
On the Approximation of Instance Level Update and Erasure
in Description Logics

Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma, Italy
lastname@dis.uniroma1.it

Abstract

A Description Logics knowledge base is constituted by two
components, called TBox and ABox, where the former ex-
presses general knowledge about the concepts and their rela-
tionships, and the latter describes the properties of instances
of concepts. We address the problem of how to deal with
changes to a Description Logic knowledge base, when these
changes affect only its ABox. We consider two types of
changes, namely update and erasure, and we characterize the
semantics of these operations on the basis of the approaches
proposed by Winslett and by Katsuno and Mendelzon. It is
well known that, in general, Description Logics are not closed
with respect to updates, in the sense that the set of models
corresponding to an update applied to a knowledge base in
a Description LogicL may not be expressible by ABoxes in
L. We show that this is true also for erasure. To deal with
this problem, we introduce the notion of best approximation
of an update (erasure) in a DLL, with the goal of character-
izing theL ABoxes that capture the update (erasure) at best.
We then focus onDL-LiteF , a tractable Description Logic,
and present polynomial algorithms for computing the best
approximation of updates and erasures in this logic, which
shows that the nice computational properties ofDL-LiteF are
retained in dealing with the evolution of the ABox.

Introduction
Recent years have witnessed a strong interest in Descrip-
tion Logics (Baaderet al. 2003) (DL). From one hand, DLs
are widely considered as the logical basis for representing
and reasoning over web ontologies1. On the other hand,
the use of DL systems such as RacerPro, FaCT++, Pellet,
QuOnto2 is becoming more and more common in various
application areas. These systems essentially provide basic
reasoning services over DL knowledge bases, such as con-
sistency checking, subsumption, instance checking, and, at
least some of them, query answering. However, the kind of
support they provide is somehow limited to reasoning over a
static knowledge base. This has to be contrasted with the in-
creasing interest in supporting theevolutionof a DL knowl-
edge base. Indeed, recent papers, in particular, (Haase &
Stojanovic 2005; Liuet al. 2006; De Giacomoet al. 2006;

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.w3.org/TR/owl-features/
2http://www.cs.man.ac.uk/ ˜ sattler/

reasoners.html

Gutiérrez, Hurtado, & Vaisman 2006) have started to for-
mally address this issue.

In this paper, we study DL knowledge base evolution un-
der three main assumptions. First, as done in (De Giacomo
et al. 2006), we restrict our attention to the case where the
evolution concerns only theinstance levelof the knowledge
base (ABox), and therefore the change to the knowledge
base does not modify its intensional level, i.e., the general
knowledge about the concepts and their relationships, repre-
sented by the TBox. We share the view of (De Giacomoet
al. 2006), that studying instance-level evolution is an inter-
esting starting point of a principled approach to the problem,
as it is very common that the ABox will change much more
frequently than the TBox in many real-world contexts. Sec-
ond, we consider two basic evolution operations, called up-
date and erasure, roughly corresponding to the addition and
the deletion of a set of facts, respectively. Following (Liuet
al. 2006; Gutíerrez, Hurtado, & Vaisman 2006; De Giacomo
et al. 2006), we base our investigation on a formal semantics
for these operations proposed by Winslett (Winslett 1988;
1990) and Katsuno and Mendelzon (Katsuno & Mendelzon
1991). Third, since every DL system is tailored to a specific
DL, we believe that the notion of evolution should be stud-
ied under the assumption that, given a fixed DLL, the result
of any evolution operation must be expressed inL.

One of the main contributions of (Liuet al. 2006) was to
show that there are cases where, for a fixed DLL used to
express the knowledge base, the result of an instance level
evolution operation, in particular update interpreted under
Winslett’s semantics, is not expressible inL. This is one of
the fundamental problems we want to address in this paper.
More precisely, we present the following contributions.

• We show that the non-expressibility problem arises also
for erasure, even in the context of very simple DLs, and
very simple forms of ABox assertions.

• To address the non-expressibility problem, we propose to
resort to the notion of maximal approximation of update
and erasure. Roughly speaking, given a fixed DLL, and
a knowledge baseK in L constituted by a TBox and an
ABox, the maximal approximation of an update (resp.,
erasure) ofK is the knowledge base inL that has the same
TBox as the original knowledge base, and whose set of
models captures at best the set of models characterizing
the result of the update (resp., erasure). To the best of
our knowledge, this is the first proposal of dealing with
the non-expressibility problem by means of the notion of

approximation.

• We consider theDL-LiteF (Calvaneseet al. 2005) DL,
where all reasoning tasks can be done in polynomial time
with respect to the size of the knowledge base. We show
that, in general, the result of both an update and an era-
sure on aDL-LiteF knowledge base is not expressible
in DL-LiteF . We then present algorithms for both ap-
proximated update and approximated erasure in this logic.
We also show that these algorithms have polynomial time
complexity, and that instance checking on the knowl-
edge base resulting from an approximated update (resp.,
erasure) provides exactly the same answers as instance
checking over the set of models capturing the exact result
of the update (resp., erasure). Note that the same does not
hold for conjunctive query answering.

Preliminaries
DL knowledge bases Description Logics (DLs) (Baader
et al. 2003) are knowledge representation formalisms, tai-
lored for representing the domain of interest in terms ofcon-
cepts(or classes), which denote sets of objects, androles(or
relations), which denote binary relations between objects. A
DL knowledge base(KB) K = 〈T ,A〉 is formed by two
distinct partsT andA, calledTBoxandABox, respectively.
The TBoxT is a finite set of assertions representing thein-
tensional levelof the KB, i.e., providing an intensional de-
scription of the domain of interest. TheABoxA is a finite
set of assertions about the extension of concepts and roles,
i.e., providing information on theinstance levelof the KB.

The semantics of a DL KB is given in terms of interpreta-
tions over a fixed infinite domain∆ of objects. We assume to
have one constant for each object in∆ denoting exactly that
object. In this way, we blur the distinction between constants
and objects, so that we can use them interchangeably (with
a little abuse of notation). An interpretationI = 〈∆, ·I〉
consists of a first order structure over∆, where·I is the in-
terpretation function, i.e., a function mapping each concept
to a subset of∆ and each role to a subset of∆×∆. We say
thatI is a model of an assertion(i.e., either a TBox or an
ABox assertion)α if I satisfiesα, i.e., α is true inI. We
say thatI is amodel of the KBK = 〈T ,A〉, if I is a model
of all the assertions inT andA.

Given a set of assertionsS, we denote asMod(S) the set
of models of all assertions inS. In particular, the set ofmod-
els of a KBK, denoted asMod(K), is the set of models of
all assertions inT andA, i.e. Mod(K) = Mod(〈T ,A〉) =
Mod(T ∪ A). A KB K is consistentif Mod(K) 6= ∅, i.e. it
has at least one model. A set of modelsM logically implies
an assertionα, writtenM |= α, if for every interpretation
I ∈ M, we haveI ∈ Mod(α), i.e. all the models inM are
also models ofα. We say that a KBK logically impliesan
assertionα, writtenK |= α, if Mod(K) |= α.

DL-LiteF In this paper, we focus on a particular DL,
called DL-LiteF , belonging to theDL-Lite family (Cal-
vaneseet al. 2005; 2006). DLs in this family are tailored
towards capturing conceptual modeling constructs (such as
those typical of ontology languages, UML Class Diagrams
and Entity-Relationship Diagrams), while keeping reason-
ing, including conjunctive query answering, tractable and
first-order reducible (i.e, LOGSPACE in data complexity).

In DL-LiteF that is the logic originating the wholeDL-Lite
family in (Calvaneseet al. 2005), concepts are defined as
follows:

B ::= A | ∃R
C ::= B | ¬B
R ::= P | P−

whereA denotes an atomic concept,P an atomic role,B a
basic concept, andC a general concept. A basic concept can
be either an atomic concept, a concept of the form∃P , i.e.
the standard DL construct of unqualified existential quan-
tification on roles, or a concept of the form∃P−, which
involves inverse roles. A DL-LiteF TBox is a finite set of
universal assertions of the form

B1 ⊑ B2 inclusion assertion
B1 ⊑ ¬B2 disjointness assertion
(funct R) functionality assertion

An inclusion assertion specifies that each instance of the ba-
sic conceptB1 is also an instance of the basic conceptB2,
i.e., B1 is subsumed byB2. A disjointness assertion speci-
fies that the set of instances ofB1 andB2 are disjoint. Fi-
nally, a functionality assertion expresses the functionality of
an atomic role, or of the inverse of an atomic role. Note
that disjunction is disallowed, and that negation is used in
a restricted way, in particular for asserting disjointnessof
concepts. Notably, if we remove either of these limitations,
reasoning becomes intractable – see (Calvaneseet al. 2006).

A DL-LiteF ABox is a finite set of membership assertions
of the form

B(a), R(a, b)

stating, respectively, that the objecta is an instance of the
basic conceptB, and that the pair of objects(a, b) is an in-
stance of the roleR.

Given an interpretationI = 〈∆, ·I〉 the interpretation
function·I interprets the constructs ofDL-LiteF as follows:

AI ⊆ ∆ (P−)
I

= {(c′, c) | (c, c′) ∈ P I}
P I ⊆ ∆ × ∆ (∃R)I = {c | ∃c′.(c, c′) ∈ RI}
(¬B)I = ∆ \ BI

An interpretationI is a model of an inclusion assertion
B1 ⊑ B2 if BI

1 ⊆ BI
2 . I is a model of a disjointness asser-

tion B1 ⊑ ¬B2 if BI
1 ∩ BI

2 = ∅. I is a model of a func-
tionality assertion(funct R) if for all c, c′, c′′, (c, c′) ∈ RI

and(c, c′′) ∈ RI impliesc′ = c′′. I is a model of a mem-
bership assertionC(a) (resp.,R(a, b)) iff a ∈ CI (resp.,
(a, b) ∈ RI).

We observe that the form of theDL-LiteF ABox is that
of the original proposal in (Calvaneseet al. 2005), and is a
restriction with respect to the one studied in (De Giacomo
et al. 2006), where instance-level updates for theDL-Lite
family were first introduced. Specifically, here we do not
allow for negation or “variables” in the membership asser-
tions. We will see that, without these extensions,DL-LiteF
is akin to the vast majority of DLs, see (Liuet al. 2006), in
that the result of the update (or the erasure for the matter)
is not expressible as a newDL-LiteF ABox, thus motivating
the need for approximation.

DL instance-level updates and erasure Several ap-
proaches for changing a knowledge base have been consid-
ered in the literature, see, e.g., (Herzig & Rifi 1999), for a
survey. Following the work in (De Giacomoet al. 2006),
we adopt the Winslett’s notion of update (Winslett 1988;
1990) and its counterpart, defined in (Katsuno & Mendelzon
1991), as notion of erasure. However, as in (De Giacomoet
al. 2006) we refine such notions to take into account that
we are interested in studying changes at the instance-level,
while we insist that the intensional level of the knowledge
base is considered stable and hence remains invariant. Intu-
itively the result of updating (erasing) a KBK with a finite
set of formulasF , should be any KB that logically implies
(does not logically imply) all formulas inF , and whose set
of models minimally differs from the set of models ofK.
Taking into account that one of our basic assumption is to
maintain the TBox unchanged, the definitions of update and
erasure in our context are as follows.
Definition 1 Let I = 〈∆, ·I〉 and I ′ = 〈∆, ·I

′

〉 be two
interpretations over the same alphabet. We say thatI is
contained inI ′, written I ⊆ I ′, if I, I ′ are such that (i)
AI ⊆ AI′

, for every atomic conceptA, and (ii) RI ⊆ RI′

,
for every atomic roleR. We say thatI is properly contained
I ′, writtenI ⊂ I ′, if I ⊆ I ′ andI ′ 6⊆ I.

Definition 2 Let I = 〈∆, ·I〉 andI ′ = 〈∆, ·I
′

〉 be two in-
terpretations (over the same alphabet). We define thediffer-
ence betweenI andI ′, writtenI ⊖ I ′, as the interpretation
(∆, ·I⊖I′

) such that:

• AI⊖I′

= AI ⊖ AI′

, for every atomic conceptA

• RI⊖I′

= RI ⊖ RI′

, for every atomic roleR,
whereS⊖S′ denotes the symmetric difference between sets
S andS′, i.e. S ⊖ S′ = (S ∪ S′) \ (S ∩ S′).
Definition 3 Let T be a TBox in a DLL, I a model ofT ,
andF a finite set of membership assertions expressed inL
such thatMod(T ∪ F) 6= ∅. The update ofI with F ,
denotedUT (I,F), is defined as follows:

UT (I,F) = {I ′ | I ′ ∈ Mod(T ∪ F) and
there exists noI ′′ ∈ Mod(T ∪ F)
s.t.I ⊖ I ′′ ⊂ I ⊖ I ′}

Observe thatUT (I,F) is the set of models of bothT and
F whose difference with respect toI is ⊆-minimal. With
these notions in place we can define instance-level update
and erasure.
Definition 4 (Update) Let K = 〈T ,A〉 be a KB expressed
in a DL L, andF a finite set of membership assertions ex-
pressed inL such thatMod(T ∪ F) 6= ∅. Theupdate ofK
with F , denotedK ◦T F , is defined as follows:

K ◦T F =
⋃

I∈Mod(K)

UT (I,F).

Definition 5 (Erasure) LetK = 〈T ,A〉 be a KB expressed
in a DL L, andF a finite set of membership assertions ex-
pressed inL such thatMod(T ∪ ¬F) 6= ∅, where¬F de-
notes the set of membership assertions{¬Fi | Fi ∈ F}. The
erasure ofK with F , denotedK•T F , is defined as follows:

K•T F = Mod(K) ∪ (
⋃

I∈Mod(K)

UT (I,¬F)).

Observe that, from the above definition, erasing a set of
assertions means simultaneously erasing each assertion in
the set. Note also that assertions in the set¬Fi might not be
in the languageL, in particular whenL is not closed with re-
spect to negation of membership assertions. However, even
in this case, the above semantics of erasure is well-defined,
provided that we refer to the traditional first-order semantics
for negated membership assertions.

A basic question that arises when dealing with instance-
level update and erasure is whether the result of updat-
ing/erasing a KB in a given DLL can be expressed as a
new KB again expressed inL (with the same TBox, since
the TBox is invariant). Unfortunately, as shown in (Liuet
al. 2006; De Giacomoet al. 2006), in general the result
of update cannot be expressed in the same language as the
original KB. In particular, we will show in the next sections
that neither update nor erasure can always be expressed in
DL-LiteF . This fundamental problem leads us to studyap-
proximatedinstance-level update and erasure.

Approximation
To study approximated instance-level update and erasure,
we first define a general notion of approximation (Schaerf
& Cadoli 1995) that is natural in our setting. What we aim
at is to approximate in the best possible way the actual up-
date and erasure, while still remaining in the language of the
original KB. Since we cannot change the TBox, this means
that the approximated update and erasure must be encoded
in the ABox.

Definition 6 (Sound (L, T)-Approximation) Let M be a
set of models, andT a TBox in a DLL such thatM ⊆
Mod(T). We say that a DL KBK is a sound(L, T)-
approximationof M in L, if (i) K is in L, (ii) K is of the
form 〈T ,A〉, and (iii) M ⊆ Mod(K).

Definition 7 (Maximal (L, T)-Approximation) LetM be
a set of models, andT a TBox in a DL L such that
M ⊆ Mod(T). We say that a DL KBK is a maximal
(L, T)-approximationof M if (i) K is a sound(L, T)-
approximation ofM, and (ii) there exists no KBK′ that
is a sound(L, T)-approximation ofM, and is such that
Mod(K′) ⊂ Mod(K).

Such a notion of approximation intuitively aims at the
best set of models which can be selected through a KB
K = 〈T ,A〉, with T fixed, expressed in the DLL. The
set of models ofK must contain the setM to be approx-
imated (e.g., the one obtained through update or erasure),
and it should be as close as possible toM.

Interestingly, when such a best approximation exists, it is
unique up to logical equivalence, as the following theorem
shows.

Theorem 1 Let M be a set of models, andT a TBox in a
DL L such thatM ⊆ Mod(T). If a KB K exists that is
a maximal(L, T)-approximation ofM, then all maximal
(L, T)-approximations ofM are equivalent toK.

Proof. Suppose thatK′ = 〈T ,A′〉 is a maximal(L, T)-
approximation ofM that is not equivalent toK = 〈T ,A〉.
By definition of maximal(L, T)-approximation, we have
that bothK andK′ are sound(L, T)-approximations ofM,
which implies thatM ⊆ Mod(K), andM ⊆ Mod(K′).
Hence,M ⊆ Mod(K)∩Mod(K′). Now, letK′′ be〈T ,A∪

A′〉. It is easy to see thatMod(K′′) = Mod(K)∩Mod(K′),
and thereforeK′′ is also a sound(L, T)-approximation of
M. But then, sinceMod(K) 6= Mod(K′), we obtain that
Mod(K′′) ⊂ Mod(K), which contradicts the fact thatK is
a maximal(L, T)-approximation.

The next theorem characterizes the kind of approxima-
tion we have defined in terms of logical implication: a (or,
with a slight abuse of terminology, “the”) maximal(L, T)-
approximation captures exactly all membership assertionsin
the DLL that are logically implied byM.
Theorem 2 Let M be a set of models, andT a TBox in a
DL L such thatM ⊆ Mod(T). If K is a maximal(L, T)-
approximation ofM, then for every membership assertion
α in L it holds thatM |= α iff K |= α.
Proof. The if-direction is obvious. As for the only-if di-
rection, let us assume that there is a modelI ∈ K such that
I |= K but I 6|= α. But thenK ∪ α would be also a sound
(L, T)-approximation ofM, which contradicts the fact that
K is a maximal(L, T)-approximation ofM.

Unfortunately, maximal(L, T)-approximations may not
exist, as the following example shows.
Example 1 Let K = 〈T ,A〉 be theALCQIO KB (Baader
et al. 2003) defined as follows:

T : {∃R1 ⊓ ¬A ⊑ ∃R2, ∃R−
2 ⊑ ∃R1, ∃R1 ⊑ ¬∃R−

1 ,
(≤ 1R2), ⊤ ⊑ ∀R1.{b}, A ⊑ ∀R2.A}

A : {R1(a, b), ∀R−
1 .¬A(b)}

Now, consider the update ofK with F = {A(a)}, and let
M = K ◦T F . We show that there exists no finite maximal
(ALCQIO, T)-approximation ofK with F . Clearly, each

a

b

c
1

c
2 c

n

…

R
1

R
1

R
1

R
2

R
2

R
2 R

2

Figure 1: Example of model ofK

modelI of K is such that (i) the pair of objects(a, b) is
in RI

1 , and (ii) each objectx such that(x, b) is in RI
1 , is

also in¬AI . Figure 1 shows a graphical representation of a
possible modelI of K, wherea ∈ ¬AI , and, for alli, ci ∈
¬AI . It can be shown thatUT (I,F) is non-empty, and, for
everyJ ∈ UT (I,F), we have thata ∈ AJ and either the
pair (a, c1) does not belong toRJ

2 , or all ci’s do not belong
to¬AJ . Therefore, the update changes the interpretation of
¬A by removing from¬A only those objectsx for which
there exists a path froma to x through edges labeledR2.
Now let us define, forn ≥ 0:

An = {A(a),∀R−
1 .(¬A ⊔

⊔

0≤i≤n

(∃R−
2)i.{a})(b)}

From the above observations it can be shown by in-
duction that for eachn: (i) Kn = 〈T ,An〉 is a
sound(ALCQIO, T)-approximation ofK ◦T F ; and (ii)
Mod(Kn) ⊂ Mod(Kn+1). Therefore, no finite set
of membership assertions is a maximal(ALCQIO, T)-
approximation ofK ◦T F .

With the notion of maximal(L, T)-approximation ofM
in place, we can come back to the issue of approximating
instance-level update and erasure.

Definition 8 ((L, T)-Update) Let K = 〈T ,A〉, Ka =
〈T ,Aa〉 be two KBs in a DLL and F a finite set of
membership assertions expressed inL such thatMod(T) ∩
Mod(F) 6= ∅. We say thatKa is a(L, T)-update ofK with
F if Ka is a maximal(L, T)-approximation ofK ◦T F .

Definition 9 ((L, T)-Erasure) Let K = 〈T ,A〉, Ka =
〈T ,Aa〉 be two KBs in a DLL and F a finite set of
membership assertions expressed inL such thatMod(T) ∩
Mod(¬F) 6= ∅. We say thatKa is a (L, T)-erasure ofK
withF if Ka is a maximal(L, T)-approximation ofK•T F .

From Theorem 1 we know that if an(L, T)-update (resp.
(L, T)-erasure) ofK with F exists, it is unique up to logical
equivalence. Moreover, by Theorem 2 we know that(L, T)-
update (resp.(L, T)-erasure) captures exactly the logical
implication of the membership assertions of the “exact” up-
date (resp. erasure). Also the example above shows that in
general there are cases for which(L, T)-updates do not ex-
ist, and, in fact, the example above can be adapted to show
that also(L, T)-erasures do not always exist.

Approximated updates in DL-LiteF
In this section we focus our attention to updates toDL-LiteF
KBs. This problem has been studied in the context of
the DL-Lite family in (De Giacomoet al. 2006), where
it is shown that, for eachT in DL-LiteFS , the per-
fect (DL-LiteFS , T)-update exists, whereDL-LiteFS differs
from DL-LiteF because it allows for the presence of vari-
ables and negation in membership assertions.

In (De Giacomoet al. 2006) a sound and complete algo-
rithm, calledComputeUpdate(T ,A,F) was presented, for
computing the update of aDL-LiteFS KB K = 〈T ,A〉 with
a set ofDL-LiteFS membership assertionsF . Specifically
we have the following theorem.

Theorem 3 ((De Giacomoet al. 2006)) Let K = 〈T ,A〉
be a DL-LiteFS KB, F a finite set of DL-LiteFS mem-
bership assertions such thatMod(T ∪ F) 6= ∅, and
let Kp = 〈T ,Ap〉, whereAp is the ABox returned by
ComputeUpdate(T ,A,F). Then,Mod(Kp) = K ◦T F .

In other words forDL-LiteFS update and maximal approxi-
mation of the update coincide.

Observe thatDL-LiteFS TBoxes are alsoDL-LiteF
TBoxes, whileDL-LiteFS ABoxes have a more general form
thanDL-LiteF ones. As a result of this restriction we have
that the nice property above does not hold in general for
DL-LiteF since to express the updated KB we have to re-
sort to variable and negation in the membership assertions
of the new ABox, which is not allowed inDL-LiteF . The
following example illustrates this point.

Example 2 Let K = 〈T ,A〉 be theDL-LiteF KB such that
T = {A1 ⊑ ¬∃P ,∃P ⊑ ¬A2,∃P− ⊑ A3} andA =
{∃P (a)}. We want now to compute the(DL-LiteF , T)-
update ofK with F = {A1(a)}. Clearly, the set of models
that satisfyA1(a) and minimally differs fromMod(K) is
obtained by modifying the interpretation ofP in all models
of K so that there exists no couple of objects(a, x) that be-
longs to the interpretation ofP . In particular, this means

that for each modelI of K, there is no need to change
neither the interpretation ofA2, nor the interpretation of
A3. Thus, we have that (i) a should belong to¬A2, i.e.
K ◦T F |= ¬A2(a), and (ii) for each couple(a, x) that be-
longs toP I , x should be still interpreted as belonging to
AI

3 , and hence,A3 cannot be interpreted as the empty set,
i.e. K ◦T F |= ∃xA3(x). It can be easily shown that there
is no way to express inDL-LiteF neither (i), nor (ii) through
a set ofDL-LiteF membership assertions.

From the previous example, it follows that:

Theorem 4 The result of an update to a DL-LiteF KB may
not be expressible in DL-LiteF itself.

Thus, in general we have to look for approximate repre-
sentations of the result of an update inDL-LiteF . To this
aim, we define an algorithm namedComputeUpdateapp

that takes as input a TBoxT , an ABoxA and a set of mem-
bership assertionsF , where bothT , A andF are expressed
in DL-LiteF . Moreover, we assume thatK = 〈T ,A〉 is con-
sistent andMod(T ∪ F) 6= ∅. ThenComputeUpdateapp

returns the ABoxAa obtained as follows:

1. compute the ABoxAp = ComputeUpdate(T ,A,F);

2. return the projection ofAp to DL-LiteF , i.e. the ABox
obtained by deleting fromAp all the assertions that are
notDL-LiteF membership assertions.

Since the algorithmComputeUpdate(T ,A,F) runs in
polynomial time (De Giacomoet al. 2006), it follows that
the algorithmComputeUpdateapp also terminates and runs
in time polynomial with respect to the size of its input.

Example 3 Consider theDL-LiteF KB K = 〈T ,A〉 in-
troduced of Example 2. Now suppose to compute the
(DL-LiteF , T)-update ofK with F = {A1(a)}. First, we
apply the update algorithmComputeUpdate of (De Gia-
comoet al. 2006). This returns aDL-LiteFS ABox Ap that
is obtained fromA by removing the assertion∃P (a), and in-
troducing, besidesA1(a), the assertions¬A2(a) andA3(z),
wherez is a new variable. Second, we perform the pro-
jection ofAp in DL-LiteF , and obtain theDL-LiteF ABox
Aa = {A1(a)}.

To prove the correctness of the above algorithm we need
the following preliminary lemma.

Lemma 1 LetK = 〈T ,A〉 be a DL-LiteFS KB, andα be a
DL-LiteF assertion. IfK |= α, then there exists a DL-LiteF
membership assertionα′ in A such that〈T , α′〉 |= α.

Proof. The proof is based on the nice property ofDL-LiteFS

KBs of having a minimal model that is built by using a
chase-like technique(Poggi 2006).

Theorem 5 LetK = 〈T ,A〉 be a DL-LiteF KB, F a finite
set of DL-LiteF membership assertions such thatMod(T ∪
F) 6= ∅, and letKa = 〈T ,Aa〉, whereAa is the ABox
returned byComputeUpdateapp(T ,A,F). Then,Ka is a
(DL-LiteF , T)-update ofK with F .

Proof. Clearly the algorithmComputeUpdateapp termi-
nates, since so doesComputeUpdate. Now, let Aa =
ComputeUpdateapp(T ,A,F). We first show that〈T ,Aa〉
is a sound (DL-LiteF , T)-approximation of K ◦T F ,
then we show that it is a maximal one. LetAp =
ComputeUpdate(T ,A,F). By construction,Aa ⊆ Ap

and therefore, sinceDL-LiteF is monotone,Mod(Ap) ⊆
Mod(Aa). Hence Mod(〈T ,Ap〉) ⊆ Mod(〈T ,Aa〉).
Moreover, by Theorem 3,Mod(〈T ,Ap〉) = K ◦T F . It fol-
lows that〈T ,Aa〉 is a sound(DL-LiteF , T)-approximation
of K ◦T F . Now, let us show thatKa = 〈T ,Aa〉 is the
maximal(DL-LiteF , T)-approximation ofK◦T F . By con-
tradiction, letK′ = 〈T ,A′〉 be a sound(DL-LiteF , T)-
approximation ofK◦T F such thatMod(K′) ⊂ Mod(Ka).
SinceMod(K′ ∪ Ka) = Mod(K′) ∩ Mod(Ka), we have
that Mod(K′ ∪ Ka) = Mod(K′), which implies that that
Ka ⊂ K′, and thus that there exists aDL-LiteF membership
assertionα such thatα ∈ A′, K ◦T F |= α andKa 6|= α.
Let Ap = ComputeUpdate(T ,A,F) andKp = 〈T ,Ap〉.
By Theorem 3,Mod(Kp) = K ◦T F . Then we have that
Kp |= α, whereα is a membership assertion inDL-LiteF .
By Lemma 1, there must exist aDL-LiteF membership as-
sertionα′ in Ap such that〈T , α′〉 |= α. But then, by con-
struction,α′ belongs toAa, contradictingKa 6|= α.

From Theorem 5 and Theorem 2, it follows that
ComputeUpdateapp captures, in a sound and complete way,
logical implication ofDL-LiteF assertions after update.

Theorem 6 Let K = 〈T ,A〉 be a DL-LiteF KB, let F be
a finite set of DL-LiteF membership assertions such that
Mod(T ∪ F) 6= ∅, and letKa = 〈T ,Aa〉, whereAa is
the ABox returned byComputeUpdateapp(T ,A,F). Then,
for every membership assertionα in DL-LiteF , we have that
K ◦T F |= α iff Ka |= α.

Finally, we point out that the above results do not contra-
dict what is reported on (De Giacomoet al. 2006), where
it is shown that the result of an update to a KB expressed
in DL-LiteFS is always expressible in this logic. Indeed,
DL-LiteFS is strictly more expressive thanDL-LiteF , and
our result shows indeed that this extra expressive power is
crucial for expressing updates.

Approximated erasure in DL-LiteF
We now study erasure inDL-LiteF KB. We start by show-
ing that, in DL-LiteF , the result of the erasure cannot be
always expressed in terms of aDL-LiteF KB. To this aim,
we present the following example.

Example 4 Let K = 〈T ,A〉 be theDL-LiteF KB such that
T = {A ⊑ B,A ⊑ C} andA = {A(a)}. LetF = {C(a)}.
By definition,K•T F = Mod(K)∪ (K◦T {¬C(a)}). Thus,
each modelI in K•T F is obtained from a modelI of K
by either not modifying anything, or by modifying the inter-
pretation ofa so thata does not belong toAI . Hence, for
eachI, eithera ∈ AI , a ∈ CI or a /∈ AI , a /∈ CI . Clearly
there is no way to express this set of models through a set of
DL-LiteF membership assertions.

As an immediate consequence of the above example, we
get the following property.

Theorem 7 The result of an erasure to a DL-LiteF KB may
not be expressible in DL-LiteF itself.

Therefore, like in the case of update, inDL-LiteF it is
interesting to look at maximal approximations of the era-
sure. For this purpose, we define an algorithm named
ComputeErasureapp , which takes as input a TBoxT , an
ABox A and a set of membership assertionsF , where both

T , A andF are expressed inDL-LiteF . Moreover, we as-
sume thatK = 〈T ,A〉 is consistent and thatMod(T ∪
¬F) 6= ∅. ThenComputeErasureapp returns the ABoxAa

obtained as follows:

1. compute the ABoxAp = ComputeUpdate(T ,A,¬F);

2. compute the projection ofAp to DL-LiteF , i.e. delete
from Ap all the assertions that are notDL-LiteF mem-
bership assertions.

As mentioned in the previous section, the algorithm
ComputeUpdate(T ,A,F) runs in polynomial time, there-
fore the algorithmComputeErasureapp terminates and runs
in time polynomial with respect to the size of its input.

Example 5 Consider theDL-LiteF KB K = 〈T ,A〉
introduced in Example 4. Now suppose to compute
the (DL-LiteF , T)-erasure ofK with F = {C(a)}.
First, we apply the update algorithmComputeUpdate
of (De Giacomoet al. 2006) and compute the ABox
Ap = ComputeUpdate(T ,A, {¬C(a)}). This returns a
DL-LiteFS ABox that is obtained fromA by removing
the assertionA(a), and introducing the assertions¬C(a)
and B(a). Second, we perform the projection ofAp in
DL-LiteF , and obtain theDL-LiteF ABox Aa = {B(a)}.

The following theorem shows that the maximal ap-
proximation of instance-level erasure in aDL-LiteF
KB always exists and is computed by the algorithm
ComputeErasureapp .

Theorem 8 LetK = 〈T ,A〉 be a DL-LiteF KB, F a finite
set of DL-LiteF membership assertions such thatMod(T ∪
¬F) 6= ∅, and letKa = 〈T ,Aa〉, whereAa is the ABox
returned byComputeErasureapp(T ,A,F). Then,Ka is a
(DL-LiteF , T)-erasure ofK with F .

Proof. First, from definition of erasure,K•T F =
Mod(K) ∪ K ◦T ¬F . Then, by definition of the algo-
rithm ComputeErasureapp , it follows that for every mem-
bership assertionα ∈ Aa − A, we haveK |= α, which
immediately implies that (i)Mod(K) ⊆ Mod(Ka). More-
over, letKp = 〈T ,Ap〉 whereAp is the ABox returned by
ComputeUpdateapp(T ,A,¬F): by definition,Aa ⊆ Ap,
consequently every model ofKp is also a model ofKa, and
since by Theorem 3Mod(Kp) = K ◦T ¬F , it follows that
(ii) K ◦T ¬F ⊆ Mod(Ka). Hence, from (i) and (ii) it fol-
lows thatKa is a(DL-LiteF , T)-approximation ofK•T F .

Now, supposeKa is not the maximal(DL-LiteF , T)-
approximation ofK•T F . Then, there exists aDL-LiteF
KB K′ = 〈T ,A′〉 such thatK•T F ⊆ Mod(K′) ⊂
Mod(Ka). SinceMod(K′) ⊂ Mod(Ka), there exists at
least a (membership) assertionα ∈ A′ − Aa such that
Ka 6|= α, and sinceK•T F ⊆ Mod(K′) andK•T F =
Mod(K) ∪ K ◦T ¬F , it follows thatKp |= α. Now, by
Lemma 1 it follows that there exists a membership assertion
α′ ∈ Ap such that〈T , {α′}〉 |= α. Hence, by definition
of ComputeErasureapp , it follows that α′ ∈ Aa, conse-
quentlyKa |= α. Contradiction. Therefore,Ka is the maxi-
mal (DL-LiteF , T)-approximation ofK•T F .

Finally, from Theorem 8 and Theorem 2, it immediately
follows that the algorithmComputeErasureapp captures, in
a sound and complete way, logical implication ofDL-LiteF
assertions after erasure.

Theorem 9 Let K = 〈T ,A〉 be a DL-LiteF KB, let F be
a finite set of DL-LiteF membership assertions such that
Mod(T ∪¬F) 6= ∅, and letKa = 〈T ,Aa〉, whereAa is the
ABox returned byComputeErasureapp(T ,A,F). Then,
for every membership assertionα in DL-LiteF , we have that
K•T F |= α iff Ka |= α.

Conclusion
We have investigated the notion of evolution of a DL KB,
under three basic assumptions: formal semantics, fixed
TBox, and fixed DL. In order to cope with the non-
expressibility problem, we have introduced the notion of
maximal approximation of an update and of an erasure. Fi-
nally we have presented efficient algorithms for computing
such approximations in the tractable DLDL-LiteF . In the
future, we will incorporate the algorithms presented here in
the QuOnto reasoning system, and we will try to develop
algorithms for computing approximations in the context of
other DLs used in the current reasoning systems.

Acknowledgments This research has been partially sup-
ported by the FET project TONES (Thinking ONtologiES),
funded by the EU under contract number FP6-7603, and
by the MIUR FIRB 2005 project “Tecnologie Orientate alla
Conoscenza per Aggregazioni di Imprese in Internet” (TO-
CAI.IT).

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and Patel-
Schneider, P. F., eds. 2003.The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge University
Press.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; and
Rosati, R. 2005. DL-Lite: Tractable description logics for on-
tologies. InProc. of AAAI 2005, 602–607.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; and
Rosati, R. 2006. Data complexity of query answering in descrip-
tion logics. InProc. of KR 2006, 260–270.
De Giacomo, G.; Lenzerini, M.; Poggi, A.; and Rosati, R. 2006.
On the update of description logic ontologies at the instance level.
In Proc. of AAAI 2006.
Gutiérrez, C.; Hurtado, C.; and Vaisman, A. 2006. The meaning
of erasing in RDF under the Katsuno-Mendelzon approach.
Haase, P., and Stojanovic, L. 2005. Consistent evolution of owl
ontologies. InProc. of ESWC 2005, 182–197.
Herzig, A., and Rifi, O. 1999. Propositional belief update and
minimal change.Artificial Intelligence115(1):107–138.
Katsuno, H., and Mendelzon, A. 1991. On the difference between
updating a knowledge base and revising it. InProc. of KR’91,
387–394.
Liu, H.; Lutz, C.; Milicic, M.; and Wolter, F. 2006. Updating
description logic ABoxes. InProc. of KR 2006, 46–56.
Poggi, A. 2006.Structured and Semi-Structured Data Integra-
tion. Ph.D. Dissertation, Dip. di Inf. e Sist., Univ. di Roma “La
Sapienza”.
Schaerf, M., and Cadoli, M. 1995. Tractable reasoning via ap-
proximation.Artificial Intelligence74(2):249–310.
Winslett, M. 1988. Reasoning about action using a possible mod-
els approach. InProc. of AAAI’98.
Winslett, M. 1990. Updating Logical Databases. Cambridge
University Press.

