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Abstract

In this paper we address the problem of query an-
swering and rewriting in global-as-view data inte-
gration systems, when key and inclusion dependen-
cies are expressed on the global integration schema.
In the case obkoundviews, we provide sound and
complete rewriting techniques for a maximal class
of constraints for which decidability holds. Then,
we introduce a semantics which is able to cope with
violations of constraints, and present a sound and
complete rewriting technique for the same decid-
able class of constraints. Finally, we consider the
decision problem of query answering and give de-
cidability and complexity results.

1 Introduction

The task of a data integration system is to combine data resid-
ing at different sources, providing the user with a unified view

of them, calledglobal schema User queries are formulated

over the global schema, and the system suitably queries the
sources, providing an answer to the user, who is not obliged to
have any information about the sources. The problem of data 2-
integration is a crucial issue in many application domains,
e.g., re-engineering legacy systems, data warehousing, data

mining, data exchange.

A central aspect of query processing is the specification of
the relationship between the global schema and the sources;

such a specification is given in the form of a so-calheap-

ping. There are basically two approaches for specifying the 3.

mapping. The first approach, callgtbbal-as-view(GAV),

requires that a view over the sources is associated with ev-
ery element of the global schema. Conversely, the second
approach, calletbcal-as-view(LAV), requires the sourcesto 2

be defined as views over the global schdirenzerini, 2002;
Duschka and Levy, 1997

The global schema is a representation of the domain of in

}@dis.uniromal.it

may return incorrect answers to the uféaginet al, 2003;
Cali et al, 2004.

Another significant issue is that the sources may not pro-
vide exactly the data that satisfy the corresponding portion of
the global schema; in particular, they may provide either a
subset or a superset of the data satisfying the mentioned por-
tion, and the mapping is to be considessindor complete
respectively. Mappings that are both sound and complete are
calledexact

In this paper, we restrict our analysis to the GAV approach,
which is the most used in the context of data integration. In
particular, we study a relational data integration framework in
which key dependencies (KDs) and inclusion dependencies
(IDs) are expressed on the global schema, and the mapping
is considered sound. The main contributions of this paper are
the following:

1. After showing that query answering in the general case

in undecidable, we provide a sound and complete query
rewriting technique first for the case of IDs alone, and
then for the case of KDs together with the maximal class
of IDs for which the problem is decidable, calledn-
key-conflicting IDsor simply NKCIDs (Section 3).

Since it is likely that data retrieved at different, au-
tonomous sources violate the KDs, we introduce a novel
semantics that is a “relaxation” of the sound semantics,
and that allows minimal repairs of the data (Section 4).
We then present a sound and complete query rewriting
technique in the case where KDs and NKCIDs are ex-
pressed on the global schema (Section 5).

Finally, we present decidability and complexity results
of the (decision) problem of query answering in the dif-
ferent cases (Section 6).

Formal framework for data integration

In this section we define a logical framework for data integra-
tion, based on the relational model with integrity constraints.

terest of the data integration system: integrity constraints ar&yntax We consider to have an infinite, fixed alphabetf

expressed on such a schema to enhance its expressivenes®)stants (also called values) representing real world objects,

thus improving its capability of representing the real world. and will take into account only databases haviregs domain.
Since sources are in general autonomous, the data préV¥e adopt the so-callegniqgue name assumptipie., we as-

vided by the sources are likely not to satisfy the constraintsume that different constants denote different objects.

on the global schema. Integrity constraints have to be taken Formally, a data integration systefis a triple (G, S, M),

into account during query processing; otherwise, the systewhere:



1. G is the global schemaexpressed in the relational
model with integrity constraints. In particula§ =
(U,%;,Yk), where(i) ¥ is a set of relations, each

mally, given a source databagefor Z = (G,S, M), the
semantics of wrt D, denotedsem(Z, D), is a set of global
databases faf, where a global databaggis in sem(Z, D)

with an associated arity that indicates the number off:

its attributes. The attributes of a relatienof arity n
are represented by the integdrs..,n. (i) X7 is a
set ofinclusion dependencie@Ds), i.e. a set of as-
sertions of the form;[A] C r3[B], wherery,ry are
relations in¥, A = A;,...,A, (n > 0) is a se-
guence of attributes of;, andB = By,...,B, is a
sequence of attributes of. (iii) Xk is a set ofkey de-
pendenciegKDs), i.e., a set of assertions of the form
key(r) = A, wherer is a relation in the global schema,
andA = A,..., A, is a sequence of attributes of
such that for eachh € {1,...,n — 1} a; < a;+1. We

assume, without loss of generality, that the attributes in

A are the firstn attributes ofr. Moreover, we assume
that at most one KD is specified for each relation.
2. S is thesource schemeconstituted by the schemas of

the various sources that are part of the data integration

1. Bis consistent witlg, i.e., it satisfies the IDs ix; and
the KDs inX x. More formally: (i) B satisfies an inclu-
sion dependency, [A] C r,[B] if for each tuplet; in
B there exists a tuplg; in 5 such that; [A] = ¢, [B],
wheret[A] is the projection of the tupleover A.. If B
satisfies all inclusion dependencies expressed ove
say thatB5 is consistent withX;; (ii) B satisfies a key
dependencycey(r) = A if for eacht;,t, € rB with
t1 # to we havet;[A] # t3[A]. If B satisfies all key
dependencies expressed®we say thaf3 is consistent
with YK

2. BB satisfies the mappingt wrt D, i.e., it satisfies each
pair (r, V) in M wrt D. In particular, we say thaB
satisfies the paitr, V) wrt D, if all the tuples satisfy-
ing V in D satisfyr in B, i.e. VP C 5. Note that

system. We assume that the sources are relational, and the above definition amounts to consider any viévas

that integrity constraints expressed Share satisfied

sound which means that the data retrieved from sources

data at the sources. Hence, we do not take such con- satisfy the global schema, but are not necessarily com-

straints into account in our framework.

3. M is the mappingbetween the global and the source

plete.
By simply evaluating each view over the source database

schema. In our framework the mapping is defined in thep, we obtain a global database, calleetrieved global

GAV approach, i.e., each relationinis associated with

databaset(Z, D), that actually satisfies the sound mapping

aview, i.e., a query, over the sources. We indicate theibut that is not necessarily consistent with

mapping as a set of assertions of the fdriyi/), wherer

We give now the semantics of queries. Formally, given

is arelation and’ is the associated view over the Source g source databasP for Z we call answersto a gueryq
schema. We assume that the language used to eXpre@ﬁarity n W.r.t. Z and D, the Setans(q,I, D) defined as

gueries in the mapping {gositive Datalod Abiteboul et

follows: ans(q,Z,D) = {{c1,...,cn) | foreachB ¢

al., 1994, over the alphabet of the relation symbols in sem(Z, D), (c1,...,cn) € B }.

S. A Datalog query (or programy) of arity » is a col-
lection of rules of the fornk(X) «— conj(X,¥), where

In this paper, we address the query answering problem, that
is the problem of computing the sets(q,Z, D). To this

conj(X, y) is a set of atoms whose predicate symbols argyim we make use of query rewriting techniques, i.e., we ex-

either relation symbols i or the head symbal, and
involvex = X4,..., X, andy = Y1,...,Y,,, where
X, andY; are either variables or values Bf We call
h(X) theheadof the rule, andonj (X, ¥) thebody.

Finally, aqueryover the global schemais a formula that
is intended to extract a set of tuples of element§ ofThe
language used to express queries @vés union of conjunc-
tive queries(UCQ) [Abiteboul et al, 1999, i.e., a Datalog

ploit the mappingM to reformulate the query into another
queryg,, therewriting, that can be evaluated on the source
databas®. We say thay,. is aperfect rewritingof ¢ w.r.t. 7

if ¢° = ans(q,Z, D) for eachD. Furthermore, with regard

to decidability and complexity results, we will refer to the de-
cision problem associated to query answering, that is, given a
data integration systefh = (G, S, M), a source databad®,

a queryg of arity n overG and an-tuplet of values ofT", to

program such that each rule head uses the same predicateasftablish whether € ans(q,Z, D).

the same arity, and only relation symbolsghbccur in each
rule body.

SemanticsA database instancgr simply databasgC for a
relational schem®£5 is a set of facts of the form(t) where
r is a relation of arityn in D3 andt is ann-tuple of values of
the domain alphabdt. We denote as® the set{t | 7(t) €
C}; moreover, given a Datalog quegy we denote ag® the
evaluation ofg over(, i.e., the minimal fixpoint model of
andcC [Abiteboulet al, 1999.

Example 2.1 Consider a data integration system
Zo = (Go,So, M), referring to the context of football
teams. The global schem@, consists of the rela-
tion predicates player(Pname, Pcountry, Pteam) and
team( Tacronym, Tname, Tleader), and the following
constraints: key(player) = {Pname}, key(team) =
{Tacronym}, team|[Tleader] C player|[Pname).

The source schem&, consists of the schemas of three
sources comprising the relation of arity 4, and the rela-

In order to specify the semantics of a data integration systions s andss, both of arity 3. Finally, the mapping/, is

temZ, we start by considering source databaséor 7, i.e.,
a databas® for the source schems. Based orD, we now

defined by the two assertions
(player, player(X,Y,Z) « s1(X,Y, Z,W))

specify which is the information content of the global schema (team, team(X,Y,Z) — s:(X,Y, Z)

G. We callglobal databasdor Z any database fag. For-

team(X,Y, Z) — s3(X,Y, Z))



Consider the source databaBg = {s;(Totti, ITA, RM, 27), Below we define the algorithriD-rewrite to compute the
s1(BeckhamENG, MU, 28), s2(RM,RomaTotti), perfect rewriting of a union of conjunctive queri€s Infor-

s3(MU,Man.Utd, Giggs) }. Then, ret(Zy,Dy) =  mally, the algorithm computes the closure of the set of con-
{player(Totti, ITA, RM), player(BeckhamENG, MU),  junctive queriesy with respect to the following two rules:
team(RM,RomaTotti), team (MU, Man.Utd, Gigg9 }. (i) if there exists a query € @ such thatbody(gq) contains

Notice that the facts inret(Zy, Dy) together with the for- two atomsg; andg. that unify, then the algorithm computes
eign key constrainteam|Tleader] C player[Pname] im-  the queryreducdgq, g, g2), which is obtained fromy by re-
pose thaiGiggs is a player. Since the views are sound, theplacingg; andg, with U(g1, g2) in the query body, and then
semantics for the integration system has to account for aby applying the substitution obtained in the computation of
the global databases that provide the country and the teafi(g1, g2) to the whole query. Such a new query is then trans-
of the player. Hencesem(Zy, Dy) contains all database in- formed by the functionr, which replaces witly each variable
stances that can be obtained by adding:tdZ,, Dy) (among  symbol X such that there is a single occurrenceXfin g.
others) at least one fact of the forplayer(Giggs «, 3), The use ofr is necessary in order to guarantee that each un-
wherea and g are values of the domain. Given the query bound variable is represented by the sympobuch a query
q(X) «— player(X,Y, Z), we have thatuns(q,Zo,Dy) =  isthen added t@).

{Totti, BeckhamGiggs}. m (ii) if there exists an inclusiod and a queryy € @ con-
taining an atomg such that/ is applicable tog, then the

o algorithm adds taQ the query obtained frong by replac-

3 Query rewriting ing g with gr(g, I) in its body (denoted in the algorithm as
In this section we present algorithms for computing the perg[g/gr(g, I)]). Namely, this step adds new conjunctions ob-
fect rewriting of a UCQ query in GAV integration systems tained by applying inclusion dependencies as rewriting rules
with KDs and IDs. We first study the case in which only IDs (applied from right to left).

are expressed on the global schema, then we deal with the The above rules correspond respectively to steps (a) and
simultaneous presence of both IDs and KDs. (b) of the algorithm.

Query rewriting under IDs only We start by studying ~Algorithm ID-rewrite(V, >;,q) _
query rewriting when only IDs are expressed on the global™Put: re'?‘t'onﬁ" Schemtg." inclusion dependenciesy,
schema. To this aim, we need some preliminary definitions. union of conjunctive querieg)
. : . . . Output: perfect rewriting of@

Given a conjunctive query, we say that a variabl&’ is N=
unboundin q if it occurs only once iry, otherwise we say repéat ’
that X is bound ing. Notice that variables occurring inthe o . o
head of the query are necessarily bound, since each of themfor each g € Q.. do

must also occur in the query body. Bound termis either a (a)for each g1, g2 € body(q) do

bound variable or a constant. if g1 andgo unify
In the following, we assume that all unbound variables in then Q" := Q" U {r(reducdq, g1, g2))};
the queryy are represented by the special tetm (b) for each g € body(q) do
L . foreachI € ¥; do
Definition 3.1 Given an atomy = s(Xl, ..., Xy) and an if I is applicable tq
inclusionI = rliy,...,ix] C s[j1,.--,Jjk], Wwe say thatl is then Q" := Q' U {qlg/ar(g, )] }

applicable tog if, for eachf such thatl < ¢ < n, if X, # & until Qaue = Q';

then there existé such thatj, = ¢. Moreover, we denote return Q’

with gr(g, I) the atoms(Y3,...,Y,,) (m is the arity ofs in o o ' o

¥) where for eaclf such thatl < ¢ < m, Y, = X, if there Termination of the algorithm is immediately implied by the
existsh such that, = ¢, otherwiseY; = ¢. fact that the number of conjunctions that can be generated by
the algorithm is finite, since the maximum length of a gen-
erated conjunction is equal to the maximum length of a con-
junction in the body of the initial quer§, and the number of
different atoms that can be generated by the algorithm is fi-
nite, since the alphabet of relation symbols used is finite (and
corresponds to the relation symbols occurringddnand in

Y1), as well as the set of terms used (corresponding to the set

Roughly speaking, an inclusiahis applicable to an atom
g if the relation symbol of; corresponds to the symbol in the
right-hand side of and if all the attributes for which bound
terms appear ig are propagated by the inclusidn When !
is applicable tgy, gr(g, I) denotes the atom obtained fram
by using! as a rewriting rule whose direction is right-to-left.

Definition 3.2 Given an atony; = r(Xi,...,X,) and an  of variable and constant names occurring in the qégplus
atomgy = r(Y1,...,Y,), we say thayy; and g, unify if for the symbok).
eachi such thatl < i < n, eitherX; = Y; or X; = { or Henceforth, we denote aH;p the UCQ returned by

Y; = ¢. Moreover, ifg; andg, unify, we denote a8/ (g1, 92)  ID-rewrite(¥, %}, Q). Moreover, we define the Datalog pro-
the atomr(Zy, ..., Z,) where, for each, if X; = Y; or  gramIl,, = {(V|(r,V) € M}.
Y; = ¢ thenZ; = X;, otherwiseZ; =Y.

Informally, two atoms unify if they can be made equal Theorem 3.3 LetZ = (G,S, M) be an integration system

through a substitution of each instance of the special symbdnd let@ be a UCQ query oveg. Then,Il;p UIlnz is a
& with other terms. perfect rewriting ofQ) w.r.t. Z.



Query rewriting under KDs and IDs  Now we address the It follows that chase(ret(Z,D)) is a representative for all
problem of query rewriting in the case where KDs and IDs arejatabases irem (Z, D), andans(q, Z, D) = gchase(ret(Z, D))
defined on the global schema. Unfortunately, KDs and IDsThe claim follows straightforwardly. |
interact reciprocally so that the (decision) problem of query .
answering in this setting becomes undecidable. The follow-, W& now go back to query rewriting. In the case of a NKC

ing theorem is a consequence of a similar property proved iffata integration system, we can apply the same technique de-
[Call et al, 2009 in the context of a single database. veloped for IDs alone, provided that we take into account the

) _ ) KDs with suitable rules. Indeed, observe thatf(Z, D) vi-
Theorem 3.4 Consider a data integration systei =  platesy, any tuple is in the answer to any query. Therefore,
(G,8, M), with g = (¥, %}, Yk), whereX; and Xk are  ith regard to this issue, we first introduce a unary global re-
sets of IDs and KDs respectively. Given a source databasgtion val; the idea is thatal stores all values occurring in
for 7, a queryq over¢, and a tuplet of values ofl', the D we construct a set of rulds,,; as follows: denoting with
problem of calculatingins(q, Z, D) is undecidable. {r1,...,rn,} the set of all relations ig,

. Undt_acidapility pf calculat_ing t'h'e certain answers to a query val(X;) — ri(X1,..., Xn,)

immediately implies undecidability of calculating the perfect . ' )

rewriting[Cali et al, 2003. The problem of query answering With1 <i < N, andl < j < n;. Then, consider a KD of the
becomes decidable if we restrict the IDs to be in a particulaform key(r) = K; without loss of generality, we suppose that

class, so that they do not interact with KDs. r has aritym andK = {1,...,k} (k < m). We introduce a
o . . . - : <i<m

Definition 3.5 Consider a data integration systefn = setofm — k rules; in particular, fok + 1 < i < m

<g,S,M>,Withg: <‘I’,E[,ZK>. An ID T’l[Al] gT’Q[AQ] q(Yl,...,Yn) — 7'(X1,‘..,Xk,Xk+1,...,Xm),

is anon-key-conflicting ID (NKCIDyv.r.t. K if either: (i) no P( Xy, Xiy Xpgy s Xon)s

KD is defined onrs; (ii) the KD key(r2) = K is in ¥k and X # X[, val(Y1), ..., val(Yy)

A, is not a strict superset &, i.e., Ay p K. If all IDs
in X2y are NKCIDs w.r.t. X g, the systent¥ is saidnon-key-
conflicting (NKC)

We point out that the class of NKC IDs comprises the well-

known class oforeign key dependencieshich correspond .
, S, M), and a queryg of arity n overG. Then,IIjp U
to IDs of the formr [A4] € 72[As] such thatkey(ry) = Ao. f_lg ¥ H> UL qis a);/)qerfect rgvyriting ng] ID
The most important feature of a NKC data integration sys- KD — val = M '

tem is theseparatiorbetween the IDs and the KDs; in such a . . .
case, in fact, we can take IDs into account as if the KDs were4 Semantics for inconsistent data sources

We denote witHIkp the set of rules introduced as described
above. From the results of Section 3 and from the above ob-
servation, we derive the following result.

Theorem 3.7 Consider a data integration systeh =

not expressed od. In the sound semantics, violations of IDs are treated “auto-
Theorem 3.6 (Separation)Given a NKC data integration matically”because of the nature of the semantics; instead, the
e s G5 M) With G = (0.5 5. let 7/ = violation of a single KD leads to the non-interesting case in

which sem(Z, D) = 0.

According to a common approach in the literature on in-
consistent databasfBaginet al,, 1983; Lin and Mendelzon,
and? ann-tuple of values. We have that ans(q,Z, D) iff 199% Arenaset al, 1999,dwe EOW introduce théa%osely— i
D is consistent Witftc and? ¢ ans(q, T, D). soundsemantics, opposed to the previous one (that we wi

call strictly-sound, in which the soundness assumption is

Proof (sketch). We say thatD is consistent with¥’xr  suitably relaxed. The intuition is that in the “relaxed” seman-
iff ret(Z,D) is consistent withX,. An important re- tics we are allowed to delete tuples framt(Z, D) to repair
sult, immediately derived fronlJohnson and Klug, 1984  violations of KDs, as long as we “minimize” such deletions;
states thatuns(q,Z, D) is obtained by evaluating over a  violations of IDs are treated as in the sound semantics.
(possibly infinite) database, callethaseand denoted with  Given a source databa®t we define the following order-
chase(ret(Z,D)). The chase is obtained by adding tuples toing > ; 1, over the global databases fthat are consistent
ret(Z, D) in a way that the added tuples repair violations ofwith G. Given two such global databas8sandB,, we write
IDs. The chase satisfies the IDs ogerand itis a representa- B, > 7 p) B, iff By N ret(Z,D) D By N ret(Z,D). That
tive of all databases isem(Z, D) [Cali et al, 2003. is, the portion ofret(Z, D) contained in the global database

“="Since by hypothesis ¢ ans(q,Z,D), there exists a s greater in3; than inBs, i.e., B, approximates the sound
global databasB € sem(Z, D) such that ¢ ¢°. A fortiori, mapping better thaf. .

(G, 8, M), with G’ = (¥, 3, (), the system obtained ¥y
by eliminating the KDs ofj; let D be a source database for
Z andZ’. Moreover, lety be a query of arity: overG andg’,

B satisfies;, thereforeB3 € sem(Z’, D), The claim follows We call maximalw.r.t. (Z,D) a global databasé for
immediately. _ 7 consistent withG, such that there exists no global
“<"By hypothesis, D is consistent withLx and¢ ¢  databaseB’ consistent withG such that B > p)
ans(q,Z’,D). Therefore,f ¢ gchase(ret(T'D)): note that B. Based on this notion, we define the loosely-

chase(ret(Z',D)) = chase(ret(Z,D)). It can be shown, sound semanticssem; as follows: sem;(Z,D) =
by induction on the number of added tuples in the construc{B | B is consistent wittg and is maximal w.r.t.(Z,D)}.
tion of chase(ret(Z,D)), that if Z is a NKC system, and Finally, we denote withans;(¢q,Z, D) the set of answers to
ret(Z, D) satisfies¥ i, alsochase(ret(Z,D)) satisfiesCi.  queries under the loosely-sound semantics.



Example 2.1 (cont.) Consider now the source
database D’ obtained by adding toD, the fact
s2(RM,RomaBeckhan). Then,ret(Zy, D) = ret(Zo, Do)
U {team(RM,RomaBeckham} We have now
that the tuples inret(Zy,D’) violate also the KD
key(team) {Tacronym}; hence, sem;(Zy,D’) con-
tains the databases of the formglayer(Totti, ITA RM),
player(BeckhamENG, MU), team (MU, Man.Utd, Giggs),
team(RM, RomaTotti), player(Giggs a, §) } and
{player(Totti, ITA, RM), player(BeckhamENG, MU),
team (MU, Man.Utd, Giggs), team(RM, RomaBeckham,
player(Giggs «, 3)}, for eacha, 8 € T.

Notice that for the queryq(X) <« player(X,Y,Z)
ansi(q,Zo, D) ans(q,Zo,D). On the other hand,
given the query ¢'(X,Z) «— team(X,Y,Z) we
have that ans;(¢’,Zo, D’) {(MU,Giggs} whereas
ans(q’, Zo, D) = {{(MU, Giggs, (RM, Totti) }. "

It is immediate to verify that, ifsem(Z,D) # 0, then
sem(Z,D) sem(Z, D), i.e., if there exists a global
database that satisfies both the constraint§ and the map-
ping assertions in\ w.r.t. a source databage, then the
strictly-sound and the loosely-sound semantics coincide.

5 Query rewriting in loosely-sound semantics

Theorem5.1LetZ = (G,S, M) be a NKC system, an@
be a UCQ of arityn overG. ThenII;xp UIl;p Ullpp isa
perfect rewriting ofQ) w.r.t. Z.

6 Summary of complexity results

Strictly-sound semantics. Query answering is undecidable
even if we allow a slightly more general class of IDs than the
NKCIDs; let us define a 1-key-conflicting (1KC) data inte-
gration system as a system such that for each ;] C
ro[As], Ao can be a strict superset éby(r2) (if defined),
but containing at most one attribute more than(rs).

Theorem 6.1 The problem of query answering in 1KC inte-
gration systems, under the strictly-sound semantics, is unde-
cidable.

In the strictly-sound semantics, the complexity of the deci-
sion problem of query answering is immediately derived from
the rewriting of Section 3.

Theorem 6.2 The problem of query answering in NKC in-
tegration systems, under the strictly-sound semantics, is in
PTIME in data complexity.

Proof. Trivial, since the perfect rewritingl;p U IIxp U
II,,,; U Il can be evaluated in PTIME w.r. O

Loosely-sound semanticsSince, as we already said, when

We now address the problem of computing answers to a quersem(Z, D) # () the strict semantics and the loose ones co-
under the loosely-sound semantics. Specifically, we presefficide, it is easy to see that the above properties of query
a rewriting technique to compute answers to queries posed @1swering under the strictly-sound semantics can be easily

NKC systems under the loosely-sound semantics.
Our method relies on Theorem 3.6 stating that for NKC

generalized.
Theorem 6.3 The problem of query answering in 1KC inte-

systems it is possible to “separately” deal with inclusion andgration systems, under the loosely-sound semantics, is unde-
key dependencies: actually, for the first ones we exploitidable.

the algorithmID-rewrite(¥, 37, Q) presented in Section 3,
whereas for the second ones we make use of Datalog

der stable model semantics , a well-known extension of Dat-

alog that allows for using negation in the body of program
rules[Kolaitis and Papadimitriou, 1991

More specifically, we define a DatalogorogramIl; i p
that allows us to compute the maximal subsets«fZ, D)
that are consistent witR i. II;x p is obtained by taking, for
each relation € G, the rules

7"()27 S;) — D (ia 5;) ) not F(ia 5;)
F()_(’7 }_;) — TD(ia 5;) ) T(iv Z) ) Yl # Zl
?()27 S;) — TD(ia S;) ) T(§> Z) ) Ym 7é Zm

where: inr(X,¥) the variables ink correspond to the at-
tributes constituting the key of the relationy = Y1,...,Y,,
andz = 7y,...,Zy,.

Informally, for each relatiom, IT; x p contains (i) a relation
rp that represents™*(Z:P); (i) a relationr that represents a
subset of-"¢*(Z.D) that is consistent with the KD for, (iii) an
auxiliary relationr. The above rules force each stable model
M of I,k p to be such that™ is a maximal subset of tuples
from »7*(Z.P) that are consistent with the KD for

Then, we consider the DatalogrrogramIl;xp U Tl;p U
I pp, Wherell; ;, is obtained througtD-rewrite(¥, 37, Q),
andII,p is obtained frondI, by replacing each symbel
with rD.

We now characterize the problem of query answering un-
der the loosely-sound semantics in NKC systems.

heorem 6.4 The problem of query answering in NKC inte-
gration systems, under the loosely-sound semantics, is cONP-
complete in data complexity.

Proof (sketch). Membership in coNP follows from Theo-
rem 5.1, and from the fact that query answering in Datalog
is coNP-complete in data complexity, while coNP-hardness
can be easily proved by a reduction of the 8t ORABILITY
problem to our problem. O

The summary of the results we have obtained is reported
in the table in Figure 1, which presents the complexity of
query answering for both the strictly-sound and the loosely-
sound semantics. Each row corresponds to a different class
of dependencies (specified in the first two columns), while
each cell of the table reports data complexity and combined
complexity* of query answering for UCQs: for each decid-
able case, the complexity of the problem is complete w.r.t. the
class reported. In the second column of the table, FK stands
for “foreign key dependencies” (a well-known class of IDs)
while GEN stands for “general IDs”. We have marked with
the symbol# the cells corresponding either to already known
results or to results immediately implied by known results.

1The results for combined complexity, which we cannot present
in detail due to space limitations, hold under the assumption that the
mapping is expressed in terms of UCQs.
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