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Abstract
Despite the recent great success of the sequence-
to-sequence paradigm in Natural Language Pro-
cessing, the majority of current studies in Seman-
tic Role Labeling (SRL) still frame the problem
as a sequence labeling task. In this paper we go
against the flow and propose GSRL (Generating
Senses and RoLes), the first sequence-to-sequence
model for end-to-end SRL. Our approach bene-
fits from recently-proposed decoder-side pretrain-
ing techniques to generate both sense and role la-
bels for all the predicates in an input sentence
at once, in an end-to-end fashion. Evaluated on
standard gold benchmarks, GSRL achieves state-
of-the-art results in both dependency- and span-
based English SRL, proving empirically that our
simple generation-based model can learn to pro-
duce complex predicate-argument structures. Fi-
nally, we propose a framework for evaluating the
robustness of an SRL model in a variety of syn-
thetic low-resource scenarios which can aid human
annotators in the creation of better, more diverse,
and more challenging gold datasets. We release
GSRL at github.com/SapienzaNLP/gsrl.

1 Introduction
Semantic Role Labeling (SRL) is commonly referred to as
the task of automatically addressing the question “Who did
What, to Whom, Where, When, and How?” [Gildea and Ju-
rafsky, 2002; Màrquez et al., 2008]. More specifically, the
task consists in: i) detecting the utterances, called predicates,
that express an event or convey an action; ii) identifying the
sentential constituents, called arguments, that participate in
the event or action outlined by each predicate; and finally,
iii) choosing the most appropriate relation, called semantic
role, that governs each predicate-argument pair. The result-
ing structured output can be seen as a form of shallow seman-
tic parsing and, therefore, achieving human parity in SRL is
often regarded as a fundamental step towards Natural Lan-
guage Understanding [Navigli, 2018]. Unsurprisingly, SRL
has garnered increasing attention through time, and numerous
studies have found it to be beneficial in a wide range of down-
stream applications, not only in Natural Language Processing

but also in Computer Vision, including: Question Answer-
ing [Shen and Lapata, 2007], Machine Translation [Marcheg-
giani et al., 2018], Visual Semantic Role Labeling [Gupta and
Malik, 2015] and Situation Recognition [Yatskar et al., 2016].

Over the years, researchers made a great many steps for-
ward in the design of better SRL models, moving from
manually-engineered feature templates to multilayered neu-
ral networks [Cai et al., 2018; Marcheggiani and Titov, 2020],
and from static to dynamically-contextualized word represen-
tations [He et al., 2019; Conia and Navigli, 2020]. While past
and present studies have accomplished impressive results, the
vast majority of the state-of-the-art models proposed year af-
ter year have framed SRL as a sequence labeling task [Cai
et al., 2018; Li et al., 2019], and only a small handful of
studies have put forward SRL systems based on sequence-to-
sequence learning [Sutskever et al., 2014], despite the grow-
ing success of this paradigm in other areas of Natural Lan-
guage Understanding [Yin et al., 2016; Lewis et al., 2020;
Raffel et al., 2020]. Currently, SRL sequence-to-sequence
models fall behind traditional sequence labeling approaches
in terms of performance [Daza and Frank, 2018] and can ad-
dress only a portion of the SRL pipeline [Daza and Frank,
2019], making them an unappealing option for downstream
applications.

In this paper, we aim at addressing these issues and pro-
pose GSRL (Generating Senses and RoLes), a novel approach
to generating both predicate senses and semantic roles. The
contributions of our work are manifold:

• We introduce the first sequence-to-sequence model for
end-to-end SRL, tackling predicate sense disambigua-
tion, argument identification and argument classification
as a single generation task;

• We demonstrate that sequence-to-sequence learning can
achieve state-of-the-art results, previously attained only
by sequence labeling approaches, in multiple gold
benchmarks for both dependency- and span-based En-
glish SRL;

• We compare different strategies to represent predicate-
argument relations and generate structured, graph-like
sense and role annotations, analyzing their positives and
negatives;

• Motivated by the convergence in the performance of re-
cent SRL systems, we propose a framework to i) evalu-
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ate future innovations in more challenging settings and
ii) aid the creation of new SRL datasets.

2 Related Work
Dependency and Span-based SRL. SRL is traditionally
framed as either a dependency-based [Surdeanu et al., 2008;
Hajic et al., 2009] or a span-based [Carreras and Màrquez,
2005; Pradhan et al., 2012] labeling task. Given a predi-
cate in a sentence, the difference between the two settings
is in the formalism used to represent its arguments. As
shown in Fig. 1, span-based SRL requires the identification
and classification of the entire textual span of an argument,
whereas dependency-based SRL is concerned about labeling
only the head of the argument. Even if, to date, it is not
clear whether one is better than the other [Li et al., 2019], re-
searchers tend to agree that the two formalisms pose different
challenges and capture complementary aspects of the overall
task [Zhou et al., 2020]. Our work encompasses both span-
and dependency-based SRL, demonstrating that a generation-
based approach is able to achieve state-of-the-art results in
both.
Sequence-to-Sequence SRL. Sequence-to-sequence learn-
ing was introduced as a general approach to sequence learn-
ing that makes minimal assumptions on the sequence struc-
ture [Sutskever et al., 2014]. While it was initially conceived
for Machine Translation [Bahdanau et al., 2015], sequence-
to-sequence learning rapidly found success in a variety of
Natural Language Processing tasks from Question Answer-
ing [Yin et al., 2016] to Dialogue [Song et al., 2019], Text
Generation [Lewis et al., 2020; Raffel et al., 2020] and more
recently Semantic Parsing [Blloshmi et al., 2020; Bevilacqua
et al., 2021; Procopio et al., 2021], inter alia. Recent work in
SRL, however, still revolves predominantly around sequence
labeling approaches [Cai and Lapata, 2019b; Xia et al., 2019;
Conia and Navigli, 2020; Marcheggiani and Titov, 2020;
Conia et al., 2021], with only a small handful of attempts
at tackling the task in a sequence-to-sequence fashion. Daza
and Frank [2018] and Daza and Frank [2019] are, to the best
of our knowledge, the most notable studies on generation-
based models for SRL, but their performance on standard
benchmarks lags behind state-of-the-art sequence labeling
techniques. Nevertheless, inspired by recent advances in
sequence-to-sequence paradigm and innovative decoder-side
pretraining [Lewis et al., 2020], we show that our sequence-
to-sequence model is able to challenge sequence labeling sys-
tems across multiple gold benchmarks.
End-to-End SRL. Due to its complexity, SRL is often di-
vided into a pipeline of four stages or subtasks: predicate
detection, predicate disambiguation, argument identification
and argument classification. While early work tried to de-
velop distinct systems for each subtask, later studies success-
fully demonstrated that sequence labeling models [Cai et al.,
2018; Li et al., 2019] can benefit from tackling some of these
tasks jointly with multitask learning [Caruana, 1997]. How-
ever, sequence-to-sequence models proposed over the last
few years can only solve the later stages of the SRL pipeline
– namely, argument identification and argument classifica-
tion – and, therefore, they still require an underlying sys-
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The <P0> :ARG0 [ doctor ]  <P0> :V [ tell.01 ] the <P1> :ARG0 [ <P0> :ARG2 [ patient ] ]  
<P0> :ARG1 [ to ] <P1> :V [ take.01 ] the <P1> :ARG1 [ medicine ] .

The <P0> :ARG0 [ doctor ]  <P0> :V [ tell.01 ] the  <P0> :ARG2 [ patient ]
<P0> :ARG1 [ to ]  take the medicine .

     The  doctor told the <P0> :ARG0 [ patient ]  to <P0> :V [ take.01 ] the 
<P0> :ARG1 [ medicine ] .

<P0> :ARG0 [ The doctor ]  <P0> :V [ tell.01 ]  <P0> :ARG2 [ the patient ]
<P0> :ARG1 [ to take the medicine ] .

     The  doctor told  <P0> :ARG0 [ the patient ]  to <P0> :V [ take.01 ] 
<P0> :ARG1 [ the medicine ] .

<P0> :ARG0 [ The doctor ]  <P0> :V [ tell.01 ] <P1> :ARG0 [ <P0> :ARG2 [ the patient ] ]  
<P0> :ARG1 [ to  <P1> :V [ take.01 ] <P1> :ARG1 [ the medicine ] ] .
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Figure 1: Example of a sentence with two predicates: dependency-
based SRL (upper part) and span-based SRL (lower part) and their
corresponding nested and flattened linearizations.

tem to perform at least predicate sense disambiguation [Daza
and Frank, 2018; Daza and Frank, 2019]. Indeed, the func-
tion of a semantic role is often well-defined only with re-
spect to a given predicate sense, especially when dealing
with PropBank-like predicate-argument structure inventories
[Palmer et al., 2005]. For example, even though there are
two ARG1 role labels in Fig. 1, they actually encode differ-
ent relations: when ARG1 is associated with the predicate
sense tell.01, it refers to the utterance or topic of the ac-
tion, whereas, when it is an argument for the predicate sense
take.01, it refers to the thing taken or theme of the ac-
tion. While predicate sense disambiguation is essential to
SRL, introducing structured predicate-argument relations in
a sequence-to-sequence model is not trivial. In our work, we
explore different predicate-argument linearization schemes
and introduce, to the best of our knowledge, the first end-
to-end sequence-to-sequence model to successfully generate
both sense and role labels.

3 Methodology
3.1 SRL as a Sequence-to-Sequence Task
We revisit the sequence-to-sequence formulation by Daza and
Frank [2018] for PropBank-based SRL and put forward a
generalized formulation that is able to handle not only se-
mantic role labels but also predicate sense labels. Formally,
given a sentence s = 〈w1, w2, . . . , w|s|〉 where each word wi

belongs to either the vocabulary of words V W or a vocabulary
of special tokens V ST, the model is required to generate a se-



quence o = 〈o1, o2, . . . , o|o|〉 where each token oi belongs to
either the input sentence s, the vocabulary of special tokens
V ST, the semantic role vocabulary V SR, or the predicate sense
vocabulary V PS.

As shown in Fig. 1, we propose two strategies for generat-
ing the predicate-argument relations:

• Flattened linearization in which the model is required to
generate a separate sequence op for each predicate p in
s, where op contains the sense and role labels only for p;

• Nested linearization in which the model is required to
generate a single sequence o containing the sense and
role labels for all the predicates in s.

If we exclude predicate sense labels from the generated se-
quence o, our flattened linearization strategy is similar to that
of Daza and Frank [2018] and can be considered as a simpli-
fied or “unrolled” semantic structure of our nested lineariza-
tion. We argue that the semantics of the nested linearization,
while being more complex to learn, comes with the advantage
of providing the entire predicate-argument structure of the in-
put sentence s at once, reducing the overhead of generating a
number of output sequences equal to the number of predicates
in s, and thus being more practical for an end system.

3.2 The GSRL Model
Given the above definition of sequence-to-sequence SRL, we
formally frame the task as a conditional generation prob-
lem in which we want to maximize the probability P (g|t)
of generating the tokenization g = 〈g1, g2, . . . , gi, . . . , g|g|〉
of the output linearization o conditioned on the tokenization
t = 〈t1, t2, . . . , t|t|〉 of the input sentence s:

P (g|t) =
|g|∏
i=2

P (gi | g1:i−1, t) (1)

where g1 is the artificially added start token <s>, gi is the
i-th element (token, special token, sense, or role) of the gen-
erated output sequence g and g1:i−1 = 〈g1, g2, . . . , gi−1〉.
Therefore, the probability P (g|t) of the linearized predicate-
argument structure g for the given sentence t is computed as
the product of the probability of generating each token gi of
g in an autoregressive fashion.

The GSRL model architecture builds on top of BART
[Lewis et al., 2020], a recently proposed denoising autoen-
coder for sequence-to-sequence learning. BART can be seen
as a generalization of several modern language models from
BERT (due to the bidirectional encoder) to GPT (with the
left-to-right decoder), and it was found to be particularly ef-
fective in a wide range of Natural Language Understanding
tasks, including tasks that involve complex structured outputs
such as semantic parsing [Bevilacqua et al., 2021]. Follow-
ing BART, our model architecture is based on a Transformer-
based neural machine translation architecture [Vaswani et al.,
2017], with 12 stacked Transformer layers for both the en-
coder and the decoder. However, rather than training GSRL to
learn to maximize the conditional probability shown in Equa-
tion 1 from scratch, we warm-start the model with the weights
of BART, which brings two significant advantages. First,

GSRL inherits the capability of BART to denoise artificially-
corrupted sentences and generate an output sequence that,
while (partially) overlapping with the input sequence, can
have a different length. This is beneficial to our setting, since
the input sequence fed into the model can be seen as a cor-
rupted sentence where the sense and role annotations have
been removed. Second, GSRL can take advantage of the
world of knowledge coming from the massive amounts of text
BART has been pretrained on. Indeed, the original training
corpus for BART is composed of five English-language cor-
pora of varying sizes and domains, containing books, stories,
news, web content and Wikipedia articles, and thus providing
a wealth of information that could otherwise be missing from
standard SRL datasets, given their relatively small size.

Vocabulary. We start from the vocabulary of BART which,
thanks to its BPE tokenization, includes V W, and extend it
by adding i) the set V PS of PropBank predicate sense labels,
e.g., tell.01 and take.01, ii) the set V SR of PropBank se-
mantic role labels, e.g., :ARG0 and :ARGM-NEG, and iii) the set
V ST of special tokens to distinguish between verbal and nom-
inal predicates, i.e., :V and :N respectively, and to identify the
predicates in the sentence, i.e., <Pi>, where i is the order of
the predicate in the input sentence from left to right. At in-
put level, we make sure that the BPE tokenizer does not split
the additional tokens. Therefore, adding these task-specific
atomic tokens to the vocabulary allows for a more compact
linearized SRL structure. Finally, we randomly initialize the
embeddings of the additional tokens and update their values
during training.

Preprocessing. The input sentence is preprocessed differ-
ently depending on the linearization strategy – flattened or
nested – chosen to train the GSRL model. Before feeding an
input sentence into the model, we indicate each predicate with
a special token <Pi> which guides the model towards learning
to distinguish between different predicates and to specifically
generate the argument roles for each of them, where i = 0
in the flattened linearization and 0 ≤ i < np in the nested
linearization, with np being the total number of predicates in
the sentence. In the flattened linearization setting, the input
sentence is repeated np times, e.g., for the example in Fig. 1
the input sentence would be preprocessed twice: i) “The doc-
tor <P0> :V [ told ] the patient to take the medicine”, and ii)
“The doctor told the patient to <P0> :V [ take ] the medicine”.
When the GSRL model is trained to generate nested lineariza-
tions, the input sentence is preprocessed to indicate all the
predicates at once, e.g., “The doctor <P0> :V [ told ] the pa-
tient to <P1> :V [ take ] the medicine”.

Postprocessing. As opposed to sequence labeling ap-
proaches, our sequence-to-sequence model is not only trained
to produce sense and role labels, but also to autoregressively
regenerate the words of the input sentence. Therefore, an out-
put sequence is valid only if the following two conditions are
met: i) its words can be aligned to the words of the input se-
quence, and ii) all the predicate-argument structures follow
the PropBank annotation guidelines. Indeed, in order to en-
force valid predicate-argument structures during the annota-
tion process, PropBank-based SRL requires human annota-
tors to follow a set of guidelines which state that core roles



(ARG0, ARG1, etc.) must appear at most once for each predi-
cate, two arguments of the same predicate must not overlap,
reference roles (R-ARG0, R-ARGM-TMP, etc.) can only appear if
they refer to an existing core role in the sentence, and contin-
uation roles (C-ARG0, C-ARGM-TMP, etc.) can only appear after
the core role they refer to, inter alia. For the sake of simplic-
ity, our model is not explicitly constrained to generate a valid
predicate-argument structure, and we only adopt the follow-
ing simple heuristics to postprocess an output sequence:

• In span-based SRL, we close at most one unenclosed
argument span, positioning the closing bracket so that
there are no two overlapping arguments for the same
predicate;

• In span-based SRL, if more than one span is unenclosed,
we discard all the spans;

• In both dependency- and span-based SRL, if two argu-
ments of the same predicate overlap, we discard all the
arguments for the sentence.

Previous studies have shown that explicitly enforcing Prop-
Bank constraints leads to more accurate predictions [Li et al.,
2019], but in this work we focus on unconstrained generation
and leave constrained generation for future work.

4 Experiments
4.1 Evaluation Benchmarks
We train and evaluate GSRL on the standard splits of the
English datasets provided as part of the CoNLL-2009 [Ha-
jic et al., 2009] and CoNLL-2012 [Pradhan et al., 2012]
shared tasks, which rapidly became two standard benchmarks
for dependency- and span-based SRL, respectively. While
CoNLL-2009 is mainly composed of finance-related docu-
ments coming from the Wall Street Journal, CoNLL-2012 is
a varied collection of news, conversations and magazine arti-
cles. Additionally, CoNLL-2009 includes an out-of-domain
test set containing excerpts from the Brown Corpus.

Data Statistics. We define the semantic complexity of a
dataset as the number of predicate-argument relations that ap-
pear in each sentence on average. In CoNLL-2012, we ob-
serve that around 70% of the sentences are annotated with
at most 5 role labels and 3 predicates, with an average of
2.8 predicates per sentence. However, this is not the case
in CoNLL-2009 where only 20% of the sentences contain at
most 5 role labels, and only 40% feature at most 3 predi-
cates. In fact, CoNLL-2009 has an average of 4.7 predicates
per sentence, almost twice the number compared to CoNLL-
2012. These statistics suggest that the semantic complexity
of CoNLL-2009 is higher than that of CoNLL-2012, and thus
it is to be expected that the predicate-argument structures in
CoNLL-2009 should be more complex, making the nested
linearizations deeper and more difficult to learn.

Evaluation Metrics. In the following Sections, we report
the scores of the official scorers provided as part of the
CoNLL shared tasks to measure the performance of a par-
ticipating system. More specifically, the standard evaluation

PARAMETER PICK SEARCH SPACE

LR 5 ∗ 10−5 1/5/10/50 ∗10−5
Betas 0.9, 0.999 -

Epochs 20 [10, 20]
Dropout 0.25 0.1 to 0.25, (0.05)

W. Decay 0.004 0.001 to 0.01, (+0.001)
LR sched. constant -

Grad. accum. 10 [1, 5, 10, 15, 20]

Table 1: GSRL hyperparamter values and search space.

script for span-based PropBank-style SRL is the CoNLL-
2005 scorer1 which computes precision, recall and F1 score
of the semantic roles. For dependency-based PropBank-style
SRL we use the CoNLL-2009 scorer2 which takes into ac-
count both sense and role labels to compute what is referred
to as “semantic” precision and recall:

PSEM = (TPpred +TProle)/(Npred +TProle +FProle)

RSEM = (TPpred +TProle)/(Npred +TProle +FNrole)

where TP, FP and FN are the true positives, false positives
and false negatives, respectively, while Npred is the total num-
ber of predicates.

4.2 Training and Tuning
We train different model configurations using the flattened
and nested linearizations, GSRLflattened and GSRLnested here-
after. For both variants, their weights are warm-started using
BARTlarge (406M parameters) from the Transformers library.3
Differently from vanilla BART, we increase the dropout rate
between the Transformer layers from 0.1 to 0.25 and we do
not penalize the model for the generation of repeated ngrams,
e.g., multiple closing brackets. In Table 1 we report the hy-
perparameters space of GSRL. We pick the parameters using
random search with 5 trials in the search space indicated in
the third column. Finally, we select the best model based on
its F1 score on the development dataset. At prediction time
we perform only greedy decoding, since beam searching did
not show improvements in our preliminary experiments. Each
GSRL model is trained for 20 epochs with a batch size of 800
tokens, using the RAdam [Liu et al., 2020] optimizer with
a fixed learning rate of 1 × 10−5 and gradient accumulation
every 10 batches. The training process is carried out on a
single GPU (Nvidia GeForce GTX 1080Ti): GSRLflattened re-
quires 30 and 40 hours of training time on CoNLL-2009 and
CoNLL-2012, respectively, while GSRLnested requires 11 and
20 hours on CoNLL-2009 and CoNLL-2012, respectively.

4.3 Comparison Systems
The vast majority of the recent advances in SRL come from
sequence labeling approaches, which currently represent the
state of the art in both span- and dependency-based SRL.
Therefore, we mainly compare our sequence-to-sequence

1cs.upc.edu/∼srlconll/soft.html
2ufal.mff.cuni.cz/conll2009-st/scorer.html
3huggingface.co/transformers/model doc/bart.html
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https://ufal.mff.cuni.cz/conll2009-st/scorer.html
https://huggingface.co/transformers/model_doc/bart.html


CONLL-2009 – IN DOMAIN P R F1

Sequence labeling models

Cai and Lapata [2019b] 90.9 89.1 90.0
Lyu et al. [2019] – – 90.1
Kasai et al. [2019] 90.3 90.0 90.2
Li et al. [2019] 89.6 91.2 90.4
He et al. [2019] 90.4 91.3 90.9
Chen et al. [2019] 90.7 91.4 91.1
Cai and Lapata [2019a] 91.7 90.8 91.2
Shi and Lin [2019] 92.4 92.3 92.4
Conia and Navigli [2020] XLM-R 92.2 92.6 92.4
Conia and Navigli [2020] BERT 92.5 92.7 92.6

Sequence-to-sequence models

Daza and Frank [2019] – – 90.8
GSRLnested 91.8 86.5 89.0
GSRLflattened 92.9 92.0 92.4

Table 2: Results on the English in-domain test set of the CoNLL-
2009 task for dependency-based SRL. P : precision. R: recall.

CONLL-2009 – OUT OF DOMAIN P R F1

Sequence labeling models

Li et al. [2019] – – 81.5
Lyu et al. [2019] – – 82.2
Chen et al. [2019] – – 82.7
Conia and Navigli [2020] XLM-R – – 85.2
Conia and Navigli [2020] BERT – – 85.9

Sequence-to-sequence models

Daza and Frank [2019] – – 84.1
GSRLnested 85.0 80.1 82.5
GSRLflattened 85.8 84.5 85.2

Table 3: Results on the English out-of-domain test of the CoNLL-
2009 task for dependency-based SRL. P : precision. R: recall.

model against the recent innovations proposed by such se-
quence labeling models, namely, jointly learning SRL and
syntax [Cai and Lapata, 2019b], iteratively refining the out-
put SRL labels [Lyu et al., 2019], devising a set of syntactic
“supertags” [Kasai et al., 2019], integrating syntactic rules
into the learning process [He et al., 2019], learning predicate-
argument interactions through capsule networks [Chen et al.,
2019], better exploiting the knowledge of language models
[Shi and Lin, 2019; Conia and Navigli, 2020], and modeling
syntactic dependencies with graph convolutions [Marcheg-
giani and Titov, 2020]. Also, we compare with Daza and
Frank [2018; 2019], who proposed, to the best of our knowl-
edge, the currently best-performing sequence-to-sequence
models for SRL, with the important difference that their ar-
chitectures i) are not able to handle multiple predicates at
once, and ii) do not address predicate sense disambiguation,
i.e., they are not end-to-end (see §2, End-to-End SRL).

CONLL-2012 P R F1

Sequence labeling models

Ouchi et al. [2018] 87.1 85.3 86.2
Li et al. [2019] 85.7 86.3 86.0
Shi and Lin [2019] 85.9 87.0 86.5
Marcheggiani and Titov [2020] 86.5 87.1 86.8
Conia and Navigli [2020] 86.9 87.7 87.3

Sequence-to-sequence models

Daza and Frank [2018] – – 75.4
GSRLnested 87.1 86.6 86.8
GSRLflattened 87.8 86.8 87.3

Table 4: Results on the English in-domain test set of the CoNLL-
2012 gold benchmark for span-based SRL. P : precision. R: recall.

4.4 Results
Dependency-based SRL. Table 2 summarizes the results
on dependency-based SRL in the English in-domain test of
CoNLL-2009. Even though GSRL is also tasked to gen-
erate predicate sense labels, GSRLflattened significantly sur-
passes the previously best-performing sequence-to-sequence
model of Daza and Frank [2019] by 1.6% in F1 score (17%
decrease in error rate).4 While both systems take advan-
tage of pretrained encoders (BART and ELMo), GSRL also
exploits the pretrained decoder of BART, which allows for
superior performance. Moreover, when compared to state-
of-the-art sequence labeling approaches [Shi and Lin, 2019;
Conia and Navigli, 2020], GSRLflattened shows competitive re-
sults, with an F1 score that is either matching or not statisti-
cally different. It is interesting to note that, while GSRLnested
is tasked to learn semantic structures that can be an order of
magnitude more complex than those learnt by its GSRLflattened
counterpart, the resulting difference in performance is not as
large as one may expect, and the training process is more than
60% faster. However, the considerably lower recall shown by
GSRLnested empirically confirms the complexity of identify-
ing and generating longer sequences of predicate and role la-
bels, especially when a single word is enclosed by multiple
labels, i.e., it is an argument for multiple predicates. Further-
more, Table 3 reports the results in the English out-of-domain
test of CoNLL-2009 where we observe a similar trend to
the in-domain evaluation, with GSRLflattened significantly sur-
passing the previous sequence-to-sequence approach [Daza
and Frank, 2019] and performing on a par with the state of
the art [Conia and Navigli, 2020].

Span-based SRL. Table 4 summarizes the results on span-
based SRL in the English test of CoNLL-2012. Similarly
to CoNLL-2009, GSRLflattened achieves state-of-the-art re-
sults in an area where sequence labeling approaches are cur-
rently predominant. In this setting, however, GSRLflattened
and GSRLnested attain comparable performance, and they both
surpass the sequence-to-sequence model of Daza and Frank
[2018] by a large margin (more than 11.4% in F1 score). The

4Daza and Frank [2019] rely on a separate system trained on a
larger amount of sentences in order to output predicate sense labels.
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(c) Results of GSRLflattened as the sentences
for each predicate sense decrease: the per-
formance goes down abruptly.

Figure 2: Our analysis shows that i) the semantic complexity of a sentence is the main culprit for the gap in performance between GSRLflattened

and GSRLnested (Fig. 2a), but also that ii) GSRL is robust to substantially smaller training datasets (Fig. 2b), and iii) that the number of
examples for each predicate sense is fundamental for a good training set (Fig. 2c).

close gap between the two GSRL models can be explained by
the lower semantic complexity of the sentences in CoNLL-
2012 (see §4.1, Data Statistics), which results in easier SRL
structures to be generated. In both span- and dependency-
based SRL, it is worth noting that, while the F1 score of
GSRL is on a par with the best-performing sequence label-
ing approaches, GSRL always shows a higher precision.

5 Analysis

In what follows we propose an evaluation framework com-
posed of a set of synthetic scenarios built from the CoNLL-
2009 and CoNLL-2012 datasets. Our aim is two-fold: i)
to better evaluate the behaviour of GSRL, or any other
SRL system, and ii) to gain insights into what is needed
for the creation of better training datasets or challenging
benchmarks for SRL. In order to enable future compar-
isons with this work, we release our evaluation framework
at github.com/SapienzaNLP/gsrl.

Test down-sampling: Semantic complexity. We observe
the difference in performance between GSRLflattened and
GSRLnested when including increasingly complex sentences
in an initially empty test set. To this end, we build 12 test sets
from both CoNLL-2009 and CoNLL-2012 by selecting each
sentence according to its semantic complexity (see §4.1, Data
Statistics), i.e. we collect those sentences containing only 1
predicate, up to 2 predicates, up to 3, and so on. Finally,
we evaluate our models on the collected samples. Fig. 2a
confirms that the complexity of the semantic structure of a
sentence is, indeed, one of the main factors behind the gap
between performances of GSRLflattened and GSRLnested. This
also explains why the two are much closer in CoNLL-2012,
as this dataset has a significantly lower semantic complexity
than CoNLL-2009 (2.8 against 4.7 predicates per sentence,
respectively).

Train down-sampling: Sentence count. Even though un-
supervised learning has been gaining ever more popularity in
Natural Language Processing, the majority of the approaches
to SRL continue to rely on supervision and, therefore, on la-
beled data. However, the manual annotation of text with sense
and role labels is an expensive process which requires money,
time and expert annotators who are at ease with complex lin-
guistic resources like PropBank, making it difficult to create
large SRL datasets. In this analysis we devise a synthetic sce-
nario in which we simulate a set of lower-resource settings
and study how they affect our model. Specifically, we cre-
ate different training data splits, sampling 10%, 25%, 50%
and 75% of the sentences from the training data of CoNLL-
2009 and CoNLL-2012 (37,847 and 90,856 sentences, re-
spectively). As shown in Fig. 2b, when down-sampling the
training data to 75% and 50% of its original size, the re-
sults decrease by less than 1.0% in F1 score in the test sets
of CoNLL-2009 and CoNLL-2012. On one hand, this ex-
periment demonstrates the robustness of our model. On the
other hand, it also suggests that the huge effort carried out
by the creators of the CoNLL-2012 dataset to manually an-
notate the last 45,000 sentences of the training set, made our
model improve by only 0.9% in F1 score. In addition, we per-
form the same experiment with the state-of-the-art sequence
labeling system of Conia and Navigli [2020]. The side-by-
side comparison is shown in Fig. 3. Despite the drastic ar-
chitectural difference between two systems, i.e., GSRL being
a sequence-to-sequence system as opposed to the sequence
labeling approach of Conia and Navigli [2020], and their dif-
ferent behavior in precision and recall, they converge to the
same overall performance in terms of F1 (green line) in each
split on both span- and dependency-based evaluations. We ar-
gue, therefore, that simply increasing the number of training
sentences is not necessarily the best direction towards better
datasets and systems.

http://github.com/SapienzaNLP/gsrl
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Figure 3: Comparison of GSRLflattened and Conia and Navigli (2020)
system results as the train data decreases: the F1 score is similar
in each split (100%, 75%, 50%, 25% and 10% of the original train-
ing datasets) of both CoNLL-2009 (dependency-based) and CoNLL-
2012 (span-based).

SHOT CONLL-2009 CONLL-2012

ALL 37,847 90,856

1-SHOT 5,936 4,788
2-SHOT 9,227 8,085
3-SHOT 11,700 10,761

Table 5: Number of sentences in the training samples for 1-, 2- and
3-shot learning.

Train down-sampling: Sense count. Rather than the num-
ber of sentences in the training set, we hypothesize that a
model is more susceptible to the number of times it sees a
predicate sense. To test this hypothesis, we study how well
GSRL is able to generalize when limiting the number of sen-
tences for each predicate sense, i.e., how well it performs in
few-shot learning. More specifically, we devise a set of three
new training datasets which contain at most 1, 2 and 3 occur-
rences of a predicate sense by sampling the original CoNLL-
2009 and CoNLL-2012 training sets. We report the sizes of
these new splits in Table 5. Fig. 2c shows the performance of
GSRLflattened in both the CoNLL-2009 and CoNLL-2012 test
sets as the number of predicate sense instances in the training
set decreases. While limiting the number of sentences does
not result in a noteworthy impact on the results, GSRLflattened
shows a drastic deterioration in performance when it can only
learn the predicate-argument structure of a sense from a sin-
gle example (1-shot), but greatly improves when it can learn
from two and three examples (2-shot and 3-shot). Not only
do these results support our initial hypothesis, but they also
suggest that new smaller-scale datasets, if properly devised,
may still make a significant impact on a modern SRL system.

6 Conclusion
In this paper we presented GSRL, the first sequence-to-
sequence model for end-to-end SRL to generate both sense
and role labels. Evaluated on multiple gold benchmarks,
GSRL achieves state-of-the-art results, previously attained
only by sequence labeling approaches, in both span- and
dependency-based English SRL. The analysis performed
on our evaluation framework exposed, thanks to a set of
purposely-designed synthetic scenarios, the positives and
negatives of our approach, from its ability to reach compet-
itive results with only 25% of the training data to its diffi-
culties in modeling and generating “semantically complex”
sequences. However, our analysis was not limited solely to a
study of our model and, instead, we also made use of GSRL
to highlight current issues, roadblocks and promising direc-
tions to further improve the area of SRL, both as regards
its models and its datasets. We hope that our contributions
will lead to further progress in generation-based approaches
to SRL and, more importantly, open the door to their integra-
tion into more complex semantics-first tasks, such as Seman-
tic Parsing. We release GSRL and the evaluation framework
at github.com/SapienzaNLP/gsrl.
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Introduction to the CoNLL-2005 shared task: Semantic Role La-
beling. In Proc. of CoNLL, 2005.

http://github.com/SapienzaNLP/gsrl


[Caruana, 1997] Rich Caruana. Multitask learning. Machine
Learning, 1997.

[Chen et al., 2019] Xinchi Chen, Chunchuan Lyu, and Ivan Titov.
Capturing argument interaction in Semantic Role Labeling with
capsule networks. In Proc. of EMNLP, 2019.

[Conia and Navigli, 2020] Simone Conia and Roberto Navigli.
Bridging the gap in multilingual Semantic Role Labeling: a
language-agnostic approach. In Proc. of COLING, 2020.

[Conia et al., 2021] Simone Conia, Andrea Bacciu, and Roberto
Navigli. Unifying cross-lingual Semantic Role Labeling with
heterogenous linguistic resources. In Proc. of NAACL, 2021.

[Daza and Frank, 2018] Angel Daza and Anette Frank. A
sequence-to-sequence model for Semantic Role Labeling. In
Proc. of the 3rd Workshop on RepL4NLP, 2018.

[Daza and Frank, 2019] Angel Daza and Anette Frank. Translate
and label! an encoder-decoder approach for cross-lingual seman-
tic role labeling. In Proc. of EMNLP, 2019.

[Gildea and Jurafsky, 2002] Daniel Gildea and Daniel Jurafsky.
Automatic labeling of semantic roles. Computational Linguis-
tics, 2002.

[Gupta and Malik, 2015] Saurabh Gupta and Jitendra Malik. Visual
Semantic Role Labeling. arXiv preprint, 2015.

[Hajic et al., 2009] Jan Hajic, Massimiliano Ciaramita, Richard
Johansson, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
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Stepánek, Pavel Stranák, Mihai Surdeanu, Nianwen Xue, and
Yi Zhang. The CoNLL-2009 shared task: Syntactic and semantic
dependencies in multiple languages. In Proc. of CoNLL, 2009.

[He et al., 2019] Shexia He, Zuchao Li, and Hai Zhao. Syntax-
aware multilingual Semantic Role Labeling. In Proc. of EMNLP,
2019.

[Kasai et al., 2019] Jungo Kasai, Dan Friedman, Robert Frank,
Dragomir R. Radev, and Owen Rambow. Syntax-aware neural
semantic role labeling with supertags. In Proc. of NAACL, 2019.

[Lewis et al., 2020] Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin
Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-
sequence pre-training for Natural Language Generation, Transla-
tion, and Comprehension. In Proc. of ACL, 2020.

[Li et al., 2019] Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang,
Zhuosheng Zhang, Xi Zhou, and Xiang Zhou. Dependency or
span, end-to-end uniform Semantic Role Labeling. In Proc. of
AAAI, 2019.

[Liu et al., 2020] Liyuan Liu, Haoming Jiang, Pengcheng He,
Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On
the variance of the adaptive learning rate and beyond. In Proc. of
ICLR, 2020.

[Lyu et al., 2019] Chunchuan Lyu, Shay B. Cohen, and Ivan Titov.
Semantic role labeling with iterative structure refinement. In
Proc. of EMNLP, 2019.

[Marcheggiani and Titov, 2020] Diego Marcheggiani and Ivan
Titov. Graph convolutions over constituent trees for syntax-aware
Semantic Role Labeling. In Proc. of EMNLP, 2020.

[Marcheggiani et al., 2018] Diego Marcheggiani, Jasmijn Bastings,
and Ivan Titov. Exploiting semantics in neural Machine Trans-
lation with graph convolutional networks. In Proc. of NAACL,
2018.
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