
Query rewriting and answering under constraints in data integration systems

Andrea Calı̀ Domenico Lembo Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Universit̀a di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

{cali , lembo , rosati }@dis.uniroma1.it

Abstract

In this paper we address the problem of query an-
swering and rewriting in global-as-view data inte-
gration systems, when key and inclusion dependen-
cies are expressed on the global integration schema.
In the case ofsoundviews, we provide sound and
complete rewriting techniques for a maximal class
of constraints for which decidability holds. Then,
we introduce a semantics which is able to cope with
violations of constraints, and present a sound and
complete rewriting technique for the same decid-
able class of constraints. Finally, we consider the
decision problem of query answering and give de-
cidability and complexity results.

1 Introduction
The task of a data integration system is to combine data resid-
ing at different sources, providing the user with a unified view
of them, calledglobal schema. User queries are formulated
over the global schema, and the system suitably queries the
sources, providing an answer to the user, who is not obliged to
have any information about the sources. The problem of data
integration is a crucial issue in many application domains,
e.g., re-engineering legacy systems, data warehousing, data
mining, data exchange.

A central aspect of query processing is the specification of
the relationship between the global schema and the sources;
such a specification is given in the form of a so-calledmap-
ping. There are basically two approaches for specifying the
mapping. The first approach, calledglobal-as-view(GAV),
requires that a view over the sources is associated with ev-
ery element of the global schema. Conversely, the second
approach, calledlocal-as-view(LAV), requires the sources to
be defined as views over the global schema[Lenzerini, 2002;
Duschka and Levy, 1997].

The global schema is a representation of the domain of in-
terest of the data integration system: integrity constraints are
expressed on such a schema to enhance its expressiveness,
thus improving its capability of representing the real world.

Since sources are in general autonomous, the data pro-
vided by the sources are likely not to satisfy the constraints
on the global schema. Integrity constraints have to be taken
into account during query processing; otherwise, the system

may return incorrect answers to the user[Faginet al., 2003;
Cal̀ı et al., 2002].

Another significant issue is that the sources may not pro-
vide exactly the data that satisfy the corresponding portion of
the global schema; in particular, they may provide either a
subset or a superset of the data satisfying the mentioned por-
tion, and the mapping is to be consideredsoundor complete
respectively. Mappings that are both sound and complete are
calledexact.

In this paper, we restrict our analysis to the GAV approach,
which is the most used in the context of data integration. In
particular, we study a relational data integration framework in
which key dependencies (KDs) and inclusion dependencies
(IDs) are expressed on the global schema, and the mapping
is considered sound. The main contributions of this paper are
the following:

1. After showing that query answering in the general case
in undecidable, we provide a sound and complete query
rewriting technique first for the case of IDs alone, and
then for the case of KDs together with the maximal class
of IDs for which the problem is decidable, callednon-
key-conflicting IDs, or simply NKCIDs (Section 3).

2. Since it is likely that data retrieved at different, au-
tonomous sources violate the KDs, we introduce a novel
semantics that is a “relaxation” of the sound semantics,
and that allows minimal repairs of the data (Section 4).
We then present a sound and complete query rewriting
technique in the case where KDs and NKCIDs are ex-
pressed on the global schema (Section 5).

3. Finally, we present decidability and complexity results
of the (decision) problem of query answering in the dif-
ferent cases (Section 6).

2 Formal framework for data integration
In this section we define a logical framework for data integra-
tion, based on the relational model with integrity constraints.

Syntax We consider to have an infinite, fixed alphabetΓ of
constants (also called values) representing real world objects,
and will take into account only databases havingΓ as domain.
We adopt the so-calledunique name assumption, i.e., we as-
sume that different constants denote different objects.

Formally, a data integration systemI is a triple〈G,S,M〉,
where:



1. G is the global schemaexpressed in the relational
model with integrity constraints. In particular,G =
〈Ψ, ΣI , ΣK〉, where (i) Ψ is a set of relations, each
with an associated arity that indicates the number of
its attributes. The attributes of a relationr of arity n
are represented by the integers1, . . . , n. (ii) ΣI is a
set of inclusion dependencies(IDs), i.e. a set of as-
sertions of the formr1[A] ⊆ r2[B], wherer1, r2 are
relations inΨ, A = A1, . . . , An (n ≥ 0) is a se-
quence of attributes ofr1, andB = B1, . . . , Bn is a
sequence of attributes ofr2. (iii) ΣK is a set ofkey de-
pendencies(KDs), i.e., a set of assertions of the form
key(r) = A, wherer is a relation in the global schema,
andA = A1, . . . , An is a sequence of attributes ofr
such that for eachi ∈ {1, . . . , n − 1} ai < ai+1. We
assume, without loss of generality, that the attributes in
A are the firstn attributes ofr. Moreover, we assume
that at most one KD is specified for each relation.

2. S is thesource schema, constituted by the schemas of
the various sources that are part of the data integration
system. We assume that the sources are relational, and
that integrity constraints expressed onS are satisfied
data at the sources. Hence, we do not take such con-
straints into account in our framework.

3. M is the mappingbetween the global and the source
schema. In our framework the mapping is defined in the
GAV approach, i.e., each relation inΨ is associated with
a view, i.e., a query, over the sources. We indicate the
mapping as a set of assertions of the form〈r, V 〉, wherer
is a relation andV is the associated view over the source
schema. We assume that the language used to express
queries in the mapping ispositive Datalog[Abiteboulet
al., 1995], over the alphabet of the relation symbols in
S. A Datalog query (or program)q of arity n is a col-
lection of rules of the formh(~x) ← conj (~x, ~y), where
conj (~x, ~y) is a set of atoms whose predicate symbols are
either relation symbols inS or the head symbolh, and
involve ~x = X1, . . . , Xn and~y = Y1, . . . , Ym, where
Xi andYj are either variables or values ofΓ. We call
h(~x) theheadof the rule, andconj (~x, ~y) thebody.

Finally, aqueryover the global schemaq is a formula that
is intended to extract a set of tuples of elements ofΓ. The
language used to express queries overG is union of conjunc-
tive queries(UCQ) [Abiteboul et al., 1995], i.e., a Datalog
program such that each rule head uses the same predicate of
the same arity, and only relation symbols ofG occur in each
rule body.
SemanticsA database instance(or simplydatabase) C for a
relational schemaDB is a set of facts of the formr(t) where
r is a relation of arityn inDB andt is ann-tuple of values of
the domain alphabetΓ. We denote asrC the set{t | r(t) ∈
C}; moreover, given a Datalog queryq, we denote asqC the
evaluation ofq overC, i.e., the minimal fixpoint model ofq
andC [Abiteboulet al., 1995].

In order to specify the semantics of a data integration sys-
temI, we start by considering asource databasefor I, i.e.,
a databaseD for the source schemaS. Based onD, we now
specify which is the information content of the global schema
G. We call global databasefor I any database forG. For-

mally, given a source databaseD for I = 〈G,S,M〉, the
semantics ofI wrt D, denotedsem(I,D), is a set of global
databases forI, where a global databaseB is in sem(I,D)
if:

1. B is consistent withG, i.e., it satisfies the IDs inΣI and
the KDs inΣK . More formally: (i) B satisfies an inclu-
sion dependencyr1[A] ⊆ r2[B] if for each tuplet1 in
rB1 there exists a tuplet2 in rB2 such thatt1[A] = t2[B],
wheret[A] is the projection of the tuplet overA. If B
satisfies all inclusion dependencies expressed onG we
say thatB is consistent withΣI ; (ii) B satisfies a key
dependencykey(r) = A if for each t1, t2 ∈ rB with
t1 6= t2 we havet1[A] 6= t2[A]. If B satisfies all key
dependencies expressed onG we say thatB is consistent
with ΣK .

2. B satisfies the mappingM wrt D, i.e., it satisfies each
pair 〈r, V 〉 in M wrt D. In particular, we say thatB
satisfies the pair〈r, V 〉 wrt D, if all the tuples satisfy-
ing V in D satisfy r in B, i.e. V D ⊆ rB. Note that
the above definition amounts to consider any viewV as
sound, which means that the data retrieved from sources
satisfy the global schema, but are not necessarily com-
plete.

By simply evaluating each view over the source database
D, we obtain a global database, calledretrieved global
databaseret(I,D), that actually satisfies the sound mapping
(but that is not necessarily consistent withG).

We give now the semantics of queries. Formally, given
a source databaseD for I we call answersto a queryq
of arity n w.r.t. I andD, the setans(q, I,D) defined as
follows: ans(q, I,D) = {〈c1, . . . , cn〉 | for eachB ∈
sem(I,D), 〈c1, . . . , cn〉 ∈ qB }.

In this paper, we address the query answering problem, that
is the problem of computing the setans(q, I,D). To this
aim, we make use of query rewriting techniques, i.e., we ex-
ploit the mappingM to reformulate the queryq into another
queryqr, the rewriting, that can be evaluated on the source
databaseD. We say thatqr is aperfect rewritingof q w.r.t. I
if qDr = ans(q, I,D) for eachD. Furthermore, with regard
to decidability and complexity results, we will refer to the de-
cision problem associated to query answering, that is, given a
data integration systemI = 〈G,S,M〉, a source databaseD,
a queryq of arity n overG and an-tuple t of values ofΓ, to
establish whethert ∈ ans(q, I,D).

Example 2.1 Consider a data integration system
I0 = 〈G0,S0,M0〉, referring to the context of football
teams. The global schemaG0 consists of the rela-
tion predicates player(Pname,Pcountry ,Pteam) and
team(Tacronym,Tname,Tleader), and the following
constraints: key(player) = {Pname}, key(team) =
{Tacronym}, team[Tleader ] ⊆ player [Pname].

The source schemaS0 consists of the schemas of three
sources comprising the relations1 of arity 4, and the rela-
tionss2 ands3, both of arity 3. Finally, the mappingM0 is
defined by the two assertions

〈player , player(X, Y, Z) ← s1(X, Y, Z, W )〉
〈team, team(X, Y, Z) ← s2(X, Y, Z)

team(X, Y, Z) ← s3(X, Y, Z)〉



Consider the source databaseD0 = {s1(Totti, ITA, RM, 27),
s1(Beckham, ENG, MU, 28), s2(RM, Roma, T otti),
s3(MU, Man.Utd., Giggs)}. Then, ret(I0,D0) =
{player(Totti, ITA, RM), player(Beckham, ENG, MU),
team(RM, Roma, T otti), team(MU, Man.Utd., Giggs)}.
Notice that the facts inret(I0,D0) together with the for-
eign key constraintteam[Tleader ] ⊆ player [Pname] im-
pose thatGiggs is a player. Since the views are sound, the
semantics for the integration system has to account for all
the global databases that provide the country and the team
of the player. Hence,sem(I0,D0) contains all database in-
stances that can be obtained by adding toret(I0,D0) (among
others) at least one fact of the formplayer(Giggs, α, β),
whereα andβ are values of the domainΓ. Given the query
q(X) ← player(X, Y, Z), we have thatans(q, I0,D0) =
{Totti, Beckham, Giggs}.

3 Query rewriting
In this section we present algorithms for computing the per-
fect rewriting of a UCQ query in GAV integration systems
with KDs and IDs. We first study the case in which only IDs
are expressed on the global schema, then we deal with the
simultaneous presence of both IDs and KDs.

Query rewriting under IDs only We start by studying
query rewriting when only IDs are expressed on the global
schema. To this aim, we need some preliminary definitions.

Given a conjunctive queryq, we say that a variableX is
unboundin q if it occurs only once inq, otherwise we say
thatX is bound inq. Notice that variables occurring in the
head of the query are necessarily bound, since each of them
must also occur in the query body. Abound termis either a
bound variable or a constant.

In the following, we assume that all unbound variables in
the queryq are represented by the special termξ.

Definition 3.1 Given an atomg = s(X1, . . . , Xn) and an
inclusionI = r[i1, . . . , ik] ⊆ s[j1, . . . , jk], we say thatI is
applicable tog if, for each` such that1 ≤ ` ≤ n, if X` 6= ξ
then there existsh such thatjh = `. Moreover, we denote
with gr(g, I) the atoms(Y1, . . . , Ym) (m is the arity ofs in
Ψ) where for each̀ such that1 ≤ ` ≤ m, Y` = Xjh

if there
existsh such thatih = `, otherwiseY` = ξ.

Roughly speaking, an inclusionI is applicable to an atom
g if the relation symbol ofg corresponds to the symbol in the
right-hand side ofI and if all the attributes for which bound
terms appear ing are propagated by the inclusionI. WhenI
is applicable tog, gr(g, I) denotes the atom obtained fromg
by usingI as a rewriting rule whose direction is right-to-left.

Definition 3.2 Given an atomg1 = r(X1, . . . , Xn) and an
atomg2 = r(Y1, . . . , Yn), we say thatg1 andg2 unify if for
eachi such that1 ≤ i ≤ n, eitherXi = Yi or Xi = ξ or
Yi = ξ. Moreover, ifg1 andg2 unify, we denote asU(g1, g2)
the atomr(Z1, . . . , Zn) where, for eachi, if Xi = Yi or
Yi = ξ thenZi = Xi, otherwiseZi = Yi.

Informally, two atoms unify if they can be made equal
through a substitution of each instance of the special symbol
ξ with other terms.

Below we define the algorithmID-rewrite to compute the
perfect rewriting of a union of conjunctive queriesQ. Infor-
mally, the algorithm computes the closure of the set of con-
junctive queriesQ with respect to the following two rules:
(i) if there exists a queryq ∈ Q such thatbody(q) contains
two atomsg1 andg2 that unify, then the algorithm computes
the queryreduce(q, g1, g2), which is obtained fromq by re-
placingg1 andg2 with U(g1, g2) in the query body, and then
by applying the substitution obtained in the computation of
U(g1, g2) to the whole query. Such a new query is then trans-
formed by the functionτ , which replaces withξ each variable
symbolX such that there is a single occurrence ofX in q.
The use ofτ is necessary in order to guarantee that each un-
bound variable is represented by the symbolξ. Such a query
is then added toQ.
(ii) if there exists an inclusionI and a queryq ∈ Q con-
taining an atomg such thatI is applicable tog, then the
algorithm adds toQ the query obtained fromq by replac-
ing g with gr(g, I) in its body (denoted in the algorithm as
q[g/gr(g, I)]). Namely, this step adds new conjunctions ob-
tained by applying inclusion dependencies as rewriting rules
(applied from right to left).

The above rules correspond respectively to steps (a) and
(b) of the algorithm.

Algorithm ID-rewrite(Ψ, ΣI , q)
Input: relational schemaΨ, inclusion dependenciesΣI ,

union of conjunctive queriesQ
Output: perfect rewriting ofQ
Q′ := Q;
repeat

Qaux := Q′;
for eachq ∈ Qaux do
(a) for eachg1, g2 ∈ body(q) do

if g1 andg2 unify
then Q′ := Q′ ∪ {τ(reduce(q, g1, g2))};

(b) for eachg ∈ body(q) do
for each I ∈ ΣI do

if I is applicable tog
then Q′ := Q′ ∪ { q[g/gr(g, I)] }

until Qaux = Q′;
return Q′

Termination of the algorithm is immediately implied by the
fact that the number of conjunctions that can be generated by
the algorithm is finite, since the maximum length of a gen-
erated conjunction is equal to the maximum length of a con-
junction in the body of the initial queryQ, and the number of
different atoms that can be generated by the algorithm is fi-
nite, since the alphabet of relation symbols used is finite (and
corresponds to the relation symbols occurring inQ and in
ΣI ), as well as the set of terms used (corresponding to the set
of variable and constant names occurring in the queryQ plus
the symbolξ).

Henceforth, we denote asΠID the UCQ returned by
ID-rewrite(Ψ,ΣI , Q). Moreover, we define the Datalog pro-
gramΠM = {V |〈r, V 〉 ∈ M}.
Theorem 3.3 Let I = 〈G,S,M〉 be an integration system
and letQ be a UCQ query overG. Then,ΠID ∪ ΠM is a
perfect rewriting ofQ w.r.t. I.



Query rewriting under KDs and IDs Now we address the
problem of query rewriting in the case where KDs and IDs are
defined on the global schema. Unfortunately, KDs and IDs
interact reciprocally so that the (decision) problem of query
answering in this setting becomes undecidable. The follow-
ing theorem is a consequence of a similar property proved in
[Cal̀ı et al., 2003] in the context of a single database.

Theorem 3.4 Consider a data integration systemI =
〈G,S,M〉, with G = 〈Ψ,ΣI ,ΣK〉, whereΣI and ΣK are
sets of IDs and KDs respectively. Given a source database
for I, a queryq over G, and a tuplet̄ of values ofΓ, the
problem of calculatingans(q, I,D) is undecidable.

Undecidability of calculating the certain answers to a query
immediately implies undecidability of calculating the perfect
rewriting[Cal̀ı et al., 2003]. The problem of query answering
becomes decidable if we restrict the IDs to be in a particular
class, so that they do not interact with KDs.

Definition 3.5 Consider a data integration systemI =
〈G,S,M〉, with G = 〈Ψ, ΣI ,ΣK〉. An ID r1[A1] ⊆ r2[A2]
is anon-key-conflicting ID (NKCID)w.r.t. K if either: (i) no
KD is defined onr2; (ii) the KD key(r2) = K is in ΣK and
A2 is not a strict superset ofK, i.e., A2 6⊃ K. If all IDs
in ΣI are NKCIDs w.r.t.ΣK , the systemI is saidnon-key-
conflicting (NKC).

We point out that the class of NKC IDs comprises the well-
known class offoreign key dependencies, which correspond
to IDs of the formr1[A1] ⊆ r2[A2] such thatkey(r2) = A2.

The most important feature of a NKC data integration sys-
tem is theseparationbetween the IDs and the KDs; in such a
case, in fact, we can take IDs into account as if the KDs were
not expressed onG.

Theorem 3.6 (Separation)Given a NKC data integration
systemI = 〈G,S,M〉, with G = 〈Ψ, ΣI , ΣK〉, let I ′ =
〈G′,S,M〉, with G′ = 〈Ψ, ΣI , ∅〉, the system obtained byI
by eliminating the KDs ofG; let D be a source database for
I andI ′. Moreover, letq be a query of arityn overG andG′,
and t̄ an n-tuple of values. We have thatt̄ /∈ ans(q, I,D) iff
D is consistent withΣK and t̄ /∈ ans(q, I ′,D).

Proof (sketch). We say thatD is consistent withΣK

iff ret(I,D) is consistent withΣK . An important re-
sult, immediately derived from[Johnson and Klug, 1984],
states thatans(q, I,D) is obtained by evaluatingq over a
(possibly infinite) database, calledchaseand denoted with
chase(ret(I,D)). The chase is obtained by adding tuples to
ret(I,D) in a way that the added tuples repair violations of
IDs. The chase satisfies the IDs overG, and it is a representa-
tive of all databases insem(I,D) [Cal̀ı et al., 2002].

“⇒”Since by hypothesis̄t /∈ ans(q, I,D), there exists a
global databaseB ∈ sem(I,D) such that̄t /∈ qB. A fortiori,
B satisfiesΣI , thereforeB ∈ sem(I ′,D), The claim follows
immediately.

“⇐”By hypothesis,D is consistent withΣK and t̄ /∈
ans(q, I ′,D). Therefore,t̄ /∈ qchase(ret(I′,D)); note that
chase(ret(I ′,D)) = chase(ret(I,D)). It can be shown,
by induction on the number of added tuples in the construc-
tion of chase(ret(I,D)), that if I is a NKC system, and
ret(I,D) satisfiesΣK , alsochase(ret(I,D)) satisfiesΣK .

It follows that chase(ret(I,D)) is a representative for all
databases insem(I,D), andans(q, I,D) = qchase(ret(I,D)).
The claim follows straightforwardly.

We now go back to query rewriting. In the case of a NKC
data integration system, we can apply the same technique de-
veloped for IDs alone, provided that we take into account the
KDs with suitable rules. Indeed, observe that ifret(I,D) vi-
olatesΣK , any tuple is in the answer to any query. Therefore,
with regard to this issue, we first introduce a unary global re-
lation val ; the idea is thatval stores all values occurring in
D. We construct a set of rulesΠval as follows: denoting with
{r1, . . . , rNr

} the set of all relations inG,

val(Xj) ← ri(X1, . . . , Xni
)

with 1 ≤ i ≤ Nr and1 ≤ j ≤ ni. Then, consider a KD of the
form key(r) = K; without loss of generality, we suppose that
r has aritym andK = {1, . . . , k} (k < m). We introduce a
set ofm− k rules; in particular, fork + 1 ≤ i ≤ m:

q(Y1, . . . , Yn) ← r(X1, . . . , Xk, Xk+1, . . . , Xm),
r(X1, . . . , Xk, X ′

k+1, . . . , X
′
m),

Xi 6= X ′
i, val(Y1), . . . , val(Yn)

We denote withΠKD the set of rules introduced as described
above. From the results of Section 3 and from the above ob-
servation, we derive the following result.

Theorem 3.7 Consider a data integration systemI =
〈G,S,M〉, and a queryq of arity n over G. Then,ΠID ∪
ΠKD ∪Πval ∪ΠM is a perfect rewriting ofq.

4 Semantics for inconsistent data sources
In the sound semantics, violations of IDs are treated “auto-
matically”because of the nature of the semantics; instead, the
violation of a single KD leads to the non-interesting case in
which sem(I,D) = ∅.

According to a common approach in the literature on in-
consistent databases[Faginet al., 1983; Lin and Mendelzon,
1998; Arenaset al., 1999], we now introduce theloosely-
soundsemantics, opposed to the previous one (that we will
call strictly-sound), in which the soundness assumption is
suitably relaxed. The intuition is that in the “relaxed” seman-
tics we are allowed to delete tuples fromret(I,D) to repair
violations of KDs, as long as we “minimize” such deletions;
violations of IDs are treated as in the sound semantics.

Given a source databaseD, we define the following order-
ingÀ(I,D) over the global databases forI that are consistent
with G. Given two such global databasesB1 andB2, we write
B1 À(I,D) B2, iff B1 ∩ ret(I,D) ⊃ B2 ∩ ret(I,D). That
is, the portion ofret(I,D) contained in the global database
is greater inB1 than inB2, i.e.,B1 approximates the sound
mapping better thanB2.

We call maximal w.r.t. (I,D) a global databaseB for
I consistent withG, such that there exists no global
databaseB′ consistent with G such that B′ À(I,D)

B. Based on this notion, we define the loosely-
sound semanticssem l as follows: sem l(I,D) =
{B | B is consistent withG andB is maximal w.r.t.(I,D)}.
Finally, we denote withans l(q, I,D) the set of answers to
queries under the loosely-sound semantics.



Example 2.1 (cont.) Consider now the source
database D′ obtained by adding toD0 the fact
s2(RM, Roma, Beckham). Then,ret(I0,D′) = ret(I0,D0)
∪ {team(RM, Roma, Beckham)} We have now
that the tuples in ret(I0,D′) violate also the KD
key(team) = {Tacronym}; hence, sem l(I0,D′) con-
tains the databases of the forms{player(Totti, ITA, RM),
player(Beckham, ENG, MU), team(MU, Man.Utd., Giggs),
team(RM, Roma, Totti), player(Giggs, α, β)} and
{player(Totti, ITA, RM), player(Beckham, ENG, MU),
team(MU, Man.Utd., Giggs), team(RM, Roma, Beckham),
player(Giggs, α, β)}, for eachα, β ∈ Γ.
Notice that for the queryq(X) ← player(X, Y, Z)
ans l(q, I0,D′) = ans(q, I0,D). On the other hand,
given the query q′(X,Z) ← team(X,Y, Z) we
have that ans l(q′, I0,D′) = {〈MU, Giggs〉} whereas
ans(q′, I0,D) = {〈MU, Giggs〉, 〈RM, Totti〉}.

It is immediate to verify that, ifsem(I,D) 6= ∅, then
sem l(I,D) = sem(I, D), i.e., if there exists a global
database that satisfies both the constraints onG and the map-
ping assertions inM w.r.t. a source databaseD, then the
strictly-sound and the loosely-sound semantics coincide.

5 Query rewriting in loosely-sound semantics
We now address the problem of computing answers to a query
under the loosely-sound semantics. Specifically, we present
a rewriting technique to compute answers to queries posed to
NKC systems under the loosely-sound semantics.

Our method relies on Theorem 3.6 stating that for NKC
systems it is possible to “separately” deal with inclusion and
key dependencies: actually, for the first ones we exploit
the algorithmID-rewrite(Ψ, ΣI , Q) presented in Section 3,
whereas for the second ones we make use of Datalog¬ un-
der stable model semantics , a well-known extension of Dat-
alog that allows for using negation in the body of program
rules[Kolaitis and Papadimitriou, 1991].

More specifically, we define a Datalog¬ programΠlKD

that allows us to compute the maximal subsets ofret(I,D)
that are consistent withΣK . ΠlKD is obtained by taking, for
each relationr ∈ G, the rules

r(~x, ~y) ← rD(~x, ~y) , not r(~x, ~y)
r(~x, ~y) ← rD(~x, ~y) , r(~x,~z) , Y1 6= Z1

· · ·
r(~x, ~y) ← rD(~x, ~y) , r(~x,~z) , Ym 6= Zm

where: inr(~x, ~y) the variables in~x correspond to the at-
tributes constituting the key of the relationr; ~y = Y1, . . . , Ym

and~z = Z1, . . . , Zm.
Informally, for each relationr, ΠlKD contains (i) a relation

rD that representsrret(I,D); (ii) a relationr that represents a
subset ofrret(I,D) that is consistent with the KD forr; (iii) an
auxiliary relationr. The above rules force each stable model
M of ΠlKD to be such thatrM is a maximal subset of tuples
from rret(I,D) that are consistent with the KD forr.

Then, we consider the Datalog¬ programΠlKD ∪ ΠID ∪
ΠMD, whereΠID is obtained throughID-rewrite(Ψ, ΣI , Q),
andΠMD is obtained fromΠM by replacing each symbolr
with rD.

Theorem 5.1 Let I = 〈G,S,M〉 be a NKC system, andQ
be a UCQ of arityn overG. Then,ΠlKD ∪ΠID ∪ΠMD is a
perfect rewriting ofQ w.r.t. I.

6 Summary of complexity results
Strictly-sound semantics. Query answering is undecidable
even if we allow a slightly more general class of IDs than the
NKCIDs; let us define a 1-key-conflicting (1KC) data inte-
gration system as a system such that for each IDr1[A1] ⊆
r2[A2], A2 can be a strict superset ofkey(r2) (if defined),
but containing at most one attribute more thankey(r2).
Theorem 6.1 The problem of query answering in 1KC inte-
gration systems, under the strictly-sound semantics, is unde-
cidable.

In the strictly-sound semantics, the complexity of the deci-
sion problem of query answering is immediately derived from
the rewriting of Section 3.
Theorem 6.2 The problem of query answering in NKC in-
tegration systems, under the strictly-sound semantics, is in
PTIME in data complexity.

Proof. Trivial, since the perfect rewritingΠID ∪ ΠKD ∪
Πval ∪ΠM can be evaluated in PTIME w.r.t.D.

Loosely-sound semanticsSince, as we already said, when
sem(I,D) 6= ∅ the strict semantics and the loose ones co-
incide, it is easy to see that the above properties of query
answering under the strictly-sound semantics can be easily
generalized.
Theorem 6.3 The problem of query answering in 1KC inte-
gration systems, under the loosely-sound semantics, is unde-
cidable.

We now characterize the problem of query answering un-
der the loosely-sound semantics in NKC systems.
Theorem 6.4 The problem of query answering in NKC inte-
gration systems, under the loosely-sound semantics, is coNP-
complete in data complexity.

Proof (sketch). Membership in coNP follows from Theo-
rem 5.1, and from the fact that query answering in Datalog¬
is coNP-complete in data complexity, while coNP-hardness
can be easily proved by a reduction of the 3-COLORABILITY
problem to our problem.

The summary of the results we have obtained is reported
in the table in Figure 1, which presents the complexity of
query answering for both the strictly-sound and the loosely-
sound semantics. Each row corresponds to a different class
of dependencies (specified in the first two columns), while
each cell of the table reports data complexity and combined
complexity1 of query answering for UCQs: for each decid-
able case, the complexity of the problem is complete w.r.t. the
class reported. In the second column of the table, FK stands
for “foreign key dependencies” (a well-known class of IDs)
while GEN stands for “general IDs”. We have marked with
the symbol♠ the cells corresponding either to already known
results or to results immediately implied by known results.

1The results for combined complexity, which we cannot present
in detail due to space limitations, hold under the assumption that the
mapping is expressed in terms of UCQs.



KDs IDs strictly-sound loosely-sound

no GEN PTIME/PSPACE♠ PTIME/PSPACE♠

yes no PTIME/NP♠ coNP/Πp
2
♠

yes FK PTIME/PSPACE coNP/PSPACE
yes NKC PTIME/PSPACE coNP/PSPACE
yes 1KC undecidable undecidable
yes GEN undecidable♠ undecidable♠

Figure 1: Complexity of query answering (decision problem)

7 Discussion and related work
In this paper we have presented techniques for query rewrit-
ing in data integration systems with integrity constraints. and
analyzed the complexity of query answering. To this aim, we
have exploited formalisms and methods both from the tradi-
tional database theory and from computational logic.

Several works in the literature address the problem of data
integration under constraints on the global schema. In this
respect, query rewriting under integrity constraints has been
first studied in the LAV setting. In particular,[Duschka and
Genesereth, 1997] presents a method for query rewriting un-
der functional dependencies in LAV systems, which is able to
compute the perfect rewriting in the case of queries and map-
ping expressed through conjunctive queries, and “maximally
contained” rewritings in the case of recursive mappings.

Then,[Gryz, 1999] analyzes query rewriting under inclu-
sion dependencies in LAV systems, and presents a method
which is able to deal simultaneously with acyclic IDs and
functional dependencies, based on an algorithm for comput-
ing the rewriting of a conjunctive query in a database with
inclusion dependencies. The algorithm is based on a very in-
teresting idea: obtaining query rewriting by computing the
rewriting of each atom in a way “almost independent” of the
other atoms. This can be obtained if the body of the ini-
tial queryq is preliminarly “minimized”. However, we have
found out that Gryz’s algorithm does not actually compute
the perfect rewriting, in the sense that some conjunctions of
the perfect rewriting are missing. Our algorithmID-rewrite
presented in Section 3 is certainly inspired by Gryz’s main in-
tuitions, but overcomes the above mentioned incompleteness
through a new technique for generating the rewriting.

Complexity of query answering in GAV under IDs alone
is immediately derived by the results in[Johnson and Klug,
1984]; in this work, the same problem is solved for a re-
stricted class of KDs and IDs, which, however, is significantly
less general than the one treated in this paper. More recently,
integration under constraints in GAV systems has been ad-
dressed in[Cal̀ı et al., 2002], which presents a method for
query rewriting in the presence of KDs and foreign key de-
pendencies, under a semantics analogous to our strictly-sound
semantics. Thus, the method does not deal with data incon-
sistencies w.r.t. KDs. Moreover,[Faginet al., 2003] presents
an approach for dealing with integrity constraints in a GLAV
setting (a generalization of LAV and GAV).

In single database settings,[Arenaset al., 1999; Grecoet
al., 2001] propose methods for consistent query answering in
inconsistent databases, which are able to deal with universally
quantified constraints. The semantics adopted in these works

is different from the ones considered in the present paper.
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