Data integration and reconciliation in Data
War ehousing: Conceptual modeling and
reasoning support

Diego Calvanese — Giuseppe De Giacomo — Riccardo Rosati

Dipartimento di Informatica e Sistemistica

Universita di Roma ““‘La Sapienza™

Via Salaria 113, 00198 Roma, Italy

Email: {calvanese,degiacomo,rosati}@dis.uniromal.it

Web: http://www.dis.uniromal.it/~{calvanese,degiacomo,rosati}

ABSTRACT. Integration is one of the most important aspects of a Data Warehouse. When
data passes from the sources of the application-oriented operational environment to the
Data Warehouse, possible inconsistencies and redundancies should be resolved, so that the
warehouse is able to provide an integrated and reconciled view of data of the organization.
We describe a novel approach to data integration and reconciliation, based on a conceptual
representation of the Data Warehouse application domain. The main idea is to declaratively
specify suitable matching, conversion, and reconciliation operations to be used in order to
solve possible conflicts among data in different sources. Such a specification is provided in
terms of the conceptual model of the application, and is effectively used during the design of
the software modules that load the data from the sources into the Data Warehouse.

KEYWORDS: conceptual modeling, Data Warehousing, data integration, data reconciliation.

Networking and Information Systems Journal. Volume 2 - n® 4/1999, pages 413 to 432

414 Networking and Information Systems Journal. Volume 2 - n® 4/1999

1. Introduction

Information Integration is the problem of acquiring data from a set of sources
that are available for the application of interest. The typical architecture of an in-
tegration system is described in terms of two types of modules: wrappers and me-
diators [WIE 92, ULL 97]. The goal of a wrapper is to access a source, extract the
relevant data, and present such data in a specified format. The role of a mediator is
to merge data produced by different wrappers (or mediators), so as to meet a specific
information need of the integration system. The specification and the realization of
mediators is the core problem in the design of an integration system. This problem
has recently become a central issue in several contexts, including multi-database sys-
tems, Data Warehousing and information gathering from the Web.

The constraints that are typical of Data Warehouse applications restrict the large
spectrum of approaches that are being proposed [HUL 97, INM 96, JAR 99]. First,
while the sources on the Web are often external, in a Data Warehouse they are mostly
internal to the organization. Second, a Data Warehouse should reflect the informa-
tional needs of an organization, and should therefore be defined in terms of a global,
corporate view of data. Third, such a view should be provided in terms of conceptual
representation mechanism that is able to abstract from the physical and logical organi-
zation of data in the sources. It follows that the need and requirements for maintaining
an integrated, conceptual view of the corporate data in the organization are stronger
with respect to other contexts. A direct consequence of this fact is that the data in
the sources and in the Data Warehouse should be defined in terms of the conceptual
model, and not the other way around. In other words, data integration in Data Ware-
housing should follow the local as view approach, where each table in a source and
in the Data Warehouse is defined as a view of a global model of the corporate data.
On the contrary, the global as view approach requires, for each information need, to
specify the corresponding query in terms of the data at the sources, and is therefore
suited when no global, integrated view of the data of the organization is available.

The above considerations motivate the approach to information integration pro-
posed in [CAL 98d], whose distinguishing feature is to exploit the possibility of rep-
resenting the conceptual level of a Data Warehouse in a very expressive language and
use reasoning tools to support the Data Warehouse construction, maintenance and evo-
lution. In fact, the idea is to balance the effort of building a conceptual model of the
Data Warehouse by improving the capabilities of the system in maintaining the Data
Warehouse and support the incremental addition of information sources. The pro-
posed approach follows a local as view paradigm, by explicitly requiring an enterprise
conceptual model which is therefore regarded as a unified view of the data available
within the organization.

Most of the work on integration has been concerned with the intensional/schema
level, while less attention has been devoted to the problem of data integration at the
extensional level. Integration of data is, nonetheless, at the heart of Data Warehous-
ing [INM 96]. When data passes from the application-oriented operational environ-
ment to the Warehouse, possible inconsistencies and redundancies should be resolved,

Data integration and reconciliation 415

so that the Warehouse is able to provide an integrated and reconciled view of data of
the organization. Thus, in the context of a Data Warehouse, data integration and recon-
ciliation is the process of acquiring data from the sources and making them available
within the Warehouse.

Given a request for data (e.g., for materializing a new relation in the Data Ware-
house), which is formulated in terms of the global view of the corporate data, (i.e., hot
the language of the sources, but of the enterprise), there are several steps that enable
for the acquisition of data from the sources:

1. Identification of the sources where the relevant information resides. Note that
this task is typical of the local-as-view approach, and requires algorithms that are
generally both sophisticated and costly [ABI 98, LEV 95].

2. Decomposition of the user request into queries to individual sources that would
return the data of interest.

3. Interpretation of the data provided by a source. Interpreting data can be re-
garded as the task of casting them into a commaon representation, which can thereafter
be used to manipulate the data.

4. Merging of the data. The data returned by various sources need to be combined
to provide the Data Warehouse with the requested information.

In commercial environments for Data Warehouse design and management the
above tasks are taken care of through ad-hoc components [JAR 99]. In general, such
a component provides the user with the capability of specifying the mapping between
the sources and the Data Warehouse by browsing through a meta-level description
of the relations of the sources. In addition, it generally provides both for automatic
code generators and for the possibility of attaching procedures to accomplish ad hoc
transformations and filtering of the data. Even though there are powerful and effective
environments with the above features, their nature is inherently procedural and close
to the notion of global as view, where the task of relating the sources with the Data
Warehouse is done on a query-by-query basis.

Several recent research contributions address the same problem from a more for-
mal perspective [HAM 95, WID 95, GUP 95, HUL 96, ZHO 96, ZHO 95, PAP 95,
GOH 94]. For example, a methodology for extracting, comparing and matching data
and objects located in different sources is described in [PAP 95]. The methodology is
based on the Object Exchange Model, which requires the explicit semantic labeling of
the objects, to support object exchange, and emphasizes the need for a tight interaction
between the system and the user. However, the method remains of procedural nature,
since it requires the user to build and maintain the relationship between the sources
and the Data Warehouse on a query-by-query basis.

The approach proposed in [GOH 94] is more declarative in nature. Suitable data
structures for reconciling different representations of the same data are represented in
a context theory, which is used by the system to transform the queries as appropri-
ate for gathering the data from the various sources. In such a declarative approach,
the user is not directly concerned with the identification and resolution of semantic
conflicts when formulating the requests for data. Rather, once the specification of the

416 Networking and Information Systems Journal. Volume 2 - n® 4/1999

sources is available, conflicts are detected by the system, and conversion and filtering
are automatically enforced. However, the method still follows the global-as-view ap-
proach, and the context theory is used as a description of reconciled data structures,
rather than as the conceptual model of the corporate data.

In this paper we present an approach to data integration and reconciliation based
on a conceptual representation of the Data Warehouse application domain. Specifi-
cally, the method for data integration and reconciliation builds upon and extends the
work in [CAL 98d], therefore relying on the availability of a Conceptual Model to
declaratively represent the relationship between the sources and the Data Warehouse.
The declarative approach is further pursued in the task of data integration and recon-
ciliation, where the system is given a declarative description of the data in the sources
and provides automatic support in satisfying the data requests for populating the Data
Warehouse.

Compared with the existing proposals mentioned above, the novelty of our ap-
proach stems from the following features:

— It relies on the Conceptual Model of the corporate data, which is expressed in
an Entity-Relationship formalism.

— It follows the local-as-view paradigm.

— It allows the designer to declaratively specify several types of correspondences
between data in different schemas (either source schemas or Data Warehouse schema).
Three types of Interschema Correspondences are taken into account, namely Conver-
sion, Matching, and Reconciliation Correspondences.

— It uses such correspondences for supporting the task of specifying the correct
mediators for the loading of the materialized views of the Data Warehouse.

Our methodology relies on a novel query rewriting algorithm, whose role is to re-
formulate the query that defines the view to materialize in terms of both the source
relations and the Interschema Correspondences.

The paper is organized as follows. In Section 2, we summarize the relevant fea-
tures of the proposed approach to information integration. Section 3 illustrates the
method we use to describe the content of the sources at the logical level. Section 4 is
devoted to a discussion of the meaning and the role of Interschema Correspondences.
Section 5 describes the query rewriting algorithm at the basis of our approach to the
design of mediators. Section 6 concludes the paper.

2. Integration framework

In this section we briefly describe the proposed data integration framework which
allows one to explicitly model data and information needs — i.e., a specification of
the data that the Data Warehouse provides to the user — at various levels [CAL 98b,
CAL 98d, CAL 98c]:

— The conceptual level contains a conceptual representation of the corporate data.

— The logical level contains a representation in terms of a logical data model of

Data integration and reconciliation 417

the sources and of the data materialized in the Data Warehouse.

— The physical level contains a store for the materialized data, wrappers for the
sources and mediators for loading the materialized data store.

The relationship between the conceptual and the logical, and between the logical and
the physical level is represented explicitly by specifying mappings between corre-
sponding objects of the different levels.

We briefly describe the conceptual and logical levels, referring to the abstract ar-
chitecture depicted in Figure 1.

The Conceptual Model is a conceptual representation of the data managed by the
enterprise, including a conceptual representation of the data residing in sources, and of
the global concepts and relationships that are of interest to the Data Warehouse appli-
cation. The conceptual model is expressed in terms of an enriched Entity-Relationship
model in which complex entity and relationship expressions can be constructed and
used, and in which interdependencies between elements of different sources and of
the enterprise are captured using intermodel assertions [CAL 98b, CAT 93]. Inter-
model assertions provide a simple and effective declarative mechanism to express the
dependencies that hold between entities (i.e. classes and relationships) in different
models [HUL 97]. The use of intermodel assertions allows for an incremental ap-
proach to the integration of the conceptual models of the sources and of the enterprise.
Due to space limitations, we cannot consider this aspect in further detail, and refer the
interested reader to [CAL 98b].

The conceptual representation contains, besides entities and relationships, also a
description of domains, which are used to typify the attributes of entities and relation-
ships. Rather than considering only concrete domains, such as strings, integers, and
reals, our approach is based on the use of abstract domains. An abstract domain may
have an underlying concrete domain, but allows the designer to distinguish between
the different meanings that a value of the concrete domain may have. Additionally,
also Boolean combinations of domains and the possibility to construct an ISA hierar-
chy between domains are supported.

Example 1 Consider two attributes A; inasource and A5 in the Data Warehouse,
both representing amounts of money. Rather than specifying that both attributes have
values of type r eal , the designer may specify that the domain of attribute A; is
Moneyl nLi r e while the domain of attribute A, is Moneyl nEur o, both of which
have r eal as the underlying concrete domain. In this way, it becomes possible to
specify declaratively the difference between values of the two attributes, and take into
account such knowledge for loading data from the source to the Data Warehouse. =

We provide an example of the form of the Conceptual Model, and refer
to [CAL 98b] for a more detailed description of the adopted formalism.

Example 2 As our running example we consider an enterprise and two sources
containing information about contracts between customers and departments for ser-
vices, and about registration of customers at departments. Source 1 contains infor-
mation about customers registered at public-relations departments. Source 2 contains
information about contracts and complete information about services. Such situation

418 Networking and Information Systems Journal.

Conceptua
Model
Source Source
""" Schemay T Scheman,
conceptual level logical level

conceptual/logical mapping
physical/logical mapping
data fow

E—

Figure 1. Architecture for Data Integration

\Volume 2 - n°® 4/1999

Mediators

Data Warehouse
Store

physical level

Sources

— —
Source Source
Data Storey Data Store,,

can be represented by means of the ER diagrams shown in Figure 2, together with the
following intermodel assertions (C represents ISA while = represents equivalence):

Department,; =

REG AT; C

Customer; =

Cust oner M (> 1[$1JCONTRACT,) LC
Custoner, C

Department, LC

Service, =

CONTRACT, C

Customer; =

Department; =

and the following domain hierarchy:

Per sNameSt ri ng
Dept NanmeSt ri ng
SSNSt ri ng

Dept Codel nt eger
Ser vNol nt eger

Pr Dept
REG- ATy

Cust onerg M
(> 1[$1](REG- AT, 1 ($2: Pr Dept y)))

(> 1[$1]PROVOTI ON,)

Cust oner o M (> 1 [$1]CONTRACTY)
Depart nment

Servi ceg

CONTRACT,

Cust oner 5

Depar t ment 5

M

String

1M

String

1M

String

M

I nt eger

M

| nt eger

Data integration and reconciliation 419

(EServNo/ServNol nt eger

T?SSN/SSNStri ng 2

1 3
Cust oner g ‘ CONTRACT, Nae/Dept Names 1 ng
5 T?Oode/Dept Codel nt eger
DOB/Dat e 1)
@ Depar t nent

Pr Dept g

(ENarTE/Dept NameSt ri ng

(E SSN/SSNSt ri ng

Depart ment

Cust oner ¢

(EServNo/ServNol nt eger

Ser vi cey
(ENarre/PersNaneStri ng 2 (PNane/Dept NameSt ri ng
1 3
Cust oner 4 CONTRACT, Depart nment o

CBDOB/Date

Figure 2. Conceptual model of the application of Example 2

At the logical level, the logical content of each source, called the Source Schema
(see Section 3), is provided in terms of a set of relational tables using the relational
model. The link between the logical representation and the conceptual representation
of the source is formally defined by associating with each table a query that describes
its content in terms of a query over the Conceptual Model. In other words, the logical
content of a source table is described in terms of a view over the Conceptual Model.

420 Networking and Information Systems Journal. Volume 2 - n® 4/1999

To map physical structures to logical structures we make use of suitable wrappers,
which encapsulate the sources. The wrapper hides how the source actually stores its
data, the data model it adopts, etc., and presents the source as a set of relational tables.
In particular, we assume that all attributes in the tables are of interest to the Data
Warehouse application (attributes that are not of interest are hidden by the wrapper).
The logical content of the materialized views constituting the Data Warehouse, called
the Data Warehouse Schema (see Section 4), is provided in terms of a set of relational
tables. Similarly to the case of the sources, each table of the Data Warehouse Schema
is described in terms of a view over the Conceptual Model. As we said before, the
way in which a view is actually materialized, starting from the data in the sources, is
specified by means of mediators.

In such a framework, we have devised suitable inference techniques, which al-
low for carrying out several reasoning services on both the conceptual representation,
such as inferring inclusion between entities and relationships, satisfiability of entities,
etc. [CAL 98d], and the logical representation, such as query containment [CAL 98a],
which is at the basis of query rewriting. The possibilities offered by such reasoning
tools are used in the accomplishment of several activities concerning both the design
and the operation of the Data Warehouse.

3. Source schema description

In this section we focus on the specification of the logical schemas of the sources.
Such schemas are intended to provide a structural description of the content of the
sources, which are encapsulated by suitable wrappers.

We describe a source S by associating to each relational table 7" of S an adorned
query that is constituted by a head, a body, and an adornment:

— The head defines the relational schema of the table in terms of a name, and the
number of columns.

— The body describes the content of the table in terms of a query over the Con-
ceptual Model.

— The adornment declares the domains of the columns of the table, and also
which are the attributes of the table that are used to identify an entity of the Conceptual
Model.

We now present in detail the notions introduced above.

3.1. Query over the conceptual model

Generally speaking, the connection to the Conceptual Model is established by
defining each table as a relational query over the elements of the Conceptual Model.
A query ¢ for a Conceptual Model M is a non-recursive Datalog query, written in

Data integration and reconciliation 421

the form:
q(X) + conj,(X,¥1) OR--- OR conj,,,(X,¥m)

where each conj, (X, ¥;) is a conjunction of atoms or negated atoms, and X, ¥/; are all
the variables appearing in the conjunct. Each atom is either of the forms E(t) or of
the form R(t), where t, ¢, and ¢’ are variables in %, §; or constants, and £ and R, and
entities and relationships of M respectively.

The semantics of queries is as follows. Given an interpretation Z of a Conceptual
Model M with interpretation domain AZ, a query q of arity n is interpreted as the set
q” of n-tuples (dy, .. .,d,), with each d; € AZ, such that, when substituting each d;
for z;, the formula

3¥1.conj (X, ¥1) OR --- OR 3¥,,.conj,,, (X, ¥m)

evaluates to true in Z.

The fact that a relation in a source is defined in terms of a query over the Concep-
tual Model confirms that we are following the local-as-view approach: each table is
seen as a view of the virtual database represented by the Conceptual Model.

3.2. Adornment

To make the connection to the Conceptual Model precise, it is not sufficient to
define each table as a relational query over the elements of the Conceptual Model. We
need to make it explicit how the objects of the conceptual representation are coded
into values of the logical representation. The notion of adorned query is introduced
exactly for this purpose.

An adorned query is an expression of the form:

T(i) « q(i,}_") | A1,y...,0n

where T is the name of the relational table, X are its attributes (observe that attributes
denote values and not objects), ¢(Z, ¥) is a query as defined above, and each «; is an
annotation on variables appearing in X. In particular:

1. For each X € X, we have an annotation of the form:
X2V

where V' is a domain expression. Such an annotation is used to specify how values
bound to X are represented in the table at the logical level. For example, which
currency is used for a real value denoting an amount of money.

2. For each tuple of variables Z C X that is used for identifying in T" an object
Y € ¥ mentioned in ¢(X, ¥), we have an annotation of the form:

identify([Z],Y)

For example, the designer may assert that the attributesf i r st _nane, | ast _nane,
and dat e_of _bi rt hin atable are used to identify students.

422 Networking and Information Systems Journal. Volume 2 - n © 4/1999

We point out that our method is able to cope with several schematic differences
that may be present in the sources [SHE 92]. We illustrate this point with the help of
an example.

Example 3 Suppose that the Conceptual Model contains a relationship Ser vi ce
with three attributes, Dat e, Ser vi ceNo, and Pri ce, where Servi ce(D, S, P)
means that at the date D the service S costs P Euro. Suppose that Source Sy represents
the same kind of information only on Services v, and v2, by means of two tables: v1
and v2, where v1(D, P) means that service v, costs P Italian Lira at date D, and
v2(D, P) means that service v, costs P Italian Lira at date D. Suppose that Source
S, represents the same kind of information only on Services vs and v4 by means of a
table Ser v, where Ser v (X, Y, D) means that services vs and v4 cost X and Y Euro
respectively at date D. Finally, suppose that Source Ss represents the information
only for a certain date d by means of another table Ser v3. The various tables in the
three sources can be specified by means of the following adorned queries:

vl(D,P) <« Service(D,vl P) |
P:ltalianLira, D::Date

v2(D,P) +« Service(D,/v2' P) |
P:ltalianLira, D:Date

Serv(X,Y,D) <« Service(D,/v3 X),
Service(D,v4")Y) |
X :Euro, Y :Euro, D ::Date

Serv3(S1,P) <« Service(d,S1,P),
Code(S,S1) |
P :: Euro,
identify([S1],S), S1::String

The above example illustrates a case where there are various schematic differ-
ences, both among the sources, and between the sources and the Conceptual Model.
The mechanisms used in our methodology for specifying adorned queries is able to
cope with such differences.

The adorned query associated to a table in a source contains a lot of information
that can be profitably used in analyzing the quality of the Data Warehouse design
process. Indeed, the adorned query precisely formalizes the content of a source table
in terms of a query over the Conceptual Model, the domains of each attribute of the
table, and the attributes used to identify entities at the conceptual level. One important
check that we can carry out over the logical specification of a source is whether the
adorned query associated with a table in a source is consistent or not. Let () be an
adorned query and let B be its body. The query B is said to be inconsistent with
respect to the Conceptual Model M, if for every database D B coherent with M, the
evaluation of B with respect to D B is empty. An adorned query () is inconsistent with

Data integration and reconciliation 423

respect to the Conceptual Model M either because the body B of @ is inconsistent
with respect to M, or because the annotations are incoherent with respect to what
specified in M. The inference techniques described in [CAL 98d] allow us to check
the consistency of the relational tables defined for describing a source.

Example 2 (cont.) Assuming that in Source 1 a customer is actually identified by
its social security number, and a department by its name, we can specify the relational
table TABLE; by the following adorned query:

TABLE; (S, M, P) + REG AT,(X,D), -PROMOTI ONy (X, D), P = f al se,
SSN(X,, S), Nane(D, M)
OR
PROMOTI ON, (X, D), P = t r ue, SSN(X, S),
Nane; (D, M) |

identify([S], X), S :: SSNSt ri ng,
identify([M], D), M :: Dept NameStri ng,
P :: Bool ean

Additionally, we assume that in Source 2 the actual data can be described in terms
of a relational table TABLE> with four columns, two for the customer, one for the
service the customer has registered, and one for the department. As in Source 1, in
Source 2 departments are still identified by their name, but, differently from Source 1,
customers are identified by their name and date of birth. Services are identified by
a unique service number. Hence the following adorned query is used to specify
TABLE;:

TABLE(N, B,I,M) + CONTRACT:(X,S,D), Nanme(X, N), DOB(X, B),
ServNo(S,I), Name(D, M) |

identify([N, B],X), N :: Per sNameStri ng,

B :Date
identify([I],S), I :: Ser vNol nt eger,
identify([M], D), M :: Dept NameSt ri ng -

4. Interschema Correspondences

We now describe how to define Interschema Correspondences, which are used to
declaratively specify the correspondences between data in different schemas (either
source schemas or data warehouse schema).

In our approach, Interschema Correspondences are defined in terms of relational
tables, similarly to the case of the relations describing the sources at the logical level.
The difference with source relations is that we conceive Interschema Correspondences
as non-materialized relational tables, in the sense that their extension is computed by
an associated program whenever it is needed. It follows that, to each Interschema

424 Networking and Information Systems Journal. Volume 2 - n © 4/1999

Correspondence, we associate a head, a body, and an adornment. Differently from the
case of a source relation, the adornment specifies which is the program that is able to
compute the extension of the virtual table.

We distinguish among three types of correspondences, namely Conversion,
Matching, and Reconciliation Correspondences.

Conversion Correspondences are used to specify that data in one source can be
converted into data of a different source or of the data warehouse, and how this con-
version is performed. They are used to anticipate several types of data conflicts that
may occur in loading data.

As an example, suppose that in a table of a source costs are represented in Italian
Lira, while in a table of the Data Warehouse we want to express them in Euro. Then, in
order to use the source table in the rewriting of a query that defines the Data Warehouse
table, it is necessary to know about the possibility of converting each amount in Italian
Lira into an amount in Euro.

A Conversion Correspondence convert has the following form:

convert([X], [¥]) « conj(X,¥,Z)
through program (X, y, Z)

where conj is a conjunctive query, which specifies the conditions under which the
conversion is applicable, and program is a predicate that we assume associated to
a program that performs the conversion. In general, the program needs to take into
account the additional parameters specified in the condition to actually perform the
conversion. The conversion has a direction. In particular, it operates from a tuple of
values satisfying the conditions specified for X in conj to a tuple of values satisfying
the conditions specified for y¥. This means that the conversion program receives as
input a tuple X, and returns the corresponding tuple ¥y, possibly using the additional
parameter Z to perform the conversion.

Matching Correspondences are used to specify how data in different sources can
match. A Matching Correspondence match has the following form:

match([)'c’l], cey [ik]) «— conj(i’l, P ,ik,i)

—

through program(X, . .., Xy, Z)

where conj specifies the conditions under which the matching is applicable, and
program iS a predicate that we assume associated to a program that performs the
matching. The program receives as input k tuples of values satisfying the conditions
(and possibly the additional parameters in the condition) and returns whether they
match or not.

Note that already specified Interschema Correspondences may be used to define
new ones. As an example, the designer may want to define a Matching Correspon-
dence between two tuples by using two already defined Conversion Correspondences,
which convert to a common representation, and then by using equality. In this case,

Data integration and reconciliation 425

he could provide the following definition of the Matching Correspondence:

match([X],[¥]) « convert:([X],[Z]), converts([¥], [Z]),
through none

Observe that, in this case, the program associated to the Matching Correspondence is
empty, since the actual conversions are performed by the programs associated to the
Conversion Correspondences.

Reconciliation Correspondences are used to assert how we can reconcile data in
different sources into data of the data warehouse. A Reconciliation Correspondence
reconcile has the following form:

reconcile([X1], ..., [Xk], [Z]) + conj(X,...,Xy,Z, W)
through program (X1, . ..,Xk,Z, W)

where conj specifies the conditions under which the reconciliation is applicable, and
program is a predicate that we assume associated to a program that performs the
reconciliation. Such correspondence specifies that the & tuples of values X, ..., X
coming from the sources are reconciled to the tuple Z in the Data Warehouse. There-
fore, the associated program receives as input & tuples of values (and possibly the
additional parameters in the condition) and returns a reconciled tuple.

Again, a Reconciliation Correspondence could simply be defined as a combination
of appropriate Matching and Conversion Correspondences, €.9.:

reconcile([X], [¥], [Z]) <+ convert; ([X],[W1]), converts([¥], [W2]),
matchy ([W1], [Wa]), converts([W1], [Z]),
CO’flj (ia 5;7 V-‘}la v'(r2, Z)

through none

In practice, several of the Interschema Correspondences that must be specified will
have a very simple form, since they will correspond simply to equality. Therefore,
in order to simplify the task of the designer in specifying the various Interschema
Correspondences, we assume that several correspondences are automatically asserted
by default by the system. In particular, for each domain D in the conceptual model,
the following Interschema Correspondences are specified by default:

convert([X],[Y]) « D(X), DY), X=Y
through identity(X,Y)
match([X],[Y]) « DX),DY),X=Y
through none

reconcile([X],[Y],[Z]) < D(X),DY),D(Z),X=Y,X=2
through identity (X, Z)

426 Networking and Information Systems Journal. Volume 2 - n © 4/1999

where identity is the program that computes the identity function for values of domain
D, and the matching correspondence has no associated program.

The system allows the designer to inhibit the default correspondences for a certain
domain, simply by providing an alternative Interschema Correspondence referring to
that domain.

Moreover, we assume that for each Conversion Correspondence convert; asserted
by the designer, the system automatically asserts a new Matching Correspondence
match; as follows:

match;([X], [¥]) < convert;([X],[Z]), ¥ =2
through none
Moreover, for each Conversion Correspondence convert; asserted by the designer
and for each Matching Correspondence match; asserted by the designer or by default,

the system automatically asserts a new Reconciliation Correspondence reconcile; ; as
follows:

reconcile; j([X], [¥], [Z]) « matchi([X], [¥]),
convert;([X], [Z])
through none

Example 2 (cont.) The following Conversion Correspondence specifies that the
name and date of birth of a customer can be converted into a Social Security Number
through the program nane_t o_ SSN:

convert1 ([N, B],[S]) «+ PersNanmeString(N), Dat e(B), SSNSt ri ng(S),
Cust omer o(X), Nanme(X, N), DOB(X, B), SSN(X, S)
through nane_t o_SSN(N, B, S)
Moreover, we add the following Conversion Correspondence, which represents

the fact that a department name can be converted into a department code through the
program dept _nane_t o_code:

convert2([M],[C]) + Dept NaneStri ng(M), Dept Codel nt eger (C),
Depar t ment (D), Nane(D, M), Code(D, C)
through dept _nane_t o_code(M, C)

According to the above rules, the system asserts automatically (among others) the
Matching Correspondence and Conversion Correspondences:

matchy ([N, B],[S]) <« convert; ([N, B],[S1]), S = St
through none

matchy([M],[C]) <« converta([M],[C1]), C = Cy
through none

matchs([M1],[M2]) <+ DeptNameString(M;),
Dept NanmeSt ri ng(Ms), My = M,

through none

Data integration and reconciliation 427

converty ([S1],[S2]) <+ SSNString(Si), SSNStri ng(Sz), S1 = S2
through identity(S1, S2)

converts([P1],[P2]) <« Bool ean(P;), Bool ean(P.), P, = P»
through identity (P, P»)

convertg([I1],[I2]) <« ServNol nt eger (I;), ServNol nt eger (I»),
L =1

through identity (I, I2)
and the Reconciliation Correspondences

reconciley 1 ([N, D], [S1], [S2])
reconciles o([M1], [M2], [C])

5. Specification of mediators

As we said in the introduction, the problem of data integration and reconciliation is
crucial for the task of designing the mediators that load the data in the Data Warehouse.
Such a task aims at specifying, for every relation in the Data Warehouse Schema, how
the tuples of the relation should be constructed from a suitable set of tuples extracted
from the sources.

Suppose we have decided to materialize a new relation 7" in the Data Warehouse.
Our goal is to support the designer in providing a formal specification for the design
of the mediator used to extract the correct data from the sources, and to load such data
in T'. The methodology we propose is based on the following steps.

1. We apply the method described in Section 3 to provide the specification of the
relation 7. In other words, we specify T" in terms of an adorned query:

!
g« q | ey, cn.

Note that the adorned query associated to a table in a source is the result of a reverse
engineering analysis of the source, whereas in this case the adorned query is a speci-
fication of what we want to materialize in the table of the Data Warehouse. Note also
that we express the semantics of 7" again in terms of the conceptual model. Not only
the sources, but also the relations in the Data Warehouse are seen as views of such a
conceptual model.

2. We look for a rewriting of ¢ in terms of the queries ¢, - - -, g5 that correspond
to the materialized views in the Data Warehouse. If a complete, equivalent rewriting
exists, then the new table can be derived from the existing tables in the Data Ware-
house. Otherwise, the algorithm is able to single out the part that cannot be derived
from the Data Warehouse, and that must be loaded from the sources. In the following,
q denotes such part.

428 Networking and Information Systems Journal. Volume 2 - n © 4/1999

3. We look for a rewriting of ¢ in terms of the queries corresponding to the tables
in the sources. The rewriting aims at expressing the data in 7" in terms of a disjunction
of conjunctive queries where each atom refers to

— a table in a source, or

— a matching, conversion, or reconciliation predicate defined in the Interschema
Correspondences.

In other words, we are trying to reformulate ¢ in terms of the relations in the sources,
and possibly in terms of the matching, conversion, and reconciliation predicates. If
there are different rewritings, then we choose the best rewriting » with respect to
suitable quality parameters. There are several criteria to be taken into consideration
when evaluating the quality of a rewriting, such as:

— Completeness of the rewriting. Obviously, the best situation is the one where
the rewriting is complete, in the sense that the rewritten query is equivalent to the
original query. Such a check can be done by exploiting the algorithm for query con-
tainment.

— Accuracy, confidence, freshness, and availability of data in the source relations
that the rewriting requires to access.

The resulting query is the specification for the design of the mediator associated
to T'. The most critical step of the above method is the computation of the rewriting.
Our rewriting algorithm is based on the method presented in [DUS 97], modified to
take into account the following aspects:

— We deal with queries whose atoms refer to a conceptual model that includes
ISA assertions and a limited form of functional dependencies. Such constraints have
to be considered in the computation of the rewriting.

— We deal with queries that are disjunctions of conjunctions. It follows that the
rewriting itself is in general a disjunction, and therefore, we need to deal with the
problem of merging the results of several queries. This problem is addressed by the
notion of merging clause. In particular, if the query » computed by the rewriting is
an or-query (i.e., it is constituted by more than one disjunct), then the algorithm as-
sociates to r a suitable set of so-called merging clauses, taking into account that the
answers to the different or-parts of the query may contain objects and values that rep-
resent the same real world entity or the same value. A merging clause is an expression
of the form

merging tuple-spec; and - - - and tuple-spec,

such that matching-condition

into tuple-spec;, and - - - and tuple-spec;,,
where tuple-spec; denotes a tuple returned by the i-th disjunct of r, matching-
condition specifies how to merge the various tuples denoted by tuple-specy,. .. tuple-
spec,, and tuple-spec, ,...,tuple-spec;, denote the tuples in T resulting from the
merging.

We observe that the rewriting algorithm is able to generate one merging clause
template for each pair of disjuncts that are not disjoint. Starting from such templates,

Data integration and reconciliation 429

the designer may either specify the such that and the into parts, depending on the
intended semantics, or change the templates in order to specify a different merging
plan (for example for merging three disjuncts, rather than three pairs of disjuncts).

— The algorithm computes the maximally contained rewriting (i.e., every other
rewriting is included in the one computed by the query), but we also want to inform
the designer whether such a rewriting is equivalent or not to the original query. Indeed,
we have devised an effective method for checking equivalence between the original
query and the computed rewriting [CAL 98a].

— Besides the relational tables in the sources, our rewriting algorithm takes into
account the matching, conversion, and reconciliation predicates defined in the Inter-
schema Correspondences.

— Even when no rewriting exists for the query (i.e., when the maximally con-
tained rewriting is empty), we want to provide the designer with useful indications
on whether there is a method for enriching the Interschema Correspondences to get
a non-empty rewriting. Indeed, our rewriting algorithm adopts a form of abductive
reasoning that enables to single out the specification of which matching, conversion
and reconciliation operations would allow to get a non-empty rewriting. This indi-
cation can be profitably used by the designer to check whether she/he can add new
Interschema Correspondences in order to make the computed rewriting complete.

Example 2 (cont.) Suppose we want to store in the Data Warehouse a relation
containing the information about customers that have a contract for a certain service
with a department at which they are also registered, or that are eligible for a promotion.
Independently from the fact that the customer has a contract, we want to include the
information on whether he is eligible for a promotion. We can make use of a relational
table TDWwith four components, defined by the following adorned query, where we
have assumed that in the Data Warehouse we want to identify customers by their SSN,
services by their service number, and departments by their code:

TDWS, I, C, P) + CONTRACTo(X, R, D), PROVOTI ON, (X, D),
SSN(X, S), Ser vNo(R, I), Code(D,C), P =true
OR
CONTRACT (X, R, D), REG- AT (X, D),
—~PROVOTI ON; (X, D), SSN(X, S), Ser vNo(R, I),
Code(D,C), P =fal se
OR
PROMOTI ON; (X, D), SSN(X, S), Code(D, C),
P=true, I =NULL |

identify([S], X), S :: SSNSt ri ng,
identify([I], R), I :: Ser vNol nt eger,
identify([C], D), C :: Dept Codel nt eger,
P :: Bool ean

Using the asserted and automatically derived Interschema Correspondences, the

430 Networking and Information Systems Journal. Volume 2 - n © 4/1999

system is able to rewrite the above query in terms of TABLE; in Source 1 and TABLE,
in Source 2 (see Section 3) as follows:

TDV\(SO; IU; C: PO) A
TABLE: (Sy, M, P.), TABLE (Na, B, I, M>),
reconciley 1 ([N2, B), [S1], [So]),
reconciles »([M1], [M>], [C]),
converts([P1], [Po]), converte([I2], [Io])

OR

TABLEl(Sl, Ml,Pl), Io=NULLA P, =tr ue,
converta([Mi],[C]), converts([S1], [So)),
converts([P1], [Po])

merging (Sa, Ia, Ca, P,) and (Sy, Iy, Cy, Pp)
suchthat S, = Sy, Co = Cy, P, = Py, I, # NULL, I, = NULL
into (S,,1.,C,, P,)

Notice that, in the above query, each customer eligible for a promotion that has
a contract, and thus is selected by the first disjunct, is also selected by the second
disjunct. In this case the merging clause merges the two tuples into the one selected
by the first disjunct, which contains the information on the service number missing in
the other one. n

6. Conclusions

We have described a new approach to data integration and reconciliation in Data
Warehousing. The approach is based on the availability of a Conceptual Model of
the corporate data, and allows the designer to declaratively specify several types of
correspondences between data in different sources. Such correspondences are used by
a query rewriting algorithm that supports the task of specifying the correct mediators
for the loading of the materialized views of the Data Warehouse.

Based on the described methodology, we are currently implementing a design
tool within the ESPRIT LTR project DWQ, “Foundations of Data Warehouse Qual-
ity” [JAR 99]. The tool exploits the Concept Base System [JAR 92] as a meta-
repository, and provides support for both schema and data integration in Data Ware-
housing.

7. References
[AB198] ABITEBOUL S. and DUSCHKA O., « Complexity of Answering Queries Using Mate-

rialized Views ». In Proc. of the 17th ACM SIGACT SIGMOD SIGART Sym. on Principles
of Database Systems (PODS’98), p. 254—265, 1998.

Data integration and reconciliation 431

[CAL 98a] CALVANESE D., DE GIACOMO G. and LENZERINI M., « On the Decidability of
Query Containment under Constraints ». In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database Systems (PODS’98), p. 149-158, 1998.

[CAL 98b] CALVANESE D., DE GIACOMO G., LENZERINI M., NARDI D. and ROSATI R.,
« Description Logic Framework for Information Integration ». In Proc. of the 6th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR’98), p. 2—13, 1998.

[CAL 98c] CALVANESE D., DE GIACOMO G., LENZERINI M., NARDI D. and ROSATI
R., « Schema and Data Integration Methodology for DWQ ». Technical report DWQ-
UNIROMA-004, DWQ Consortium, September 1998.

[CAL 98d] CALVANESE D., DE GIACOMO G., LENZERINI M., NARDI D. and ROSATI R.,
« Source Integration in Data Warehousing ». In Proc. of the 9th Int. Workshop on Database
and Expert Systems Applications (DEXA’98), p. 192—197. IEEE Computer Society Press,
1998.

[CAT 93] CATARCI T. and LENZERINI M., « Representing and using Interschema Knowledge
in Cooperative Information Systems ». J. of Intelligent and Cooperative Information Sys-
tems, vol. 2, n. 4, p. 375-398, 1993.

[DUS 97] DUSCHKA O. M. and LEVY A. Y., « Recursive Plans for Information Gathering ».
In Proc. of the 15th Int. Joint Conf. on Artificial Intelligence (IJCAI’97), p. 778—784, 1997.

[GOH 94] GoH C. H., MADNICK S. E. and SIEGEL M., « Context Interchange: Overcom-
ing the Challenges of Large-Scale Interoperable Database Systems in a Dynamic Envi-
ronment ». In Proc. of the 3rd Int. Conf. on Information and Knowledge Management
(CIKM’94), p. 337—346, 1994.

[GUP 95] GuPTA A. and Mumick I. S., « Maintenance of Materialized Views: Problems,
Techniques, and Applications ». IEEE Bulletin of the Technical Committee on Data Engi-
neering, vol. 18, n. 2, p. 3-18, 1995.

[HAM 95] HAMMER J., GARCIA-MOLINA H., WIDOM J., LABIOW. and ZHUGE Y., « The
Stanford Data Warehousing Project ». IEEE Bulletin of the Technical Committee on Data
Engineering, vol. 18, n. 2, p. 41-48, 1995.

[HUL 96] HuLL R. and ZHou G., « A Framework for Supporting Data Integration Using
the Materialized and Virtual Approaches ». In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, p. 481-492, 1996.

[HUL 97] HuLL R., « Managing Semantic Heterogeneity in Databases: A Theoretical Per-
spective ». In Proc. of the 16th ACM SIGACT SIGMOD SIGART Sym. on Principles of
Database Systems (PODS’97), 1997.

[INM 96] INMON W. H., Building the Data Warehouse. John Wiley & Sons, second edition,
1996.

[JAR 92] JARKE M., « ConceptBase V3.1 User Manual ». Technical report 92—17, Aachener
Informatik-Berichte, Aachen (Germany), 1992.

[JAR 99] JARKE M., LENZERINI M., VASSILIOU Y. and VASSILIADIS P., Fundamentals of
Data Warehouses. Springer-Verlag, 1999.

[LEV 95] LEVY A. Y., MENDELZON A. O., SAGIV Y. and SRIVASTAVA D., « Answering
Queries Using Views ». In Proc. of the 14th ACM SIGACT SIGMOD SIGART Sym. on
Principles of Database Systems (PODS’95), p. 95—104, 1995.

432 Networking and Information Systems Journal. Volume 2 - n © 4/1999

[PAP 95] PAPAKONSTANTINOU Y., GARCIA-MOLINA H. and WiDOM J., « Object Exchange
Across Heterogeneous Information Sources ». In Proc. of the 11th IEEE Int. Conf. on Data
Engineering (ICDE’95), p. 251260, 1995.

[SHE 92] SHETH A. and KASHYAP V., « So Far (Schematically) yet So Near (Semantically) ».
In Proc. of the IFIP DS-5 Conf. on Semantics of Interoperable Database Systems. Elsevier
Science Publishers (North-Holland), Amsterdam, 1992.

[ULL 97] ULLMANJ. D., « Information Integration using Logical Views ». In Proc. of the 6th
Int. Conf. on Database Theory (ICDT’97), vol. 1186 of Lecture Notes in Computer Science,
p. 19-40. Springer-Verlag, 1997.

[WID 95] Wipowm J., « Special Issue on Materialized Views and Data Warehousing ». IEEE
Bulletin on Data Engineering, vol. 18, n. 2, 1995.

[WIE 92] WIEDERHOLD G., « Mediators in the Architecture of Future Information Systems ».
IEEE Computer, vol. 25, n. 3, p. 38—49, 1992.

[ZHO 95] ZHou G., HuLL R., KING R. and FRANCHITTI J.-C., « Using Object Matching
and Materialization to Integrate Heterogeneous Databases ». In Proc. of the 3rd Int. Conf.
on Cooperative Information Systems (CooplS’95), p. 4—18, 1995.

[ZHO 96] ZHou G., HuLL R. and KING R., « Generating Data Integration Mediators that
Use Materializations ». J. of Intelligent Information Systems, vol. 6, p. 199-221, 1996.

Diego Calvanese has completed his PhD in Computer Science at the University of Rome
“La Sapienza” in 1996. He is currently research associate at the Dipartimento di Informatica e
Sistemistica of the same university. His research interests include logics for knowledge repre-
sentation and their relationship to data models, information integration and data warehousing,
and semistructured data.

Riccardo Rosati has completed his PhD in Computer Science at the University of Rome
“La Sapienza” in 1997. He is currently research associate at the Dipartimento di Informatica
e Sistemistica of the same university. His research interests include knowledge representation,
nonmonotonic reasoning, database and knowledge base applications, planning and reasoning
about actions.

Giuseppe De Giacomo has completed his PhD in Computer Science at the University of
Rome “La Sapienza” in 1995. He is currently assistant professor at the Faculty of Engineering
of the same university. His research interests include knowledge representation, databases,
information integration and data warehousing, semistructured data, reasoning about actions,
cognitive robotics, and program verification.

