
Incorporating Graph Information in Transformer-based AMR Parsing

Pavlo Vasylenko1 Pere-Lluís Huguet Cabot1,2∗
Abelardo Carlos Martínez Lorenzo1,2∗ Roberto Navigli1

1 Sapienza NLP Group, Sapienza University of Rome
2 Babelscape, Rome

vasylen.pavlo@gmail.com
{martinez, huguetcabot}@babelscape.com

navigli@diag.uniroma1.it

Abstract

Abstract Meaning Representation (AMR) is a
Semantic Parsing formalism that aims at provid-
ing a semantic graph abstraction representing
a given text. Current approaches are based on
autoregressive language models such as BART
or T5, fine-tuned through Teacher Forcing to
obtain a linearized version of the AMR graph
from a sentence. In this paper, we present
LeakDistill, a model and method that explores
a modification to the Transformer architecture,
using structural adapters to explicitly incorpo-
rate graph information into the learned rep-
resentations and improve AMR parsing per-
formance. Our experiments show how, by
employing word-to-node alignment to embed
graph structural information into the encoder
at training time, we can obtain state-of-the-art
AMR parsing through self-knowledge distil-
lation, even without the use of additional data.
We release the code at http://www.github.com/
sapienzanlp/LeakDistill.

1 Introduction

Creating a machine-interpretable representation of
meaning lies at the core of Natural Language Un-
derstanding and has been framed as the Semantic
Parsing task. Multiple formalisms have been pro-
posed over the years, e.g., Prague Czech-English
Dependency Treebank (Hajič et al., 2012), Uni-
versal Conceptual Cognitive Annotation (Abend
and Rappoport, 2013), BabelNet Meaning Repre-
sentation (Navigli et al., 2022; Martínez Lorenzo
et al., 2022); however, Abstract Meaning Represen-
tation (Banarescu et al., 2013, AMR) has received
more attention thanks to the large corpus available
and a well-defined structure. AMR captures text
semantics in the form of a directed acyclic graph
(DAG), with nodes representing concepts and edges
representing semantic relationships between them
(see Figure 1). Currently, AMR is widely employed

∗∗ Equal contributions.

Figure 1: Top: sentence. Middle: AMR graph. Bottom:
Linearized graph. Alignment is represented by colours.

in a plethora of NLP domains, such as Informa-
tion Extraction (Rao et al., 2017), Text Summariza-
tion (Hardy and Vlachos, 2018; Liao et al., 2018),
Question Answering (Lim et al., 2020; Bonial et al.,
2020b; Kapanipathi et al., 2021), Human-Robot In-
teraction (Bonial et al., 2020a), and Machine Trans-
lation (Song et al., 2019), among others.

Until a short while ago, autoregressive mod-
els proved to be the best approach for semantic
parsing because of their outstanding performance
without relying on sophisticated ad-hoc architec-
tures (Bevilacqua et al., 2021). Then, more recently,
several approaches have emerged to increase per-
formance by including structural information in the
model (Chen et al., 2022), adding extra Semantic
Role Labeling tasks (Bai et al., 2022) or by en-
sembling strategies (Lam et al., 2021; Lee et al.,
2022).

In this paper, following the effort of strengthen-
ing the model’s learning phase by incorporating
meaningful structural information, we investigate
the use of structural adapters (Ribeiro et al., 2021a)

http://www.github.com/sapienzanlp/LeakDistill
http://www.github.com/sapienzanlp/LeakDistill

that are basically Graph Neural Networks (GNNs)
embedded in the encoder of a Transformer Encoder-
Decoder architecture. The structural information
is derived from intrinsic concept-node alignments
from which we build a word-based graph with a
structure similar to the original AMR. Leveraging
such a graph implies partial data leakage: the graph
structure is revealed to a model during training.
To overcome the lack of the leaked information
at inference time, we explore Knowledge Distil-
lation (KD), a technique that transfers knowledge
from a teacher model to a student model (Hinton
et al., 2015). The word-based graph is employed
with the structural adapters to obtain soft targets
(the teacher path), which are then used for self-
distillation, transferring the knowledge to the stu-
dent, which only has access to the text.

Our main contributions are: i) exploring how
to add structural information to the AMR parsing
model using structural adapters and self-knowledge
distillation, ii) state-of-the-art results in AMR pars-
ing for AMR 2.0 and AMR 3.0 datasets, and iii)
competitive base models for AMR parsing.

2 Related Work

Over the years, multiple trends have appeared
to parse AMR graphs: using statistical meth-
ods (Flanigan et al., 2014, 2016; Wang et al.,
2015), neural-transition based parsers (Ballesteros
and Al-Onaizan, 2017; Liu et al., 2018; Fernan-
dez Astudillo et al., 2020; Zhou et al., 2021) or
bidirectional Transformers (Lyu and Titov, 2018;
Zhang et al., 2019; Cai and Lam, 2020) based on
BERT (Devlin et al., 2019).

Recently, autoregressive models based on
BART (Lewis et al., 2020) have emerged as
a dominant approach for AMR parsing, since
they obtained state-of-the-art performance with-
out complex pipelines. One notable example is
SPRING (Bevilacqua et al., 2021), which frames
AMR parsing as a neural machine translation task,
where text is translated into a linearized version of
the graph. Subsequently, several works extended
SPRING using a variety of different strategies.
Procopio et al. (2021) leverages multitask learn-
ing to improve cross-lingual AMR parsing results.
ATP (Chen et al., 2022) expands the dataset with
extra auxiliary tasks such as Semantic Role Label-
ing and Dependency Parsing, with pseudo-AMR
graphs constructed based on a particular task. AM-
RBART (Bai et al., 2022) uses a pre-training strat-

egy based on Masked Language Modeling where
both text and graph need to be denoised, using
200k graphs generated by SPRING. However, de-
spite their efforts to enhance SPRING’s perfor-
mance, all these systems rely on additional ex-
ternal data. Although Ancestor (Yu and Gildea,
2022), which modifies ancestor information dur-
ing decoding, and BiBL (Cheng et al., 2022), that
adds a secondary graph masking task while train-
ing, do not rely on extra data, their performance
improvements remain relatively limited. Our pro-
posed model effectively bridges the gap in perfor-
mance between "with" and "without" extra data by
integrating explicit structural information during
the training phase.

3 Word-Aligned Graph

Our goal is to incorporate graph-structured infor-
mation into the encoder of a Transformer-based
parser. However, the model only has access to the
input sentence at that stage, with no hidden rep-
resentation of AMR-specific nodes and relations.
Thus, we simplify the AMR structure to a word-
based graph by exploiting a pre-existing alignment
between spans in text and semantic units in the
corresponding AMR graph (see Figure 1).

First, starting with the source AMR graph, we
replace the labels of the AMR nodes and relations
with the words of the corresponding sentence as
provided by the alignment (Figure 2, left). Next,
we convert each edge into a node and connect it to
its original endpoints (see Figure 2, center). More-
over, following what Ribeiro et al. (2021b) did for
AMR graphs, we split each multi-token node (e.g.,
freedom in Figure 2) into a parent node represented
by the first token and children nodes connected to it
which contain the remaining tokens. We name the
resulting graph representation the Word-Aligned
Graph (WAG).

We will leverage WAGs to enrich the encoder’s
hidden representations of words with the AMR
graph’s structural information. Unfortunately, a
problem arises with non-aligned nodes (e.g., the
:location relation in Figure 2), since they will
not have associated hidden states. Therefore, we
have two alternatives: i) remove nodes for which
we do not have hidden states (Contracted WAG), or
ii) create new hidden states for them (Full WAG).

Contracted WAG As a first option, we remove
non-aligned nodes from the graph. However, delet-
ing the nodes from the original graph would pro-

Figure 2: WAG construction of the sentence: "Here, it is a country with the freedom of speech". A graph where
AMR concepts are replaced with words (left), a Full WAG (center) and a Contracted WAG (right). Blue lines
indicate former AMR relations, and red lines indicate non-aligned nodes. Best seen in color.

Figure 3: Structural adapter without layer normalization
and with GELU activation.

duce a disconnected graph. To obtain a connected
structure similar to the original graph, we contract
nodes rather than removing them. A contracted
WAG (CWAG) is a graph in which non-aligned
nodes are merged with their closest parent node
along with all their relations. Figure 2 (right) de-
picts a CWAG.

Full WAG Alternatively, we preserve the nodes
without alignment (e.g., the node “location” in Fig-
ure 2 (center)). This type of graph is referred to as
a Full WAG (FWAG), Figure 2 (center) shows an
example of FWAG.

4 Structural Adapters for AMR parsing

In this section, we describe the main components of
our structure-enhanced approach to AMR parsing.

4.1 Parsing with BART

AMR parsing can be defined as a sequence-to-
sequence (seq2seq) problem where the input x =
(x1, ..., xn) is a sequence of n words (or subwords)
and the output g = (e1, ..., em) is a linearized

graph with m elements. Our goal is to learn a
function that models the conditional probability:

p(g|x) =
m∏
t=1

p(et|e<t, x), (1)

where e<t are the tokens of the linearized graph g
before step t.

Suppose we have a dataset D of size |D| which
consists of pairs (xi, gi), with each gi having length
mi. Our objective is then to minimize a negative
log-likelihood loss function:

LD
nll = Lnll(D) = −

|D|∑
i=1

log p(gi|xi) =

= −
|D|∑
i=1

mi∑
t=1

log p(eit|ei<t, x
i)

(2)

We use BART as our seq2seq model implement-
ing the above formulation and, following Blloshmi
et al. (2021, SPRING), add special tokens corre-
sponding to i) AMR-related tokens, ii) variable
names <R0>, <R1>, ... <Rn>, and iii) other to-
kens needed for the graph linearizations. Then, we
fine-tune BART with the input x and the target g.

4.2 Structural adapters

To incorporate AMR structural information into
the encoder, we embed the WAGs – obtained from
AMR graphs as illustrated in Section 3 – into
adapters that encode the graph structure imposed by
them. Structural adapters, as introduced by Ribeiro
et al. (2021b), are a modification of the Transformer
architecture that improves pre-trained language
models for modeling graph information. They con-
sist of a Graph Convolutional (GraphConv) layer
and a feed-forward layer, which are connected

Figure 4: Left: Scheme of the Graph Leakage Model. Right: Scheme of the LeakDistill method with two forward
paths: the green path incorporates WAG information via adapters; the red path omits adapters, and it is basically the
outcome model for the problem. Consequently, the green path is engaged exclusively during the training phase to
guide the red path, while during the inference process, only the red path is operative.

through a residual connection. Moreover, we re-
move layer normalization and set GELU as an acti-
vation function (see Figure 3).

Structural adapters are inserted after each en-
coder’s layer (see Figure 4). For each hidden repre-
sentation hl

v ∈ Rb from the encoder layer l and the
set of edges E in the WAG, we define the Graph-
Conv operation as:

GraphConvl(h
l
v, E) =

∑
u∈N (v)

1√
dudv

Wl
ghl

u (3)

where N (v) is the set of node v’s adjacent nodes
in the WAG (including v itself), dv is the degree
of v, and Wl

g ∈ Rb×b is a parameter matrix. Then,
the updated hidden states zlv are computed as:

glv = GraphConvl(h
l
v, E)

zlv = Wl
aσ(g

l
v) + hl

v,
(4)

where σ is the GELU activation function and Wl
a ∈

Rb×b is the feed-forward layer parameter matrix.

5 Our Models

5.1 Graph Leakage Model
We bring together the two main components de-
scribed in Section 4 by incorporating structural

adapters in each layer of the encoder of a BART-
based AMR parsing model (see Figure 4 (left) and
Algorithm 1). Here, a WAG, together with the hid-
den representations of tokens in the sentence, are
input to the adapters. Since WAGs are constructed
using gold AMR graphs, this constitutes a form
of information leakage. We name this model the
Graph Leakage Model (GLM), with the idea that it
will serve as a study of the impact on performance
when including WAGs (be they contracted or full,
cf. Section 3).

To use FWAGs as input to the adapter, we need
representations for non-aligned nodes that do not
have an associated hidden state. Therefore, for
nodes with labels corresponding to AMR special
tokens (e.g., :location) we use their embedding.
For other nodes, we tokenize the label and take the
average embedding. Furthermore, these represen-
tations are concatenated after the hidden states in
the first adapter layer. After each adapter block, we
split representations into two groups: i) the updated
hidden states for the original input tokens, which
serve as inputs of the subsequent Transformer layer,
ii) the updated hidden states for the non-aligned
nodes, which are concatenated again in the next
adapter block (see Algorithm 1).

Then, for both CWAG and FWAG, the input to
each adapter layer l consists of a matrix of hidden

Algorithm 1 Modified BART Encoder

Input: E - set of WAG edges, S0 - states for
non-aligned nodes, H0 - initial hidden states of
the input sequence
for l ∈ {1, ..., 12} do

H l ← BARTLayerl(Hl−1)
if Leak Mode then

if Full WAG then
Gl ← Concat(H l, Sl−1)

else
Gl ← H l

end if
G̃l ← StructAdaptl(Gl, E)
if Full WAG then

[H̃ l;Sl]← Split(G̃l)
else

H̃ l ← G̃l

end if
else

H̃ l ← H l

end if
H l ← H̃ l

end for

states H l and a set of edges E . Note that the set of
edges E does not change through layers. Finally,
the loss function for GLM is:

Lleak = Lnll(D̃) = −
|D̃|∑
i=1

log q(gi|xi, wi), (5)

where D̃ is the updated dataset consisting of pairs
((xi, wi), gi), q is the probability for GLM, wi is
the WAG.

5.2 Knowledge Distillation
GLM leverages the alignment information to im-
prove the model’s understanding of the graph struc-
ture and enhance its (the model’s) performance in
AMR parsing. Unfortunately, as discussed in the
previous section, this constitutes a form of leakage
at inference time. Therefore, following the idea of
Knowledge Distillation (Hinton et al., 2015, KD),
we set the fine-tuned GLM as a teacher model,
which receives both the sentence and WAG as in-
puts, and our plain BART parser as the student (see
Section 4.1). Then, the knowledge acquired by the
teacher model is transferred to the student model,
which only has access to the sentence. This en-
ables the utilization of WAGs during training while
avoiding their use during inference. Hence, our

objective is to achieve the following:

p(g|x) = q(g|x,w) (6)

where p and q are probabilities of the student and
the teacher, respectively, and w is the WAG, used
only at training time.

As is common in KD, we employ Kull-
back–Leibler divergence to match the student and
the teacher probabilities:

LKL = KL(p, q) =
C−1∑
k=0

pk log(
pk
qk

) (7)

where C is the number of classes, i.e. our token
vocabulary. Usually, the loss LD

nll for the original
task is added to the total loss, thus becoming:

LKD = LD
nll + αLKL =

= −
|D|∑
i=1

mk∑
t=1

C−1∑
k=0

(δit(k) log p
i
t,k − αpit,k log(

pit,k
qit,k

)),

pit,k = p(eit=k | ei<t, x
i),

qit,k = q(eit=k | ei<t, x
i, wi) (8)

where δit(k) is 1 when k is a target class at step t
and 0 otherwise; α is a hyperparameter.

There are only architectural differences between
the teacher and the student model at the encoder,
since the teacher additionally includes the struc-
tural adapters. Therefore, we copy the GLM de-
coder to the student model and freeze the decoder
parameters.

5.3 LeakDistill

We anticipate that, in our experimentation, KD will
have failed to properly transfer the structural infor-
mation to the student model. Therefore, we propose
a single model approach that can be trained by per-
forming two forward passes at each training step,
one with and one without the WAG structural infor-
mation (see Figure 4 and Algorithm 2). We force
the two passes to learn the same distribution by
adding a Kullback–Leibler divergence loss to the
output logits. As a result, the total loss becomes:

LLeakDistill = LD
nll + βLleak + αLKL =

= −
|D|∑
i=1

mk∑
t=1

C−1∑
k=0

(δit(k) log p
i
t,k + β δit(k) log q

i
t,k

−αpit,k log(
pit,k
qit,k

)),

(9)

where Lleak is the loss for the first pass (basically,
GLM), with leaked information, LD

nll is the loss for
the second pass (basically, BART), which is the
original negative log-likelihood loss, and finally
LKL is the above-described Kullback–Leibler di-
vergence loss. α and β are hyperparameters to
control each loss scale.

The above formulation implements what is
called self-knowledge distillation (Hahn and Choi,
2019, SKD). Specifically, in our work we project
the knowledge via leveraging data leakage in the
first pass rather than computing soft target probabil-
ities. Moreover, we calculate KL divergence for all
classes to obtain more knowledge. Finally, based
on the intuition that there is not enough information
to distill at the beginning of training, we schedule
a gradual decrease of Lleak’s multiplier β.

6 Experimental Setup

To demonstrate the benefits of incorporating struc-
tural information in AMR parsing, we devise a set
of experiments to assess its performance in com-
parison to state-of-the-art models. Before delving
into details, we provide information regarding the
datasets (Section 6.1), the metrics (Section 6.2) and
the model (Section 6.3) used in our experiments.

6.1 Datasets
We test on two AMR benchmark datasets: i) AMR
2.0, which has 36521, 1368, and 1371 sentence-
AMR pairs in the training, validation, and test
sets, respectively, and ii) AMR 3.0, which contains
55635, 1722, and 1898 sentence-AMR pairs in the
training, validation, and test sets, respectively (see
Appendix E). Furthermore, we test on The Little
Prince (TLP) and the Bio AMR out-of-distribution
datasets.

6.2 Metrics
We evaluate our models using the SMATCH metric
(see Appendix D for more details). Additionally we

Model AMR 3.0

SPRING (ours) 84.55

Contracted WAG 86.01
Full WAG 89.58

Table 1: GLM results for AMR 3.0 development set.

also perform evaluation with two additional met-
rics: S2MATCH (Opitz et al., 2020) and WWLK
(Opitz et al., 2021). For WWLK we use WWLK-
k3e2n introduced in Opitz et al. (2021).

Alignment Our approach relies directly on the
structural information extracted from the word-
concept alignment. There are several alignment
standards: first, Information Sciences Institute (ISI)
provides extended AMR 2.0 and AMR 3.0 datasets
with alignments of all the graph semantic units that
are directly related to the sentences’ spans (Pour-
damghani et al., 2014). Second, Linguistically
Enriched AMR (Blodgett and Schneider, 2021,
LEAMR) achieves full graph-alignment coverage
by aligning all the graph semantic units to a corre-
sponding span in the sentence.

Silver Data Following Bevilacqua et al. (2021),
we explore the same strategy to generate a dataset
with 140k silver sentence-graph pairs. The silver
LEAMR alignments are generated using the ap-
proach of Huguet Cabot et al. (2022).

6.3 Models

We use SPRING (Bevilacqua et al., 2021) as our
baseline, and an auto-regressive model based on
BART (Lewis et al., 2020) for predicting linearized
versions of AMR graphs. Our models are built on
top of this model, inheriting some hyperparameters
(see Table 9).

In order to address the issue of overfitting, we
implement a masking strategy which is used in con-
junction with dropout and weight decay. For each
batch, input tokens are masked with a varying prob-
ability pmask, which is uniformly sampled from
the specified masking range (see Appendix A for
details). The strategy is used for all models includ-
ing SPRING (ours). In the following paragraphs,
we explain the specific setup per each model.

Graph Leakage Model We explore two different
settings for GLM: i) Contracted WAG, and ii) Full
WAG (see Section 3).

Model AMR 3.0

SPRING (ours) 84.55

KD Full WAG (89.58) 83.90

LeakDistill
(Self-KD)

Lleak + LD
nll 84.47

Lleak + LKL 85.03
Lleak + LD

nll + LKL 85.04

Table 2: Knowledge Distillation results for the develop-
ment set of AMR 3.0.

Knowledge Distillation We test KD on the GLM
with the highest SMATCH among CWAG and
FWAG (see Table 1).

LeakDistill As done for GLM, we first examine
the difference in performance between Contracted
WAG and Full WAG. Then, we test Full WAG with
i) β scheduling, ii) the silver data, iii) the combina-
tion of the silver data and the β scheduling. In the
case of the scheduling of β, we start from β = 90
and decrease it linearly at each iteration for 21k
iterations in total until it reaches 10. The hyperpa-
rameter α is set to 20. The value of β for the case
i) and other hyperparameters are listed in Table 9.

7 Results

In this section, we provide our experimental find-
ings. All tables show single-run results.

Graph Leakage Model Table 1 shows results
for the Graph Leakage Model. While this setup
relies on information being leaked from the final
graph structure, it sets an upper bound on how
encoding such information can improve perfor-
mance. Here, we observe an increase of around
five SMATCH points when using FWAG, whereas
CWAG improvements are much smaller. While the
model is certainly taking advantage of the leaked
information, this is provided through the hidden
states of the encoder. Therefore, we need to ex-
plore whether some of this performance gain can be
kept implicitly without any information leak. More-
over, it is necessary to investigate the persistence
of any performance disparity between CWAG and
FWAG. This information is intriguing, as CWAG
and FWAG differ in the context of additional in-
formation availability. CWAG only possesses a
structure akin to the original graph, while FWAG
not only exhibits a greater degree of structural sim-
ilarity but also includes the original labels for non-
aligned nodes.

KD and LeakDistill Table 2 compares the results
between applying KD with GLM as the teacher ver-
sus the LeakDistill approach, explained in Section
5.3.We see how KD alone falls short of taking full
advantage of the performance gains of GLM. On
the other hand, LeakDistill, especially when includ-
ing the KL loss, leads to about a 0.5 SMATCH
point increase on the development set. Hence, we
focus on LeakDistill as our main approach. Ta-
ble 5 shows a breakdown of the experiments with
LeakDistill, such as scheduling the KL loss or
adding a silver data pretraining phase. It is evident
that the performance difference between CWAG
and FWAG remains, paving the way for more in-
depth research into the types of information that
prove advantageous for LeakDistill. Additionally,
the final row of Table 5 presents the outcome when
the adaptors are active (the green path). It is notice-
able that, despite the green path essentially being
the GLM, it fails to match the performance level of
89.58.

Main results Tables 3 and 4 shows results for our
proposed model, based on BART-large. Our sys-
tem performs better than any previous single model
parser, and, most notably, does so even without ex-
tra data, i.e. silver sentence-graph pairs. For AMR
2.0, we see up to 0.7 SMATCH increase over AM-
RBART and 0.4 on AMR 3.0. The use of extra data
only leads to a small improvement, showing the
efficiency of our approach, which is able to outper-
form previous state-of-the-art systems that relied
on up to 200K extra samples. In the breakdown per-
formance, we see how our system performs worse
than ATP on Reentrancies, Negation and notably
SRL. We believe this is due to the multitask nature
of ATP, where SRL is explicitly included as a task.
This opens the door to future work exploring the
interaction between our approach and the inclusion
of auxiliary tasks.

It is worth noting that our system relies on align-
ment information which is openly discussed at var-
ious stages in the paper. We do not consider this
information as extra data since it is generated based
on the existing data.

Out-of-distribution evaluation Table 6 shows
the Out-of-Distribution of LeakDistill. We see a
smaller improvement on TLP, 0.3 over AMRBART.
On the harder BioAMR, performance increased by
over a point, showing how the model is able to
generalize well on different domains.

Model Extra Data Smatch Unlab. NoWSD Conc. Wiki NER Reent. Neg. SRL

SPRING (ours) ✘ 84.4 87.4 84.8 90.4 84.1 90.9 71.6 73.5 80.1
BiBL ✘ 84.6 87.8 85.1 90.3 83.6 92.5 74.4 73.9 83.1

Ancestor ✘ 84.8 88.1 85.3 90.5 84.1 91.8 75.1 74.0 83.4
LeakDistill ✘ 85.7s,o 88.6 86.2 91.0 83.9 91.1 74.2 76.8 81.8

SPRING 200K 84.3 86.7 84.8 90.8 83.1 90.5 72.4 73.6 80.5
ATP 40K 85.2s 88.3 85.6 90.7 83.3 93.1 74.7 74.9 83.3

AMRBART 200K 85.4s 88.3 85.8 91.2 81.4 91.5 73.5 74.0 81.5
LeakDistill 140K 86.1s,o,b,a 88.8 86.5 91.4 83.9 91.6 75.1 76.6 82.4

Table 3: AMR 2.0 results and comparisons with previous systems. Bold indicates best performance per set, underline
in case of a tie. Breakdown extra scores after vertical line. Superscript indicates the result is significantly better
using an approximate randomization test (Riezler and Maxwell, 2005) at p < 0.05 with respect to s = SPRING,
o = SPRING(ours), b = BiBL, a = ATP . We are unable to test Ancestor due to no public checkpoint.
Appendix D contains the descriptions for the columns.

Model Extra Data Smatch Unlab. NoWSD Conc. Wiki NER Reent. Neg. SRL

SPRING ✘ 83.0 85.4 83.5 89.5 81.2 87.1 71.3 71.7 79.1
SPRING (ours) ✘ 83.8 86.7 84.3 89.9 81.5 87.2 71.4 71.5 79.8

Ancestor ✘ 83.5 86.6 84.0 89.5 81.5 88.9 74.2 72.6 82.2
BiBL ✘ 83.9s 87.2 84.3 89.8 83.7 93.2 73.8 68.1 81.9

LeakDistill ✘ 84.5s,o,a 87.5 84.9 90.5 80.7 88.5 73.1 73.7 80.7

ATP 40K 83.9s 87.0 84.3 89.7 81.0 88.4 73.9 73.9 82.5
AMRBART 200K 84.2s,o,a 87.1 84.6 90.2 78.9 88.5 72.4 72.1 80.3
LeakDistill 140K 84.6s,o,b,a 87.5 84.9 90.7 81.3 87.8 73.4 73.0 80.9

Table 4: AMR 3.0 results and comparisons with previous systems. Bold indicates best performance per set, underline
in case of a tie. Breakdown extra scores after vertical line. Superscript indicates the result is significantly better
using an approximate randomization test (Riezler and Maxwell, 2005) at p < 0.05 with respect to s = SPRING,
o = SPRING(ours), b = BiBL, a = ATP . We are unable to test Ancestor due to no public checkpoint.
Appendix D contains the descriptions for the columns.

Model AMR 3.0

SPRING (ours) 84.55

Contracted WAG 84.90
Full WAG 85.04

+ β scheduling 85.08
+ Silver 85.34
+ Silver + β scheduling 85.28

The green path (Figure 4)
FWAG + Silver 86.09

Table 5: Performance of LeakDistill models on the de-
velopment set of AMR 3.0.

BART base Our state-of-the-art system relies on
BART-large, which has 400M parameters. While it
shows very strong performance, it has a big com-
putational footprint, especially at inference time
due to its auto-regressive generative nature. This
makes the need for lighter, more compute efficient

models an important step towards better Semantic
Parsers. Table 7 shows the performance of our ap-
proach when trained on top of BART-base, which
has 140M parameters, achieving 83.5 SMATCH
points on AMR 3.0, 1 point higher than AMR-
BART and, noticeably, surpassing SPRING-large
performance by half a point. We believe it is crucial
to have close to state-of-the-art performance base
models, closing the gap from 2 points to 1 when
compared to their large counterparts.

Other metrics Recent studies have shown that
achieving a higher SMATCH score does not nec-
essarily result in better performance of an AMR
parser, as demonstrated by Opitz and Frank (2022).
To address this issue, we use two additional eval-
uation metrics, namely S2MATCH and WWLK-
k3e2n (WWLK), which measure graded concept
similarity and edge label importance, respectively.
Our experiments reveal that S2MATCH correlates
well with SMATCH, as expected for monolingual

Model TLP BioAMR

SPRING 81.3 61.6
BiBL 78.6 61.1
ATP 78.9 61.2
AMRBART 82.3 63.4
LeakDistill 82.6 64.5

Table 6: Out of distribution results. AMRBART and
SPRING are taken from Lee et al. (2022).

Model AMR 2.0 AMR 3.0

SPRING 82.8 -
AMRBART 83.6 82.5
LeakDistill 84.7 83.5

Table 7: BART-base versions performance.

Model SMATCH S2MATCH WWLK

SPRING 83.0 84.2 84.8
BiBL 83.9 84.6 82.3
ATP 83.9 84.7 85.7
AMRBART 84.2 85.1 83.9
LeakDistill 84.6 85.5 85.9

Table 8: Performance on AMR 3.0 for different metrics.
S2MATCH is taken from Opitz et al. (2020). We use
WWLK-k3e2n as proposed in Opitz and Frank (2022).

parsers. Conversely, WWLK is specifically de-
signed for monolingual AMR parsing and empha-
sizes edge labels. Interestingly, our findings sug-
gest that ATP performs well, second only to our
proposed system, LeakDistill. This may be due
to the fact that both systems place greater empha-
sis on edges, with ATP leveraging semantic role
labeling data and LeakDistill utilizing structural in-
formation such as edges in the FWAGs. In contrast,
AMRBART and BiBL exhibit a significant drop
in performance compared to the SPRING baseline,
possibly due to their use of masking as an addi-
tional signal, as their masking strategies may not
be beneficial for edge labels.

8 Performance Analysis

Seq2seq parsers show decreased performance for
longer sentences since a single error at decoding
time in an early step can lead to compound errors
and suffer from exposure bias. We explore how
this affects our model compared to SPRING, ATP
and AMRBART. Figure 5 shows the performance

Words in Sentence

S
M

A
TC

H

80

84

88

92

96

3 7 10 14 17 21 26 31 41 159

SPRING ATP AMRBART LeakDistill

Figure 5: SMATCH score for buckets of 200 instances.
X axis shows max. number of words per sentence.

on AMR 3.0 test set for buckets of 200 sentences
split by the number of words. While performance
is similar on shorter sentences, with AMRBART
showing slightly better performance, in longer sen-
tences of over 14 words LeakDistill fares better,
especially compared to the baseline, which drops
to 80 SMATCH points. This experiment also shows
how performance is relatively stable for medium-
length sentences (10-30 words, oscillating around
85 points), while it starts deteriorating for longer
ones. The high performance on short sentences
is likely due to easy-to-parse structures, such as
single date sentences.

9 Conclusion

We presented a new approach to training the Trans-
former architecture where partial information of the
target sequence can be learned via self-knowledge
distillation: the information can be leaked in the
encoder implicitly through Transformer adapters
which improve training but are switched off during
inference. By employing this approach in AMR
parsing, we achieved state-of-the-art results among
non-ensemble methods. Moreover, we produced a
lightweight AMR parser that outperforms SPRING
while having four times fewer parameters. We also
showed that, for all methods, performance degrades
as the number of words increases.

Interestingly, our approach can potentially be
used in other tasks, such as Relation Extraction,
where alignments between input and target se-
quence elements exist, or structural information
is unavailable at inference time.

10 Limitations

Our approach for training the Transformer architec-
ture using self-knowledge distillation is promising,
but there are still some limitations that need to be
addressed in future work. One limitation is that
our approach is only tested on the task of AMR
parsing, and more evaluations are needed to see
if it generalizes well to other tasks, such as Rela-
tion Extraction. Additionally, our approach, as is
also the case for other current methods, exhibits
performance degradation as the number of words
in the sentence increases. This may be an indica-
tion of the current methods’ limitation or lack of
robustness to longer sentences.

Another limitation is the added complexity and
extra parameters required by the use of Transformer
adapters, which increases the overall complexity of
the architecture and training time. Even though our
approach still achieves state-of-the-art results and
it is as lightweight as previous systems at inference
time, this fact should be considered by researchers
if they should decide to adopt it for other tasks.

In summary, our approach presents an innova-
tive way to train the Transformer architecture and
achieve state-of-the-art results in AMR parsing.
However, more work is needed to further improve
the performance of the model and to apply it to
other tasks as well.

11 Ethical considerations

In considering the ethical and social implications
of our proposed approach to AMR parsing, we
acknowledge that there are several important con-
siderations to take into account.

One significant concern is the potential for bias
in the training data and models, which can result
in unfair or discriminatory outcomes for certain
groups of individuals. Additionally, the training
and test data may not be representative of the popu-
lation that the model will be applied to, potentially
leading to poor performance in specific domains.

Furthermore, our approach relies on the use of
Transformer-based models, which have been shown
to perpetuate societal biases present in the data used
for training. It is, therefore, crucial to ensure that
the data used for training is diverse and unbiased.

Moreover, the use of techniques such as self-
knowledge distillation may lead to data leakage,
where the model overfits the training data and per-
forms poorly on new data, which could have nega-
tive impacts on the predictions.

In conclusion, even if we consider our approach
does not have negative implications, it is important
to note that bias and fairness are complex issues
that require ongoing attention and improvement.

Acknowledgments
The authors gratefully acknowledge
the support of the European Union’s
Horizon 2020 research project
Knowledge Graphs at Scale (Know-
Graphs) under the Marie Marie
Skłodowska-Curie grant agreement
No 860801.

The last author gratefully acknowledges the sup-
port of the PNRR MUR project PE0000013-FAIR.

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228–238, Sofia, Bulgaria. Association
for Computational Linguistics.

Xuefeng Bai, Yulong Chen, and Yue Zhang. 2022.
Graph pre-training for AMR parsing and generation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6001–6015, Dublin, Ireland.
Association for Computational Linguistics.

Miguel Ballesteros and Yaser Al-Onaizan. 2017. AMR
parsing using stack-LSTMs. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1269–1275, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One SPRING to Rule Them Both:
Symmetric AMR semantic Parsing and Genera-
tion without a Complex Pipeline. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(14):12564–12573.

Rexhina Blloshmi, Michele Bevilacqua, Edoardo Fabi-
ano, Valentina Caruso, and Roberto Navigli. 2021.
SPRING Goes Online: End-to-End AMR Parsing
and Generation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language

https://cordis.europa.eu/project/id/860801
https://aclanthology.org/P13-1023
https://aclanthology.org/P13-1023
https://doi.org/10.18653/v1/2022.acl-long.415
https://doi.org/10.18653/v1/D17-1130
https://doi.org/10.18653/v1/D17-1130
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://ojs.aaai.org/index.php/AAAI/article/view/17489
https://ojs.aaai.org/index.php/AAAI/article/view/17489
https://ojs.aaai.org/index.php/AAAI/article/view/17489
https://doi.org/10.18653/v1/2021.emnlp-demo.16
https://doi.org/10.18653/v1/2021.emnlp-demo.16

Processing: System Demonstrations, pages 134–142,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Austin Blodgett and Nathan Schneider. 2021. Prob-
abilistic, structure-aware algorithms for improved
variety, accuracy, and coverage of AMR alignments.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3310–3321, Online. Association for Computational
Linguistics.

Claire Bonial, Lucia Donatelli, Mitchell Abrams,
Stephanie M. Lukin, Stephen Tratz, Matthew Marge,
Ron Artstein, David Traum, and Clare Voss. 2020a.
Dialogue-AMR: Abstract Meaning Representation
for dialogue. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 684–
695, Marseille, France. European Language Re-
sources Association.

Claire Bonial, Stephanie M. Lukin, David Doughty,
Steven Hill, and Clare Voss. 2020b. InfoForager:
Leveraging semantic search with AMR for COVID-
19 research. In Proceedings of the Second Interna-
tional Workshop on Designing Meaning Representa-
tions, pages 67–77, Barcelona Spain (online). Asso-
ciation for Computational Linguistics.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. Asso-
ciation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 748–752, Sofia, Bulgaria. Association
for Computational Linguistics.

Liang Chen, Peiyi Wang, Runxin Xu, Tianyu Liu, Zhi-
fang Sui, and Baobao Chang, editors. 2022. ATP:
AMRize Then Parse! Enhancing AMR Parsing with
PseudoAMRs. Association for Computational Lin-
guistics.

Ziming Cheng, Zuchao Li, and Hai Zhao. 2022. BiBL:
AMR parsing and generation with bidirectional
Bayesian learning. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 5461–5475, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for Abstract Meaning
Representation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 536–546, Valencia, Spain. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ramón Fernandez Astudillo, Miguel Ballesteros, Tahira
Naseem, Austin Blodgett, and Radu Florian. 2020.
Transition-based parsing with stack-transformers. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1001–1007, Online.
Association for Computational Linguistics.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime
Carbonell. 2016. CMU at SemEval-2016 task 8:
Graph-based AMR parsing with infinite ramp loss.
In Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 1202–
1206, San Diego, California. Association for Compu-
tational Linguistics.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the Abstract Meaning Repre-
sentation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1426–1436, Bal-
timore, Maryland. Association for Computational
Linguistics.

Sangchul Hahn and Heeyoul Choi. 2019. Self-
knowledge distillation in natural language processing.
In Proceedings of the International Conference on
Recent Advances in Natural Language Processing
(RANLP 2019), pages 423–430, Varna, Bulgaria. IN-
COMA Ltd.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Ondřej Bojar, Silvie Cinková, Eva Fučíková, Marie
Mikulová, Petr Pajas, Jan Popelka, Jiří Semecký,
Jana Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka
Urešová, and Zdeněk Žabokrtský. 2012. Announcing
Prague Czech-English Dependency Treebank 2.0. In
Proceedings of the Eighth International Conference
on Language Resources and Evaluation (LREC’12),
pages 3153–3160, Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Hardy Hardy and Andreas Vlachos. 2018. Guided neu-
ral language generation for abstractive summariza-
tion using Abstract Meaning Representation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 768–773,
Brussels, Belgium. Association for Computational
Linguistics.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531.

https://doi.org/10.18653/v1/2021.acl-long.257
https://doi.org/10.18653/v1/2021.acl-long.257
https://doi.org/10.18653/v1/2021.acl-long.257
https://aclanthology.org/2020.lrec-1.86
https://aclanthology.org/2020.lrec-1.86
https://aclanthology.org/2020.dmr-1.7
https://aclanthology.org/2020.dmr-1.7
https://aclanthology.org/2020.dmr-1.7
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://aclanthology.org/P13-2131
https://aclanthology.org/P13-2131
https://arxiv.org/abs/2204.08875
https://arxiv.org/abs/2204.08875
https://arxiv.org/abs/2204.08875
https://aclanthology.org/2022.coling-1.485
https://aclanthology.org/2022.coling-1.485
https://aclanthology.org/2022.coling-1.485
https://aclanthology.org/E17-1051
https://aclanthology.org/E17-1051
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.89
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.26615/978-954-452-056-4_050
https://doi.org/10.26615/978-954-452-056-4_050
http://www.lrec-conf.org/proceedings/lrec2012/pdf/510_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/510_Paper.pdf
https://doi.org/10.18653/v1/D18-1086
https://doi.org/10.18653/v1/D18-1086
https://doi.org/10.18653/v1/D18-1086
https://arxiv.org/abs/1503.02531

Pere-Lluís Huguet Cabot, Abelardo Carlos
Martínez Lorenzo, and Roberto Navigli. 2022.
AMR Alignment: Paying Attention to Cross-
Attention. ArXiv, abs/2206.07587.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravis-
hankar, Salim Roukos, Alexander Gray, Ramón Fer-
nandez Astudillo, Maria Chang, Cristina Cornelio,
Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio
Gliozzo, Sairam Gurajada, Hima Karanam, Naweed
Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao
Li, Francois Luus, Ndivhuwo Makondo, Nandana
Mihindukulasooriya, Tahira Naseem, Sumit Neelam,
Lucian Popa, Revanth Gangi Reddy, Ryan Riegel,
Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhar-
gav, and Mo Yu. 2021. Leveraging Abstract Mean-
ing Representation for knowledge base question an-
swering. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3884–3894, Online. Association for Computational
Linguistics.

Laura Baranescu Claire Bonial Madalina Bardocz Kira
Griffitt Ulf Hermjakob Daniel Marcu Martha Palmer
Tim O’Gorman Nathan Schneider Kevin Knight,
Bianca Badarau. 2020. Abstract meaning representa-
tion (amr) annotation release 3.0.

Hoang Thanh Lam, Gabriele Picco, Yufang Hou, Young-
Suk Lee, Lam M. Nguyen, Dzung T. Phan, Vanessa
López, and Ramon Fernandez Astudillo. 2021. En-
sembling Graph Predictions for AMR Parsing.

Young-Suk Lee, Ramón Astudillo, Hoang Thanh Lam,
Tahira Naseem, Radu Florian, and Salim Roukos.
2022. Maximum Bayes Smatch ensemble distilla-
tion for AMR parsing. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5379–5392, Seattle,
United States. Association for Computational Lin-
guistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab-
stract Meaning Representation for multi-document
summarization. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1178–1190, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Jungwoo Lim, Dongsuk Oh, Yoonna Jang, Kisu Yang,
and Heuiseok Lim. 2020. I know what you asked:
Graph path learning using AMR for commonsense
reasoning. In Proceedings of the 28th International
Conference on Computational Linguistics, pages

2459–2471, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

Yijia Liu, Wanxiang Che, Bo Zheng, Bing Qin, and
Ting Liu. 2018. An AMR aligner tuned by transition-
based parser. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2422–2430, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 397–407, Melbourne, Australia. Association
for Computational Linguistics.

Abelardo Carlos Martínez Lorenzo, Marco Maru, and
Roberto Navigli. 2022. Fully-Semantic Parsing and
Generation: the BabelNet Meaning Representation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1727–1741, Dublin, Ireland.
Association for Computational Linguistics.

Roberto Navigli, Rexhina Blloshmi, and Abelardo Car-
los Martinez Lorenzo. 2022. BabelNet Meaning Rep-
resentation: A Fully Semantic Formalism to Over-
come Language Barriers. Proceedings of the AAAI
Conference on Artificial Intelligence, 36.

Juri Opitz, Angel Daza, and Anette Frank. 2021.
Weisfeiler-leman in the bamboo: Novel AMR graph
metrics and a benchmark for AMR graph similarity.
Transactions of the Association for Computational
Linguistics, 9:1425–1441.

Juri Opitz and Anette Frank. 2022. Better Smatch = bet-
ter parser? AMR evaluation is not so simple anymore.
In Proceedings of the 3rd Workshop on Evaluation
and Comparison of NLP Systems, pages 32–43, On-
line. Association for Computational Linguistics.

Juri Opitz, Letitia Parcalabescu, and Anette Frank. 2020.
AMR similarity metrics from principles. Transac-
tions of the Association for Computational Linguis-
tics, 8:522–538.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning English strings
with Abstract Meaning Representation graphs. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 425–429, Doha, Qatar. Association for Com-
putational Linguistics.

Luigi Procopio, Rocco Tripodi, and Roberto Navigli.
2021. SGL: Speaking the graph languages of se-
mantic parsing via multilingual translation. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
325–337, Online. Association for Computational Lin-
guistics.

https://arxiv.org/abs/2206.07587
https://arxiv.org/abs/2206.07587
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/https://doi.org/10.35111/44cy-bp51
https://doi.org/https://doi.org/10.35111/44cy-bp51
https://arxiv.org/abs/2110.09131
https://arxiv.org/abs/2110.09131
https://doi.org/10.18653/v1/2022.naacl-main.393
https://doi.org/10.18653/v1/2022.naacl-main.393
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/C18-1101
https://aclanthology.org/C18-1101
https://aclanthology.org/C18-1101
https://doi.org/10.18653/v1/2020.coling-main.222
https://doi.org/10.18653/v1/2020.coling-main.222
https://doi.org/10.18653/v1/2020.coling-main.222
https://doi.org/10.18653/v1/D18-1264
https://doi.org/10.18653/v1/D18-1264
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/2022.acl-long.121
https://doi.org/10.18653/v1/2022.acl-long.121
https://www.researchgate.net/publication/358818124_BabelNet_Meaning_Representation_A_Fully_Semantic_Formalism_to_Overcome_Language_Barriers
https://www.researchgate.net/publication/358818124_BabelNet_Meaning_Representation_A_Fully_Semantic_Formalism_to_Overcome_Language_Barriers
https://www.researchgate.net/publication/358818124_BabelNet_Meaning_Representation_A_Fully_Semantic_Formalism_to_Overcome_Language_Barriers
https://doi.org/10.1162/tacl_a_00435
https://doi.org/10.1162/tacl_a_00435
https://doi.org/10.18653/v1/2022.eval4nlp-1.4
https://doi.org/10.18653/v1/2022.eval4nlp-1.4
https://doi.org/10.1162/tacl_a_00329
https://doi.org/10.3115/v1/D14-1048
https://doi.org/10.3115/v1/D14-1048
https://doi.org/10.18653/v1/2021.naacl-main.30
https://doi.org/10.18653/v1/2021.naacl-main.30

Sudha Rao, Daniel Marcu, Kevin Knight, and Hal
Daumé III. 2017. Biomedical event extraction using
Abstract Meaning Representation. In BioNLP 2017,
pages 126–135, Vancouver, Canada,. Association for
Computational Linguistics.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna Gurevych.
2021a. Structural adapters in pretrained language
models for AMR-to-Text generation. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4269–4282, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna Gurevych.
2021b. Structural adapters in pretrained language
models for amr-to-text generation.

Stefan Riezler and John T. Maxwell. 2005. On some
pitfalls in automatic evaluation and significance test-
ing for MT. In Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for
Machine Translation and/or Summarization, pages
57–64, Ann Arbor, Michigan. Association for Com-
putational Linguistics.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang,
and Jinsong Su. 2019. Semantic neural machine
translation using AMR. Transactions of the Associa-
tion for Computational Linguistics, 7:19–31.

Chuan Wang, Nianwen Xue, and Sameer Pradhan. 2015.
Boosting transition-based AMR parsing with refined
actions and auxiliary analyzers. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers), pages 857–862, Beijing, China.
Association for Computational Linguistics.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6397–6407, Online. Association for Computa-
tional Linguistics.

Chen Yu and Daniel Gildea. 2022. Sequence-to-
sequence AMR parsing with ancestor information.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 571–577, Dublin, Ireland.
Association for Computational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Association
for Computational Linguistics.

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-
tudillo, and Radu Florian. 2021. AMR parsing with
action-pointer transformer. In Proceedings of the

2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5585–5598, On-
line. Association for Computational Linguistics.

https://doi.org/10.18653/v1/W17-2315
https://doi.org/10.18653/v1/W17-2315
https://doi.org/10.18653/v1/2021.emnlp-main.351
https://doi.org/10.18653/v1/2021.emnlp-main.351
https://doi.org/10.48550/ARXIV.2103.09120
https://doi.org/10.48550/ARXIV.2103.09120
https://aclanthology.org/W05-0908
https://aclanthology.org/W05-0908
https://aclanthology.org/W05-0908
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.3115/v1/P15-2141
https://doi.org/10.3115/v1/P15-2141
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2022.acl-short.63
https://doi.org/10.18653/v1/2022.acl-short.63
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/2021.naacl-main.443
https://doi.org/10.18653/v1/2021.naacl-main.443

Appendices

A Model Hyperparameters

Table 9 lists hyperparameters and search space for
the experiments:

• LR sched. - learning rate scheduler

• KL temp. - Kullback–Leibler divergence tem-
perature

• AMR 3 aligns. - type of alignments for AMR
3.0

• Mask. range - masking range. For each batch,
we mask the input tokens with probability
pmask, the value for which is sampled uni-
formly from the masking range. For instance,
the [0; 0.15] range means pmask ∼ U(0, 0.15)

The LeakDistill experiments detailed in Table 2
were performed utilizing the final set of hyperpa-
rameters listed in Table 9. However, it should be
noted that the experiment that did not involve KL
loss did not necessitate the use of the variable α.

B Hardware and size of the model

We performed experiments on a single NVIDIA
3090 GPU with 64GB of RAM and Intel® Core™
i9-10900KF CPU. The total number of trainable
parameters of LeakDistill is 434,883,596. Training
the model on the silver data took 33 hours, whereas
further fine-tuning took 16 hours.

C BLINK

All systems from Tables 3 and 4 use BLINK (Wu
et al., 2020) for wikification. For this purpose,
we used the blinkify.py script from the SPRING
repository.

D Metric

We evaluate AMR parsing using the SMATCH met-
ric (Cai and Knight, 2013) and extra scores of Da-
monte et al. (2017): i) Unlabel, compute on the
predicted graphs after removing all edge labels,
ii) No WSD, compute while ignoring Propbank
senses (e.g., duck-01 vs duck-02), iii) Wikification,
F-score on the wikification (:wiki roles), iv) NER,
F-score on the named entity recognition (:name
roles), v) Negations, F-score on the negation detec-
tion (:polarity roles), vi) Concepts, F-score on the
concept identification task, vii) Reentrancy, com-
puted on reentrant edges only, viii) Semantic Role
Labeling (SRL), computed on :ARG-i roles only.

Group Parameter Values

Inherited
(SPRING)

Optimizer RAdam
Batch size 500
Dropout 0.25

Attent. dropout 0
Grad. accum. 10
Weight decay 0.004

LR 0.00005
Beamsize 5

SPRING (ours)
LR sched. const., linear

Mask. range [0; {0, 0.15}]
Beamsize 5, 10

Adapter
Encoder layers 1-12

Activation GELU
Dropout 0.01, 0.1

GLM
LR 0.00005, 0.0001

LR sched. const., linear
Mask. range [0; 0.15]

KD

α 10
LR 0.00005, 0.0001

LR sched. const., linear
Weight decay 0.004, 0.0001

Decoder train, freeze
Mask. range [0; 0.15]

LeakDistill

LR sched. const., linear
KL temp. 1, 2

α 1, 5, 10, 20
β 1, 5, 10, sched.

AMR 3 aligns. ISI, LeAMR
Mask. range [0; {0, 0.1, 0.15}]

Beamsize 5, 10

Table 9: Final hyperparameters and search space for
the experiments. All groups have the same parameters
as original SPRING if they are not overwritten. For
instance, SPRING (ours) and for LeakDistill have the
same learning rate of 0.00005.

E Data

The AMR 3.0 (Kevin Knight, 2020) data used in
this paper is licensed under the LDC User Agree-
ment for Non-Members for LDC subscribers, which
can be found here. The The Little Prince Corpus
can be found here from the Information Science
Institute of the University of Southern California.

F Algorithms

Algorithm 2 shows one training step of the
LeakDistill model.

https://catalog.ldc.upenn.edu/LDC2020T02
https://amr.isi.edu/download.html

Algorithm 2 One training step of the LeakDistill
model

Input: X - batch of input sequences and WAGs,
Y - batch of target graphs
Set Model to Normal Mode
LD
nll, P robs1 ←Model(X,Y)

Set Model to Leak Mode
Lleak, P robs2 ←Model(X,Y)
LKL ← KLDiv (Probs1, P robs2)
L← αLKL + βLleak + LD

nll

Optimization step of L

