AP = ComputeUpdate(T, A, {—C(a)}). This returns a
DL-Liters ABox that is obtained fromA4 by removing
the assertionA(a), and introducing the assertiong’(a)
and B(a). Second, we perform the projection gf in
DL-Liter, and obtain thé®L-Liter ABox .A* = {B(a)}.

The following theorem shows that the maximal ap-
proximation of instance-level erasure in BL-Liter
KB always exists and is computed by the algorithm
ComputeErasure PP,

Theorem 8 LetC = (7, A) be a DL-Liter KB, F a finite
set of DL-Lite- membership assertions such thdiod (7 U

-F) # 0, and letK* = (7, .A%), where A* is the ABox
returned byComputeErasure®? (T, A, F). Then,L* is a
(DL-Liter, T)-erasure oflC with F.

Proof. First, from definition of erasure/CesF
Mod(K) U K o =F. Then, by definition of the algo-
rithm ComputeErasure®?, it follows that for every mem-
bership assertioar € A* — A, we haveK = «, which
immediately implies that (i od(K) € Mod(K*). More-
over, letk? = (T, AP) where AP is the ABox returned by
ComputeUpdate®? (T, A, —~F): by definition, A% C AP,
consequently every model &f? is also a model okC%, and
since by Theorem 3/0d(K?) = K or —F, it follows that
(i) K o =F C Mod(K*). Hence, from (i) and (ii) it fol-
lows thatKC® is a(DL-Liter, 7')-approximation ofCe s F.
Now, supposel® is not the maximal(DL-Liter,7)-
approximation ofCesF. Then, there exists BL-Liter
KB K’ (T,A’) such thatlCey F C Mod(K') C
Mod(K*). SinceMod(K') C Mod(K*), there exists at
least a (membership) assertion € A’ — A% such that
K* = a, and sinceerF C Mod(K') and KerF =
Mod(K) U K or —F, it follows that? &= «. Now, by
Lemma 1 it follows that there exists a membership assertion
o' € AP such that{(7,{a'}) &= «. Hence, by definition
of ComputeErasure®?, it follows thata’ € A%, conse-
quentlyK® |= «. Contradiction. Therefor& * is the maxi-
mal (DL-Litex, 7 )-approximation ofCe s F. O

Finally, from Theorem 8 and Theorem 2, it immediately
follows that the algorithmCompute Erasure®P? captures, in
a sound and complete way, logical implicationif-Lite
assertions after erasure.

Theorem 9 Let £ = (T, A) be a DL-Liter KB, let F be

a finite set of DL-Litg- membership assertions such that
Mod(T U~F) # 0, and letkK® = (T, A%), whereA“ is the
ABox returned byComputeErasure®? (T, A, F). Then,
for every membership assertiarin DL-Liter, we have that
KerF E aiff K* = «.

Conclusion

We have investigated the notion of evolution of a DL KB,
under three basic assumptions: formal semantics, fixed
TBox, and fixed DL. In order to cope with the non-
expressibility problem, we have introduced the notion of
maximal approximation of an update and of an erasure. Fi-
nally we have presented efficient algorithms for computing
such approximations in the tractable ML -Liter. In the
future, we will incorporate the algorithms presented hare i
the QuOnto reasoning system, and we will try to develop
algorithms for computing approximations in the context of
other DLs used in the current reasoning systems.
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