
Description Logic Framework for Information Integration

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

{calvanese,degiacomo,lenzerini,nardi,rosati}@dis.uniroma1.it

Abstract

Information Integration is one of the core
problems in distributed databases, coopera-
tive information systems, and data warehous-
ing, which are key areas in the software de-
velopment industry. Two critical factors for
the design and maintenance of applications
requiring Information Integration are concep-
tual modeling of the domain, and reasoning
support over the conceptual representation.
We demonstrate that Knowledge Represen-
tation and Reasoning techniques can play an
important role for both of these factors, by
proposing a Description Logic based frame-
work for Information Integration. We show
that the development of successful Informa-
tion Integration solutions requires not only
to resort to very expressive Description Log-
ics, but also to significantly extend them. We
present a novel approach to conceptual mod-
eling for Information Integration, which al-
lows for suitably modeling the global con-
cepts of the application, the individual infor-
mation sources, and the constraints among
different sources. Moreover, we devise in-
ference procedures for the fundamental rea-
soning services, namely relation and concept
subsumption, and query containment. Fi-
nally, we present a methodological framework
for Information Integration, which can be ap-
plied in several contexts, and highlights the
role of reasoning services within the design
process.

1 INTRODUCTION

In recent years there has been a growing interest in
Information Integration, whose goal is to access, re-

late and combine data from multiple sources. Indeed,
Information Integration is one of the core problems
in distributed databases, cooperative information sys-
tems, and data warehousing, which are key areas in
the software development industry (Wiederhold, 1996;
Knoblock & Levy, 1995; Widom, 1995; Hull, 1997).

Early work on integration was carried out in the con-
text of database design, and focused on the so-called
schema integration problem, i.e. designing a global,
unified schema for a database application starting
from several subschemata, each one produced indepen-
dently from the others (Batini, Lenzerini, & Navathe,
1986). More recent efforts have been devoted to data
integration, which generalizes schema integration by
taking into account actual data in the integration pro-
cess. Here the input is a collection of source data sets
(each one constituted by a schema and actual data),
and the goal is to provide an integrated and reconciled
view of the data residing at the sources, without inter-
fering with their autonomy (Ullman, 1997). We only
deal with the so-called read-only integration, which
means that such a reconciled view is used for answer-
ing queries, and not for updating information.

Data integration can be either virtual or materialized.
In the first case, the integration system acts as an in-
terface between the user and the sources (Sheth & Lar-
son, 1991; Hurson, Bright, & Pakzad, 1994), and is
typical of multidatabases, distributed databases, and
more generally open systems. In virtual integration
query answering is generally costly, because it requires
accessing the sources. In the second case, the sys-
tem maintains a replicated view of the data at the
sources (Gupta & Mumick, 1995; Inmon, 1996), and
is typical, for example, both in information system
re-engineering and data warehousing. In materialized
data integration, query answering is generally more ef-
ficient, because it does not require acessing the sources,
whereas maintaining the materialized views is costly,
especially when the views must be up-to-date with re-

spect to the updates at the sources (view refreshment).
In the rest of this paper, we do not deal with the prob-
lem of view refreshment.

There are two basic approaches to the data inte-
gration problem, called procedural and declarative.
In the procedural approach, data are integrated in
an ad-hoc manner with respect to a set of prede-
fined information needs. In this case, the basic is-
sue is to design suitable software modules that ac-
cess the sources in order to fulfill the predefined infor-
mation requirements. Several data integration (both
virtual and materialized) projects, such as TSIM-
MIS (Chawathe, Garcia-Molina, Hammer, Ireland, Pa-
pakonstantinou, Ullman & Widom, 1994; Ullman,
1997), Squirrel (Zhou, Hull, & King, 1996; Hull &
Zhou, 1996), and WHIPS (Hammer, Garcia-Molina,
Widom, Labio, & Zhuge, 1995; Wiener, Gupta, Labio,
Zhuge, Garcia-Molina, & Widom, 1996) follow this
idea. They do not require an explicit notion of inte-
grated data schema, and rely on two kinds of software
components: wrappers that encapsulate sources, con-
verting the underlying data objects to a common data
model, and mediators (Wiederhold, 1992) that obtain
information from one or more wrappers or other me-
diators, refine this information by integrating and re-
solving conflicts among the pieces of information from
the different sources, and provide the resulting infor-
mation either to the user or to other mediators. The
basic idea is to have one mediator for every query pat-
tern required by the user, and generally there is no
constraint on the consistency of the results of different
mediators.

In the declarative approach, the goal is to model the
data at the sources by means of a suitable language, to
construct a unified representation, to refer to such a
representation when querying the global information
system, and to derive the query answers by means
of suitable mechanisms accessing the sources and/or
the materialized views. This is the idea underly-
ing systems such as Carnot (Collet, Huhns, & Shen,
1991; Huhns, Jacobs, Ksiezyk, Shen, Singh, & Can-
nata, 1993), SIMS (Arens, Chee, Hsu, & Knoblock,
1993; Arens, Knoblock, & Chen, 1996) and Informa-
tion Manifold (Levy, Srivastava, & Kirk, 1995; Kirk,
Levy, Sagiv, & Srivastava, 1995; Levy, Rajaraman, &
Ordille, 1996). The declarative approach provides a
crucial advantage over the procedural one: although
building a unified representation may be costly, it al-
lows maintaining a consistent global view of the infor-
mation sources, which represents a reusable compo-
nent of the Information Integration systems.

We adopt a declarative approach to integration, and

argue that two critical factors for the design and main-
tenance of applications requiring Information Integra-
tion are the conceptual modeling of the domain, and
the possibility of reasoning over the conceptual rep-
resentation. We demonstrate that Knowledge Repre-
sentation and Reasoning techniques can play an im-
portant role for both of these factors, by proposing a
Description Logic (Borgida, 1995; Donini, Lenzerini,
Nardi, & Schaerf, 1996) based framework for Informa-
tion Integration. In particular, our work provides the
following main contributions:

(1) We use Description Logics for the conceptual mod-
eling of both the global domain and the various
sources. Since the development of successful Infor-
mation Integration solutions requires specific modeling
features, we propose a new Description Logic, which
treats n-ary relations as first-class citizens. Note that
the usual characteristic of many Description Logics
to model only unary predicates (concepts) and binary
predicates (roles) would represent an intolerable limit
in our case.

(2) We provide suitable mechanisms for expressing
what we call the intermodel assertions, i.e. inter-
relationships between concepts in different sources.
Thus, integration is seen as the incremental process of
understanding and representing the relationships be-
tween data in the sources, rather than simply produc-
ing a unified data schema. The fact that our approach
is incremental is also important in amortizing the cost
of integration.

(3) For an accurate description of the information
sources, we incorporate in our logic the possibility of
describing the data at the sources in terms of a set
of relational structures. Each relational structure is
defined as a view over the conceptual representation,
thus providing a formal mapping between the descrip-
tion of data and the conceptual representation of the
domain.

(4) Our representation framework is equipped with in-
ference procedures for the fundamental reasoning ser-
vices, namely concept and relation subsumption, and
query containment. Indeed, we make use of the first
decidability result on query containment for a Descrip-
tion Logic with n-ary relations (Calvanese, De Gia-
como, & Lenzerini, 1998). Based on these reasoning
methods, we present a methodological framework for
Information Integration, which can be applied both in
the virtual and in the materialized approach.

In comparing our framework with other declarative
approaches, we observe that in both Carnot and
SIMS, reasoning is based on formalisms, Cyc (Lenat

& Guha, 1990) and LOOM (MacGregor, 1991) respec-
tively, that are undecidable. Information Manifold
uses the Classic (Patel-Schneider, McGuiness, Brach-
man, Resnick, & Borgida, 1991) Description Logic at
the conceptual level, and extends it with conjunctive
queries at the logical level. While this Description
Logic is polynomially decidable, it cannot fully capture
neither n-ary relationships among the various classes
of data in the domain, nor the intermodel assertions,
nor many interesting inferences on such assertions.

Compared with the procedural approaches, which have
been designed to cope in a more flexible way with
the heterogeinity and the dynamics of the sources, our
methodology for incremental schema integration based
on intermodel assertions combines the advantages of a
conceptual representation with the necessary flexibil-
ity to deal with changes in the domain. In particular,
the ability of reasoning over both the conceptual rep-
resentation and the relational structures can be prof-
itably used in designing mediators with verifiable spec-
ifications.

The paper is organized as follows. In Section 2 we de-
scribe in more detail our framework for Information
Integration based on Description Logics. In Section 3
we present the particular Description Logic we use in
the framework. In Section 4 we illustrate how the rea-
soning techniques associated with our logic are used to
improve the design and maintenance of the Informa-
tion Integration system. Finally, Section 5 concludes
the paper.

2 THE FRAMEWORK

In our approach to Information Integration, we refer
to the architecture depicted in Figure 1, in which three
layers can be identified:

• a conceptual layer called the Domain Model,
which is constituted by an Enterprise Model and
one Source Model for each data source;

• a logical layer1, constituted by the Source
Schemas and the Materialized View Schema,
which describe the logical content of source data
stores and of materialized view store, respectively;

• a physical layer, which consists of the data stores
containing the actual data of the sources and the
integrated materialized views.

1Here the term “logical” is used according to the
database terminology, where it denotes a description of
data in terms of structures managed by DBMSs (e.g., re-
lational tables), which are at a more abstract level with
respect to the physical organization of data.

The methodology for Information Integration de-
scribed in Section 4, and the reasoning techniques il-
lustrated in Section 3, support the incremental build-
ing of the conceptual and the logical representations.
The designer is provided with information on various
aspects, including the global concepts relevant for new
information requirements, the sources from which a
new view can be defined, the correspondences between
sources and/or views, and a trace of the integration
steps.

We describe now the structure of the conceptual and
logical layers, which constitute the core of the pro-
posed integration framework. The actual formalisms
we adopt, and the associated reasoning techniques are
described in the next section.

2.1 THE CONCEPTUAL LEVEL

The Enterprise Model is a conceptual representation
of the global concepts and relationships that are of in-
terest to the application. It corresponds roughly to
the notion of integrated conceptual schema in the tra-
ditional approaches to schema integration. However,
since we propose an incremental approach to integra-
tion, the Enterprise Model is not necessarily a com-
plete representation of all the data of the sources but
it provides a consolidated and reconciled description
of the concepts and the relationships that are impor-
tant to the enterprise, and have already been analyzed.
Such a description is subject to changes and additions
as the analysis of the information sources proceeds.
The Source Model of an information source is a con-
ceptual representation of the data residing in it, or at
least of the portion of data currently taken into ac-
count. Again, our approach does not require a source
to be fully analyzed and conceptualized.

Both the Enterprise Model and the Source Models
are expressed by means of a logic-based formalism
(see Section 3) which is general and powerful enough
to express the usual database models, such as the
Entity-Relationship Model, the Relational Model, or
the Object-Oriented Data Model (for the static part).
The inference techniques associated with the formal-
ism allow for carrying out several reasoning services
on the representation.

Besides the Enterprise Model and the various Source
Models, the Domain Model contains the specification
of the interdependencies between elements of different
Source Models and between Source Models and the
Enterprise Model. The notion of interdependency is
a central one in our approach. Since the sources are
of interest in the overall architecture, integration does
not simply mean producing the Enterprise Model, but

· · ·

· · ·

· · ·Modeln

Source

Model1

Model

Enterprise

Source

Materialized View

Schema

Source

Schema1

Source

Scheman

Source

Data Store1

Source

Data Storen

Mediator

conceptual/logical mapping

Wrapper1

Store

conceptual link

Wrappern

data flow

Materialized View

physical/logical mapping

Domain Model

conceptual level logical level physical level

Figure 1: Architecture for Data Integration

rather to be able to establish the correct relationships
both between the Source Models and the Enterprise
Model, and between the various Source Models. We
formalize the notion of interdependency by means of
so called intermodel assertions (Catarci & Lenzerini,
1993), which provide a simple and effective declara-
tive mechanism to express the dependencies that hold
between entities (i.e. classes and relationships) in dif-
ferent models (Hull, 1997). We use again a logic-based
formalism to express intermodel assertions, and the as-
sociated inference techniques provide a means to rea-
son about interdependencies among models.

2.2 THE LOGICAL LEVEL

Our approach requires that each source, besides being
conceptualized, is also described in the Source Schema
in terms of a logical data model (in our case the Rela-
tional Model) which allows for representing the struc-
ture of the stored data. Such a structure is specified
in terms of a set of relation definitions, each one ex-
pressed by means of a view (i.e. a query) over the con-
ceptual representation of the source (i.e. the Source
Model). Suitable software components, called wrap-
pers, implement the mapping of physical structures
to logical structures (see Figure 1). More precisey,
a wrapper is able to access a source and transform
the data therein into a form that is coherent with the

logical specification of the source.

In the case where the integrated data (or por-
tions thereof) are materialized, the Materialized View
Schema provides a description of the logical content
of the materialized views constituting the Materialized
View Store. Similarly to the case of the sources, each
portion of the Materialized Views Schema is described
in terms of a set of definitions of relations, each one
expressed in terms of a query over the Domain Model.
A view is actually materialized starting from the data
produced by wrappers by means of suitable software
components, called mediators (see Figure 1). Again,
a discussion on mediators is outside the scope of the
present paper. In the case where a virtual approach
is adopted there are no Materialized Views, and the
data are provided by the mediators at query process-
ing time.

A more detailed discussion on wrappers and mediators
is outside the scope of this paper.

3 REPRESENTATION AND
REASONING

In this section we present the formalism that we use
for describing data both at the conceptual and the log-
ical level, and we illustrate the basis of the reasoning
techniques associated with the formalism.

3.1 REPRESENTATION AT THE
CONCEPTUAL LEVEL

We use for the conceptual level a specific Description
Logic, called DLR, which includes concepts and n-ary
relations2. DLR is inspired by the languages intro-
duced in (Calvanese, De Giacomo, & Lenzerini, 1995;
De Giacomo & Lenzerini, 1995, 1994; Catarci & Lenz-
erini, 1993), and is a natural extension of Description
Logics (Donini et al., 1996; Calvanese, Lenzerini, &
Nardi, 1994; Borgida, 1995) towards n-ary relations,
which are extremely important in our context.

We assume to deal with a finite set of atomic rela-
tions and concepts, denoted by P and A respectively.
We use R to denote arbitrary relations (of given ar-
ity between 2 and nmax), and C to denote arbitrary
concepts. Concepts and relations are built according
to the following syntax, where i and j denote compo-
nents of relations, i.e. integers between 1 and nmax, n
denotes the arity of a relation, i.e. an integer between 2
and nmax, and k denotes a nonnegative integer:

R ::= >n | P | ($i/n: C) | ¬R | R1 uR2

C ::= >1 | A | ¬C | C1 u C2 | ∃[$i]R | (≤ k [$i]R)

Concepts and relations must be well-typed, which
means that (i) only relations of the same arity n can be
combined to form expressions of type R1 uR2 (which
inherit the arity n), and (ii) i ≤ n whenever i denotes
a component of a relation of arity n.

The semantics of the DLR constructs is specified
through the usual notion of interpretation. An inter-
pretation I = (∆I , ·I) is constituted by an interpreta-
tion domain ∆I and an interpretation function ·I that
assigns to each concept C a subset CI of ∆I , and to
each relation R of arity n a subset RI of (∆I)n, such
that the conditions in Figure 2 are satisfied. We ob-
serve that >1 denotes the interpretation domain, while
>n, for n > 1, does not denote the n-cartesian prod-
uct of the domain, but only a subset of it, that covers
all relations of arity n. As a consequence, the “¬”
construct on relations is used to express difference of
relations, rather than complement.

A DLR conceptual model M (i.e., either the Enter-
prise Model or one of the Source Models) is constituted
by a finite set of intramodel assertions, which express
knowledge on the relations and concepts in M, and
have the form

L v L′ L 6v L′ L ≡ L′ L 6≡ L′

2Domains, i.e. sets of values such as integer, string, etc.,
can be easily included in DLR.

with L, L′ either two relations of the same arity or two
concepts.

An interpretation I satisfies an intramodel assertion
L v L′ (resp. L ≡ L′) if LI ⊆ L′I (resp. LI = L′I),
and it satisfies L 6v L′ (resp. L 6≡ L′) if I does not sat-
isfy L v L′ (resp. L ≡ L′). An interpretation satisfies
M, if it satisfies all assertions in M.

To specify knowledge on the conceptual interrelation-
ships among the sources and/or the enterprise, we
use intermodel assertions (Catarci & Lenzerini, 1993),
which have essentially the form of intramodel asser-
tions, although the two relations (concepts) L and L′

belong to two different conceptual models Mi, Mj .
Intermodel assertions can be either extensional, which
express relationships between the extensions of the re-
lations (concepts) involved, or intensional, which ex-
press conceptual relationships that are not necessarily
reflected at the instance level. Formally, an intermodel
assertion over two conceptual models Mi, Mj (i 6= j)
is an assertion of one of the following forms

L vext L′ L 6vext L′

L ≡ext L′ L 6≡ext L′

L vint L′ L 6vint L′

L ≡int L′ L 6≡int L′

in which L and L′ are either two relations with com-
patible signatures or two concepts belonging to Mi

and Mj respectively.

An interpretation I satisfies an extensional inter-
model assertion L vext L′ (resp. L ≡ext L′) if LI ⊆
L′I (resp. LI = L′I), and it satisfies L 6vext L′

(resp. L 6≡ext L′) if I does not satisfy L vext L′

(resp. L ≡ext L′). Hence, interpretation of extensional
intermodel assertions is analogous to the one of in-
tramodel assertions.

Instead, intensional intermodel assertions are inter-
preted by first taking the intersection of the relations
(concepts) L, L′ with both >ni and >nj (>1i and
>1j). Formally:

1. Let C, C ′ be concepts belonging respectively to
Mi,Mj . Then, an interpretation I satisfies
the intensional intermodel assertion C vint C ′

(resp. C ≡int C ′) if

CI ∩ >1i ∩ >1j ⊆ C ′I ∩ >1i ∩ >1j

(resp. CI∩>1i∩>1j = C ′I∩>1i∩>1j). Moreover,
I satisfies C 6vint C ′ (resp. C 6≡int C ′) if I does
not satisfy C vint C ′ (resp. C ≡int C ′).

>In ⊆ (∆I)n

PI ⊆ >In
(¬R)I = >In \RI

(R1 uR2)I = RI
1 ∩RI

2

($i/n: C)I = {(d1, . . . , dn) ∈ >In | di ∈ CI}

>I1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 u C2)I = CI1 ∩ CI2
(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ RI. di = d}

(≤ k [$i]R)I = {d ∈ ∆I | |{(d1, . . . , dn) ∈ RI
1 | di = d}| ≤ k}

Figure 2: Semantic rules for DLR (P, R, R1, and R2 have arity n)

2. Let R,R′ be relations (of the same arity n) be-
longing respectively to Mi,Mj . Then, an inter-
pretation I satisfies the intensional intermodel as-
sertion R vint R′ (resp. R ≡int R′) if

RI ∩ >ni ∩ >nj ⊆ R′I ∩ >ni ∩ >nj

(resp. RI ∩>ni ∩>nj = R′I ∩>ni ∩>nj). More-
over, I satisfies R 6vint R′ (resp. R 6≡int R′) if I
does not satisfy R vint R′ (resp. R ≡int R′).

A Domain Model (DM) W is an (m + 2)-tuple
〈M0,M1, . . . ,Mm,G〉 such that: (i) M0 is the En-
terprise Model; (ii) each Mi, for i ∈ {1, . . . , m}, is
a Source Model; (iii) G (for “glue”) is a finite set of
intermodel assertions. We assume that G always in-
cludes for each i ∈ {1, . . . ,m} the following assertions:
>1i vext >10, and >ni vext >n0 for each n such that
a relation R of arity n appears in Mi. An interpreta-
tion I satisfies W if it satisfies all the intramodel and
intermodel assertions in W.

3.2 REPRESENTATION AT THE
LOGICAL LEVEL

We express the logical level in terms of a set of re-
lation schemas, each describing either a relation of a
Source Schema, or a relation of the Materialized View
Schema. Such relations are connected to the DM by
characterizing each relation schema in terms of a non-
recursive Datalog query over the elements of the DM,
i.e. a query of the form:

q(~x) ← body1(~x, ~y1) ∨ · · · ∨ bodym(~x, ~ym)

where each body i(~x, ~yi) is a conjunction of atoms, ei-
ther R(~t) or C(t) (where~t and t are variables in ~x,~yi)3,

3Our approach is applicable also when constants are
used in the queries.

with R, C relations and concepts over the DM. The
arity of q is equal to the number of variables of ~x.

We observe that the atoms in the queries are arbi-
trary DLR relations and concepts, freely used in the
assertions of the schema. This distinguishes our ap-
proach with respect to (Donini, Lenzerini, Nardi, &
Schaerf, 1991, 1998; Levy & Rousset, 1996), where no
constraints can be expressed in the schema on the re-
lations that appear in the queries.

Given an interpretation I of a DM W, a query q for
W of arity n is interpreted as the set qI of n-tuples
(o1, . . . , on), with each oi ∈ ∆I , such that, when sub-
stituting (o1, . . . , on) for (x1, . . . , xn), the formula

∃~y1.body1(~x, ~y1) ∨ · · · ∨ ∃~ym.bodym(~x, ~ym)

evaluates to true in I. If q and q′ are two queries (of
the same arity) for W, we say that q is contained in q′

wrt W, if qI ⊆ q′I for every I satisfying W.

3.3 REASONING

The typical kinds of reasoning services needed at the
conceptual level in order to support the designer in ap-
plying the integration methodology presented in Sec-
tion 4 (e.g., checking whether the DM is consistent,
checking whether a relation or a concept is satisfiable
in the DM, checking subsumption between relations
or concepts in the DM) can be reduced to checking
satisfiability of the DM. The reasoning tasks can in
particular be exploited for computing and incremen-
tally maintaining the concept and relation lattice of
the DM, or more generally the lattice of all concept
and relation expressions.

The expressiveness of DLR, required for capturing
meaningful properties in the DM, makes reasoning a

CONTRACT0 v ($1: Client0) u ($2: Dept0) u
($3: Service0)

REG-AT0 v ($1: Client0) u ($2: Dept0)
PrDept0 v Dept0

REG-AT1 v ($1: Client1) u ($2: Dept1)
PROMOTION1 v REG-AT1

LOCATION1 v ($1: Dept1) u ($2: String)
Dept1 v ∃≤1LOCATION1[$1].>2

CONTRACT2 v ($1: Client2) u ($2: Dept2) u
($3: Service2)

Dept1 ≡ext PrDept0
REG-AT1 vext REG-AT0

Client1 ≡ext Client0 u ∃≥1REG-AT0[$1].PrDept0

Client0 u ∃≥1CONTRACT0[$1].>2

vext ∃≥1PROMOTION1[$1].>2

Client2 vext Client0 u ∃≥1CONTRACT0[$1].>2

Dept2 vext Dept0
Service2 ≡ext Service0

Client1 ≡int Client2

Dept1 ≡int Dept2

Figure 3: Domain model (($i/n: C) is abbreviated by ($i: C))

complex task. We have devised a sound and complete
procedure to decide the satisfiability of a DM which
works in worst-case deterministic exponential time in
the size of the DM. Indeed, this worst-case complexity
is inherent to the problem, therefore reasoning with re-
spect to a DM is EXPTIME complete. The inference
method works in two steps: first, reasoning on the
DM is reduced to reasoning on a knowledge base ex-
pressed in the Description Logic CIQ (De Giacomo &
Lenzerini, 1996); then reasoning procedures for CIQ,
based on the correspondence with Propositional Dy-
namic Logics, are exploited.

For reasoning at the logical level, we provide suitable
techniques for query containment. In particular, we
have developed an algorithm for deciding query con-
tainment with respect to a DM, which exploits a re-
duction to unsatisfiability in CIQ, and which extends
the one in (Calvanese, De Giacomo, & Lenzerini, 1997;
Calvanese et al., 1998) to deal with both intramodel
and intermodel assertions.

3.4 EXAMPLE

Figure 3 shows a DM, W = (M0,M1,M2,G), that
represents an enterprise and two sources containing in-
formation about contracts between clients and depart-
ments for services, and about registration of clients
at departments. Symbols subscripted by i refer to
modelMi. The intramodel assertions inM0,M1,M2

are visualized in Figure 4, using Entity-Relationship
diagrams, which are typical of conceptual modeling
in Databases and are fully compatible with DLR.
Source 1 contains information about clients registered
at public-relations departments. Source 2 contains in-
formation about contracts and complete information
about services. The Enterprise Model provides a rec-
onciled conceptual description of the two sources. Note
that, in this example, such reconciled description is not
complete yet: e.g., the relation PROMOTION is not mod-

eled in M0 (recall that our approach to integration
is incremental). The various interdependencies among
relations and concepts in the Enterprise Model and the
two Sources Models are represented by the intermodel
assertions on the right-hand side of Figure 3.

As for the logical level representation, suppose, for ex-
ample, that the actual data in Source 1 are described
by a relational table Table1 having three columns, one
for the client, one for the department which the client
is registered at, and one for the location of the depart-
ment. Such a table is specified in terms of the DM by
means of the query:

Table1(x, y, z) ← REG-AT1(x, y) ∧ LOCATION1(y, z)

Using the reasoning services associated with DLR, we
can automatically derive logical consequences of the
DM. For instance, we can prove that the assertion
PROMOTION1 vext REG-AT0 u ($2: PrDept0) is a logical
consequence of W. Observe that, although M0 does
not contain a relation PROMOTION, the above assertion
relates PROMOTION1 to M0 in a precise way.

Next, consider, for instance, the following queries
posed to M0:

q1(x, y) ← Client0(x) ∧ CONTRACT0(x, y, z)
q2(x, y) ← Client0(x) ∧ CONTRACT0(x, y, z)∧

REG-AT0(x, w) ∧ PrDept0(w)

q2 is obviously contained in q1. However, taking into
account the assertions in W, we can also derive that
q1 is contained in q2 wrt W.

4 THE METHODOLOGY

We outline a methodology for Information Integration,
based on the techniques previously described, which
can be applied in the context of both virtual and mate-
rialized data integration. The proposed methodology

Department_0REG-AT_0

Service_0

PRDept_0

CONTRACT_0
1

1

3

2

Client_0

2

Client_1

1 2
PROMOTION_1

1 2
REG-AT_1 Department_1

LOCATION/

String

CONTRACT_2

Service_2

Department_2Client_2
1

2
3

Figure 4: Enterprise and source models in Entity-Relationship diagrams

focusses on the conceptual layer of the system. Once
the knowledge about this layer is available, one can
exploit reasoning to support various aspects related
to the other layers. We shall discuss various kinds
of information that the designer can obtain through
the reasoning services on the knowledge base, but the
problems arising in the design of the logical and phys-
ical levels of the system are outside of the scope of
the present paper. The methodology deals with two
scenarios, called source-driven and client-driven. The
former applies whenever the design of the system is
accomplished in a top-down fashion by incrementally
adding new sources of data; the latter arises when the
design is developed bottom-up to satisfy the requests
for data by the user applications.

4.1 SOURCE-DRIVEN INTEGRATION

Source-driven integration is triggered when a new
source or a new portion of a source is taken into ac-
count for integration. The steps to be accomplished in
this case are:

(1) Source Model construction. The Source Model cap-
turing the concepts and the relationships of the new
source that are critical for the enterprise is produced.
Since in a typical setting, sources already exist, this
task may be accomplished through a reverse engineer-
ing activity (Batini, Ceri, & Navathe, 1992). How-
ever, it is worth stressing that the Source Model is
really meant to capture the semantics of the domain,
independently of the organization of the data recorded
in the physical structures. To this end, our approach
provides a very expressive modeling language, which,
as already pointed out, embodies the features of the
most popular data models. In addition, in our formal-
ism, it is possible to reason about the Source Model.
Once a formalization of the model in terms of DLR
is provided, checking several interesting properties of
the model becomes possible, and can be used to help
correctness and optimality of the design. We refer

to (Calvanese et al., 1994) for a discussion on using the
inference techniques associated to Description Logics
during Source Model construction.

(2) Source Model integration. The Source Model is
integrated into the Domain Model. This can lead to
changes both to the Source Models, and to the Enter-
prise Model. It is worth recalling that our approach
to integration is mainly declarative: the most impor-
tant efforts during source integration are thus devoted
to single out and to specify the intermodel assertions
relating the Enterprise Model and the Source Models,
rather than producing a unified conceptual represen-
tation. More precisely, the step of Source Model inte-
gration is characterized by the following activities:

• Structural and semantic conflicts involving the
Source Model under analysis are detected and
solved.

• Intermodel assertions between the Source Model
and the Enterprise Model, and between different
sources, are added to the Domain Model.

The activity of conflict resolution in our framework
can be carried out by relying on the large body of work
developed in database integration. More specifically,
in our framework, the basic structural and semantic
conflicts are very similar to those arising in the Entity-
Relationship Data Model. An example of structural
conflict is represented by the situation where the same
concept is represented as a class in one model and as a
relation in another model. The principles for resolving
such conflicts are now well established (Batini et al.,
1992). Other types of conflicts are dealt with in the
Quality Analysis step.

The specification of intermodel assertions and the
derivation of implicit relationships by exploiting the
reasoning techniques, represent the novel part of the
methodology. The most common intermodel asser-
tions are those specifying the relation between ele-

ments in one Source Model with elements in the En-
terprise Model. However, also assertions relating el-
ements in different Source Models are of importance.
For example, inferring that the set of instances of a
relation in source Si is always a subset of those in
source Sj can be important in order to infer that ac-
cessing source Sj for retrieving instances of the relation
is useless. We point out that the possibility of express-
ing relationships between concepts in different sources
is a distinguished feature of our approach.

Intermodel assertions can be roughly classified as fol-
lows:

• Subsetting assertions, that are used to state that
a certain concept or relation in the Source Model
is a subset of another concept or relation in the
Enterprise Model (or in another source). These
assertion have the form Li vext L′j .

• Definition assertions, that are used to completely
characterize the set of instances of one concept
in a model in terms of the set of instances of a
concept in another model.

• Completeness assertions, that are used to state
that the set of instances of a concept or relation in
the Enterprise Model can be obtained as the union
of different concepts or relations in the various
sources. A special case of this type of assertions
is the one stating that a certain concept in the
Enterprise Model is fully captured by a concept
in one Source Model.

• Synonym assertions, that are used to state that
different symbols in two models denote in fact the
same concept. These assertions have the form
Li ≡int Lj .

• Homonym assertions, that are used to state that
the same symbol is used to denote different con-
cepts in different models. These assertions have
the form Li 6≡int Lj .

It is important to observe that the possibility of us-
ing complex concept and relation expressions in the
context of intermodel assertions greatly enhances the
expressive power of such assertions, and is another dis-
tinguished feature of our approach. Moreover, the pos-
sibility of reasoning about intermodel assertions pro-
vides support and guidelines to the designer of the
Domain Model, as pointed out in the discussion on
the step of quality analysis. Finally, we note that the
usage of intermodel assertions is required also to rea-
son about queries which is addressed in client-driven
integration.

(3) Quality analysis. The goal of this step is to verify
that the quality requirements are met by the Domain
Model. In particular, the reasoning capabilities of our
approach allow for dealing with several quality factors,
such as:

• Consistency of the Source Model in isolation.

• Redundancy, by identifying equivalent concepts.

• Readability, by pointing out relationships that are
implicit in the model.

• Accessibility, which amounts to verifying which
data are available in the Materialized View Store,
which data can be extracted from the sources, and
which are indeed needed from external sources.

• Believability, which amounts to verifying whether
the data available in the materialized views or pro-
vided by a source are consistent and complete.

It is worth noticing that, depending on the result of
the evaluation of the quality factors, a restructuring of
both the Source Model and the Enterprise Model may
be required.

(4) Source Schema specification. The Source Schema,
i.e. the logical view of the new source or a new por-
tion of the source (expressed as a collection of queries
over the corresponding Source Model) is specified. The
source schemas are used in order to determine the
sources relevant for computing answers to queries, by
exploiting the ability to reason about queries. Notice
that, the actual logical design of the sources is outside
the scope of the integration system. Therefore, the fo-
cus here is on the specification of the sources at the
logical level.

(5) Materialized View Schema restructuring. This step
is done only in Materialized Data Integration. As we
said before, the Materialized View Schema is speci-
fied in terms of a set of relational tables, each one
described as a query over the Domain Model. On the
basis of the description of the new source, an analysis
can be carried out on whether the Materialized View
Schema should be restructured and/or modified in or-
der to better satisfy quality criteria. Again several
quality factors can be evaluated by exploiting reason-
ing, which, in this case, essentially amounts to query
containment. Although the design of the Materialized
View Schema is outside the scope of the present work,
we point out that this task can be effectively supported
by the reasoning services about the representation of
the logical schemata in terms of queries.

4.2 CLIENT-DRIVEN INTEGRATION

The client-driven design strategy refers to the case
when a new query (or a set of queries) posed by a
client is considered. The query is expressed in terms
of the domain model, and the reasoning facilities are
exploited to analyze and systematically decompose the
query and check whether its components are subsumed
by the views defined in the various schemas. There-
fore, the central reasoning service for query analysis is
query containment checking.

In Materialized Data Integration, the analysis is car-
ried out as follows:

(1) We verify whether and how the answer can be com-
puted from the materialized views. This problem is
known as the query rewriting problem, which amounts
to find a way to rewrite the original query in terms
of the relations in the Materialized View Schema. Al-
though we do not have a method for automatically
rewriting the query, we can exploit query containment
checking in order to support the designer in this task.

(2) In the case where the materialized views are not
sufficient to compute the answer to a query, the idea
is to verify whether the answer can be obtained by
materializing new concepts represented in the Domain
Model. It is interesting to observe that this is again
an instance of the query rewritinng problem, where
one aims at expressing the query in terms of the rela-
tions in the Sources. In this case, query containment
helps to identify the set of subqueries to be issued on
the sources and to extend and/or restructure the Ma-
terialized View Schema (see step 5 of source-driven
integration). Different choices can be identified, based
on various preference criteria. E.g., in (Levy et al.,
1995) minimization in terms of the number of sources
is proposed, based on the observation that accessing a
source is the most expensive part of the process. In
fact, by exploiting the information available through
the intermodel assertions, we can accommodate differ-
ent kinds of constraints, that are related to the above
mentioned quality factors. For example, we can opti-
mize with respect to believability, or interpretability,
possibly combining different factors.

(3) In the case where neither the materialized data nor
the concepts in the Domain Model are sufficient, the
necessary data should be searched for in new sources,
or in new portions of already analyzed sources. The
new (portions of the) sources are then added to the
Domain Model using the source-driven approach, and
the process of analyzing the query is iterated.

In Virtual Data Integration, the basic problem is to
determine whether and how the answer can be com-

puted from the data in the analyzed sources, falling
into case (2) or (3).

5 CONCLUSIONS

In this paper we have presented the fundamental fea-
tures of a declarative approach to Information Inte-
gration based on Description Logics. As pointed out
in the previous sections, there are a number of issues
that deserve further investigation, and in particular:

• How to exploit the knowledge about the concep-
tual level in the design of wrappers and mediators.

• Designing automatic methods and techniques for
the query rewriting problem, arising in the client-
driven integration.

We are currently studying the above issues within the
ESPRIT Project DWQ (Foundations of Data Ware-
house Quality) (Calvanese, De Giacomo, Lenzerini,
Nardi, & Rosati, 1997), where we are using the pre-
sented framework in the context of data warehouse
design.

Acknowledgments

This work was partly supported by MURST, ES-
PRIT LTR Project No. 22469 DWQ (Foundations
of Data Warehouse Quality), the Italian Research
Council (CNR) under Progetto Strategico “Informa-
tica nella Pubblica Amministrazione”, sottoprogetto
PROGRESS (Reingegnerizzazione dei Processi e dei
Dati nella Pubblica Amministrazione), and the Ital-
ian Space Agency (ASI) under project “Integrazione
ed Accesso a Basi di Dati Eterogenee”.

References

Arens, Y., Chee, C. Y., Hsu, C., & Knoblock, C. A.
(1993). Retrieving and integrating data from multiple
information sources. Journal of Intelligent and Coop-
erative Information Systems, 2 (2), 127–158.

Arens, Y., Knoblock, C. A., & Chen, W. (1996).
Query reformulation for dynamic information integra-
tion. Journal of Intelligent Information Systems, 6,
99–130.

Batini, C., Ceri, S., & Navathe, S. B. (1992). Con-
ceptual Database Design, an Entity-Relationship Ap-
proach. Benjamin and Cummings Publ. Co., Menlo
Park, California.

Batini, C., Lenzerini, M., & Navathe, S. B. (1986).
A comparative analysis of methodologies for database

schema integration. ACM Computing Surveys, 18 (4),
323–364.

Borgida, A. (1995). Description logics in data man-
agement. IEEE Transactions on Knowledge and Data
Engineering, 7 (5), 671–682.

Calvanese, D., De Giacomo, G., & Lenzerini, M.
(1995). Structured objects: Modeling and reasoning.
In Proc. of the 4th Int. Conf. on Deductive and Object-
Oriented Databases (DOOD-95), No. 1013 in Lecture
Notes in Computer Science, pp. 229–246. Springer-
Verlag.

Calvanese, D., De Giacomo, G., & Lenzerini, M.
(1997). Conjunctive query containment in Descrip-
tion Logics with n-ary relations. In Proc. of the 1997
Description Logic Workshop (DL-97), pp. 5–9.

Calvanese, D., De Giacomo, G., & Lenzerini, M.
(1998). On the decidability of query containment un-
der constraints. In Proceedings of the Seventeenth
ACM SIGACT SIGMOD SIGART Symposium on
Principles of Database Systems (PODS-98). To ap-
pear.

Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi,
D., & Rosati, R. (1997). Source integration in data
warehousing. Tech. rep. DWQ-UNIROMA-002, DWQ
Consortium.

Calvanese, D., Lenzerini, M., & Nardi, D. (1994). A
unified framework for class based representation for-
malisms. In Doyle, J., Sandewall, E., & Torasso, P.
(Eds.), Proc. of the 4th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR-94),
pp. 109–120 Bonn. Morgan Kaufmann, Los Altos.

Catarci, T. & Lenzerini, M. (1993). Representing and
using interschema knowledge in cooperative informa-
tion systems. Journal of Intelligent and Cooperative
Information Systems, 2 (4), 375–398.

Collet, C., Huhns, M. N., & Shen, W.-M. (1991).
Resource integration using a large knowledge base in
Carnot. IEEE Computer, 24 (12), 55–62.

De Giacomo, G. & Lenzerini, M. (1994). Description
logics with inverse roles, functional restrictions, and n-
ary relations. In Proc. of the 4th European Workshop
on Logics in Artificial Intelligence (JELIA-94), Vol.
838 of Lecture Notes in Artificial Intelligence, pp. 332–
346. Springer-Verlag.

De Giacomo, G. & Lenzerini, M. (1995). What’s in
an aggregate: Foundations for description logics with
tuples and sets. In Proc. of the 14th Int. Joint Conf.
on Artificial Intelligence (IJCAI-95), pp. 801–807.

De Giacomo, G. & Lenzerini, M. (1996). TBox and
ABox reasoning in expressive description logics. In
Aiello, L. C., Doyle, J., & Shapiro, S. C. (Eds.), Proc.
of the 5th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR-96), pp. 316–327.
Morgan Kaufmann, Los Altos.

Donini, F. M., Lenzerini, M., Nardi, D., & Schaerf,
A. (1991). A hybrid system integrating Datalog and
concept languages. In Proc. of the 2nd Conf. of the
Italian Association for Artificial Intelligence (AI*IA-
91), No. 549 in Lecture Notes in Artificial Intelligence.
Springer-Verlag. An extended version appeared also
in the Working Notes of the AAAI Fall Symposium
“Principles of Hybrid Reasoning”.

Donini, F. M., Lenzerini, M., Nardi, D., & Schaerf, A.
(1996). Reasoning in description logics. In Brewka, G.
(Ed.), Principles of Knowledge Representation, Stud-
ies in Logic, Language and Information, pp. 193–238.
CSLI Publications.

Donini, F. M., Lenzerini, M., Nardi, D., & Schaerf, A.
(1998). AL-log: Integrating datalog and description
logics. Journal of Intelligent Information Systems. To
appear.

Patel-Schneider, P., McGuiness, D., Brachman, R. J.,
Resnick, L., & Borgida, A. (1991). The CLASSIC
knowledge representation system: Guiding principles
and implementation rational. SIGART Bulletin, 2 (3),
108–113.

Chawathe, S., Garcia-Molina, H., Hammer, J., Ire-
land, K., Papakonstantinou, Y., Ullman, J., & Widom,
J. (1994). The TSIMMIS project: Integration of het-
erogeneous information sources. In Proc. of IPSI Con-
ference (IPSI’94).

Gupta, A. & Mumick, I. S. (1995). Maintenance of
materialized views: Problems, techniques, and appli-
cations. IEEE Bulletin of the Technical Committee on
Data Engineering, 18 (2), 3–18.

Hammer, J., Garcia-Molina, H., Widom, J., Labio,
W., & Zhuge, Y. (1995). The Stanford data warehous-
ing project. IEEE Bulletin of the Technical Committee
on Data Engineering, 18 (2), 41–48.

Huhns, M. N., Jacobs, N., Ksiezyk, T., Shen, W.-M.,
Singh, M. P., & Cannata, P. E. (1993). Integrating
enterprise information models in Carnot. In Proc.
of the Int. Conf. on Cooperative Information Systems
(CoopIS-93), pp. 32–42.

Hull, R. (1997). Managing semantic heterogeneity in
databases: A theoretical perspective. In Proc. of the

16th ACM SIGACT SIGMOD SIGART Sym. on Prin-
ciples of Database Systems (PODS-97).

Hull, R. & Zhou, G. (1996). A framework for support-
ing data integration using the materialized and virtual
approaches. In Proc. of the ACM SIGMOD Int. Conf.
on Management of Data, pp. 481–492.

Hurson, A., Bright, M., & Pakzad, S. (Eds.). (1994).
Multidatabase Systems: An Advanced Solution for
Global Information Sharing. IEEE Computer Society
Press.

Inmon, W. H. (1996). Building the Data Warehouse
(second edition). John Wiley & Sons.

Kirk, T., Levy, A. Y., Sagiv, Y., & Srivastava, D.
(1995). The Information Manifold. In Proceedings of
the AAAI 1995 Spring Symp. on Information Gather-
ing from Heterogeneous, Distributed Enviroments, pp.
85–91.

Knoblock, C. & Levy, A. (Eds.). (1995). AAAI
Symposium on Information Gathering from Hetero-
geneous, Distributed Environments, No. SS-95-08 in
AAAI Spring Symposium Series. AAAI Press/The
MIT Press.

Lenat, D. & Guha, R. V. (1990). Building Large
Knowledge-Based Systems: Representation and Infer-
ence in the Cyc Project. Addison Wesley Publ. Co.,
Reading, Massachussetts.

Levy, A. Y., Rajaraman, A., & Ordille, J. J. (1996).
Query answering algorithms for information agents. In
Proc. of the 13th Nat. Conf. on Artificial Intelligence
(AAAI-96), pp. 40–47.

Levy, A. Y. & Rousset, M.-C. (1996). CARIN: A repre-
sentation language combining Horn rules and descrip-
tion logics. In Proc. of the 12th European Conf. on
Artificial Intelligence (ECAI-96), pp. 323–327.

Levy, A. Y., Srivastava, D., & Kirk, T. (1995). Data
model and query evaluation in global information sys-
tems. Journal of Intelligent Information Systems, 5,
121–143.

MacGregor, R. (1991). Inside the LOOM description
classifier. SIGART Bulletin, 2 (3), 88–92.

Sheth, A. & Larson, J. (1991). Federated database sys-
tems for managing distributed, heterogeneous, and au-
tonomous databases. ACM Computing Surveys, 22 (3).

Ullman, J. D. (1997). Information integration us-
ing logical views. In Proc. of the 6th Int. Conf. on
Database Theory (ICDT-97), Lecture Notes in Com-
puter Science, pp. 19–40. Springer-Verlag.

Widom, J. (1995). Special issue on materialized views
and data warehousing. IEEE Bulletin on Data Engi-
neering, 18 (2).

Wiederhold, G. (1992). Mediators in the architec-
ture of future information systems. IEEE Computer
(March), 38–49.

Wiederhold, G. (1996). Special issue: Intelligent in-
tegration of information. Journal of Intelligent Infor-
mation Systems, 6 (2/3).

Wiener, J. L., Gupta, H., Labio, W. J., Zhuge, Y.,
Garcia-Molina, H., & Widom, J. (1996). A system
prototype for warehouse view maintenance. Tech.
rep., Stanford University. Available at http://www-
db-stanford.edu/warehousing/warehouse.html.

Zhou, G., Hull, R., & King, R. (1996). Generating data
integration mediators that use materializations. Jour-
nal of Intelligent Information Systems, 6, 199–221.

