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Abstract

The lexical substitution task aims at finding suit-
able replacements for words in context. It has
proved to be useful in several areas, such as word
sense induction and text simplification, as well
as in more practical applications such as writing-
assistant tools. However, the paucity of annotated
data has forced researchers to apply mainly unsu-
pervised approaches, limiting the applicability of
large pre-trained models and thus hampering the
potential benefits of supervised approaches to the
task. In this paper, we mitigate this issue by propos-
ing ALaSca, a novel approach to automatically cre-
ating large-scale datasets for English lexical sub-
stitution. ALaSca allows examples to be produced
for potentially any word in a language vocabulary
and to cover most of the meanings it lists. Thanks
to this, we can unleash the full potential of neu-
ral architectures and finetune them on the lexical
substitution task. Indeed, when using our data,
a transformer-based model performs substantially
better than when using manually-annotated data
only. We release ALaSca at https://sapienzanlp.
github.io/alasca/.

1 Introduction
The lexical substitution task [McCarthy and Navigli, 2009]
requires a system to provide possible replacements for a
target word in a given sentence. Each proposed substitute
should fit the context, while maintaining the overall mean-
ing of the sentence unchanged. Through the years, two
sub-tasks have been put forward, i.e., substitutes prediction
and candidates ranking [Melamud et al., 2015]. The for-
mer aims at producing one or more possible substitutes given
the target word and its context; the latter, instead, ranks a
set of substitutes provided in advance to the system. Nei-
ther of these task variants explicitly requires any semantic
tagging of targets or substitutes; however, a good substitu-
tion system is expected to implicitly take word senses into
account. Consider, for example, two contexts for the target
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bright: a) She is a bright girl; b) The Sun is bright. An ef-
fective substitution system would provide two distinct sets
of possible replacements, such as {smart, intelligent, bril-
liant} and {shining, luminous}, respectively. The implicit
disambiguation provided by substitution systems has shown
itself to be useful in several fields, such as word sense in-
duction [Başkaya et al., 2013; Amrami and Goldberg, 2018;
Arefyev et al., 2019], text augmentation [Jia et al., 2019;
Arefyev et al., 2020], word sense disambiguation [Hou et al.,
2020] or text simplification [Bingel et al., 2018]. However,
despite its possible uses, there is a lack of appropriate large-
scale resources for the task [Soler et al., 2019]. This pre-
vents exploitation of the most recent advances in neural lan-
guage modeling such as Bidirectional Encoder Representa-
tions from Transformers [Devlin et al., 2019, BERT] or Gen-
erative Pre-trained Transformer [Radford et al., 2019, GPT],
which hampers the potential benefits they could bring to this
field.

To fill this gap, we propose ALaSca, an Automated ap-
proach for Large-Scale lexical substitution. ALaSca produces
datasets tailored for the task, automatically associating tar-
get words in context with ranked lists of substitutes. Starting
from an arbitrary target word, it first extracts Wikipedia sen-
tences where this word appears. Then, by leveraging latent
representations of texts, ALaSca retrieves new contexts that
are similar to those where the target appears and uses them
to find meaningful substitutes. Finally, these substitutes are
ranked according to how well they match the initial input con-
text. ALaSca makes it possible, for the first time, to create a
large number of examples annotated with lexical substitutes
that are consistent with the context. By exploiting a cluster-
based approach, we enforce a diversity of contexts and there-
fore of meanings in which the input words are used across
sentences. The resulting dataset enables neural architectures
to be finetuned on the task, unleashing the full potential of
supervised techniques. Through different experiments, we
show that a simple BERT-based model provides better sub-
stitutes when using ALaSca training data than when being
restricted to gold instances only, reaching performances that
are higher, or on par with, complex state-of-the-art models.
We also investigate the reasons for this success and provide
an extensive ablation study over the several components of
ALaSca, measuring to what extent each of them influences
the quality of the resulting dataset.
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2 Related Work
The Lexical Substitution task aims at finding the most suit-
able replacements for a target word in a given context with-
out substantially changing the overall meaning of the sen-
tence [McCarthy and Navigli, 2009]. In stark contrast with
many other NLP problems, most approaches to this task have
to date been knowledge-based or unsupervised [Melamud et
al., 2015; Melamud et al., 2016; Zhou et al., 2019], due to
the lack of large-scale resources needed to finetune pretrained
models for text understanding.

2.1 Lexical Substitution Datasets
Over the years, various resources have been released for the
English lexical substitution task.

LST The Lexical Substitution Task dataset (LST) is the
dataset released for the original task proposed by McCarthy
and Navigli [2007]. It encompasses 2010 sentences, with
a single word annotated for each sentence. The sentences
were drawn from the English Internet Corpus [Sharoff, 2006],
and cover 201 distinct target words, balanced across different
parts of speech. While targets and sentences were partially
collected using an automatic approach, the substitutes were
chosen manually by 5 English native speakers.

TWSI The small coverage of the LST dataset led to the
creation of the Turk bootstrap Word Sense Inventory [Bie-
mann, 2012], which was the first attempt to produce a large-
scale dataset. Biemann collected roughly 25K Wikipedia sen-
tences, and tagged 1012 distinct nouns therein through Ama-
zon Mechanical Turk. Furthermore, the resource annotation
was carried out by considering the meaning of each target
word occurrence, thereby providing different substitutes for
the same lemma in different contexts.

CoInCo Despite the effort expended to create the TWSI,
the corpus covered only nouns, hence, Kremer et al. [2014]
proposed a similar annotation task starting from a set of sen-
tences of the MASC corpus [Ide et al., 2008]. Substitutes
were annotated through Amazon Mechanical Turk in this case
too and the resulting dataset (Concept In Context, CoInCo)
contains 15K tagged instances in 2474 sentences for 3874
distinct words with diverse part-of-speech tags.

2.2 Lexical Substitution Models
The creation of several datasets for the task allowed the de-
velopment of different strategies to tackle it. Unfortunately,
the use of supervised models was limited to a few exam-
ples [Szarvas et al., 2013a; Szarvas et al., 2013b], due to
the paucity of annotated data and the difficulty of creating
them. The models proposed during the years can be di-
vided in three categories: knowledge-based, vector-space,
and Transformer-based.

Knowledge-based models These approaches exploit the
structure of lexical resources, such as WordNet [Miller,
1995], to find the synonyms of a target word to be used as
substitutes. Szarvas et al. [2013a] proposed a hybrid ap-
proach where a binary classifier is trained with delexicalized
features to predict whether a retrieved substitute is valid in
a given context. The main limitation of these models is that

they may overlook good substitutes if they are not synonyms
or if they are absent from the lexical resource used.
Vector-space models These approaches drop the need for
a knowledge base and, exploiting word-embedding models,
compute similarity scores among target words, contexts and
substitutes. Melamud et al. [2015] proposed several similar-
ity measures to select substitutes and later further extended
their work by using a bi-LSTM to obtain word representa-
tions [Melamud et al., 2016; Soler et al., 2019]. This line of
research developed representations of the context where a lex-
ical item appears and were fundamental to the development
of modern contextualized word embedding models [Devlin et
al., 2019].
Transformer-based models These models represent the
natural evolution of vector-space models. They employ large
pre-trained neural architectures to produce contextualized
representations of words. Zhou et al. [2019] proposed a
BERT-based approach consisting of two steps: first, it applies
dropout to the target word and proposes candidates substitutes
by means of a language modeling head. Second, these candi-
dates are validated according to their substitution’s influence
on the contextualized representation of the sentence. Arefyev
et al. [2020], instead, focused on developing substitute prob-
ability estimators that were then applied to several pretrained
contextualized models.

In our work we address the training data paucity issue:
rather than manually creating a dataset (see §2.1) we focus,
for the first time, on the automatic creation of high-quality
training data for the lexical substitution task. Differently from
all the other approaches which produce annotated datasets by
manually associating a list of substitutes for a given word in
context, ALaSca starts from a list of lemmas and, first, builds
a large set of examples where those lemmas appear in as many
senses as possible, and then annotates them with their most
suitable substitutes. Our method addresses most shortcom-
ings of the existing resources as it is completely automatic.
Hence it is capable of building large datasets with no human
effort, while covering most of the senses of the input target
words and potentially all words in a language vocabulary. At
the same time, the automatic collection of substitutes does
not invalidate the quality of our dataset, allowing a simple
baseline model to achieve better results than when trained on
manually-curated resources.

3 ALaSca
In this Section, we detail our approach to producing data for
the lexical substitution task. Specifically, starting from an ar-
bitrary set of target words, ALaSca performs three steps: i) it
collects sentences where the input target words appear, clus-
ters and samples them to ensure context heterogeneity (§3.1),
ii) it extracts the candidate substitutes for target words in each
sentence (§3.2), iii) it associates sentences and substitutes so
as to build the final dataset (§3.3). A complete example of the
ALaSca pipeline is depicted in Figure 1.

3.1 Retrieving, Clustering and Sampling
We take as input a set L of lexemes represented as pairs
(l, pos), where l is a lemma and pos its part of speech. Then,



Figure 1: The ALaSca pipeline for the target noun plane. ALaSca retrieves target occurrences from a corpus (a), embeds them (b), clusters
and samples them (c). Then, for each sampled sentence (**), it computes a sentence embedding (d) to be used to retrieve similar contexts (e)
and ranks all the content words therein (f). Finally, we filter the substitutes obtained and associate them with the sampled sentence (g).

we retrieve a set of sentences S from a corpus C where at
least one of the target lexemes in L appears in any of its in-
flected forms1 (Figure 1 (a-b)). We define Sl ⊂ S as the set
of sentences where l ∈ L appears. Then, we extract from
Sl a subset of sentences that can be representative of all the
meanings of l. Note that randomly sampling sentences from
Sl would yield a set of examples where, most of the time,
l appears with its most frequent meaning. This would limit
our approach to producing substitutes for a few senses only.
Thus, to ensure sense diversity, we first leverage a pretrained
language model in order to produce a contextualized vector
representation for each occurrence of l in Sl, and then cluster
the resulting vectors. Hence, we can group instances of the
same word in similar contexts, which therefore express simi-
lar meanings within the same cluster. Formally, for each sen-
tence s ∈ Sl represented as a sequence of tokens s1, . . . , sn,
let i be the position of the lemma l in the sentence s. We
compute the vector representation of l in s as follows:

vs,l = NLM(s)[i] (1)

where NLM is a generic Neural Language Model, and
NLM(s)[i] is the vector representation of the i-th token in
s (Figure 1 (b)). We then cluster the resulting vectors by em-
ploying the k-means algorithm, and propose two strategies
for determining k.
Fixed k In this variant, we fix the number of clusters kl
for each target l ∈ L. Since different meanings of the same
lemma may actually be very similar to each other [Erk et al.,
2009], we set kl to twice the senses enumerated in our ref-
erence sense inventory for lemma l, so as to have enough
clusters to also capture subtle differences. To enumerate the
possible senses of a word we rely on WordNet, a fine-grained
lexical resource that defines senses as sets of synonym words,
and is widely used as English sense inventory for lexical se-
mantics tasks.
Adaptive k Fixing the number of clusters based on a man-
ual resource may result in sub-optimal groupings. Thus, we

1For ease of reading, in what follows we consider a lemma l to
occur in a sentence s if any of its inflected forms appears therein.

also propose determining the number of clusters automati-
cally by performing successive iterations of the k-means algo-
rithm while varying the value for kl. We choose the kl leading
to the best clustering in terms of silhouette score [Rousseeuw,
1987], i.e., a measure of cluster quality that considers at the
same time how similar elements within the same cluster are
and how distant each of them is from other clusters’ elements.

In both variants, we retain the t elements of each cluster
that are the closest to its center and sample d items among
them (Figure 1 (c)). Finally, we map the sampled vectors to
their original sentences and create the set Ssample

l of all sub-
sampled sentences for l.

3.2 Substitutes Selection
In this step, for each sentence in Ssample

l , we retrieve its
most similar sentences from a corpus C where l does not
appear, and then extract the possible substitutes for l. For-
mally, let F−l = {f | f ∈ C, l /∈ f} be the set of sentences
where l does not appear. We compute a sentence embedding
φs = SENT (s) and φf = SENT (f) for each sentence
s ∈ Ssample

l and f ∈ F−l, respectively, by means of a generic
sentence embedding model SENT (Figure 1 (d)). For each
sentence s in Ssample

l , we use its vector representation as a
query to find the most similar sentences in F−l. That is, we
compute the set Ms = {f1, . . . , fm | fi ∈ F−l} of the m
sentences most similar to s according to their vectors’ cosine
similarity (Figure 1 (e)). Finally, for each sentence f in Ms,
we extract the set of candidate substitutes CSl

s by consider-
ing all the words w of the sentences in Ms with the same part
of speech of l (Figure 1 (e), bold tokens). More formally,
CSl

s = {(w, f) | ∃ f ∈ Ms, w ∈ f, posl = posw}. Note
that not all the words with the same pos as l in the sentences
of Ms represent a suitable substitute for l. Hence, we de-
vise two strategies for filtering them out and compile the final
ranking of substitutes.

Contextualized similarity For each pair (w, f) inCSl
s, we

compute the contextualized embedding vectors vf,w (Eq. 1),
and their cosine similarity with the vector vs,l (Figure 1(f)).
Since CSl

s may contain several inflected forms of the same



Clustering S-Embeddings Sim. Measure γ GAP

fixed LASER context 0.6 35.83
adaptive LASER context 0.6 33.54
fixed S-BERT context 0.6 34.92
adaptive S-BERT context 0.6 34.61
fixed LASER combined 0.4 36.19
adaptive LASER combined 0.4 32.85
fixed S-BERT combined 0.4 35.30
adaptive S-BERT combined 0.4 34.76

Table 1: The results on the development set for the ablation study.

lemma, we lemmatize each word therein, and assign to each
lemma a score that is the average of its inflected forms scores.
This yields a list of unique lemmas that we rank in descending
order of similarity and from which we select up to α lemmas
with a similarity score higher than a given threshold γ, thus
obtaining the list of substitutes Rs,l for the target lemma l in
s (Figure 1(g)).
Combined similarity Since all similarity measures applied
so far already take contexts into account, we propose en-
riching the contextualized similarity with a static metric, i.e.,
the cosine similarity between the source and candidate static
word embeddings. Formally, let w be a candidate in CSl

s,
cw = EMB(w) its static embedding and cl = EMB(l)
the static embedding of l, we compute the score for each
candidate pair (w, f) ∈ CSl

s as follows: score(l, w) =
1
2 (cos sim(vs,l,vf,w)+ cos sim(cl, cw)), and compute the
final list of candidate lemmas Rs,l as previously described.

3.3 Dataset Construction
So far, we have retrieved, for each lexeme l, a set of sentences
Ssample
l where l occurs, and, for each sentence therein, we

have computed a ranked list Rs,l of substitutes. Thus, we can
now create a dataset for each input lemma l by associating
each sentence s ∈ Ssample

l with its set of substitutes Rs,l.
Note that, according to the different contexts where a target
word appears, we have different sets of substitutes.

4 Model and Parameter Selection
In order to evaluate how each component of the pipeline influ-
ences the quality of the dataset, we perform an ablation study,
analyzing the contribution of the clustering type (§3.1), the
sentence encoder, the similarity measure and the similarity
thresholds α and γ (§3.2). For each combination of these pa-
rameters, we first produce a dataset using ALaSca to train the
reference model and then analyze the model’s performance
on a development set. We evaluate our model on the can-
didates ranking subtask, which requires a set of given target
substitutes to be ranked according to the input context.

4.1 Setup
Reference model We use a simple yet effective BERT en-
coder with a language modeling head on top, as reference
model, namely BERTft. It takes as input a sentence s where
a target word w appears, encodes each BPE and feeds the av-
erage vectors of the target words’ BPEs to the language mod-
eling head. This ensures that we provide a single distribution

dw over the vocabulary for the given input word. However,
since the task requires only the set of candidates provided for
the target lemma to be ranked, we project dw over these can-
didates and apply the softmax so as to have a distribution. The
set of possible candidates, instead, is built by considering all
the possible substitutes for the target lemma within the data
utilized for training.

Development set As development, we use 30% of TWSI
instances concatenated with the development split of CoInCo
and we exclude the target words occurring in the development
set from the data considered for training.

4.2 Results
In Table 1 we report the performance obtained when varying
the sentence embedding model and the similarity measure,
while keeping the similarity thresholds α and γ fixed2.

Clustering We compare the adaptive and fixed clusterings
that we detailed in §3.1. As shown in Table 1, the clustering
with a fixed number of clusters always leads to higher results
than the adaptive one. This is somehow to be expected, since
the fixed approach provides on average a higher number of
clusters than the adaptive one (8.30 and 2.66 average clusters
per word, respectively) for the same set of vectors, leading to
smaller and intuitively more coherent groupings of word oc-
currences. In contrast, having larger clusters leads to a sam-
pling of the sentences that could collect less representative
instances of the diverse meanings of the target word, thereby
introducing more noise into the final dataset.

Sentence embeddings To extract information from the var-
ious sentences that may be useful for mining substitutes
(§3.2), we experiment with two encoders: LASER [Artetxe
and Schwenk, 2019] and Sentence BERT [Reimers and
Gurevych, 2019, S-BERT]. This parameter does not strongly
affect the performance; indeed, LASER leads the model to
higher performance than S-BERT when the fixed clustering
is used, while S-BERT helps to build a better dataset than
LASER when using an adaptive number of clusters.

Similarity measure To rank the candidate substitutes
(§3.2), we consider the contextualized similarity alone or in
combination with the cosine similarity between static word
embeddings. In all the configurations, the combined similar-
ity leads to the creation of better-performing datasets, with
the sole exception of one configuration: this is when LASER
embeddings are used with an adaptive setting.

Similarity thresholds We tuned the thresholds α and
γ for the selection of the substitute candidates (§3.2).
The cosine similarity threshold, γ, ranges across
{0.45, 0.50, 0.55, 0.60, 0.65} when it is used with con-
textualized vectors and across {0.35, 0.40, 0.45, 0.50, 0.55}
when it is used with the combined similarity. We employ
two different sets of values to take into account the naturally
lower scores resulting from the average of the two similar-
ities. We first tune γ, and then vary α across {1, 3, 5, 10},
so as to adjust the number of substitutes to retain. In Table

2A list of all the parameter combinations together with the corre-
sponding results is available at https://sapienzanlp.github.io/alasca/.
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Model Dataset GAP score

BERT [Arefyev et al., 2020] - 54.4
XLNet + embs [Arefyev et al., 2020] - 59.6
BERT for lexical substitution [Zhou et al., 2019] - 60.5
BERTunsup - 53.7
BERTft CoInCoT 56.2
BERTft TWSIT 58.7
BERTft CoInCoT + TWSIT 59.6

BERTft ALaScaT 58.2
BERTft ALaScaT + CoInCoT 59.3
BERTft ALaScaT + TWSIT 59.8
BERTft ALaScaT + CoInCoT + TWSIT 60.5

Table 2: Results for the candidates ranking task on the LST test set.

Dataset Target
Words

Sentences Instances AVG
Substitutes
per Target

LST 201 2010 201 20.44
CoInCo 3874 2457 15629 22.75
TWSI 1012 24612 24644 50.24

CoInCoT 3120 2434 14329 22.75
TWSIT 947 22818 22842 58.20
ALaScaT 3442 34755 37467 11.71

Table 3: Quantitative descriptions of our dataset, compared to the
gold-standard corpora and the corresponding training splits.

1 we report the results setting α = 1 and consider γ = 0.6
and γ = 0.4, respectively, for the contextualized and the
combined similarity measures.

ALaSca setting For the remaining experiments, we use
BERT large-cased as Neural Language Model, using the sum
of its last four layers to embed the target words during the
sentence sampling step (§3.1), and the last hidden state only
for the substitutes ranking step (§3.2). In both cases, we en-
code a word by averaging the embedding of its sub-tokens. In
light of the results attained in the ablation study, we use the
fixed clustering, the LASER model to encode sentences and
the combined similarity as proximity measure. As static word
representation we leverage ConceptNet Numberbatch vectors
[Speer and Lowry-Duda, 2017], and set γ = 0.4 and α = 1 .

5 Lexical Substitution Experimental Setup
In this Section, we set up of the experiments in the candidates
ranking task to assess ALaSca dataset quality.

Gold training sets We consider the training split of CoInCo
(CoInCoT) and TWSIT, i.e., the 70% of TWSI instances that
we did not use for development.

ALaSca dataset To generate a dataset for training, we
feed ALaSca with the list of lemmas in CoInCo [Kremer
et al., 2014] and LST [McCarthy and Navigli, 2009], using
Wikipedia (December 2019 dump) as corpus to retrieve the
sentences. We set the number of sentences |Sl| to be retrieved

from Wikipedia to 1000, from which we sample d = 1 exam-
ples from among the t = 500 closest to the centroids. Then,
for substitutes selection, we set m = 1000 (§3.2). This set-
ting is chosen so as to result in a dataset with a number of
instances comparable to those of the CoInCoT and TWSIT
concatenation, i.e. 40, 000, while at the same time assuring at
least one sentence for each of the 3442 lexemes covered.3 We
refer to the resulting dataset as ALaScaT and report its statis-
tics in comparison to those of other gold datasets in Table 3.
As one can see, ALaSca displays a wider variety of sentences
for a number of instances comparable to that in the two gold
corpora. ALaSca has been generated with this size to set a
level playing field with other datasets, but it can be extended
to cover the lemmas or number of instances desired.

Training parameters We train the reference model (§4.1)
with the Kullback–Leibler divergence loss with RAdam [Liu
et al., 2019] and learning rate 10−5. We set the maximum
epochs to 5, with early stopping and patience set to 3.

Comparison systems We consider as comparison the same
reference model trained on CoInCoT and TWSIT, as well as
its unsupervised version, i.e., BERTunsup. We also compare
with the work of Arefyev et al. [2020], which proposes sev-
eral unsupervised models for the task. Specifically, we con-
sider their best-scoring model employing XLNet [Yang et al.,
2019] and the model that is the most similar to ours, i.e., the
one based on BERT. Finally, we compare with the unsuper-
vised BERT-based model reported by Zhou et al. [2019].
This latter model employs both the hidden state of the tar-
get word and the attention scores associated with it in order
to rank the candidates for the target.

Evaluation We use the Lexical Substitution Task (LST)
Dataset [McCarthy and Navigli, 2007] to carry out the eval-
uation. As standard for candidates ranking, we employ the
Generalized Average Precision [Kishida, 2005, GAP] to com-
pare the rankings produced by a model with the gold ones.
The higher a substitute is ranked in the gold standard, the
more this measure rewards its correct positioning in the rank-

3Due to the use of similarity thresholds, some input targets may
be associated with empty sets of substitutes, thus being discarded.



Model Dataset GAP score

BERTft TWSIT + CoInCoT 58.83

BERTft ALaScaT 59.00
BERTft ALaScaT + TWSIT + CoInCoT 59.96

Table 4: Results for the zero-shot setting on the LST test set.

ing that is produced. The GAP score is formally defined as:

GAP =

∑N
i=1 I(xi)pi∑R
i=1 I(yi)yi

pi =

∑i
k=1 xk
i

where xi is the gold standard weight of the i-th item as ranked
by the model, I(xi) is a binary function that returns 1 if xi is
in the gold, else 0, R and N the sizes of the gold and the
rankings produced, respectively, and yi is the average of the
gold weights for the i-th ranking. As standard in the litera-
ture [Arefyev et al., 2020; Melamud et al., 2015] we exclude
multi-words substitutes from the gold and discard instances
that do not have any substitutes left.

6 Results
In what follows, we present the results attained when training
the reference model (§4.1) on different combinations of the
datasets, i.e., CoInCoT, TWSIT and ALaScaT, and tested on
the candidates ranking and the zero-shot settings.
Candidates ranking As first test, we use the standard set-
ting for the candidates ranking task and report the results on
the LST test set in Table 2. First, we note that finetuning
on the task, regardless of the dataset, is always beneficial.
Indeed, the finetuned versions of our reference model (mid-
dle block) always outperform the unsupervised version by
from 2 to almost 6 points. While this was somehow to be
expected, we are the first to show the effectiveness of fine-
tuning in the lexical substitution task. When using ALaScaT
data, which we recall are automatically-generated, we attain
results that are either higher than, or in the same ballpark as,
those attained when using each manually-annotated training
set (CoInCoT and TWSIT). This is an important result per se
as it already shows that the data generated by our approach
are comparable to those annotated manually. Concatenating
ALaScaT with gold standards always results in performance
improvements, and enables the model to reach state-of-the-
art results when trained on the concatenation of the three
datasets. Our model also surpasses its closest competitors,
i.e., BERTunsup and the BERT model proposed by Arefyev
et al. [2020], by 5 and 6 points, respectively. Furthermore,
our reference model surpasses the best of the approaches pro-
posed by Arefyev et al. [2020], which combines the proba-
bility of a substitute given the context, as obtained from the
XLNet model, with the proximity of the target to the sub-
stitute, given by a tuned temperature softmax on the inner
product of the substitute and the XLNet target embeddings.
Finally, we compare to the model of Zhou et al. [2019], even
though both Arefyev et al. [2020] and ourselves fail to repro-
duce their results. We attain their same result using a simpler
model, thereby demonstrating that producing data automati-
cally can effectively help in reducing model complexity.

Zero-shot Since ALaScaT also adds examples for target
words of the test set, it is natural to ask whether the improve-
ments are the result of testing only on words that were seen
at training time. To investigate this possibility, we build a re-
duced training set by removing all the test targets from the
training corpus, and finetune the model on the remaining in-
stances only. As one can see from Table 4, ALaScaT data
allows the model to generalise well on unseen words, better
than when using the gold training data alone. Indeed, BERT’s
performance remains close to that attained when test targets
are included in the training (see Table 2) and 1 point higher
than when using TWSIT and CoInCoT data only.
Discussion The proposed dataset boosts the performance of
a simple BERT-based model, and leads it to attain state-of-
the-art performance. The chosen architecture has the advan-
tage of being extremely simple, without any tricky compu-
tations [Zhou et al., 2019] or dedicated injection of the tar-
get [Arefyev et al., 2020](XLNet). Furthermore, ALaSca en-
ables the amount of training data with annotations to be en-
larged for arbitrary words. As already noted by Arefyev et
al. [2020], BPE tokenization inherently limits the set of pos-
sible substitutes to only those that are not split into multiple
subwords. On average, it is not possible to predict 40% of
candidate substitutes for 50% of LST test instances, leaving
space for future improvements of models for the task.

7 Conclusion
In this work, we proposed ALaSca, an Automated approach
for Large-Scale lexical substitution. ALaSca is the first ap-
proach to automatically create silver data for the lexical sub-
stitution task, mitigating the lack of annotated data in this
area. By leveraging a clustering approach, it takes different
meanings of a word into account, and provides distinct sets of
possible substitutes depending on the context the target word
appears in. Thanks to the large datasets that can now be cre-
ated, we can finetune pretrained language models, which thus
far could be employed in an unsupervised fashion only. By
finetuning a simple baseline model, we attain performances
that are 6 points higher than comparable unsupervised ap-
proaches. Furthermore, our approach can create new datasets
on demand, therefore allowing a model to be specialized on a
specific domain or existing training data to be enriched with
annotations for rare words. As future work, we will investi-
gate possible applications of ALaSca to other languages and
in downstream applications, e.g., text simplification.
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