Enterprise Modeling and Data Warehousing
in TELECOM ITALIA

Diego Calvanese

Faculty of Computer Science
Free University of Bolzano/Bozen
Piazza Domenicant 8
1-39100 Bolzano-Bozen BZ, Italy

Luigi Dragone, Daniele Nardi, Riccardo Rosati

Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy

Stefano M. Trisolini

TELECOM ITALIA and
Data Warehouse and DMDWM Consulting S.A.S. (present affiliation)

Abstract

We present a methodology for Data Warehouse design and its application within the
TELECOM ITALIA information system. The methodology is based on a conceptual
representation of the Enterprise, which is exploited both in the integration phase
of the Warehouse information sources and during the knowledge discovery activity
on the information stored in the Warehouse. The application of the methodology in
the TELECOM ITALIA framework has been supported by prototype software tools
both for conceptual modeling and for data integration and reconciliation.

Key words: Data Warehousing, Data Integration, Conceptual Modeling,
Automated Reasoning

Email addresses: calvanese@inf.unibz.it (Diego Calvanese),
dragone@dis.uniromal.it (Luigi Dragone), nardi@dis.uniromal.it (Daniele
Nardi), rosati@dis.uniromal.it (Riccardo Rosati),
stefano.trisolini@tin.it (Stefano M. Trisolini).

URLs: http://www.inf .unibz.it/ calvanese/ (Diego Calvanese),
http://www.dis.uniromal.it/ dragone/ (Luigi Dragone),

Accepted for publication in Information Systems July 2004

1 Introduction

Information integration (1) is one of the main problems to be addressed when
designing a Data Warehouse (2). Possible inconsistencies and redundancies
between data residing at the operational data sources and migrating to the
Data Warehouse need to be resolved, so that the Warehouse is able to provide
an integrated and reconciled view of data within the organization. The basic
components of a data integration system are wrappers and mediators (3; 4).
A wrapper is a software module that accesses a data source, extracts the
relevant data, and presents such data in a specified format, typically as a set
of relational tables. A mediator collects, cleans, and combines data produced
by wrappers and/or other mediators, according to a specific information need
of the integration system. The specification and the realization of mediators
is the core problem in the design of an integration system.

In Data Warehouse applications, the data sources are mostly internal to the
organization. Moreover, large organizations typically provide informational
needs in terms of an integrated conceptual representation of the corporate data
that abstracts from the physical and logical structure of data in the sources.
The data stored in the Data Warehouse should reflect such an informational
need, and hence should be defined in terms of the corporate data.

TELECOM ITALIA is the main Italian provider of national and international
telecommunication services, and is among the largest companies worldwide.
In large companies the need to access company data for business intelligence
is both an organizational and a technical challenge, requiring a considerable
amount of financial and human resources. Given the development of informa-
tion technology in the nineties, in TELECOM ITALIA data warehousing (5) has
been a natural evolution of enterprise-wide data management and data inte-
gration. A Data Warehouse can be defined as a set of materialized views over
the operational information sources of an organization, designed to provide
support for data analysis and management’s decisions.

In the last years, TELECOM ITALIA has carried out a large integration ini-
tiative of enterprise information systems, called IBDA !, resulting in the con-
struction of an enterprise-wide database integrated at the conceptual level.
Due to the limitations of the available technologies and the costs of replacing
and re-engineering legacy applications, such an activity has lead to a solution
based on federated databases and legacy systems wrapping, according to the
main guidelines of virtual enterprise system integration.

http://www.dis.uniromal.it/ nardi/ (Daniele Nardi),
http://www.dis.uniromal.it/ rosati/ (Riccardo Rosati).

I IBDA stands for “Integrazione di Basi di Dati Aziendali”, i.e., integration of
company databases.

Meanwhile, the information systems of TELECOM ITALIA have quickly
evolved, in particular new applications have been developed, and existing
ones have been upgraded or replaced. Such a rapid evolution has been due
to both internal and external factors: the birth and growth of new markets
(such as mobile telephone and Internet services) and new competitors, the pri-
vatization of the company and the subsequent buyouts. Given also the various
and disparate information requirements of business intelligence and decision
making activities at different levels (e.g., tactical and strategical marketing),
the integrated information system started showing inadequate to suit the com-
pany’s new informational needs. Consequently, in order to provide an adequate
timely deployment, the development of Online Analytical Processing (OLAP)
and Decision Support Systems (DSS) applications has been carried out in an
unstructured way, resulting in a low modularization and non-effective usage
of the Data Warehouse infrastructure.

These issues have pointed out the necessity of adopting an incremental
Data Warehousing methodology, in particular, the local-as-view (LAV) ap-
proach to Data Warehousing proposed in the context of the European project
DWQ? (6; 5). In such an approach, each table both in a source and in the
Data Warehouse is defined in terms of a view over the global model of the cor-
porate data. This extends the traditional LAV approach to integration, where
the information content of each data source is defined in terms of a query
over (possibly materialized) global relations constituting the corporate view
of data (7; 1; 8; 9; 10). The LAV approach is in contrast to the global-as-view
(GAV) approach for data integration (11; 12; 13; 14; 15; 16; 17), typically
proposed in Data Warehousing (2; 18). Such an approach requires, for each
information need, to specify the corresponding query in terms of the data at
the sources. Notably, the LAV approach enables decoupling between informa-
tion availability and information requirements. Therefore, the introduction of
a new information source or the replacement of an existing one does not have
any impact on the definition of the Data Warehouse expressed over the global
model of corporate data.

Nonetheless, there are several important questions that are not addressed by
the work on integration. More specifically, integration anticipates semantic
problems with data, but does not address efficiency issues, which are crit-
ical for data warehousing. Thus, to guarantee a proper performance of the
Data Warehouse, a major re-organization of the data store may be required,
with additional costs. This motivates a layered architecture of the Data Ware-
house (5), where a primary Data Warehouse feeds the data to several layers of
aggregation (called secondary Data Warehouses or Data Marts) before they
become available to the final user. Moreover, typically there is the need to effi-

2 ESPRIT Basic Research Action Project EP 22469 “Foundations of Data Ware-
house Quality (DWQ)”, http://www.dbnet.ece.ntua.gr/~dwq/.

ciently take into account legacy systems that are not integrated, and external
or extemporaneous data sources that can provide relevant information to the
Data Warehouse, possibly for a limited time window.

In this paper we report on the experience of TELECOM ITALIA in the devel-
opment of its Enterprise Data Warehouse. Such a Data Warehouse adopts a
layered architecture, including various Primary Data Warehouses concerning
phone traffic of different types and customer information, and several Sec-
ondary Data Warehouses, which are at the basis of the Knowledge Discovery
and Data Mining activity carried out in TELECOM ITALIA. For the develop-
ment of its Data Warehouse TELECOM ITALIA has followed the methodology
proposed in the DWQ project (6; 5), which is based on the LAV approach.
Indeed, one of the distinguishing features of the approach is a rich model-
ing language for the conceptual level that extends the Entity-Relationship
data model, and thus is fully compatible with the conceptual modeling tools
adopted by TELECOM ITALIA. Moreover, the modeling formalism is equipped
with automated reasoning tools, which can support the designer during Data
Warehouse construction, maintenance and evolution. At the logical level, the
methodology allows the designer to declaratively specify several types of Rec-
onciliation Correspondences between data in different sources and in the Data
Warehouse, that allow her to take care of differences in the representation at
the logical level of the same entities at the conceptual level. Such correspon-
dences are then used to automatically derive the specification of the correct
mediators for the loading of the materialized views of the Data Warehouse.
This is done by relying on a query rewriting algorithm, whose role is to re-
formulate the query that defines the view to materialize in terms of both the
source relations and the Reconciliation Correspondences. The characteristic
feature of the algorithm is that it takes into account the constraints imposed
by the Conceptual Model, and uses the Reconciliation Correspondences for
cleaning, integrating, and reconciling data coming from different sources.

The paper is organized as follows. In Section 2 we describe the enterprise infor-
mation system in TELECOM ITALIA. In Section 3 we introduce the enterprise
modeling framework at the basis of the Data Warehouse design methodology
that is discussed in Section 4. In Section 5 we present the development process
of a portion of the Data Warehouse of TELECOM ITALIA, concentrating on the
Primary Data Warehouse design activity. In Section 7 we briefly discuss the
use of the Secondary Data Warehouse for Data Mining and Decision Support
applications. Finally, in Section 8 we draw some conclusions.

2 The Enterprise Information System in TELECOM ITALIA

In this section we sketch the main methodological and technological issues that
arose in the last years in the development of the enterprise integrated database
of TELECOM ITALIA and, subsequently, in the design and implementation of
a Data Warehouse for TELECOM ITALIA. The two efforts, although driven by
different needs and requirements can be regarded as a continuous development
of an integrated view of the enterprise data. Although we analyze the design
and the development of the Data Warehouses in TELECOM ITALIA, we deal
with many issues that are common in a large enterprise; so our conclusions
are easily generalizable to other scenarios.

2.1 Data Base Integration

In 1993, TELECOM ITALIA has launched a strategic project, called IBDA, with
the following main goals:

e the definition of an Enterprise Data Model and the migration/evolution of
existing data;

e the design and implementation of databases covering the main sections of
the Enterprise Data Model (customers, suppliers, network, administration,
etc.);

e the design and implementation of a client/server architecture and of the
communication middleware;

e the design and implementation of data access services.

The driving motivations of the IBDA strategic project are typical of a common
scenario in many world-wide large enterprises, where there is a proliferation
of legacy databases with a large overhead in the design and maintenance of
software for interfacing applications and providing access to the data. IBDA
was based on a staged implementation of services that form a layer separating
data from application processes. More specifically, the IBDA service for a
database is the exclusive agent that provides access to the data. A database
integrated in the IBDA architecture is denoted as BDA and is identified by
a unique number. The access is actually accomplished through contracts that
enforce the semantic and referential policies for the database.

In this case, we must cope with the numerous and extremely differentiated
data sources of the Enterprise Information System of TELECOM ITALIA. In
particular, one can find different applications, based on different data manage-
ment technologies (from hierarchical to object-relational DBMSs), that share
information, or, in other words, that manage common concepts.

In 1996, the project was formally completed with the integration of 48 op-
erational databases, while in the subsequent years new databases have been
continuously added to IBDA. At present, several other databases are included
in IBDA as BDAs and there are ongoing projects for adding more. In the
following years it has been realized that the process of database inclusion in
IBDA is basically incremental.

2.2 Data Warehousing

In TELECOM ITALIA, data warehousing has been a natural evolution of data
integration. Starting from a large integrated enterprise database, and given
the size of the data to be stored in the Data Warehouse, the architecture of
the TELECOM ITALIA Enterprise Data Warehouse includes a group of Primary
Data Warehouses, which are devolved to collect, integrate and consolidate the
data extracted from the Operational Data Stores. The Primary Data Ware-
houses feed the data to several systems on which the user applications (e.g.,
Decision Support System) rely. These systems are also included in the Enter-
prise Data Warehouse as Secondary Data Warehouses, also known as Data
Marts.

The main difference between the two kinds of Data Warehouses is that the Pri-
mary Data Warehouses contain only “atomic” level data, while the Secondary
Data Warehouses typically contain information that has been aggregated at
different levels of detail. The Enterprise Data Warehouse architecture is ba-
sically stratified, therefore the Secondary Data Warehouses are loaded only
with data extracted from the Primary Data Warehouses.

Presently, the TELECOM ITALIA Enterprise Data Warehouse includes the fol-
lowing Primary Data Warehouses:

o [PDW-Interconnection Traffic Primary Data Warehouse, containing call
detail records (CDRs), whose main purpose is to analyze network usage pat-
terns between TELECOM ITALIA Network Nodes and other service providers.
The daily loading is 40 millions CDRs and the store contains 6 months of
history data.

o CPDW-Customer Primary Data Warehouse, containing information on
TELECOM ITALIA products and services by customer, to analyze customer
data. The daily loading is about 150 GB and the average size is 1.5 TB.

o TPDW-Voice Traffic Primary Data Warehouse, containing additional in-
formation on CDRs records from PSTN and ISDN switches, to support
various analysis tasks for Marketing, Administration, and Customer Man-
agement. The daily loading is 130 millions CDRs and the store contains 12
months of history data.

An integrated data store constitutes a solid basis for the design of Data Ware-
house applications: many of the problems that arise for data warehousing
are anticipated (data extraction, cleaning, and reconciliation), thus providing
good quality data for analytical processing. Moreover, Data Warehouse appli-
cations can be developed in a more coherent way, because of the existence of
the integrated data store.

Nonetheless, there are several important questions that are not addressed
by the conventional approach to integration. More specifically, integration
does anticipate semantic problems with data, but does not address efficiency
issues, which are critical for data warehousing. Thus, to guarantee a proper
performance of the Data Warehouse, a major re-organization of the data store
may be required, with additional costs.

As a consequence of the layered approach to data warehousing taken in TELE-
coM ITALIA, a strong emphasis is given to methodologies. In the design of
these methodologies, and their supporting tools, TELECOM ITALIA has ben-
efited from the experience on quality assurance in data warehousing gained
at the Dipartimento di Informatica e Sistemistica of the University of Rome
“La Sapienza” within the European project DWQ (5). TELECOM ITALIA has
devised proprietary methodologies and tools for incremental schema and data
integration based upon research results achieved within DWQ. These method-
ologies provide a sound framework for data acquisition in data warehousing
and for the development of Data Warehouse applications, which are based on
the cooperation with the top management, iterative refinement, and rapid pro-
totyping. Such methodologies need to take into account both the complexity
and the internal organization of roles and responsibilities.

3 The Enterprise Modeling Framework

In this section we describe the general framework, developed within DWQ),
at the basis of our approach to schema and data integration (5; 19; 20; 21;
6). Specifically, we first illustrate the architecture of a Data Warehouse in
our framework. Then, we present the conceptual level of the architecture, in
particular both the formalism used for expressing the conceptual level, and the
methodology for building a conceptual representation of the Data Warehouse.
Finally, we describe the logical level, and the process of data integration within
our architecture.

___________ Data Warehouse |
Schema Data Warehouse
Store
Conceptual
Model
_____ Source Source
Schemay | "°° Schema,
conceptual level logical level physical level

. . Sources
""" conceptual/logical mapping

S— —
""""" physical /logical mapping Source Source
—> data flow Data Storeq e Data Storey,

Fig. 1. Architecture for Data Integration

3.1 Architecture

A Data Warehouse can be seen as a database which maintains an inte-
grated, reconciled, and materialized view of information residing in several
data sources. In our approach, we explicitly model the data in the sources and
in the Data Warehouse at different levels of abstraction (20; 6; 19):

e The conceptual level, which contains a conceptual representation of the cor-
porate data.

e The logical level, which contains a representation in terms of a logical data
model of the sources and of the data materialized in the Data Warehouse.

e The physical level, which contains a specification of the stored data, the
wrappers for the sources, and the mediators for loading the data store.

The relationships between the conceptual and the logical, and between the
logical and the physical level, are represented explicitly by specifying map-
pings between corresponding objects of the different levels. In the rest of this
section, we focus on the conceptual and logical levels, referring to the abstract
architecture depicted in Figure 1. For a description of the physical level we
refer to (5).

3.2 Conceptual Level

In the overall Data Warehouse architecture, we explicitly conceive a concep-
tual level, which provides a conceptual representation of the data managed
by the enterprise, including a conceptual representation of the data residing
in sources, and of the global concepts and relationships that are of interest
to the Data Warehouse application. Such a description, for which we use the
term Conceptual Model, is independent from any system consideration, and is

oriented towards the goal of expressing the semantics of the application. The
Conceptual Model corresponds roughly to the notion of integrated conceptual
schema in the traditional approaches to schema integration, thus providing a
consolidated view of the concepts and the relationships that are important to
the enterprise and have been currently analyzed. Such a view includes a con-
ceptual representation of the portion of data, residing in the sources, currently
taken into account. Hence, our approach is not committed to the existence of
a fully specified Conceptual Model, but rather supports an incremental defi-
nition of such a model. Indeed, the Conceptual Model is subject to changes
and additions as the analysis of the information sources proceeds.

An important aspect of the conceptual representation is the explicit specifica-
tion of the set of interdependencies between objects in the sources and objects
in the Data Warehouse. In this respect, data integration can be regarded as
the process of understanding and representing the relationships between data
residing in the information sources and the information contained in the Data
Warehouse. Both schema integration and data integration are driven by the
Conceptual Model. Furthermore, data reconciliation is also addressed at the
conceptual level. In fact, the specification of interdependencies can be prof-
itably exploited by automated reasoning tools, which are able to derive and
verify several kinds of properties concerning the conceptual specification of
information.

The formalization of information in the Conceptual Model is based on the dis-
tinction between conceptual objects and values. Reflecting such a distinction,
the Conceptual Model consists of two components:

(1) an enriched Entity-Relationship model, which formalizes the properties of
conceptual objects;

(2) a set of domain assertions, which model the properties of values (see the
Appendix).

The enriched Entity-Relationship model is formalized in terms of a logic-based
formalism, called DLR (20). Such a formalism allows us to characterize the
Entity-Relationship (ER) model augmented with several forms of constraints
that cannot be expressed in the standard ER model. Moreover, it provides
sophisticated automated reasoning capabilities, which can be exploited in ver-
ifying different properties of the Conceptual Model.

A detailed description of the features of DLR is presented in the Appendix.
Here, to exemplify the use of DLR, we show how to formalize in DLR a
simple ER schema. A full-fledged application of the proposed methodology is
shown in a case study from the telecommunication domain (22; 23).

Example 1 The schema shown in Figure 2 represents telecommunication ser-
vices, partitioned into data and voice services, and a relationship modeling the

name : NameString 2

code : CodeString O—Q 1
o Service
activation : Date (O)—y
(5cost : Money

DataService VoiceService

Fig. 2. Entity-Relationship schema for Example 1

fact that a service may extend another service. The following set of DLR
assertions exactly captures the ER schema in the figure.

(= 1name) M Vname.NameString N
(= 1 code) M Vcode.CodeString M

(= 1activation) M Vactivation.Date M
(= 1cost) M Vcost.Money

Service C

Service = DataService LI VoiceService
DataService T —VoiceService
EXTENDS C ($1: Service) M ($2: Service)

The first assertion specifies the existence and uniqueness of the attributes of
Service and their domains. The next two assertions specify that services are
partitioned into data and voice services. The last assertion specifies the typing
of the EXTENDS relationship.

3.8 Logical Level

The logical level provides a description of the logical content of each source,
called the Source Schema, and the logical content of the materialized views
constituting the Data Warehouse, called the Data Warehouse Schema (see
Figure 1). Such schemas are intended to provide a structural description of the
content of both the sources and the materialized views in the Data Warehouse.

A Source Schema is provided in terms of a set of relations using the rela-
tional model. The link between the logical representation and the conceptual
representation of the source is formally defined by associating to each rela-
tion a query over the Conceptual Model that describes its content. In other
words, the logical content of a source relation is described in terms of a view
over the virtual database represented by the Conceptual Model, adopting the
local-as-view approach (4).

To map physical structures to logical structures, we make use of suitable wrap-
pers, which encapsulate the sources. Each wrapper presents the source as a set

10

of relations, hiding how the source actually stores its data, the data model it
adopts, etc. In particular, we assume that all attributes in the relations are of
interest to the Data Warehouse application (attributes that are not of interest
are hidden by the wrapper). Relation attributes are thus modeled as either
entity attributes or relationship attributes in the Conceptual Model.

The Data Warehouse Schema, which expresses the logical content of the ma-
terialized views constituting the Data Warehouse, is provided in terms of a
set of relations. Similarly to the case of the sources, each relation of the Data
Warehouse Schema is described in terms of a query over the Conceptual Model.

3.3.1 Queries over the Conceptual Model

From a technical point of view, queries over the Conceptual Model are unions
of conjunctive queries. More precisely, a query ¢ over the Conceptual Model
has the form:
T(x) « ¢x5)

where the head T'(X) defines the schema of the relation in terms of a name 7T,
and its arity, i.e., the number of columns (number of components of Xx—we use
X to denote a tuple of variables zy, ..., z,, for some n), and the body ¢(X,y)
describes the content of the relation in terms of the Conceptual Model. The
body has the form

conj (X, ¥1)V -+ V conj,, (X, ¥m)

where each conj,(X,y;) is a conjunction of atoms, and X, y; are all the variables
appearing in the conjunction. Each atom is of the form E(t), R(t), or A(t,t'),
where t, ¢, and ' are variables in X,¥; or constants, and E, R, and A are
respectively entities, relationships, and attributes appearing in the Conceptual
Model. In the following, we will also consider queries whose body may contain
special predicates that do not appear in the conceptual model.

The semantics of queries is as follows. Given a database that satisfies the
Conceptual Model, a query

T(x) — conjy(X,31) V-V conj, (X, §m)

of arity n is interpreted as the set of n-tuples (dy,...,d,), where each d; is
an object of the database, such that, when substituting each d; for z;, the
formula

Iy1.conj (X, ¥1) V-V I¥m.conj,. (X, Ym)
evaluates to true.

Suitable inference techniques allow for carrying out the following reasoning
services on queries by taking into account the constraints imposed by the

11

Conceptual Model (24):

o Query containment. Given two queries ¢; and g» (of the same arity n) over
the Conceptual Model, we say that ¢; is contained in go, if the set of tuples
denoted by ¢ is contained in the set of tuples denoted by ¢o, in every
database satisfying the Conceptual Model.

e Query consistency. A query ¢ over the Conceptual Model is consistent, if
there exists a database satisfying the Conceptual Model in which the set of
tuples denoted by ¢ is not empty.

e Query disjointness. Two queries ¢; and g (of the same arity) over the Con-
ceptual Model are disjoint, if the intersection of the set of tuples denoted by
¢1 and the set of tuples denoted by ¢- is empty, in every database satisfying
the Conceptual Model.

The notion of query over the Conceptual Model is a powerful tool for modeling
the logical level of the Sources and the Data Warehouse. As mentioned above,
we express the relational tables constituting both the Data Warehouse Schema
and Source Schemas in terms of queries over the Conceptual Model, with the
following characteristics:

e Relational tables are composed of tuples of values, which are the only kind
of objects at the logical level. Therefore, each variable in the head of the
query represents a value (not a conceptual object).

e FEach variable appearing in the body of the query either denotes a conceptual
object or a value, depending on the atoms in which it appears. Since, in each
database that satisfies the Conceptual Model, conceptual objects and values
are disjoint sets, no query can contain a variable which can be instantiated
by both a conceptual object and a value.

e FEach conceptual object is represented by a tuple of values at the logical
level. Thus, a mechanism is needed to express this kind of correspondence
between a tuple of values and the conceptual object it represents. This is
taken into account by the notion of adornment introduced below.

3.3.2 Source and Data Warehouse Logical Schema Description

We remind the reader that we assume that each source is encapsulated by a
suitable wrapper, and this wrapper provides a logical view of the data stored
in the source in terms of the relational model, i.e., in the form of a set of
relations.

As we said before, the query associated with a source relation provides the glue
between the conceptual and the logical representation. However, to capture
in a precise way the data in the sources, more information is needed in order
to describe the actual structure of the data in the relation. This is done by
associating to the relation an adornment, whose role is to declare the domains

12

of the columns of the table, and which are the attributes of the table that
are used to identify the objects of the Conceptual Model. In other words,
the adornment is used to make it explicit how the objects of the conceptual
representation are coded into values of the logical representation.

An adorned query is an expression of the form
T(i> — Q(i7y) ’ Aqy ..., Oy

where aq, ..., a, constitutes the adornment in which each «; is an annotation
on variables appearing in X. In particular:

e For each X € X, we have an annotation of the form
XV

where V' is a domain expression. Such an annotation is used to specify how
values bound to X are represented in the table at the logical level.

e For each tuple of variables Z C X that is used for identifying in 7" a con-
ceptual object Y € ¥ mentioned in ¢(X,y), we have an annotation of the
form

Identify([z],Y)

where we have grouped the variables Z into a single argument [z]. Such an
annotation makes it explicit that the tuple of values z is a representation of
the conceptual object Y.

Similarly to the case of source relations, the relations to be materialized in the
Data Warehouse are described as adorned queries over the Conceptual model.
Note that the adorned query associated to a table in a source is the result of
a reverse engineering analysis of the source, whereas in this case the adorned
query is a high-level specification of what we want to materialize in the table of
the Data Warehouse, and thus of the mediator for loading such a materialized
view. Since we express the semantics of the Data Warehouse tables in terms
of the Conceptual Model, also the relations in the Data Warehouse are seen
as views of such a Conceptual Model.

3.83.8 Reconciliation Correspondences

Assume that the decision of which data to materialize has been taken, and has
resulted in the specification of a new Data Warehouse relation T" expressed in
terms of an adorned query. One crucial task is to design the mediator for T,
i.e., the program that accesses the sources and loads the correct data into the
relation 7. Designing the mediator for T requires first of all to reformulate
the query associated with 7" in terms of the Source relations. However, such a
reformulation is not sufficient. The task of mediator design is complicated by

13

the possible heterogeneity between the data in the sources. We have already
mentioned the most important ones, namely, mismatches between data refer-
ring to the same real world object, errors in the data stored in the sources,
inconsistencies between values representing the properties of the real world
objects in different sources.

To cope with this problem we follow the approach based on the notion of
Reconciliation Correspondence, proposed in (19). In order to anticipate pos-
sible errors, mismatches, and inconsistencies between data in the sources, our
approach allows the designer to declaratively specify the correspondences be-
tween data in different schemas (either source schemas or Data Warehouse
schema). Such specification is done through special assertions, called Recon-
ciliation Correspondences.

Reconciliation Correspondences are defined in terms of relations, similarly to
the case of the relations describing the sources and the Data Warehouse at the
logical level. The difference with source and Data Warehouse relations is that
we conceive Reconciliation Correspondences as non-materialized relations, in
the sense that their extension is computed by an associated program whenever
it is needed. In particular, each Reconciliation Correspondence is specified as
an adorned query with an associated program that is called to compute the
extension of the virtual relation. Note that we do not consider the actual code
of the program but just its input and output parameters.

We distinguish among three types of correspondences, namely Conversion,
Matching, and Merging Correspondences. A detailed description of these types
of correspondences is reported in (19).

4 Methodology for Data Warehouse Design

In this section we outline the proposed methodology for Data Warehouse de-
sign, which is based on the framework presented in the previous section. For
a more detailed description of the methodology, we refer to (6; 25; 19). The
methodology identifies the following situations that need to be dealt with in
a systematic manner in order to build and maintain the Conceptual Model,
the Source Schemas and the Data Warehouse Schema:

e A new source (or, a new portion of a source) is analyzed and added to the
whole architecture; the data integration design scenario corresponding to
this situation will be called source-centric.

e A new query is formulated by a client; the design scenario corresponding to
this situation will be called query-centric.

14

Note that, although the two scenarios refer to a dynamic situation where a
new piece of information or a new request is considered, one can in practice
iterate the process to design the Data Warehouse from scratch.

In the following, we describe the most important methodological aspects that
are to be considered in the source-centric scenario, which is the approach
adopted in the TELECOM ITALIA integration project.

4.1 Conceptual Modeling

Source-centric Conceptual Model integration is triggered when a new source
or a new portion of a source is taken into account for integration into the Data
Warehouse. The steps to be accomplished in this case are the following:

(1) Source Model construction. The goal of this step is to produce the Source
Model, i.e., the conceptual model of the source under analysis. Since in a
typical Data Warehouse setting, sources already exist, this task may be
accomplished through a reverse engineering activity (26).

(2) Source Model integration. The goal of this step is to integrate the con-
structed Source Model with the Conceptual Model. We remind the reader
that our approach to integration is mainly declarative: the most impor-
tant efforts during source integration are indeed devoted to single out and
to specify the assertions relating the Conceptual Model and the Source
Models, thus producing a unified conceptual representation. More pre-
cisely, the step of Source Model integration is characterized by the fol-
lowing activities:

(a) Conflict resolution. The goal of this activity is to detect and solve
structural and semantic conflicts involving the Source Model under
analysis, to conform and align it to the Conceptual Model and make
it compatible for integration. In general, conflict resolution cannot be
fully automatized: human intervention by the designer is requested
by the system when conflicts have to be solved.

(b) Defining inter-model assertions. The resulting Source Model is added
to the Conceptual Model, together with suitable inter-model asser-
tions relating elements of the Source Model to elements of the Con-
ceptual Model (in particular, these may be elements of previously
integrated Source Models).

(3) Quality analysis. The resulting Conceptual Model is evaluated and its
accordance with quality factors that are relevant at the conceptual level
is evaluated (5). The reasoning techniques associated to the formalism
at the conceptual level provide essential support during this activity (6).
If necessary, a restructuring of the Conceptual Model is accomplished to
match the required criteria.

15

4.2 Logical Level and Data Integration

The methodology for the definition of the logical level of the Data Warehouse
is based on the following steps:

(1) specification of Source and Data Warehouse Schemas;
(2) specification of Reconciliation Correspondences;
(3) specification of mediators.

The reasoning services provided at the logical level make it possible to use
the specifications of Source and Data Warehouse Schema and of Reconcilia-
tion Correspondences to automatically generate the correct mediators for the
loading of the Data Warehouse. This is realized by means of a query rewriting
technique which uses query containment as its basic reasoning service.

4.2.1 Specifying Source and Data Warehouse Schema Descriptions

The first two steps of the proposed methodology correspond to defining both
the Data Warehouse Schema and each Source Schema in terms of adorned
queries. While the design of Source Schemas does not arise particular prob-
lems, the design of the Data Warehouse Schema can raise many issues due
to restructuring and denormalization of the data. The choice of the data to
materialize, and how to organize them in relations, is an important step in the
construction of the Data Warehouse. Several aspects have to be taken into ac-
count in making these choices, for example the required storage amount, the
cost of loading, refreshment, and query processing, etc. A methodology for
identifying the relations to materialize that is coherent with our framework
has been developed (27).

We point out that the mechanism used in our framework for specifying adorned
queries is able to cope with schematic differences (28). Indeed, as illustrated in
(19), our framework allows for handling various forms of schematic differences,
both among the sources, and between the sources and the Conceptual Model.

4.2.2 Specifying Reconciliation Correspondences

The task of specifying suitable Reconciliation Correspondences is a responsi-
bility of the designer. Once such Reconciliation Correspondences are specified,
they are profitably exploited to automatically generate mediators. In the task
of specifying Reconciliation Correspondences the system can assist the de-
signer in various ways.

First of all, since each Reconciliation Correspondence is declaratively speci-

16

fied as an adorned query, all reasoning tasks available for such queries can be
exploited to check desirable properties of the correspondences. In particular,
the system can check the consistency of queries, rejecting inconsistent ones
and giving the designer useful feedback. Also, the system can automatically
detect whether the adorned queries associated with different correspondences
are contained in each other (or are equivalent). This is an indication of redun-
dancy in the specification. However, to determine whether a correspondence
is actually redundant, one has to consider also the types of the correspon-
dences and the programs associated with them. E.g., a less general query,
thus specifying stricter conditions for applicability, may still be useful in the
case where the associated program takes advantage of the specialization and
operates more efficiently.

In practice, the system automatically asserts several correspondences by de-
fault, thus simplifying the task of the designer. We refer the reader to (19) for
a detailed description of the correspondences automatically asserted by the
system.

4.2.8 Specifying Mediators

As mentioned, our goal is to provide support for the design of the mediator
for a Data Warehouse relation 7', i.e., the program that accesses the sources
and loads the correct data into T'. In general, the design of mediators requires
a sophisticated analysis of the data, which aims at specifying, for every rela-
tion in the Data Warehouse Schema, how the tuples of the relation should be
constructed from a suitable set of tuples extracted from the sources. Mediator
design is typically performed by hand and is a costly step in the overall Data
Warehouse design process. The framework presented here is also based on a
detailed analysis of the data and of the information needs. However, the knowl-
edge acquired by such an analysis is explicitly expressed in the description of
source and Data Warehouse relations, and in the Reconciliation Correspon-
dences. Hence, such a knowledge can be profitably exploited to support the
design of the mediators associated to the Data Warehouse relations.

Suppose we have decided to materialize in the Data Warehouse a new relation
T, and let g be the adorned query specifying the data to materialize in T". Our
technique requires to proceed as follows.

(1) We determine how the data in T" can be obtained from the data stored in
already defined Data Warehouse relations, the data stored in source re-
lations, and the data returned by the programs that perform conversion,
matching, and merging associated to the Reconciliation Correspondences.
This is done by computing a rewriting of ¢ in terms of the available
adorned queries, i.e., a new query ¢’ contained in ¢ whose atoms refer to

17

(7) the already available Data Warehouse relations, (i) the source rela-
tions, (74i) the available conversion, matching, and merging predicates.

(2) We specify how to deal with tuples computed by the rewriting and pos-
sibly representing the same information. Typically, we have to combine
tuples coming from different sources to obtain the tuples to store in the
Data Warehouse relations.

(3) We refine the rewriting returned by the algorithm. E.g., certain conjuncts
can be eliminated from the union of conjunctive queries according to
suitable criteria for populating Data Warehouse relations. In particular,
such criteria may be determined by factors that affect the quality of
the data in the source relations and in the Data Warehouse, such as
completeness, accuracy, confidence, freshness, etc.

The resulting query, which will be a disjunction of conjunctive queries, is the
specification for the design of the mediator associated to T. The above steps
are discussed in more detail in (19).

5 Enterprise Modeling in TELECOM ITALIA

In this section, we describe the development process of the Data Warehouses
of TELECOM ITALIA. Specifically, we deal with a portion of the Customer
Primary Data Warehouse, and we specifically focus on the modeling of the
dimension Contract. In the development we have carried out the following
steps:

(1) building of the Conceptual Model by integrating the conceptual data
models of the sources (cf. Section 4.1);

(2) definition of the contents of the Data Warehouse by specifying adorned
queries expressed in terms of the Conceptual Model built in the previous
step (cf. Section 4.2).

With regard to the first step of the methodology, as outlined in Section 2,
the integration projects that have been undertaken in TELECOM ITALIA have
produced significant advantages for the development of the Enterprise Data
Warehouse, among them, the availability of an integrated view of the enter-
prise data. While this constitutes a basis for the construction of the Concep-
tual Model, we have identified several conflicts in the modeling of the sources,
which required restructuring operations in addition to the definition of inter-
model assertions. These conflicts are due to different representations of the
concepts in the various sources.

Our methodology presupposes the use of software tools to simplify conceptual
data modeling activities. Specifically, we realized a software tool that can

18

lay out and manage data models of the data sources and the Conceptual
Model and provide reasoning services to check several properties of the models.
We have used a standard design platform? for the design of the conceptual
schema and have connected it to a reasoner module implemented on top of the
Description Logics reasoning system FACT (29). The architecture is loosely
coupled: each time a reasoning service is required by the designer, she explicitly
invokes the corresponding functionality of FACT.

In the rest of the section we discuss in detail the first step of our methodology,
while the application of the second step is discussed in Section 6. Specifically,
we describe now the process of integrating the data sources that have to feed
the data to the Data Warehouse. As mentioned, this task can be split in various
distinct phases. We notice that, since source data models are available, we do
not need to construct them and we can focus our attention on the Source
Model integration phase. Given the availability of an integrated view of the
Enterprise we can build the Conceptual Model in a single step, because we can
directly use the data models of all sources that we have planned to integrate.
We remind that the output of this step is the integrated Conceptual Model,
which expresses the information managed by the Enterprise. This model is the
input to the data integration step.

We first describe the main data sources, then concentrate on the three main
activities in source integration, namely (i) the design of the initial Conceptual
Model, (ii) conflict resolution, and (ii7) the definition of inter-model assertions.
Finally, we present the tool that was used to support these activities.

5.1 Data Sources Involved in the Customer Primary Data Warehouse

The Enterprise Information System of TELECOM ITALIA (cf. Section 2) must
cope with numerous and extremely differentiated data sources. In particular,
we have different applications based on different data management technolo-
gies (from hierarchical to object-relational DBMSs) that share information,
or, in other words, that manage common concepts.

Due to the key role played by the customer in the TELECOM ITALIA business
processes, the Customer Primary Data Warehouse involves a large number of
Operational Data Stores. These Operational Data Stores can be partitioned
in two main categories:

e data sources that have already been integrated (during the IBDA project);
these sources, named BDAs, have an integrated Conceptual Model and are

3 To design and manage the data models we employed CAYENNE GROUND WORKS,
which is the enterprise tool adopted in TELECOM ITALIA.

19

targeted to a particular subject; in most cases they are shared among dif-
ferent applications;

e data sources that are currently not integrated, called legacy data sources,
which are managed by a single application and often lack a conceptual data
model.

This separation has important consequences on data modeling and integration
in the Data Warehouse building process.

The most important BDA data sources are the following:

DB09-Customers, which manages basic information about customers (e.g.,
name, address, type, main business activity if it applies, etc.);

DB19-Business- Units, which manages information about TELECOM ITALIA’S
business organization (e.g., business units, departments, etc.);

DB10-Contracts-and-Policies, which manages information about legal con-
tracts and policies signed between TELECOM ITALIA and its customers and
suppliers;

DB28-Service-Catalogue and DB4/—Product-Catalogue, which describe ser-
vices offered and products sold/rent by TELECOM ITALIA to customers
with their fees/prices, special offers, marketing campaigns, etc.;

DB29-Service-Subscriptions, which manages information about the number
and type of services subscribed and products rented by customers and their
options.

The most important legacy data sources are the following:

ECIS-Enterprise-Customers, which is the application managing information
about large customers (e.g., enterprises, government organizations, etc.);
RUM-Remote-Unit-Management, which is the main telecommunications net-
work management application that interfaces the network devices to the

information system;

ACM-Advanced-Customer-Management, which is the primary Customer
Care front-end application that manages information about customer con-
tacts and interactions with TELECOM ITALIA;

BCM-Breakdown-and-Complaint-Management, which is the application that
manages information about service breakdowns and customer complaints;

NBP-New-Billing-Procedure and IBS-Integrated-Billing-System, which are
the billing systems for the domestic and business customers, respectively.

There is a degree of overlapping of the information managed by the differ-
ent systems. We have detected inconsistencies between information present in
more than one system, and a number of source conflicts. We describe now
how we have dealt with such conflicts by adopting the design methodology
described in the previous section.

20

In the following examples, for the sake of brevity, we focus our attention only
on a subset of the mentioned sources.

5.2 Conceptual Model

From the analysis of project requirements, we have come to the conclusion
that concepts relevant for the Enterprise and, consequently, for the Concep-
tual Model, can be successfully modeled by the Source Models of BDAs. In-
deed, almost all concepts expressed in the legacy applications are subsumed
by corresponding BDA concepts. However, there are a few concepts that are
present in legacy applications, but are not modeled in BDAs: such concepts,
which are currently irrelevant to the Data Warehouse, have been ignored but
they can be integrated in future. Consequently, the Conceptual Model has
been essentially built by unifying Source Models of BDAs.

5.8 Source Conflict Resolution

Throughout the process of Source Model integration, we have identified a large
number of conflicts. This is due to the fact that the different Source Models
have been developed independently, without employing homogeneous conven-
tions on how to represent certain types of information. In fact, in TELECOM
ITALIA, as in many large enterprises, each internal unit has great autonomy
in the design of its own information sub-systems, which later have to be in-
tegrated in the Enterprise Data Warehouse. Moreover enterprise-wide design
rules have changed over the years, thus systems developed at different time
periods may not follow the same conventions. Since in TELECOM ITALIA we
have two main types of data sources (BDAs and legacy applications), we have
different kinds of conflicts between sources.

As an example, we discuss some of the integration problems that occurred
when integrating a legacy data source, called ECIS-Enterprise-Customers,
and some BDA data sources used for the design of the Customer Primary
Data Warehouse. Specifically, we describe the conflict between the entities
Fiscal_Code and VAT _Code*. The source ECIS-Enterprise-Customers, which
manages information on large business customers, must cope with the case
in which a single customer may own more than one code (fiscal or VAT).

4 The fiscal code (‘codice fiscale’) is an identification code assigned by the Italian
Ministry of Finance to every Italian citizen or enterprise, similar to a SSN. The VAT
code (‘partita IVA’) is an identification code assigned to every Italian professional,
enterprise, or organization. Despite the two codes serve both a similar purpose,
namely identification, a mapping between them does not exist.

21

Customer_ Cusfomer_State_
state per_Custorner

Customer_
Market_Segment

NACE_Activity_
Code

VAT_Code_
History

Payment_Agreement

.

Company

Plant_Address

I

Biling_Address
o!

o)
o}
Address

Fiscal Code_
History

Chamber of_
Commerce_Entry

Customer_

CCCCCCC {per_
TELECOM Customer Ty
Staff

Fig. 3. Restructured conceptual data model of DB09-Customers

Therefore, in this source, a code is represented separately from a customer, by
using a different entity. Since the two types of codes serve the same purpose as
far as the system FECIS-Enterprise-Customers is concerned, they have been
modeled both by a unique entity. On the other hand, in DB09—-Customers the
two codes are represented by two different attributes of the entity Customer.
Nevertheless, at the logical /physical level, the information about the codes is
stored in two different tables; in fact, the system must maintain the history
of different codes assigned to a customer.

To solve this conflict we have promoted in DB09-Clustomers the attributes of
the entity Customer in two new independent entities, named VAT _Code_History
and Fiscal_Code_History. Instead, we did not consider it necessary to split the
entity of ECIS-Enterprise-Customers representing the two codes into two sep-
arate entities.

5.4 Defining Inter-model Assertions

In the Conceptual Model we can distinguish between two kinds of inter-model
assertions:

e assertions between BDA data sources and the Conceptual Model,
e assertions that involve legacy application data models.

Assertions of the former type are often straightforward to specify, whereas we
need to analyze in more detail the latter.

22

Appendixgcis =it (1)
(Ad_Hoc_Contractpgig N
VCHANGEAd_Hoc_ContractDBlo .Standard-ContractDBlo) (]
(Standard_Contractpgig I
VREFERENCE_T Ostandard_Contractpg;, -Standard_Contractpgig) LI
(Ad_Hoc_Contractpgig M
VMODIFY ad_Hoc_Contractpg;, -Ad-Hoc_Contractpgig)

Fiscal_ Codegcis =eu¢ Fiscal_Code Historypggg LI VAT _Code_Historypgog (2)
Contractgcis =i Contractpgio (3)
Namegcis =« Denominationpgog (4)
Seatgcls =eq Plant_Seatpgog (5)
Business_Unitecis =..¢+ Business_Unitpgig (6)
Customergcis Cept Customerppog (7)

Table 1
Inter-model assertions for the entities of the data source FECIS-Enterprise-
Clustomers

5.4.1 Assertions between BDA Data Sources and the Conceptual Model

These assertions involve single concepts. In general, inter-model assertions
link a so-called boundary entity to the corresponding main entity by means of
an inclusion relation. The assertions between source models and the Concep-
tual Model link identical concepts, since the Conceptual Model is built from
the BDA model; therefore we have only relations stating equivalence of two
concepts.

5.4.2 Assertions that Involve Data Models of Legacy Applications

Concepts of legacy applications have to be put in the proper correspondence
with the related concepts in the BDA sources. This is often a difficult task.
In fact, since concepts of legacy applications may represent aspects that are
modeled in the BDA sources through more than one concept, we may need to
express complex constraints holding between different source models.

We illustrate these difficulties on some examples. Figure 4 shows the concep-
tual data model of the legacy application ECIS-Enterprise-Customers, while
the inter-model assertions that involve ECIS-FEnterprise-Customers are given
in Table 1. In order to give an indication of the complexity of such a task,
we note that the definition of the inter-model assertions of this legacy ap-
plication has required the analysis of various hundreds candidate inter-model
assertions between a dozen of BDA data source models and the remaining
legacy applications.

23

e Assertion 1 is relative to the entity Appendix, whose instance maintains addi-
tional contract information. Every contract has a mandatory first appendix,
defined as Contract_Appendix, that contains the amount and the payment
method. Other types of appendices can be inserted as a consequence of a
contract change (e.g., subscription to a new service) or of ad-hoc clauses
(e.g., technical support, maintenance, insurance, service level agreement).
The same concept is modeled in DB10-Contracts-and-Policies in a totally
different way. First of all, we distinguish among three types of contracts:
standard, management, and ad-hoc contracts. Then, we separate main con-
tracts, which state the subject of the agreement between TELECOM ITALIA
and the customer, from secondary contracts, which specify changes to the
main contract. From this specification we can deduce that every instance of
Appendixgcs is a secondary contract (standard or ad-hoc) that specifies a
change to a main contract (standard or ad-hoc, too), previously signed.

e Assertion 2 is a consequence of the considerations exposed in Section 5.3.
In ECIS-Enterprise-Customers the concepts related to the fiscal and the
VAT code are modeled as a single entity, while two different entities exist
in the model of DB09-Clustomers. Consequently, the entity Fiscal_Codegcis
is equivalent to the union of the entities Fiscal_Code_Historypggy and
VAT_COde_HiStOI’yDBog.

e The entity Contractgcis represents only contracts managed by the applica-
tion ECIS-Enterprise-Customers. However, as specified by Assertion 3, the
entities Contractgcis and Contractpgo are conceptually equivalent.

e Assertion 4 is due to the fact that in FCIS-Enterprise-Customers the name
inserted in the Yellow Pages corresponds to the concept Denomination of
DB09-Customers.

e Assertions 5, 6, 7 are straightforward and do not need any comment.

5.5 Support Tool

We present the tool that was used to support the conceptual modeling activ-
ity and some examples that show how it can effectively help the developing
process. Our tool relies for the reasoning task on the FACT reasoning sys-
tem (29; 30; 31), which is a prototypical knowledge representation system
based on Description Logics that uses an optimized subsumption algorithm
based on tableaux. In particular, FACT supports the typical reasoning tasks
that can be performed on conceptual schemas expressed in DLR. Notice that
FACT has been designed to support data modeling tasks, and so it provides
concept-oriented functions. However, in its current version it cannot be em-
ployed to make inference on instances of concepts.

We have integrated the FACT reasoner as an add-on in the enterprise data
modeling CASE tool CAYENNE GROUNDWORKS. Using the CASE tool, the

24

Fig. 4. Conceptual data model of ECIS-Enterprise-Customers

designer can visually establish assertions between concepts of different data
sources in the same way as he can establish a relation between two entities
or a foreign key between two tables. We use a color based notation to assign
each concept to the corresponding model and we represent assertions as links
between concepts, as shown in Figure 5. If the assertion is more complex
than a simple inclusion or equivalence, the designer can annotate it with the
corresponding constraint formula. A more detailed description of our support
tool can be found in (32).

We note that the inherent complexity of reasoning on conceptual models ex-
pressed in DLR (33) has a noticeable impact on the performance of the mod-
eling tool and the kind of support it can offer to the designer with respect to
the problem of dealing with large scale conceptual models. Specifically, while
FACT, similar to other state-of-the-art Description Logic reasoners, is able to
effectively reason in significant fragments of the Conceptual Model (34; 35), it
still cannot deal with very large models, such as the whole Conceptual Model
as used in the TELECcOM ITALIA Data Warehousing applications. The sup-
port tool we have devised inherits from the reasoner the same limitations with
respect to its ability of dealing with large scale applications.

We show an example of the usage of the reasoner as a support tool in the con-
ceptual design of the Data Warehouse. Figure 5 shows a part of the Conceptual
Model with some entities that belong to two data sources: DB10-Contracts-
and-Policies, which is a BDA data source, and FECIS-Enterprise-Customers,
which is a legacy application data source.

As we have noticed in Section 5.4, we must cope with a large number of inter-

25

Standard_ Ad_Hoc_
Contract Contract

Cusfomer | Contract
[Maintenance.
.

Address

Plant
lant_

Fig. 5. Part of the Conceptual Model involved in the example with inter-model
assertions

Customergcis Cezt Customer

—~~
o
~

Seatgcis Tt Plant_Seat

—~~
S ©
— ~—

Appendixecis Teat (1

(Ad_Hoc_Contract M
VCHANGEAJ_Hoc_Contract-Standard_Contract) L
(Standard_Contract 1
VREFERENCE_TOstandard_Contract -Standard_Contract) U
(Ad_Hoc_Contract N
VYMODIFY ad_Hoc_Contract-Ad_Hoc_Contract)
Contractgcis Ty Contract (
Contractpgig Cep Contract (
Standard_Contractpgig Cezt Standard_Contract (13
Ad_Hoc_Contractpgig Cezt Ad_Hoc_Contract (
Maintenance_Contractpgig Cez: Maintenance_Contract (
Contractgcis =;n: Contractpgig (

Table 2
Inter-model assertions involved in the example

model assertions of various kinds. We report part of these assertions in Table 2.
Through these assertions we can define the relations between the Conceptual
Model and their sources, as discussed below:

e Assertions 8, 9, 11, 12, 13, 14 and 15 are simple inclusion relations between
Conceptual Model entities and the corresponding source counterparts.
e Assertion 10 specifies that an instance of the entity Appendixgcis can be:
- a Standard_Contract that modifies a Standard_Contract,
- an Ad_Hoc_Contract that modifies an Ad_Hoc_Contract, or
- an Ad_Hoc_Contract that modifies a Standard_Contract.

26

e Assertion 16, stating the conceptual equivalence between two entities in two
sources, was already discussed.

We can make very interesting observations on this part of the Conceptual
Model. Specifically, we have noticed the following property:

Appendixgcis Ty Standard_Contract LI Ad_Hoc_Contract

In other words, the set of instances of the entity Appendixgcis is a sub-
set of the union of the sets of instances of the entities Standard_Contract
and Ad_Hoc_Contract. Moreover, being Standard_Contract and Ad_Hoc_Contract
mutually exclusive, we cannot decide whether an instance of Appendixgcis be-
longs to Standard_Contract or Ad_Hoc_Contract. We must cope with this is-
sue if we need to load into the Data Warehouse information on the entities
Standard_Contract and Ad_Hoc_Contract.

We have considered two solutions to this problem:

(1) restructuring the Conceptual Model by merging the entities
Standard_Contract and Ad_Hoc_Contract;

(2) restructuring the data source, by introducing a new attribute in the entity
Appendixgcys to distinguish the instances that belong to Standard_Contract
from those that belong to Ad_Hoc_Contract.

Obviously, the second solution is in general not acceptable, since it impacts
on the structure of the Data Warehouse sources.

If we replace Assertion 10 with the following one
Appendixgcis C.;; Standard_Contract

stating that the instances of entity Appendixgcis are a subset of those of the
entity Standard_Contract, the reasoner cannot derive anymore the following

property:
Appendixgcis C.px Standard_Contractpgig LI Ad_Hoc_Contractpgig

In other words, the set of instances of the entity Appendixgcis is not nec-
essarily a subset of the union of the sets of instances of the entities
Standard_Contractpg;p and Ad_Hoc_Contractpgig. This fact, together with the
fact that Appendixgcis is a subset of Standard_Contract, implies that we need
the source ECIS-Enterprise-Customers to populate the Conceptual Model.

27

6 Data Warehousing in TELECOM ITALIA

In this section, we describe the second step of the development process of a
portion of the Customer Primary Data Warehouse of TELECOM ITALIA. With
regard to this step of the methodology, the design of the Data Warehouse has
been carried out by employing a CASE tool for the logical level. In particular,
we employed PLATINUM ER-WIN | supported by the prototype tool DARE,
developed within the DW(Q project, which keeps track of conceptual links
between data sources and helps to build mediator specifications by means of
a query rewriting algorithm.

After designing the logical model of the Data Warehouse, according to our
methodology, we have described, by the means of adorned queries, the contents
of the data sources and of the Data Warehouse and we have introduced the
required Reconciliation Correspondences. In the last phase, we have derived
the specifications of the mediators that load the Data Warehouse.

In the following, we describe in more detail how the various phases of the
Data Warehouse design methodology have been applied to the design of the
Customer Primary Data Warehouse. We note that the design methodology
has been applied also for the design of the Secondary Data Warehouses used
for the Knowledge Discovery and Data Mining activities of TELECOM ITALIA
(cf. Section 7), although this activity is not reported here.

We illustrate the methodology for the design of the mediator that populates a
Data Warehouse table on the example of the dimension Contract of the Cus-
tomer Primary Data Warehouse. According to such a methodology, we follow
the local-as-view paradigm and use the Conceptual Model, built in the pre-
vious step, to express by means of an adorned query the data that each data
store contains. We then use the query rewriting algorithm, implemented in
our tool, to design mediators that can populate a data store with information
gathered from other data stores. In the case discussed below, we build the
mediator that characterizes the loading of a portion of the Data Warehouse
with the information extracted from the operational data sources. We want to
emphasize again the key role that the Conceptual Model plays in our frame-
work, since it allows to decouple the internal organization of each data source
from the other ones.

We first describe the structure of a portion of the Customer Primary Data
Warehouse, concentrating on the dimension relative to contracts.

5 PLATINUM ER-WIN is the standard tool adopted in TELECOM ITALIA for such
kind of tasks.

28

Customer E Telephone_Subscriber E

Product_Compone:

Service_Component;

Product_Chan,

Fig. 6. Logical model of the Customer Primary Data Warehouse — View
CPDW-Clustomers

6.1 The Customer Primary Data Warehouse

As mentioned in Section 2, the Customer Primary Data Warehouse is one of
the Primary Data Warehouses, and it is divided into four wiews, concerning
the representation of different aspects of the relation between the customer
and the Enterprise:

Customers, which maintains information about customers and ser-
vices/products that they have subscribed or bought.

Invoices, in which information about invoices and payments are stored.

Contacts, which contains data about contacts of customers with customer-
care services and resellers network.

Complaints, which keeps information about customers complaints.

All the views have some common properties:

e they are designed according to the star schema data model with highly
denormalized dimensions;
e they manage atomic information without aggregation or summarization % .

We recall that the dimension Contract belongs to the view CPDW-Customers
and its logical data model is depicted in Figure 6. The contents of this di-
mension is built on information about different versions of service activation

6 We recall that in the Data Warehouse architecture of TELECOM ITALIA, aggre-
gation and summarization tasks are delegated to Secondary Data Warehouses.

29

contracts subscribed by customers of TELECOM ITALIA. So, contracts that
are kept inside the Data Warehouse are relative to the supply of services of
standard type (entity Standard_Contract).

For each version of a contract the data warehouse maintains the following
data:

the type of the contract (entity Acq-Contract_Type);

the state, e.g., active, canceled, suspended (entity Contract_State);

the business unit delegated to manage the contract (entity Business_Unit);
if the contract is suspended, the type of cessation (entity Cessation_Type);
the set of customer services managed by the contract (entity
Customer_Service).

The start date for the validity of an instance (attribute date_beg_val) is the
date when this instance has been inserted in the system, while the end date
for the validity (attribute date_end_val) is the start date for the validity of the
subsequent version of the same contract, if it exists, or a conventional date in
the future (constant MAXDATE).

The entity Contract_Service is the concept that characterizes this dimension.
Consequently, it is identified by the Data Warehouse key code_contr_dw, and
it connects the contract versions with the corresponding customer service ver-
sions.

6.2 Adorned Query and Specification of the Mediator

Figure 7 shows the portion of the Conceptual Model involved in the formula-
tion of the adorned query that specifies the dimension Contract of the Cus-
tomer Primary Data Warehouse. Such an adorned query, expressed in terms of
the concepts of the Conceptual Model, is reported in Table 3. For conciseness,
we have omitted some attributes that do not impact on the query structure
significantly.

We shortly explain the structure of the adorned query. The head of the query
corresponds to the relation schema that represents the dimension Contract,
consequently it has an attribute for each field. The body of the query charac-
terizes the content of these fields in terms of a query on the Conceptual Model.
Since some attributes are significant only under certain conditions (e.g., the
cessation type is defined only if the contract has been ceased), we make use of
disjunction to express such a condition. In the adornment of the query we de-
clare the abstract domain of each attribute and the identifier of each concept
involved in the query.

30

CONTRACT pw (
code_contr_dw, date_beg_val, date_end_val, code_contr,
code_contr_ver, date_year, code_acq_contr type, desc_acq _contr type,
code_contr_state, code_state_type, desc_state _type, code _cess_type,
desc_cess_type, code_bus_unit, code_customer _ser,
code_customer _ser ver
) <
Standard_Contract(z),
date_yy(z, date_year), code_contr_ver(x, code_contr ver),
code_contr(z, code_contr), date_ins(z, date_beg wal),
Business_Unit(y), ISSUED_BY (z, y), code_bus_unit(y, code_bus_unit),
Acq_Contract_Type(z), CHARACTERIZED _BY (z, 2),
code_acq_contr_type(z, code_acq_contr type),
desc_acq_contr_type(z, desc_acq_contr type),
Contract_State(w), CHARACTERIZE(w, z),
code_contr_state(w, code_contr _state),
((code_cess_type = NULL, desc_cess_type = NULL) V
(Cessation_Type(v), IDENTIFIED_BY (w, v),
code_cess_type(v, code_cess_type), desc_cess_type(v, desc_cess type))),
State_Type(u), IDENTIFIED_BY (w, u),
code_state_type(u, code_state_type), desc_state_type(u, desc_state_type),
Contract_Service(r), MANAGED _BY (r, x),
Customer_Service(s), REFERENCE_TO(r, s),
code_customer_ser(s, code_customer _ser),
code_customer _ser_ver(s, code_costumer _ser _ver),
((Standard_Contract(t), PRECEDE(z, t), date_ins(¢, date_end_val)) V
date_end_val = MAXDATE)
| code_contr_dw :: CODEpy, date_beg_val, date_end_val :: DATE,
date_year :: NOT_STANDARD _DATE,
code_contr_ver, code_contr, code _bus_unit, code_acq_contr type, code_contr _state,
code_state_type, code_cess_type, code_customer_ser,
code_customer _ser_ver :: CODE,
desc_acq_contr_type, desc_cess_type, desc_state type :: DESCRIPTION,
Identify([code_contr_dw],r), Identify([code_contr, code _contr wer, date year],),
Identify([code_acq_contr_typel, z), Identify([code_contr _state], w),
Identify([code_state_type], u), Identify([code_cess type],v),
Identify([code_bus_unit],y),
Identify([code_customer _ser, code_customer _ser ver], s).

Table 3
Adorned query for the dimension Contract

31

Acquisition_

Contract_Type]
—vP Contract_State @

Contract_
Cessation_
State_Type Type

Contract

Standard_Contract

Maintenance_Contract Ad_Hoc_Contract

I J.

Contract_)
Service Customer_Service

Business_Unit

Fig. 7. Part of the Conceptual Model involved in the dimension Contract

For technical reasons, to increase performance, in the logical model of the Data
Warehouse we introduce an alternative key for each dimension table, called
a data warehouse key. In this case it is the field code_contr_dw. We build on
this field the primary unique index of the dimension and we use this index to
speed-up joins with the fact table defining the foreign key on this field rather
that on the natural key of the dimension. In fact, we obtain that the record
of the fact table is shorter because it contains only the values of the data
warehouse key and the index used in the join is smaller 7.

Since the values of the data warehouse key are generated by an ad-hoc software
procedure, we can express it by a conversion correspondence (19) that links
the value of the natural key, i.e., the key of the Conceptual Model model, to
the value of the data warehouse key through a program. The correspondence
for the dimension Contract is shown in Table 4. We notice that the body of the
conversion correspondence is a query that describes under which conditions
the correspondence can be employed.

We want to emphasize that the Data Warehouse stores also some information,
called technical, that concerns the processes of loading and refreshing of the
Data Warehouse and that we cannot express in terms of the Conceptual Model.
In particular, we have the following technical information:

e the field flag-val, which has a boolean value and marks the instances that

7 We also define a unique index on the natural key to ensure the integrity con-
straints, but it is not exploited by the query planner.

32

convert contract
[code_contr, code_contr ver, date year, code_customer _ser,
code_customer _ser ver, date_beg_val], [code_contr dw)
) <
Standard_Contract(z),
date_yy(z, date_year), code_contr_ver(x, code_contr ver),
code_contr(z, code_contr), date_ins(z, date_beg wal),
Contract_Service(y), MANAGED_BY (y, x),
Customer _Service(z), REFERENCE_TO(y, z),
code_customer _ser(z, code_customer _ser),
code_customer_ser_ver(z, code_costumer _ser ver),
| code_contr, code_contr_ver, code_customer _ser, code_customer _ser wver :: CODE,
date_year :: NOT _STANDARD DATE, date_beg wval :: DATE,
code_contr_dw :: CODEpw
through CustomerServiceContractToDW ([code_contr, code_contr ver,
date_year, code_customer _ser, code_customer _ser ver, date_beg val],
[code_contr_dw]).

Table 4
Conversion correspondence for dimension Contract

are currently active, in other words all the instances such that the current
date is between the beginning and end date of their validity ®;

e the field date_ins, which contains the date in which the instance has been
loaded for the first time in the Data Warehouse; consequently, the value of
such a field depends on when the loading job had been scheduled;

e the field date_upd, which keeps the date of the last update of the instance
in the Data Warehouse, due to a transaction on the source system. In other
words, it contains the date of execution of the loading job that has no-
ticed a misalignment between information in the Data Warehouse and the
corresponding data sources.

At the logical /physical level we must cope with updates of consolidated data
in the Data Warehouse:

e when some information has been inserted late in the source system ? ;
e when a new version of a consolidated element is inserted, the previous ver-
sion must be marked as invalid.

We have assigned to these fields the value NULL.

8 The Conceptual Model lacks the concept of current date.
9 We have noticed several business processes that do not plan the immediate inser-
tion of data in the Enterprise Information System.

33

We cannot deal successfully with this kind of data because the Conceptual
Model does not have the right concepts to model update data operations.
In fact, in order to express the contents of the Data Warehouse completely
and correctly we need a conceptual data model that is able to capture every
transaction on the data sources. In other words, every insert, delete, or update
operation at the logical /physical level must correspond to an appropriate up-
date operation at the conceptual level. Such kind of information can be more
adequately managed within the specification of the ETL process, in order to
separate data modeling issues from updating policies.

Since we have collected information on the data sources and on the Data
Warehouse, and we have expressed it in terms of data models, adorned queries,
and schema correspondences, we need to employ this knowledge to obtain the
specification of the mediators that allow us to populate the Data Warehouse.
The mediator specification is carried out by our support tool, described in
Section 6.3, which implements the rewriting algorithm presented in (19).

We obtain the specification of the mediator that populates the relation
CONTRACTpw with data extracted from some DBA data sources. The media-
tor specification is shown in Table 5 and in Table 8 we have shown, for clarity,
the same specification expressed in SQL. The head of the mediator specifica-
tion is the relation that the mediator is going to populate, and obviously coin-
cides with the head of the adorned query that describes this relation. Instead,
the body of the query is defined only in terms of relations (tables or views)
of data sources that populate the Data Warehouse and Reconciliation Corre-
spondences, while there is no reference to conceptual level elements. Notice
that the rewriting algorithm has correctly introduced the program specified by
the Conversion Correspondence to compute the values of the data warehouse
key. We observe that we do not need to take special care when combining data
coming from different sources, since the answers to different disjuncts of the
query do not contain tuples that represent the same real world entity or the
same value.

6.3 Support Tool

Within the DWQ project a prototype tool, named DARE, has been developed
that supports the data integration methodology described in this paper. We
refer to (36) for a detailed description of the tool. Here we briefly mention its
main characteristics and report on its usage for the Data Warehouse design
activities in TELECOM ITALIA.

The tool is composed of two main components:

(1) ametadata repository that allows us to manage the conceptual and logical

34

CONTRACT pw(
code_contr_dw, date_beg_val, date_end _val, code_contr,
code_contr_ver, date_year, code_acq_contr type, desc_acq _contr type,
code_contr_state, code_state_type, desc_state_type, code _cess_type,
desc_cess_type, code_bus_unit, code_customer _ser,
code_customer_ser_ver
)
STANDARD_CONTRACT pg1o(code_contr_dba, code_contr ver,
date_year, date_begin_val, code_bus_unit, code_acq_contr type,
code_contr_state, code_cess_type, code_state type, ...,
code_contr_dba_next, code_contr ver_next, date_year next),
ACQ_CONTRACT_TYPEpgio(code_acq_contr_type, desc_acq_contr type,...),
((code_cess_type = NULL, desc_cess_type = NULL) V
CESSATION_TYPEpgio(code_cess_type, desc_cess_type, . ..)),
STATE_TYPEpgio(code_state_type, desc_state_type, . . .),
((code_contr _dba_next = NULL, code_contr_ver next = NULL,
date_year_next = NULL, date_end_val = MAXDATE) V
STANDARD_CONTRACT pg1o(code_contr_dba_next, code_contr ver _next,
date_year_next, date_end_val, .. .)),
CONTRACT _SERVICEpg2g(code_contr_dba, code_contr ver, date_year,
code_customer _ser, code_customer _ser _ver),
CustomerServiceContractToDW ([code_contr, code _contr ver,
date_year, code_customer _ser, code_customer _ser ver, date_beg wvall,
[code_contr_dw)).

Table 5
Mediator specification for the dimension Contract

models of the data sources and of the Data Warehouse;
(2) a front-end application, interfaced with the repository, that helps in the
construction of the mediators by exploiting query rewriting.

The repository is currently stored in a relational database (ORACLE), nev-
ertheless, the system is completely parametric with respect to the storage
system, since its internal architecture is highly stratified. The front-end ele-
ment has been developed in Java 2 and uses the Swing library to build the
user interface and the JDBC library to implement its data access objects.

The tool provides the following functionalities:
e definition of the logical models of data sources;
e definition of the logical model of the Data Warehouse;

e definition of the mapping between the different levels by means of adorned
queries;

35

SELECT
CustomerServiceContractToDW(X.code_contr, X.code_contr_ver,
X.date_year, X.code_customer_ser, X.code_customer_ser_ver,
X.date_beg_val) AS code_contr_dw,
X.date_beg_val,
COALESCE(W.date_beg_val, MAXDATE()) AS date_end_val,

.code_contr,

.code_contr_ver,

.date_year,

.code_acq_contr_type,

.desc_acq_contr_type,

.code_contr_state,

.code_state_type,

.desc_state_type,

.code_cess_type,

.desc_cess_type,

.code_bus_unit,

.code_customer_ser,

< <K N X O XX K K

.code_customer_ser_ver
FROM
DB10.STANDARD_CONTRACT AS X
JOIN DB10.ACQ_CONTRACT_TYPE AS Y
ON X.code_acq_contr_type = Y.code_acq_contr_type
LEFT OUTER JOIN DB10.CESSATION_TYPE AS Z
ON X.code_cess_type = Z.code_cess_type
JOIN DB10.STATE_TYPE AS U
ON X.code_state_type = U.code_state_type
LEFT OUTER JOIN DB10.STANDARD_CONTRACT AS V
ON U.code_contr_dba_next = V.code_contr_dba
AND U.code_contr_ver_next = V.code_contr
AND U.date_year_next = V.date_year
JOIN DB29.CONTRACT_SERVICE AS W
ON X.code_contr_dba = W.code_contr_dba
AND X.code_contr_ver = W.code_contr
AND X.date_year = W.date_year

Fig. 8. SQL version of the mediator specification for the dimension Contract

e definition of Reconciliation Correspondences;
e automatic generation of the mediators.

For the construction of the Conceptual Model the tool relies on an external
conceptual modeling tool (i.e., PLATINUM ER-WIN) that can interface with

the metadata repository to access and store the Conceptual Model.

We describe how this tool supports the key activities of our data integration

36

& Specify or Show Adorned Queries - =10 5[

File Edit Help
Make a Selection

& spurce Table ¢ DW Table ¢ Comespondence

Narme Aty Schema

ngreememlahle_1|| - 3 SourceSchema_ 1 VI

|concepts =l [MocelEnt =]
Define Addorned Query | Show Adorned QUEry |
Aftributes

Agreement-table_1(CC,TC 5C) - _-] Call =1 customer-code/Stri
agreementj(C,T,Sj,cuntract_—cudej(C,CC)‘ Charge customer-descriptic
customer-code_1(T,TC) service-code_1(5,5C) | Charge-type
Identity([CCL[C, c
Identity([TCLITT, cARacty
Identify([SC]], Contract
CC & String_Daomain, Custarer
SC 2 String_Domain, Data-transmissic
TC &2 String_Domain ISON | |

Lacation Compangnts

Iaintenance-tas

Iarketing-action

Mobile-Phone

Other
Person
Phone

41 ﬂj PhoneyithoutOr

Serire
Clear Text Area | Store Table | s X

Fig. 9. DARE tool: adorned query definition form

methodology. The working environment is subdivided in four components, one
for each key step of the methodology:

Source Schema Specification, to manage the source data models and specify
each Source Schema in terms of the Conceptual Model;

Data Warehouse Schema Specification, to manage the Data Warehouse
Schema and the corresponding adorned queries;

Reconciliation Correspondences Specification, to establish and manage the
Reconciliation Correspondences;

Derive Mediator, to derive the mediator specifications exploiting the query
rewriting algorithm.

The adorned query design form is shown in Figure 9.

The algorithm, implemented in the tool, that performs the automatic synthesis
of the mediator through query rewriting, relies heavily on the ability to check
query containment under the constraints imposed by the Conceptual Model.
Such a task requires in general that the Description Logics reasoner is able
to reason not only on concepts but also on individual objects (24). Since
FACT does currently not support this task, we have actually implemented an
incomplete variant of the query containment test, in which objects are treated
as concepts.

37

7 Impact on Data Mining and Decision Support Applications

We now briefly describe the Decision Support System of TELECOM ITALIA
and the Data Mining applications that we have developed on top of the Data
Warehousing infrastructure. We focus our attention on the impact that our
design methodology has on the whole business process that involves decision
making activities.

The applications in the Decision Support System can be distinguished by their
usage scenarios:

e applications that support tactical decisions (e.g., customer service, direct
marketing, cross selling, up selling);

e applications that support strategical decisions (e.g., planning, strategical
marketing, corporate government).

Both types of applications, which are developed on Secondary Data Ware-
houses according to the architecture described in Section 2, require different
data analysis activities (e.g., OLAP, summarization, multi-dimensional anal-
ysis, enterprise reporting). We have implemented an OLAP customer analy-
sis application using different data management techniques (relational, multi-
dimensional, hybrid). Our results are presented in (37).

We have mainly concentrated on the development of analysis applications
based on Data Mining techniques. In particular, we have studied different
business problems, like customer segmentation, customer behavioral analy-
sis, and customer survival analysis. The techniques adopted for Knowledge
Discovery and Data Mining (KDD) and some results of their application are
reported in (38; 39). We explicitly mention an investigation about the relation-
ship between traditional econometric tools and KDD marketing applications
and a combined approach for telecommunications strategic marketing (40).
In the present work, we are not concerned with such applications, but with
the impact of the above described methodology in the implementation of the
Secondary Data Warehouses and of the data analysis applications.

We emphasize that the availability of an integrated conceptual data model, de-
signed during previous tasks, helps to substantially reduce development costs
for data analysis applications. In fact, one of the most critical aspects in the
design of such applications is the definition and localization of information
required to build the model. In particular, the use of the query rewriting algo-
rithm in the design of mediators allows us to express the information needs of
a data analysis application with respect to the Conceptual Model and to auto-
matically obtain the queries to submit to the data sources (e.g., Primary Data
Warehouses, Operational Data Stores) to retrieve the necessary information.
Consequently, we can employ the methodology and the tools used to construct

38

the Primary Data Warehouses in the design of Secondary Data Warehouses.

However, since data analysis often needs summarized information, or mea-
sures, we add a preliminary step to extend the Conceptual Model by intro-
ducing concepts that model these aggregations. This operation is, in some
ways, similar to the design of multi-dimensional cubes in OLAP applications.
In particular, a cube is modeled as a n-ary relationship between entities that
correspond to the dimensions, while the measures are modeled as attributes
of the relation '* . Therefore, an integrated conceptual data model is not only
essential to the definition of the Enterprise Information System, but it is also
useful to cope with the knowledge that can be extracted from it.

A key factor in a Decision Support System is the ability to represent the
knowledge acquired through the analysis of data. In fact, communicability of
knowledge is essential in order to use it effectively. Our approach fully supports
such a capability. Specifically, in the case of Data Mining applications we have
that:

(1) the datasets (training, validation, and scoring) used while building mod-
els in the Knowledge Discovery process are expressed as views on the
Conceptual Model;

(2) the learning process (e.g., decision trees and ILP) often produces sets of
symbolic rules expressed on the schema of the training data.

As a result, one can employ rewriting techniques to express the knowledge
extracted from the data directly with respect to the Conceptual Model. In
this way, we can reduce the effort needed to build and maintain the knowledge
about these rules. Additionally, since the whole Enterprise shares an integrated
data model, we can easily disseminate the data analysis results.

8 Conclusions

In this paper we have described the approach and methodologies applied in
TELECOM ITALIA for the development of Data Warehouse applications. The
methodologies have been developed within the framework of the Esprit Re-
search Project DWQ and tailored to the specific needs of TELECOM ITALIA.
The experience gained can be summarized as follows.

A data integration based approach to Data Warehousing is a critical success
factor to build a quality Enterprise Data Warehouse, both in terms of quality

10 Although this information, being aggregated data, may not be directly available
in the sources, we can model these aspects using Reconciliation Correspondences.

39

of the product (applications and handled data) and in terms of quality of the
process.

Integration and Data Warehouse construction are incremental. Integration is
an incremental process both because, from the organizational point of view, it
is unlikely to be able to merge all the data sources in one step, and because the
Data Administrator needs to incorporate new data sources that continuously
become available. The construction of a Data Warehouse is an incremental
process as well, especially in a scenario where a Data Warehouse structure in-
cluding several levels of organization is adopted, as it is the case in enterprises
of the size of TELECOM ITALIA. The incremental nature of the approach to
both Data Integration and Data Warehousing deeply influences the design of
methodologies and tools supporting these tasks. In particular, an incremental
process is well supported by the local-as-view approach to Data Integration.

Data Warehousing application development is greatly enhanced by the avail-
ability of an integrated Enterprise Conceptual Model, which gives to the en-
terprise information assets a meaningful interpretation that is shared among
application developers and business specialists. The Enterprise Conceptual
Model plays also a key role in the Knowledge Management process, since it
enables the building of a coherent Enterprise Knowledge Base, thus promoting
the discovery, representation and dissemination of knowledge at the enterprise
level.

The investments required for the development of methodology custom support
tools and their integration with market CASE tools and DBMSs are significant.
On the other hand, the mapping translation and code generation facilities
based on automated reasoning enable in most cases the rapid prototyping of
Data Warehouse applications. In fact, the Data Warehouse designer is able
to easily obtain a prototype that can be employed to test and validate the
design, even involving final users of Decision Support Systems, since it is
possible to quickly build reports, decision dash boards, and pivot tables for
testing purposes. This is a noticeable advantage in the design of such kinds of
applications, where it is very difficult to validate user requirements before a
late stage of development.

A relevant issue of our framework is represented by the need to build and main-
tain the Enteprise Conceptual Model and related specifications, or, in other
words, to accurately manage the lifecycle of metadata. In a large enterprise
like TELECOM ITALIA, it could become a serious problem, since a large num-
ber of information systems are coexisting and evolving independently, and
metadata quality is strongly dependent on its freshness. Consequently, there
is the need to build and disseminate a metadata management methodology,
supported by adequate tools. In our framework, the declarative specification of
constraints and mappings may alleviate, in part, this problem. Nevertheless,

40

since the modeling and integration tasks are performed mainly at the con-
ceptual level, we have experimented a higher degree of stability of the model
with respect to technology and implementation changes, which usually have
an impact on the logical /physical level. Not only, the Enterprise Conceptual
Model is more stable than application models, since it depends mainly on the
domain of interest. Thus it can be adopted as a guide to change management
and migration processes (i.e., migration from a legacy application to an ERP
package), providing a sound foundation of the data item definitions that is
substantially independent from their implementation.

An approach centered around the Enterprise Conceptual Model gives a number
of advantages in terms of building cooperative solutions during the whole ap-
plication lifecycle. In fact, most software development projects are mainly con-
cerned with the integration of existing solutions (i.e., exporting business logic
in terms of web services). So a rich common data definition shared between
different project teams, which in a large corporation like TELECOM ITALIA
probably belong to different departments or suppliers, helps to reduce inter-
facing errors and misunderstandings, improving quality and time-to-market of
applications.

We have also experimented a positive influence on data quality assessment
tasks, which are usually performed during the Data Warehouse building pro-
cess. A formal and unique data definition on all Enterprise Information System
levels greatly helps to identify data quality problems and their causes, and to
develop cleaning strategies. Not only, the ability of keeping track of inter-
schema dependencies allows us to maintain control of data redundancy in the
Operational Data Store.

References

[1] M. Lenzerini, Data integration: A theoretical perspective., in: Proc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2002), 2002, pp. 233-246.

[2] W. H. Inmon, Building the Data Warehouse, 2nd Edition, John Wiley &
Sons, 1996.

[3] G. Wiederhold, Mediators in the architecture of future information sys-
tems, IEEE Computer 25 (3) (1992) 38-49.

[4] J. D. Ullman, Information integration using logical views, in: Proc. of
the 6th Int. Conf. on Database Theory (ICDT’97), Vol. 1186 of Lecture
Notes in Computer Science, Springer, 1997, pp. 19-40.

[5] M. Jarke, M. Lenzerini, Y. Vassiliou, P. Vassiliadis (Eds.), Fundamentals
of Data Warehouses, Springer, 1999.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati, Infor-
mation integration: Conceptual modeling and reasoning support, in: Proc.

41

[13]

[14]

[15]

[18]

[19]

[20]

[21]

of the 6th Int. Conf. on Cooperative Information Systems (CooplIS’98),
1998, pp. 280-291.

A. Y. Halevy, Answering queries using views: A survey, Very Large
Database J. 10 (4) (2001) 270-294.

O. M. Duschka, M. R. Genesereth, A. Y. Levy, Recursive query plans for
data integration, J. of Logic Programming 43 (1) (2000) 49-73.

F. N. Afrati, M. Gergatsoulis, T. Kavalieros, Answering queries using
materialized views with disjunction, in: Proc. of the 7th Int. Conf. on
Database Theory (ICDT’99), Vol. 1540 of Lecture Notes in Computer
Science, Springer, 1999, pp. 435-452.

R. Pottinger, A. Y. Levy, A scalable algorithm for answering queries
using views, in: Proc. of the 26th Int. Conf. on Very Large Data Bases
(VLDB 2000), 2000, pp. 484-495.

G. Zhou, R. Hull, R. King, Generating data integration mediators that
use materializations, J. of Intelligent Information Systems 6 (1996) 199—
221.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sa-
giv, J. D. Ullman, V. Vassalos, J. Widom, The TSIMMIS approach to me-
diation: Data models and languages, J. of Intelligent Information Systems
8 (2) (1997) 117-132.

R. Yerneni, C. Li, H. Garcia-Molina, J. D. Ullman, Computing capabili-
ties of mediators, in: Proc. of the ACM SIGMOD Int. Conf. on Manage-
ment of Data, 1999, pp. 443-454.

C. H. Goh, S. Bressan, S. E. Madnick, M. D. Siegel, Context interchange:
New features and formalisms for the intelligent integration of information,
ACM Trans. on Information Systems 17 (3) (1999) 270-293.

S. Bergamaschi, S. Castano, M. Vincini, D. Beneventano, Semantic inte-
gration of heterogeneous information sources, Data and Knowledge En-
gineering 36 (3) (2001) 215-249.

D. Ursino, Extraction and Exploitation of Intensional Knowledge from
Heterogeneous Information Sources, Vol. 2282 of Lecture Notes in Com-
puter Science, Springer, 2002.

A. Cali, D. Calvanese, G. De Giacomo, M. Lenzerini, P. Naggar, F. Ver-
nacotola, IBIS: Data integration at work, in: Proc. of the 10th Ital. Conf.
on Database Systems (SEBD 2002), 2002, pp. 291-298.

J. Widom, Research problems in data warehousing, in: Proc. of the 4th
Int. Conf. on Information and Knowledge Management (CIKM’95), 1995.
D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati, Data
integration in data warehousing, Int. J. of Cooperative Information Sys-
tems 10 (3) (2001) 237-271.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati, De-
scription logic framework for information integration, in: Proc. of the
6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), 1998, pp. 2-13.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati, Source

42

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[31]

[32]

integration in data warehousing, in: Proc. of the 9th Int. Workshop on
Database and Expert Systems Applications (DEXA’98), IEEE Computer
Society Press, 1998, pp. 192-197.

S. M. Trisolini, M. Lenzerini, D. Nardi, Data integration and warehousing
in Telecom Italia, in: Proc. of the ACM SIGMOD Int. Conf. on Manage-
ment of Data, 1999, pp. 538-539.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati, Use of
the reconciliation tool at Telecom Italia, Tech. Rep. DWQ-UNIROMA-
007, DWQ Consortium (Oct. 1999).

D. Calvanese, G. De Giacomo, M. Lenzerini, On the decidability of query
containment under constraints, in: Proc. of the 17th ACM SIGACT SIG-
MOD SIGART Symp. on Principles of Database Systems (PODS’98),
1998, pp. 149-158.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati,
Schema and data integration methodology for DWQ, Tech. Rep. DWQ-
UNIROMA-004, DWQ Consortium (Sep. 1998).

C. Batini, S. Ceri, S. B. Navathe, Conceptual Database Design, an Entity-
Relationship Approach, Benjamin and Cummings Publ. Co., Menlo Park,
California, 1992.

D. Theodoratos, S. Ligoudistianos, T. Sellis, Designing the global Data
Warehouse with SPJ views, in: Proc. of the 11th Int. Conf. on Advanced
Information Systems Engineering (CAiSE’99), 1999.

A. Sheth, V. Kashyap, So far (schematically) yet so near (semantically),
in: Proc. of the IFIP DS-5 Conf. on Semantics of Interoperable Database
Systems, Elsevier Science Publishers (North-Holland), Amsterdam, 1992.
I[. Horrocks, Using an expressive description logic: FaCT or fiction?, in:
Proc. of the 6th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’98), 1998, pp. 636-647.

I. Horrocks, The FaCT system, in: H. de Swart (Ed.), Proc. of the 2nd
Int. Conf. on Analytic Tableaux and Related Methods (TABLEAUX’98),
Vol. 1397 of Lecture Notes in Artificial Intelligence, Springer, 1998, pp.
307-312.

[. Horrocks, FaCT and iFaCT, in: Proc. of the 1999 Description Logic
Workshop (DL’99), CEUR Electronic Workshop Proceedings, http://
ceur-ws.org/Vol-22/, 1999, pp. 133-135.

D. Calvanese, R. Capitini, M. Lenzerini, D. Nardi, R. Rosati, V. Stancati,
Strumenti di ausilio alla modellazione dei dati nella progettazione di Data
Warehouse, Tech. Rep. 2-98, Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza” — TELECOM Italia, in Italian (1998).
F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider
(Eds.), The Description Logic Handbook: Theory, Implementation and
Applications, Cambridge University Press, 2003.

D. Berardi, D. Calvanese, G. De Giacomo, Reasoning on UML class di-
agrams using description logic based systems, in: Proc. of the KI'2001
Workshop on Applications of Description Logics, CEUR Electronic Work-

43

[35]

[36]

[38]

[39]

[40]

[41]

[42]

[43]

shop Proceedings, http://ceur-ws.org/Vol-44/, 2001.

D. Berardi, Using description logics to reason on UML class diagrams,
in: Proc. of the KI'’2002 Workshop on Applications of Description Log-
ics, CEUR Electronic Workshop Proceedings, http://ceur-ws.org/
Vol-63/, 2002.

D. Calvanese, D. Lembo, M. Lenzerini, D. Nardi, Strumento di inte-
grazione e riconciliazione dei dati nei Data Warehouse, Tech. rep., Dipar-
timento di Informatica e Sistemistica, Universita di Roma “La Sapienza”
— TELECOM Italia, in Italian (2000).

D. Caffio, D. Nardi, R. Rosati, Modellazione multidimensionale dei dati,
Tech. rep., Dipartimento di Informatica e Sistemistica, Universita di
Roma “La Sapienza” — TELECOM Italia, in Italian (1999).

L. Dragone, D. Nardi, L. Tosco, Metodi e tecniche di Data Mining, Tech.
rep., Dipartimento di Informatica e Sistemistica, Universita di Roma “La
Sapienza” — TELECOM ltalia, in Italian (1999).

L. Dragone, D. Nardi, Sviluppo di applicazioni di Data Mining, Tech.
rep., Dipartimento di Informatica e Sistemistica, Universita di Roma “La
Sapienza” — TELECOM Italia, in Italian (2000).

S. Cazzella, L. Dragone, S. M. Trisolini, Telecommunications Strategic
Marketing — KDD and Economic Modeling, in: Proc. of the 2002 IEEE
Int. Conf. on Data Mining (ICDM 2002), IEEE Computer Society Press,
2002.

F. M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, Reasoning in descrip-
tion logics, in: G. Brewka (Ed.), Principles of Knowledge Representation,
Studies in Logic, Language and Information, CSLI Publications, 1996,
pp. 193-238.

A. Borgida, Description logics in data management, IEEE Trans. on
Knowledge and Data Engineering 7 (5) (1995) 671-682.

T. Catarci, M. Lenzerini, Representing and using interschema knowledge
in cooperative information systems, J. of Intelligent and Cooperative In-
formation Systems 2 (4) (1993) 375-398.

R. Hull, Managing semantic heterogeneity in databases: A theoretical per-
spective, in: Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS’97), 1997, pp. 51-61.

Appendix A The Description Logic DLR

DLR belongs to the family of Description Logics, introduced and studied
in the field of Knowledge Representation (33; 41; 42). Generally speaking,
Description Logics are class-based representation formalisms that allow one
to express several kinds of relationships and constraints (e.g., subclass con-
straints) holding among classes. Specifically, DLR includes:

44

e concepts, which are used to represent entity types (or simply entities), i.e.,
sets of conceptual objects having common properties. Besides atomic con-
cepts, DLR allows for constructing complex concepts by means of specific
operators: conjunction (denoted M), disjunction (denoted L), negation (de-
noted —), forms of quantification, and numeric restrictions;

e n-ary relationships, which are used to represent relationship types (or simply
relationships), i.e., sets of tuples, each of which represents an association
between conceptual objects belonging to different entities. The participation
of conceptual objects in relationships models properties that correspond to
relations with other conceptual objects. As for concepts, DLR allows for
constructing complex relationships by means of conjunction, disjunction,
difference (written using conjunction and negation), and selection on one
component (denoted ($i: C'), where i is a component and C'is a concept);

e attributes, which are used to associate conceptual objects (or tuples of con-
ceptual objects) with properties expressed by values belonging to one of
several domains.

The Conceptual Model for a given application is specified by means of a set
of inclusion assertions, written in the form

Cl ECQ RlERZ

where C and C; are two concepts and R; and Ry are two relationships (of the
same arity). The inclusion assertion C; C C; states that each object that is an
instance of C is also an instance of Cy (similarly for tuples in relationships).
In the following, we make also use of equality assertions C; = Cs, which can
be considered as an abbreviation for a pair of inclusion assertions C; C Cy
and Cy C C (similarly for relationships).

Inclusion assertions, used in combination with the concept and relationship
constructs of DLR, provide a powerful mechanism for expressing various forms
of inter-relationships between concepts, relationships, and attributes. In par-
ticular, DLR allows for expressing:

e inclusion (i.e., ISA) and equivalence relationships between entities and re-
lationships;

e disjointness and covering constraints, and, more generally, boolean combi-
nations between entities and relationships;

e universal and existential qualification of concepts and relationship compo-
nents;

e participation and functionality constraints, and more complex forms of car-
dinality constraints;

e definitions (expressing necessary and sufficient conditions) of entities and
relationships in terms of other entities and relationships;

45

These features make DLR powerful enough to express not only the ER model,
but also other conceptual, semantic, and object-oriented data models. Con-
sequently, the proposed approach could be pursued also by adopting a con-
ceptual modeling framework not based on the Entity-Relationship formal-
ism. Moreover, DLR assertions provide a simple and effective declarative
mechanism to express, by means of so-called inter-model assertions (43; 20),
the dependencies that hold between entities and relationships in different
sources (44). The use of inter-model assertions allows for an incremental ap-
proach to the integration of the conceptual models of the sources and of the
enterprise (20; 6). We distinguish between two kinds of inter-model assertions:
extensional and intensional ones (cf. (43; 20)).

e Intuitively, an extensional inter-model assertion, denoted with C.,; (resp.,
=.ut), is significant at the instance level. Formally, such an assertion is inter-
preted as set-inclusion (resp., equality), exactly as an assertion in a single
conceptual model: a concept is extensionally included in another concept if
and only each instance of the first concept is also an instance of the second
one.

e An intensional inter-model assertion, denoted with T,y (resp., =iu), is
used when two entities or relations in different sources represent the same
concepts, but do not necessarily have coinciding sets of instances. Formally,
a concept of a certain source is intentionally equivalent to another concept
of a different source, if the extensions of the two concepts coincide on the
sets of objects that are common to both sources (similarly for an intensional
inclusion assertion).

One distinguishing feature of DLR is that sound and complete algorithms
for reasoning over a set of logical assertions are available (24). By exploiting
such algorithms, one gains the possibility of reasoning about the Conceptual
Model. In particular, one can automatically verify the following properties:

o consistency of the Conceptual Model, i.e., whether there exists a database
satisfying all constraints expressed in the Conceptual Model;

o entity (respectively, relationship) satisfiability, i.e., whether there exists a
database that satisfies the Conceptual Model in which a certain entity (re-
spectively, relationship) has a non-empty extension;

o entity (respectively, relationship) subsumption, i.e., whether the extension
of an entity (respectively, relationship) is a subset of the extension of an-
other entity (respectively, relationship) in every database satisfying the con-
straints imposed by the Conceptual Model;

e constraint inference, i.e., whether a certain constraint holds for all databases
satisfying the Conceptual Model.

Such reasoning services support the designer in the construction process of
the Conceptual Model: they can be used, for instance, for inferring inclusion

46

between entities and relationships, and detecting inconsistencies and redun-
dancies.

47

