XML2

XML — spazi di nomi: per gestire il clash tra nomi di
attributi che si ripetono in piu linguaggi

XML — schemi: piu® espressivi delle dtd, e + "XML"

DOM — Document Object Model: accesso delle
applicazioni XML ai documenti XML

SAX — un approccio diverso all'accesso ai file XML

_ XML — Namespace (0/3)

clash di nomi

=S

<?xml version="1.0" encoding=""UTF-8"?>
<data>
<record>
<title>ll grande atlante geografico</title>
<location>
<title>Monte Biranco</title>
<coordinates>
<latitude>45.8326</latitude>
<longitude>6.8650</1ongitude>
</coordinates>
</location>
<position>
<chapter>22</chapter>
<pages>
<iInit>2932</i1nit>
<endi1t>2933</endit>
</pages>
</position>
</record>
</data>

Un esempio

_ XML — Namespace (0/3)

Uno spazio dei nomi e definito per denotare un dominio applicativo in cui il
codice XML deve agire. Sostanzialmente, esso serve a permettere di distinguere tra
tag che hanno il medesimo nome ma fanno riferimento ad elementi diversi (in

linguaggi diversi).
?

Un esempio

<?xml version="1.0" encoding="UTF-8"?7>
<data>
<record>
<title>ll grande atlante geografico</title>
<location>
<title>Monte Bianco</title>
<coordinates>
<latitude>45.8326</latitude>
<longitude>6.8650</longitude>
</coordinates>
</location>
<position>
<chapter>22</chapter>
<pages>
<Init>2932</init>
<endit>2933</endit>
</pages>
</position>
</record>
</data>

In questo documento ci sono elementi di due
linguaggi,

un linguaggio definito per applicazioni GIS
(Geographic Information System)

ed uno ... al solito, bibliografico

in entrambi c'e” un elemento <title> con
significati diversi ...

Cosi’, abbiamo <title> che occorre nel
documento due volte con significati diversi

cioe’
con significati che ci si aspetterebbe di poter
gestire in modi diversi

Come distinguere tra i due significati in questo
medesimo contesto?

Come evitare che l'applicazione xml che gestisce
il file faccia confusione?

~ XML — Namespace (1/3)

Uno spazio dei nomi e definito per denotare un dominio applicativo in cui il codice XML deve agire.
Sostanzialmente, esso serve a permettere di distinguere tra tag che hanno il medesimo nome ma fanno
riferimento ad elementi diversi (in linguaggi diversi).

?

Altro esempio: un documento in cui c'e” un elemento <title> riferito al titolo di un libro e un altro, che
e il classico <title> di xhtml.

Stesse domande di prima ... come fare?

<?xml version="1.0" encoding=""UTF-8"7?>
<libri>

<book>

<author>J. A. Ellison</author>

<title>The Great ...</title>

<webPresentation>
<html><head><title>guarda!</title>
</head><body> ditutto</body></html>

</webPresentation>
</book>
<book>

</book>

</libri>

XML — Namespace (1/3)

come fare?

inventandosi un prefisso che specifichi meglio ciascun
nome di elemento ed eviti ogni possibile ambiguita®

<?xml version="1.0" encoding=""UTF-8"7?>
<libri>
<book>
<author>J. A. Ellison</author>
<title>The Great ...</title>

<liber:libri>

<webPresentation>
<html><head><title>guardal</title <liber:book>
</head><body> ditutto</body></html <liber:author>J..._.</li1ber:author>
</webPresentation> <liber:title>The G...</liber:title>
</book> <liber:webPresentation>
<book> <xhtml : htmI><xhtml : head>
" <xhtml:title>guarda!</xhtml:title>
</book>

. </xhtml :head><xhtml :body>di tutto,
</libri> immagini</xhtml :body></xhtml :html>

</liber:webPresentation>
</li1ber:book>
<liber:book>... </liber:book>...
</liber:libri>

Il prefisso identifica uno spazio di nomi, legati da un'appartenenza concettuale: si
tratta di un'entita’ puramente teorica - non e definita fisicamente

XML - Namespace (2/3)

L'identificatore che funge da prefisso, rappresentante di uno spazio di nomi, deve essere
ragionevolmente unico!

<?xml version="1.0" encoding=""UTF-8"7?>
<liber:libri xmIns: liber="http://www. lweb.uni/spazidinomi/Z1111"'">
<liber:book>
<liber:author>J.._.</liber:-author>
<liber:title>The G...</liber:title>

</liber:libri>

<?xml version="1.0" encoding=""UTF-8"7?>
<liber:libri
xmIns: liber="http://www. lweb_.uni/spazidinomi/ZH111"
xmIns:xhtml="http://www.w3.0rg/1812/xhtml"'>
<li1ber:book>
<liber:webPresentation>
<xhtml -htmI><xhtml :head>
<xhtml:title>guardal!</xhtml:title>

</liber:libri>

XML - Namespace (2/3)

L'identificatore che funge da prefisso, rappresentante di uno spazio di nomi, deve essere

ragionevolmente unico!

Ad esempio, liber non e” ragionevolmente unico: Un altro sviluppatore xml potrebbe aver usato un
prefisso uguale, con scopi scorrelati dai nostril. Magari, un giorno, nostri "liber -prefixed-documenti”
verranno processati insieme agli altri "liber -prefixed-documenti™ e ci sara’ confusione.

L'uso di una URI come nome del namespace sembra una soluzione,
<?xml version="1.0" encoding=""UTF-8"?>

<liber:libri xmIns: liber="http://www. lweb.uni/spazidinomiZ1111">
slllzelrsleeele Dichiarazione "locale" di
<liber:author>J...</liber:author> N
<liber:title>The G...</liber:title> AU TEIESEEEE FES0T ELe
all®"identif. liber

</liber:libri>

<?xml version="1.0" encoding=""UTF-8"?>

<liber:libri
xmIns: liber="http://www. lweb.uni/spazidinomi/Z1111"

xmIns:xhtml="http://www.w3.0rg/1812/xhtml"">

szt loooks Quil ci sono due spazi di nomi, cuil le
T _ . diverse occorrenze di <title> fanno
<liber:webPresentation> - - - _ R -
riferimento: ogni tag e qualified e
<xhtml :htmI><xhtml :head> I 1i - I d bb
<xhtml:title>guardal!</xhtml:title> applicazione xmt non covrebbe _
: : : soffrire ambiguita nel distinguerli.

</liber:libri>

XML — Namespace (3/3)

SPAZIO DI NOMI DI DEFAULT

<?xml version="1.0" encoding=""UTF-8"7?>
<libri xmIns="http://www.Iweb.uni/spazidinomi/Z1111"
xmlns:xhtml="http://www.w3.0rg/2006/xXhtml">

<book>

<webPresentation>
<xhtml :html><xhtml : head>
<xhtml:title>guardal!</xhtml:title>

Si1 scrive <libri>, <webPresentation> ... ma Si
intende per default

<http://www.lweb.uni/spazidinomi/Zllll:Libri>,

<http://www.lweb.uni/spazidinomi/Zl111:webPrese
ntation>,

</libri>

Linguaggi per il Web, M. Temperini — lweb — XML2 8747

XML — Namespace (3/3)

Se uno spazio di nomi (namespace) e dichiarato senza identificatore-prefisso, tutti i nomi
(che non facciano uso di altri prefissi) sono qualificati da esso per default.

<?xml version="1.0" encoding=""UTF-8"7?>
<libri xmIns="http://www.Iweb.uni/spazidinomi/Z1111"
xmlns:xhtml="http://www.w3.0rg/2006/xXhtml">

<book>

<webPresentation>
<xhtml :html><xhtml : head>
<xhtml:title>guardal!</xhtml:title>

;}iibri> Si §crive <libri>, <webPresentation> ... ma si
intende per default
<http://www.lweb.uni/spazidinomi/lI1L:1ibri>,
<http://www.lweb.uni/spazidinomi/Zl111:webPrese
NB ntation>,

L'applicazione xml puo" distinguere tra tag che potrebbero essere confondibili, sfruttando il loro
prefisso, definito dal namespace. Ma

"http://www. Iweb.uni/spazidinomi/ZH111"
"http://www.w3.0rg/2006/xhtml"'>

sono solo sequenze di caratteri progettate per essere il piu” possibile uniche, nel senso di indicare
univocamente lo spazio di nomi all'interno di un documento xml (o per un gruppo di documenti xml
processati insieme).

Non sono indirizzi di risorse particolari (nulla impedisce che a quell'indirizzo ci sia un file, e di solito e’
cosi’, ma qualunque cosa ci sia dentro non e necessariamente significativa).

XML N SChema celeste = XML document; giallo = grammatica (schema)

1) definizione di grammatica di linguaggio di markup
alternativa alla definizione mediante DTD

2) scritta in un file .xsd.

3) goodbye 'DOCTYPE. (altre modalita” di associazione del file XML alla sua grammatica.

libri.5.xml h

<?xml version="1.0" encoding=""UTF-8"7?>
<libri xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xsi :noNamespaceSchemalLocation="li1bri.5.xsd">
<book isbn="0" rating="ottimo">
<author>
<name>J. Audreay</name>
<surname>Ell1son</surname>
</author>
<title>0 Mestre Cozinheiro</title>
<year>1967</year>
<publisher>Crown Publishers, Inc.</publisher>
<edition>3</edition>
<preface>
<name>Joan</name>
<surname>Wal ley</surname>
</preface>
</book>
. altri book
</libri>

XML . SChema celeste = XML document; giallo = grammatica (schema)

Un metodo alternativo (alla definizione di DTD) per specificare il linguaggio di markup con cui
il documento xml e scritto.

La schema definition viene scritta in un file .xsd. Il documento xml viene fatto riferire allo
schema cui deve conformarsi (cosi” puo” essere validato).

(Per le dtd c'era la clausola 'DOCTYPE. Per gli schemi no ... quindi la dichiarazione che
associa il doc XML alla XSD segue altre modalita’: ad esempio questa qui sotto, simile ad una
dichiarazione doctype ... vedremo altri due modi ... ; 'ultimo con namespaces).

libri.5.xml h

<?xml version="1.0" encoding=""UTF-8"7?>
<libri xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xsi :noNamespaceSchemalLocation="1ibri.5.xsd">
<book isbn="0" rating="ottimo'> R
<author>
<name>J. Audreay</name>
<surname>Ell1son</surname>

Dichiarazione che questo
documento xml si vuole
conformare alla
definizione di documento

</author> . _ data in libri.5.xsd
<title>0 Mestre Cozinheiro</title>
<year>1967</year>
<pu?lisher>Crown_Publishers, Inc.</publisher> (la schema definition potrebbe aver
<edition>3</edition> definito un namespace ad hoc per i libri:
<preface> in tal caso qui si potrebbe fare
<name>Joan</name> riferimento al namespace direttamente
<surname>Wal ley</surname> - vedi dopo)
</preface>
</book>
: altri bOOk XSi?
</libri> XML Schema Instance Namespace, which is used to

associate XML Schemas with instance documents

XML - definizione di uno schema (1/3) libri.5.xsd .

XML SCHEMA = documento xml,
ns XMLSchema
definisce i costituenti sintattici del linguaggio di markup "target"

<?xml version="1.0" encoding=""UTF-8"7?>

<xsd:schema xmlns:xsd=""http://www.w3.0rg/2001/XMLSchema’'>

<xsd:element name=""libri">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=""book"™ minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element> <VELEMENT libri (book*)>)

</xsd:schema>

celeste = XML document; giallo = grammatica (schema)

XML - definizione di uno schema (1/3) libri.5.xsd

Uno schema e un documento xml, scritto usando elementi come schema,
element, complexType, sequence, choice, attribute, .. che
specifica I costituenti sintattici del linguaggio di markup "target"

<?xml version="1.0" encoding=""UTF-8"7?>

<xsd:schema xmlns:xsd=""http://www.w3.0rg/2001/XMLSchema’'>

<xsd:element name="li1bri'>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=""book' minOccurs="0" maxOccurs="unbounded' />

</xsd:sequence>
</xsd:complexType> Un elemento libri e” un elemento costruito come una
</xsd-element> sequenza di un qualsiasi numero di altri elementi definiti
(altrove) con il nome ““book™.

</xsd:schema> (definizione equivalente a <!ELEMENT libri (book*)>)

ComplexType = un elemento “complex” contiene sottoelementi e/o attributi; il nome puo” anche non essere
corrispondente ad un elemento effettivamente usato nel documento, ma costituire invece un simbolo usato
per permettere la definizione di altri elementi - vedi nomeCognome dopo ...).

XS piu standard di xsd

XML - definizione di uno schema (2/3) libri.5.xsd

<xsd:element name="book''>
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="
<xsd:element ref=’
<xsd:element ref=’
<xsd:element ref="
<xsd:element ref="
<xsd:element ref="

</xsd:sequence>

</xsd:complexType>
</xsd:element>

‘title” />
'vear"™ minOccurs="0" maxOccurs=""1" />

author'™ minOccurs="1" maxOccurs=""‘unbounded' />

publisher™ />
edition”™ minOccurs="0" maxOccurs=""1" />
preface'/>

<IELEMENT book (author+, title, year?, ...

Linguaggi per il Web, M. Temperini — lweb — XML2 14747

XML - definizione di uno schema (2/3) libri.5.xsd

Un simpleType definisce uno schema di contenuto per un elemento o un attributo. Il contenuto dell'elemento puo” essere

specificato in modo molto piu” preciso, di quanto si puo” fare in una DTD, usando i tipi di dato implementati (predefiniti), come

string, boolean, numeric decimal, date, anyURI,.. e derivati, come long, nonPositivelnteger,
short, ...

minOccurs, maxOccurs quantificano (remember ?,+,%*)

<xsd:element name="book"'>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="author™ minOccurs="1" maxOccurs=""unbounded" />
<xsd:element ref="title" />
<xsd:element ref="year"™ minOccurs="0" maxOccurs="1" />
<xsd:element ref="publisher™ />
<xsd:element ref="edition”™ minOccurs="0" maxOccurs=""1" />
<xsd:element ref="preface"/>

</xsd:sequence> prohibited 7/ optional /7 requ

ired

<xsd:attribute name="1sbn" type=''xsd:string" use="'required' />
<xsd:attribute name="rating" use="optional' default="suff''>
<xsd:simpleType> default / Ffixed
<xsd:restriction base="xsd:string'>
<xsd:enumeration value="'suff'/>
<xsd:enumeration value="buono'"/>
<xsd:enumeration value="ottimo'/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>

Linguaggi per il Web, M. Temperini — lweb — XML2

15747

XML - definizione di uno schema (2/3)

libri.5_xsd

Un simpleType definisce uno schema di contenuto per un elemento o un attributo. Il contenuto dell'elemento puo” essere
specificato in modo molto piu” preciso, di quanto si puo” fare in una DTD, usando i tipi di dato implementati (predefiniti), come
string, boolean, numeric decimal, date, anyURI,.. e derivati, come long, nonPositivelnteger,

short, ...

<xsd:element name=""book''>
<xsd:complexType>
<xsd:sequence>

<xsd
<xsd
<xsd
<xsd
<xsd
<xsd

element
element
element
element
element
element

</xsd:sequence>

<xsd:attribute name="1sbn" type=''xsd:string" use="'required' />
<xsd:attribute name="rating" use="optional' default="suff''>

ref="
ref='
ref="
ref="
ref="
ref="

minOccurs, maxOccurs quantificano (remember ?,+,%*)

author'™ minOccurs=""1" maxOccurs=""'unbounded' />

‘title” />

year™ minOccurs="0" maxOccurs=""1" />
publisher™ />

edition™ minOccurs="0" maxOccurs="1" />
preface"/>

prohibited / optional / required

<xsd:simpleType> default / Fixed
<xsd:restriction base="xsd:string'>

<xsd:enumeration value="'suff''/>
<xsd:enumeration value=""buono'' />
<xsd:enumeration value=""ottimo''/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

<IELEMENT book (author+, title, year?,
publisher, edition?, preface)>

<IATTLIST book isbn CDATA #REQUIRED
rating (suff | buono | ottimo) "'suff'’>

XML - definizione di uno schema (3/3) libri.5.xsd

La definizione (piu”) esatta del tipo di un valore (valore di un attributo o contenuto di un elemento) permette
verifiche piu™ approfondite:

<xsd:element name="‘author' type='‘nomeCognome" />

<xsd:element name=""title" type=''xsd:string'/>

<xsd:element name="year' type="'xsd:integer"/>
<xsd:element name="‘publisher™ type="xsd:string'/>
<xsd:element name="‘edition' type=''xsd:short"/>

<xsd:element name="‘preface' type=""nomeCognome' />

<xsd:complexType name="nomeCognome’'>

<xsd:sequence> <IELEMENT author (name, surname)>
<xsd:-element ref=""name" /> <IELEMENT title (#PCDATA)>
<xsd:element ref="surname'/> <IELEMENT year (#PCDATA)>
</xsd:sequence> <IELEMENT publisher (#PCDATA)>
</xsd:complexType> <IELEMENT edition (#PCDATA)>
<IELEMENT preface (name, surname)>
<xsd:element name='"‘name" type="'xsd:string" /> <IELEMENT name (#PCDATA)>
<xsd:element name="'surname' type=''xsd:string" /> <IELEMENT surname (#PCDATA)>
</xsd:schema>

XML - definizione di uno schema (3/3)

libri.5_.xsd

La definizione (piu”) esatta del tipo di un valore (valore di un attributo o contenuto di un elemento) permette
verifiche piu™ approfondite: ad esempio, in libri .5.sb.xml, tra gli altri problemi, un <edition> e’ riempito

con una stringa: che succede durante la validazione?)

<xsd:element name="author" typez"nomeCW? defi

omeCognome e~ un complexType

nito piu- sotto

<xsd:element name=""title" type=''xsd:string'/>

<xsd:element name="year' type="'xsd:integer"/>

<xsd:element name="‘publisher™ type="'xsd:string'/> 4

<xsd:element name="‘edition' type=''xsd:short"/>

<xsd:element name="‘preface' type=""nomeCognome' />

<xsd:complexType name="nomeCognome’'>

Questi elementi hanno un
contenuto definibile

semplicemente mediante
tipi base

<xsd:sequence>
<xsd:element ref="‘name"/>
<xsd:element ref="'surname'/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="name' type="'xsd:string' />
<xsd:element name="surname"™ type=''xsd:string" />
</xsd:schema>

<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT

author (name, surname)>
title (#PCDATA)>

year (#PCDATA)>
publisher (#PCDATA)>
edition (#PCDATA)>
preface (name, surname)>
name (#PCDATA)>

surname (#PCDATA)>

correggi

libri.5_.sb.xml

XML — variazioni sul precedenle scheima

<xsd:element name="preface’>
<xsd:complexType>
<xsd:choice>
<xsd:element ref="name"/>
<xsd:element ref="'surname'/>
</xsd: choice>
</xsd:complexType>
</xsd:element>

<IELEMENT preface (nhame | surname)>

<xsd:element name="preface'>
<xsd:complexType>
<xsd:all>
<xsd:element ref="name"/>
<xsd:element ref="'surname'/>
</xsd: all>
</xsd:complexType>
</xsd:element>

<xsd:element name="year"''>
<xsd:restriction base="xsd:integer>
<xsd:minkExclusive value="-4000" />
<xsd:maxeExclusive value="4000" />
</xsd:restriction>
</xsd:element>

nonsense

name e surname devono essercli;
in qualunque ordine

year compreso (strett.)
tra -4000 e +4000

XML — variazioni sul precedenle scheima

<xsd:element name="preface’>

<xsd:complexType>
<xsd:choice>

<xsd-element ref="name"/> <IELEMENT preface (name | surname)>

<xsd:element ref=""surname'/>

</xsd: choice>
</xsd:complexType>
</xsd:element>

<xsd:element name="preface'>
<xsd:complexType>
<xsd:all>
<xsd:element ref="name"/>
<xsd:element ref="'surname'/>
</xsd: all>
</xsd:complexType>
</xsd:element>

name e surname devono
esserci;
in qualunque ordine

<xsd:element name="year"''>
<xsd:restriction base="xsd:integer> B
<xsd:minkExclusive value="-4000" />
<xsd:maxeExclusive value="4000" />
</xsd:restriction>
</xsd:element>

year compreso (strett.) tra -4000 e +4000

Pregi dell’XML-schema

e’ XML, quindi processabile
con un‘applicazione XML

e una specifica w3c

permette di specificare
meglio il tipo di dati dei
valori di attributi e del
contenuto di un elemento

anche i limiti di questi valori
possono essere specificati
meglio che con i
quantificatori *,?,+

usati nelle DTD.

XML — Schema (associazione al file xml)

1) usiamo un solo spazio di nomi (quello che definisce xsi :noNamespaceSchemaLocation)

<?xml version="1.0" encoding=""UTF-8"7?>
<libri xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi1:noNamespaceSchemaLocation="11bri.5.xsd">
<book 1sbn="0" rating="ottimo'>
<author>
<name>J. Audreay</name>
<surname>El l1son</surname>

\libri.5.xml|

2) usiamo anche altri spazi di nomi; in questo caso uno, dato come default, cui fa riferimento la
grammatical che vogliamo associare al documento

<?xml version="1.0" encoding=""UTF-8"7> |Iibri-5-schemalocation-xml|
<libri xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns=*http://www.diag.uniromal. it/repository”
xsi:schemaLocation:"http://Www-diag-uniromal.it/repositorﬂﬂlibri-5-xsd">

<book 1sbn="0" rating="‘ottimo''>
<author>

<name>J. Audreay</name>

Linguaggi per il Web, M. Temperini — lweb — XML2 21747

XML — Schema (associazione al file xml)

1) 1l primo metodo di associazione consiste nell'usare lo spazio di nomi XMILSchema-instance (da cui xsi ...).
Questo serve per apphcare definizioni di spazi di nomi al documento xml — la xwz/-instance. Po1, senza ulteriori
namespace, si puo’ indicare il file .xsd di riferimento. La validazione procede basandosi su quest'ultimo.

<?xml version="1.0" encoding=""UTF-8"7?>
<libri xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi1:noNamespaceSchemaLocation="11bri.5.xsd">
<book 1sbn="0" rating="ottimo'>
<author>
<name>J. Audreay</name>
<surname>El l1son</surname>

\libri.5.xml|

2bis) Se si vuole che il documento faccia riferimento non solo ad una definizione di schema ma anche ad un
namespace dichiarato esplicitamente, c’e” un attributo schemal.ocation da riempire (e quindi non st usa piu’
lattributo noNamespaceSchemalocation ...). In questo esempio ¢’e” un namespace chiaramente definito
(associato all'identificatore liber) che viene usato per qualificare i nomi degli elementi. (Si puo’ lasciare che
questo identificatore sia di default — in questo caso quel che e’ tra parentesi va cancellato, senno” che default
63)pmg&ekmmﬁunqm&onmnmpmemﬁmam&nmmnoﬂhsdwnmxkﬁnnmnaampmﬁaﬂ
namespace nella dichiarazione di schemal.ocation.

<?xml version="1.0" encoding=""UTF-8"7> |Iibri-5-schemalocation-xml|
<libri xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns(:liber)="*http://www.diag.uniromal. it/repository”
xsi:schemaLocation:"http://www-diag-uniromal-it/repositor%ﬂlibri-5-xsd">

<(liber:)book 1sbn="0" rating="‘ottimo'>
<(liber:)author>

<(liber:))name>J. Audreay</(liber:) name>

Linguaggi per il Web, M. Temperini — lweb — XML2 22/47

XML — Schema (associazione al file xml)

Il primo metodo di associazione consiste nell'usare lo spazio di nomi XMLSchema-instance (da cui xsi ...).
Questo serve per apphcare definizioni di spazi di nomi al documento xml — la xwz/-instance. Po1, senza ulteriori
namespace, si puo’ indicare il file .xsd di riferimento. La validazione procede basandosi su quest'ultimo.

<?xml version="1.0" encoding=""UTF-8"7?>
<libri xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi1:noNamespaceSchemaLocation="11bri.5.xsd">
<book 1sbn="0" rating="ottimo'>
<author>
<name>J. Audreay</name>
<surname>El l1son</surname>

\libri.5.xml|

Se st vuole che il documento faccia riferimento non solo ad una definizione di schema ma anche ad un
namespace dichiarato esplicitamente, c’e” un attributo schemal.ocation da riempire (¢ quindi non si usa piu’
Pattributo noNamespaceSchemal.ocation ...). In questo esempio c’e” un namespace chiaramente definito
(associato all'identificatore liber) che viene usato per qualificare i nomi degli elementi. (Si puo” lasciare che
questo identificatore sia di default — in questo caso quell che e tra parentesi va cancellato, senno” che
default e'?): per gli elementi in questo namespace si fara” riferimento alla schema definition accoppiata al
namespace nella dichiarazione di schemalLocation.

<?xml version="1.0" encoding=""UTF-8"7?>
<libri xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"" hamespace di questo
. e ve N documento xml
xmIns(:liber)="*http://www.diag.uniromal. it/repository
xsi:schemaLocation:"http://www-diag-uniromal-it/repositoryrlibri-5-xsd">

<(liber:)book isbn="0" rating="ottimo"> [uesto ns e associato a questa schema def. |
; V. sequenza di coppie nms/schema, se ci sSono piu™ nms
<(liber:)author> : ; ol |

|libri.5._schemalocation.xml |

\Vedi altro modo
gncora_(nel seguito)

Linguaggi per il Web, M. Temperini — lweb — XML2 23747

<(liber:))name>J. Audreay</(liber:) name>

XML — Associazione implicita di schema a documento

3) Un terzo modo di collegare il documento (in questo esempio libri.6.xml)
allo schema (libri .6.xsd).

<?xml version="1.0" encoding="UTF-g8"?>| 11bri.6.xml
<libri xmlns="http://www. lweb.uni/spazidinomi/libri/">
<book i1sbn="0" rating="‘ottimo">
<author>
<name>J. Audreay</name>
<surname>Ell1son</surname>
</author>

<title>The Great Scandinavian COOKBOOK</title>

</libri>

<?xml version="1.0" encoding=""UTF-8"7?>

<xsd:schema xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema"
xmIns: Ibr="http://www. lweb_uni/spazidinomi/libri/"
targetNamespace="http://www. lweb.uni/spazidinomi/libri/">

<xsd:element name="libri">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="Ibr:book'" maxOccurs="‘unbounded" />

</xsd:element>

libri.6.xsd (directory "with schema validation” in DOM)

XML — Associazione implicita di schema a documento

3) Un terzo modo di collegare il documento (in questo esempio libri.6.xml)
allo schema (libri .6.xsd).

libri.6.xml

<?xml version="1.0" encoding=""UTF-8"?>
<libri xmlns="http://www. lweb.uni/spazidinomi/libri/">

<book 1sbn="0" rating="ottimo'> . .
9 \ Questo documento xml fa riferimento ad uno

<author> spazio di nomi target, "definito” nel file
<name>J. Audreay</name> .xsd (il quale xsd deve essere passato al
<surname>Ell1son</surname> validatore insieme al documento da validare)
</author>

<title>The Great Scandinavian COOKBOOK</title>

</libri>

<?xml version="1.0" encoding=""UTF-8"7?>

<xsd:schema xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema"
xmIns: Ibr="http://www. lweb_uni/spazidinomi/libri/"
targetNamespace="http://www. lweb.uni/spazidinomi/libri/">

Viene specificato uno spazio di nomi (in questo caso

<xsd-element name="libri'> con tag_lbr? per gli elementi dei qocumentl xml che
<xsd - lexT S fanno riferimento a questa grammatica. 1l target name
REUGPUER I H9E space e quello che verra indicato nei documenti xml.

<xsd:sequence>
<xsd:element ref="I1br:book"™ maxOccurs=""unbounded' />

</xsd:element>

libri.6.xsd (directory "with schema validation” in DOM)

~ XML - "programmazione XML"

Con una DTD, o con un XML-Schema, si ha la capacita’ di scrivere la definizione di un linguaggio di
markup, cui si intende conformare un certo gruppo di documenti destinato ad un progetto. Se e” nota la
sintassi e ¢c’e” accordo sulla semantica dei documenti XML, questi possono essere visualizzati e processati.

La processazione di un documento XML, mediante un‘applicazione XML, e" fatta con lo scopo di

- visualizzare solo parti di documento,

- visualizzarle in modo confacente all'utente destinatario,

- creare documenti usando i dati contenuti nel file xml,

- consultare informazioni contenute nel documento,

- aggiungere informazioni in parti del documento,

- modificarle ...
Per scrivere un'applicazione XML si puo” far uso di qualsiasi linguaggio di programmazione. Di solito ci
si appoggia su API definite appositamente e supportate da una implementazione nel linguaggio prescelto.
Cosi si possono progettare applicazioni in modo piu™ 0 meno astratto, usando le definizioni della API, e
sfruttando un linguaggio prescelto per ottenere un programma che giri.

Nel seguito:
- Document Object Model (DOM)
- standard W3C;
- implementazioni (binding) in Perl, Php, Javascript, Asp, Vb, Java, C++, ...

- Simple API for XML processing (SAX)
- hon w3c

- implementazioni in Php, Perl, Python, C++, Java, Javascript, ...?
Linguaggi per il Web, M. Temperini — lweb — XML2 26/47

XML - Document Object Model

Il DOM fornisce una

interpretazione del documento
XML come albero di oggetti,
insieme con una serie di

funzioni che permettono di
visitare e trattare tali oggetti;

Attribute

Document

Element
Menu

NS

<?xml

version=""1_0" ?>

<Menu meal="‘pranzo™>

<antipasto>
<Dish diet="carne'>prosciutto e melone</Dish>

<Dish diet="vegan''>Insalata di funghi</Dish>

</antipasto>
<primo>
<Dish diet="carne''>agnolotti al ragu </Dish>

meal

Element
antipasto

primo

Eleme}t\

_——\

Element
Dish

Attr
carne

Text
prosc...

\

</primo>

Element
dolce-frutta

i

Element Element
Dish Dish
</dolce-fru
</Menu>
Element
secondo
Attr /
Attr
carne Element
vegan Vs Dish
prosc...
Text Attr/\
Insalata...
vegan Text
Biste...

Element Element
Dish Dish
Attr vegan
carne Text
Text Amarene...

gelato...

XML - DOM

La definizione del DOM e’ quella di un'interfaccia indipendente dalla piattaforma hardware/software (compreso il
linguaggio di programmazione che si usa per le applicazioni).

XML - DOM - nodi

Document
Element
Attribute
CharacterData:
Text,
CDATASection,
Comment
DocumentType
Processinglnstruction

Attributes
ChildNodes

FirstChild,

NextSibling,

ParentNode
NodeType
NodeName
NodeValue

E proprieta” dei nodi

nodeL.ist con i figli di un nodo - bordo

rosso fig. precedente = childNodes di
element Menu (bordo rosa =...antipasto)
LastChild

PreviousSibling

es. Element, Text, Attribute
es. il tag, nome attr ...
es. null, testo cont, valore

XML - DOM - proprieta” e metodi dei nodi

Attributes appendChild(newChild)
ChildNodes cloneNode(deep)
FirstChild, LastChild hasAttributes()
NextSibling, PreviousSibling n
hasChildNodes()
ParentNode _
. insertBefore(newNode, refNode)
NodeType es. Element, Text, Attribute ... -
. removeChild(nodeName)
NodeName es.iltag, #text, nome attr TeplaceChi ld(newNode, oldNode)
NodeValue es. null, testo cont, valore / P i

Ichiamati inviando richiesta al nodo interessato

- _pc’;ﬁ"eﬁthbd'é ™~

¥ A Text
Element Element I Eler_nent / prosc...
Menu / primo Dish
/ Attr
1 J R — ; carne
nex(Sibling _ -~ TfirstChild | =~ ~a :
l‘ ’ . | Element |
| L Dish | T ——— | Text
E ement Prosc...
antipasto
! 7
: » bchildNodes | i Attr
Attribute \ > =-- i | Element | ST carne
\ : i B
meal = Dish Insalata...
lastChild™ ; ' oy
A L . vegan
Linguaggi per il Web, M. Temperini — lweb — XML2 29747

XML - DOM - un'applicazione (1/3)

/xml _DOM/temperature .xml

<?xml version="1.0" encoding=""UTF-8"7?>
<temperature_records>
<record>

0 Menu
< C

88 | @

localhost/MARC 8] ® > Q @

Temperature registrate qui e Ii in giro per il mondo

@elenco ditemperature con X =+ b - u Ca

4 -

—
—_

<town>al g iers</town> citta temperatura registrata || umidita' media relativa
<temperature>23</temperature> accra 29 96%
<humidity>56%</humidity> : —
algiers 23 56%
</record>
<record> alicante 24 18%
<town>al icante</town> amsterdam 4 36%
<temperatu re>24</tempe rature> athens 18 50%
<humidity>18%</humidity>
</record> auckland 22 90%
<record> bahrain 27 77%
<town>amsterdam</town> banakok 33 96%
<temperature>4</temperature> - - ,
- = - - barcelona 15 122%
<humidity>36%</humidity>
</record> beijing 6 44%
o= = Belgrade 20 65%
o Berlin 2 33%
Biarritz 17 33%
XML application | Doston ! o
- che usa il "binding” [I[] M/l : oo
o
PHP per il DOM = = -
Calcutta 25 39%

Linguaggi per il Web, M. Temperini — lweb — XML2

30747

‘ XML - DOM - un'applicazione (2/3) temperature.1.php

xml scaricato in un array e messo in una stringa (con
trim() tagliamo gli * *, "\n' ... altrimenti avremmo molti
|_elementi in piu’ - fittizi!)

<table border="1" cellspacing=""3" ...
<caption>Temperature registrate ...

<?php
$xmlString = ""';
foreach (File('temperature.xml™) as $node) {
$xmlString .= trim($node); $doc e~ un oggetto DomDocument,
1 contenente 1l parsing eseguito

$doc = new DOMDocument(); ‘/’/’/////,,//”’”//’aa loadXML(Q)sulla stringa xml
$doc->1oadXML($xmIString);

$root = $doc->documentElement; «
$elementi = $root->childNodes;

"document_element(), chiamata su un
oggetto DomDocument, restituisce un

for ($i=0; $i<$elementi->length; $ix+) { |DomNode che e” la radice del doc
selemento = $elementi->item($i); (elemento <temperature_records>

. — [
$town = $elemento->FirstChild; Ora $elementi contiene la nodelList

$townName = $town->textContent; dei Figli di $root, cioe tutti gli

"1 elementi <record>, organizzata come
/ un array

l$elementi—>item($i) e uno dei <record>, ed e dotato di tre figli (primo,
secondo e ultimo .. rispettivamente town, temperature, humidity)

XML - DOM - un‘applicazione (3/3)

vedi temperature.l.php, anche

}

?>

print "<tr><td>$townName</td><td

for ($i=0; S$i<$elementi->length; $i++) {

$elemento $elementi->item($i); |

$town = $elemento->FirstChild;
$townName $town->textContent;

\

$temp = $town->nextSibling;
$tempValue = $temp->textContent;

$humid = $elemento->lastChild;
$humidValue $humid->textContent;

class=\""centrat\">$tempValue</td><td
class=\""centrat\'">$humidvValue</td></tr
>\nll ;

echo "'</tbody>\n</table>";

S

versioni con comments e validate

_i-esimo elemento <record>

|

I~

$town ora contiene il primo figlio

e di $record[i], cioe il
sottoelemento <town>

textContent() restituisce i1l testo
contenuto nell“elemento: 1l nome
della citta

N
.

</body¥</html>

nextSibling() applicato ad un
DomNode, restituisce 1l prossimo
nodo nella nodeList cui
appartiene i1l nodo.

Ultimo figlio nella childNode list
dell"elemento $record

tratta del sottoelemento
<humidity>

Si

Orafi tre valori calcolati strada facendo, iIn riferimento al <record>

($elemento) corrente, possono essere iInseriti

in una riga della tabella

si puo fare con css?

PHP binding per DOM

(Solo alcuni) Pls cfr. documentazione php
DOMDocument — The DOMDocument class
DOMDocument:: construct — Creates a new DOMDocument object
DOMDocument: :createAttribute — Create new attribute
DOMDocument: :createElement — Create new element node
DOMDocument: :getElementsByTagName — Searches for all elements with given tag name
DOMDocument::load — Load XML from a file
DOMDocument: : loadXML — Load XML from a string
DOMDocument: :save — Dumps the internal XML tree back into a file
DOMENement:: construct — Creates a new DOMElement object
DOMElement: :getAttribute — Returns value of attribute
DOMElement: :getElementsByTagName — Gets elements by tagname
DOMElement: :setAttribute — Adds new attribute
DOMNode — The DOMNode class
DOMNode: -appendChilld — Adds new child at the end of the children
DOMNode: :cloneNode — Clones a node
DOMNode: - insertBefore — Adds a new child before a reference node
DOMNode: :replaceChild — Replaces a child
DOMNodeList — The DOMNodeList class
DOMNodelist::item — Retrieves a node specified by index
DOMText — The DOMText class
DOMText:: construct — Creates a new DOMText object

Linguaggi per il Web, M. Temperini — Iweb — XMIL2 33747

http://it.php.net/manual/en/class.domdocument.php
http://it.php.net/manual/en/domdocument.construct.php
http://it.php.net/manual/en/domdocument.createattribute.php
http://it.php.net/manual/en/domdocument.createelement.php
http://it.php.net/manual/en/domdocument.getelementsbytagname.php
http://it.php.net/manual/en/domdocument.load.php
http://it.php.net/manual/en/domdocument.loadxml.php
http://it.php.net/manual/en/domdocument.save.php
http://it.php.net/manual/en/domelement.construct.php
http://it.php.net/manual/en/domelement.getattribute.php
http://it.php.net/manual/en/domelement.getelementsbytagname.php
http://it.php.net/manual/en/domelement.setattribute.php
http://it.php.net/manual/en/class.domnode.php
http://it.php.net/manual/en/domnode.appendchild.php
http://it.php.net/manual/en/domnode.clonenode.php
http://it.php.net/manual/en/domnode.insertbefore.php
http://it.php.net/manual/en/domnode.replacechild.php
http://it.php.net/manual/en/class.domnodelist.php
http://it.php.net/manual/en/domnodelist.item.php
http://it.php.net/manual/en/class.domtext.php
http://it.php.net/manual/en/domtext.construct.php

XML - DOM - seconda applicazione /xml .DOM/temperature . xml

temperature in XML con DOM - paginate - — O X

<?xml version=""1.0"

encodi ng="UTF—8"?> (' cC # http://127 @-0.”P B~ O~ ¥
<temperature_reco rds> temperature in XML con DOM - pagi... X | =+ HH
< > . . .
record _ Temperature registrate li e 1a in giro per il mondo
<town>algiers</town>
<temperature>23</temperature: (- ¢ citta temperatura registrata || umidita media relativa
<humidity>56%</humidity> ‘temperat Perth 12 449,
</record> 1
<record> Rome 22 11%
<town>al icante</to citta S Framcl . 230,
<temperature>24</t| € € o | i
<humidity>18%</hum ‘temperaturein **P' 5
</record> Chicago| =
Tempe =
<record> R
- - 0
<town>amsterdam</t citta || ff |Dallas 42 87%
<temperature>4</te| [~] |Latina 8 399
<humidity>36%</hum ||
</record> algiers 7 || Mumbay 31 19%
amsterdam || 4 prossimo gruppo di stampe >>>
athens 18 50%

Per la prima applicazione [
bastavano anche le css ... (+ 0 -) and (|22 90%
questa e” po' piu” sofisticata

si puo” fare
prossimo gruppo di stampe >>> con css?

Linguaggi per il Web, M. Temperini — lweb — XML2 34747

XML - DOM - seconda applicazione (2/3) temperature.2.php

<?php Numero di elementi
$pagelength = 6; « da stampare per pag
$records = $doc->documentElement->childNodes; - ——
next, se c"e , ci dice da quale
record bisogna ripartire
iIT (isset($_GET["next"])) { <« nella stampa
$first = $ GET["next"];
} else {
$first = 0; ""~—-____§_____~_§~§_‘§§‘ $first sara™ il punto di
¥ partenza nella prossima
stampa;
iIT ($records->length - $first < $pagelL { | $last il punto di arrivo
$last = $records->length;
} else {
$last = $first + $pagelLength;
b Ciclo modificato rispetto a
prima solo nei valori
for ($i=$first; S$i<$last; Fi++) { iniziali e finali di $i: in
$record = $records->item($i); <— | questo script viene visitata
Sowm = SrEesrEs T rereha e solo una porzione della lista
’ $records|[]
$townName = $town->textContent;

XML - DOM - seconda applicazione (3/3) temperature.2.php

iIT ($last < $records->length - 1) {

echo '"\n<p>prossimo
gruppo di stampe >>é></p>"";

} else {
echo "\n<p>** Fin **</p>";
b5 Finita la tabella, rimane da scrivere la linea finale
e questa e del tipo
PHP_SELF?next=$last ($last = indice ult stampato)
oppure ** FIN **
temperature in XML con DOM - paginate - —] X O Menu [Etemperaturein XMLcon D' X +
& c A hitp//127 -0 P D ®- & < C 83 | @ localhost/MARCO-HTDOCS/XML2/XML.DOM/tem|
- ; _ D | - Temperature registrate li e 1a in giro per il mondo
temperature in XML con DOM - pagi... = HH p g liel giro per il d
. e . citta temperatura registrata | umidita media relativa
Temperature registrate li e 1a in giro per il mondo
]] . K K Biarritz 17 33%
citta temperatura registrata | umiditd media relativa
Boston 0 56%
Perth 12 44%
Brussels 3 66%
Rome 22 11% Cairo 21 88%
S.Francisco || 11 33% Calcutta | 25 39%
Capetown || 26 72%
sk Pip *%
prossimo gruppo di stampe >>>

Linguaggi per il Web, M. Temperini — Iweb — XML2 36747

XML - SAX - Simple API for XML

- parsing del documento
- niente albero in memoria

- I'incontro di un tag e un evento ... gestito mediante attivazione di un metodo di callback

startDocument - cosa fare all"inizio del documento (radice)
endDocument - cosa fare in chiusura dei lavori

startElement - attivato quando si incontra un elemento

endElement - attivato quando ... 1l tag chiusura di un elemento
characters - gestione contenuto elemento

Linguaggi per il Web, M. Temperini — lweb — XML2 37747

] XML - SAX - Simple API for XML

<?xml version="1.0" ?>
<Menu meal="‘pranzo’''> startElement
<antipasto> startElement
<Dish diet="carne'> startElement
prosciutto e melone characters
</Dish> endElement
<Dish diet="'vegan'> startElement
Insalata di funaghi characters
</Dish> endElement
</antipasto> endElement
<primo> startElement
<Dish diet="'carne'> StartElement
agnolotti al ragu e G
</Dish> endElement
</primo> endElement
<secondo>
<Dish diet ="vegan''>
Bistecca di soia
</Dish>
</secondo>
<dolce-frutta >
<Dish>
gelato (vari gusti)
</Dish>
<Dish diet="vegan''>
Amarene farcite
</Dish>
</dolce-frutta>
</Menu> endElement

XML - SAX - Simple API for XML

Contrariamente all'approccio DOM,
in cui il documento viene rappresentato in una struttura, residente in memoria, ad albero di
oggetti e il parsing del documento avviene traversando quella struttura,

in un'applicazione basata su SAX
il documento viene analizzato mediante un suo diretto scorrimento, durante il quale I'incontro
con ciascun tag genera un "evento" che viene trattato dal gestore per esso previsto.

| diversi approcci possono essere fatti corrispondere a diversi pregi alternativi. Forse I'approccio DOM e’
piu’ intuitivo e permette di limitare la quantita” di codice da scrivere; sicuramente I'approccio SAX e
piu efficiente, in termini di tempo di processazione e occupazione di memoria. L'approccio SAX e
migliore per la gestione di una parte di un grande documento: la parte puo™ essere localizzata e
circoscritta velocemente, senza dover caricare un enorme albero e traversarlo.

Quando un'applicazione SAX trova un tag, attiva un metodo di callback, come ad esempio

startDocument - cosa fare all"i1nizio del documento (radice)
endDocument - cosa fare in chiusura dei lavori

startElement - attivato quando si incontra un elemento

endElement - attivato quando ... 1l tag chiusura di un elemento

characters - gestione contenuto elemento

~ XML - SAX - un'applicazione

i "Fiori di Zucca"

jindica il tipo di menu' che preferisci (anche + di uno) e avrai 1a lista delle prelibatezze offerte.

&« C O D localhost/\WEB-HTD. ¥ 8] »

CHATBOT ARENA {3} Ollama [github [} Naive Bayes classifica...

Ai "Fiori di Zucca"

Vegan
Pesce
Carne

vai con la scelta

ecco, il menu’ per un pranzo adatto alle scelte selezionate (pesce carne)
antipasto

* prosciutto e melone

* Crema di scampi morti

» Insaccati a fettime

* Nemesi di pescespada allo spiedo

primo

* agnolotti al ragout

* risotto agl scampi morti

» spaghetti alle vongole vOraci

« Ravioli al prosciutto crudo (cotti)

secondo

» Fiorentina

» Hellas Verona

* Fish & Chips

* Straccetti di balena

* Maialino tratto a morte prematuramente

dolce-frutta

» pelato (vari gusti)

» Parfait di zabaione ai frutti di bosco

» Apple Pie (solo per 08X 10.12 e superiori)

« Tapioca

* Gelatina di pesce al thum

» Parfait di zabaione agli scampi (morti)

* Crostata Di Cioccolato Fondente, Carota, Olivello Spinoso, Arancia

buon appetito!

/xml .SAX/menuFioridiZucca.xml
/xml _.SAX/menuFiori .SAX_php

[l file .xml contiene un documento avente radice <Menu>,
articolato in <antipasto>, <primo>, <secondo> e <dolce-frutta>.
Ogni <Dish> ha un attributo che lo assegna ad una particolare dieta
(cliente che vuol mangiare carne, pesce o vegan).

L'applicazione consente di scegliere un tipo di dieta (o piu’) e
seleziona e presenta solo le voci di menu” che sono per quella dieta.

<?xml version="1.0" ?>
<Menu meal="'pranzo''>
<antipasto>
<Dish diet="carne'>prosciutto e melone</Dish>
<Dish diet="'vegan''>Insalata di funghi</Dish>
</antipasto>
<primo>
<Dish diet=""carne'>agnolotti al ragu </Dish>
</primo>
<secondo>
<Dish diet ="vegan''>Bistecca di soia</Dish>
</secondo>
<dolce-frutta >
<Dish>gelato (vari gusti)</Dish>
<Dish diet="'vegan''>Amarene farcite</Dish>
</dolce-frutta> </Menu>

XML - SAX - un‘applicazione (2/6) menuFiori.SAX.php

. <form action="'menuFiori.Sax.php" method="post">

<?php

---</form5*‘~\\\\§\\\\\\\\ La form (se le checkbox non furono assegnate, si
—e SCrive 1IN rosso una richiesta dati)

$file = "_./menuFioridiZucca.xml';

$menuScelto="";

$menuScelto .= $track. ;
1T($menuScelto=="") {
die("<p style="color:
red">indica 1l tipo di menu*

$currentTag = ;

$xmlParser = xml_parser_create();

IT ($caseF == 1) {
xml_parser_set option($xmlParser,

foreach($ POST["menu~] as $trick => $track)

|
$menuScelto = sequenza delle diete
e scelte, separate da " *

$currentTag contiene il tag corrente durante il parsing

$currentAttr e 1 elenco degli attributi correlati al
tag corrente (per <Dish>, ce n"e uno solo, individuato

dall*indice associativo tgiggl)_,_——ﬁ

$caseF = xml_parser_get_option($xmlParser ,XML_OPTION_CASE_FOLDING);

xml _parser_create() crea

$currentAttr = - ‘//////////////0 un®istanza del parser
xml_parser_* option() permettono di vedere le

opzioni In atto e determinarle (case folding

‘////////”5 conversione automatica deir tag in maiuscol)

XML_OPTION_CASE_FOLDING, false);}

XML - SAX - un‘applicazione (3/6)

Assegnazione funzioni di callback: si chiamano startElement,
endElement e characterData e sono 1 metodi da implementare nel
parser, in modo ad hoc per la nostra applicazione

xml_set _element _handler($xmlParser, "startElement', "endElement™);
xml_set character_data_ handler($xmlParser, ‘‘characterData™);

it (1 ($fp = fopen($file, "r))) {
die(*"Cannot open XML data file: $file™);}

while ($data = fread($fp, 4096)) {
it (Ixml_parse($xmlParser, $data, feof($fp))) {
die(sprintf(""XML error: %s at line %d",
xml_error_string(xml_get _error_code($xmlParser)),
get _current_line_number($xmlParser)));

Parsing: 1l documento viene caricato a lotti;
quando I"analisi del parser evidenzia che
si e i1ncontrato un tag, viene attivato il
® metodo di callback startElement()
|

xml_parser_free($xmlParse

Quando i1l parser iIncontra un tag di chiusura, parte endElement().
(Dovrebbe essere 1l tag di chiusura dell’ultimo tag aperto ..).
Quasi tutto il codice di questo ciclo e error handling ..

Al termine i1l parser viene smaterializzato.

XML - SAX - unapphcazmne

T menu” fiori di zucca

Al "Fiori di Zucca"

. D Vegan
D Pesce
- D Carne

vai con la scelta

ecco, il menu' per
| selezionate (carne

" antipasto

e prosciutto e nn
e Insaccati a fef

| primo

e agnolotti al ra
e Ravioli al pro

| secondo
e Fiorentina
e Hellas Veron:
e Maialino tratt
' dolce-frutta
e gelato (vari @
e Parfait di zab:

e Apple Pie (so

' buon appetito!

' Done

1 flle Xmli contlene un documento avente radice <Menu>

<?xml versmn:"l-O ?> lelementi: Menu, antipasto, primo,
<Menu meaI:"pranzo"> secondo, dolce-frutta, Dish

<antipasto>
<Dish diet=""carne''>prosciutto e melone</Dish>
<Dish diet="‘vegan'>Insalata di funghi</Dish>
</antipasto>
<primo>
<Dish diet="'carne'>agnolotti al ragu </Dish>
</primo>
<secondo>
<Dish diet ="vegan''>Bistecca di soira</Dish>
</secondo>
<dolce-frutta >
<Dish>gelato (vari gusti)</Dish>
<Dish diet="‘vegan''>Amarene farcite</Dish>
</dolce-frutta>
</Menu>

Ltta>
re dieta

r e
la dieta.

XML - SAX - un‘applicazione (4/6)

menuFi1ori.SAX.php

- -

e e ————
—_——— -~
—_—
—

—_——

global $currentTag, $currentAttr, $menuScelto;

$currentTag = $name; <«-----------------=----=----=-=---"]
$currentAttr = $attribs; «———__________

switch ($name) {
case "'Menu'':

$tipoPasto = "per un {$ScurrentAttr["meal"]}";

... menu” $tipoPasto adatto a($menuScelto)</p>";

startElement() riceve\\

1l parser, }

-l nome del tag /

incontrato //

- .y
____e la lista dei,

suoil attributi

)

break;
case "Dish':

Se il tag e menu, si prepara la stringa $tipoPasto,J
che conterra” ad. es "per un pranzo"

IT (strstr($menuScelto,$currentAttr[-“diet™])) {

echo "<Ii>";|se I’elemento e~ Dish,
} se $menuScelto contiene il valore associato all’attr.
break: diet di questo elemento, si prepara la linea di
default: elenco (characterData stampera il contenuto di Dish)
echo "'<h3>$name</h3>";
break; | Antipasto, primo, secondo, dolce-frutta: si stampa il nome
+ dell"elemento per introdurre 1’elenco di piratti di quella sezione
+ del pasto (iniziando I’elenco che verra costruito con 1 prossimi
elementi incontrati).

XML - SAX -

un‘applicazione (5/6) menuFiori .SAX.php

switch (4
case ''Mer
echo
buon
break
case "Dics
ec

break
default:
echo
break

function endElement($parser, $name) {
global $currentTag, $currentAttr;

<?xml version="1.0" 7>
<Menu meal=""pranzo''>
<antipasto>
<Dish diet=""carne''>prosciutto e melone</Dish>
<Dish diet="'vegan'">Insalata di funghi</Dish>
</antipasto>
<primo>
<Dish diet="‘carne">agnolotti al ragu </Dish>
</primo>
<secondo>
<Dish diet ="vegan''>Bistecca di soira</Dish>
</secondo>
<dolce-frutta >
<Dish>gelato (vari gusti)</Dish>
<Dish diet="‘vegan'>Amarene farcite</Dish>
</dolce-frutta>
</Menu>

XML - SAX - un‘applicazione (5/6) menuFiori.SAX.php

endElement() riceve 1l parser e 1l

- nome del tag “0In chiusura’.
function endElement($parser, $name) { Quando si incontra la chiusura di un

global $currentTag, $currentAttr, |elemento,
- se I’elemento e~ Menu, bisogna

switch ($name) { Caugurare buon appetito e basta; ..
case "'‘Menu'':

echo "'<p style=\"color: blue; font-size: larger;\'>
buon appetito!</p>";

break: .. se 1”elemento In chiusura e dish,
case "Dish": if () SE la dieta associata al piatto
S S corrisponde ad una di quelle
echo "</1i1>"; selezionate,
break; 1) all"apertura avevamo iniziato un
default: <l1>, e adesso 1o chiudiamo
echo ""- 2) nel frattempo siamo gia passati
i sul contenuto di questo Dish e lo
break; abbiamo stampato (con characterData),

Per gli altri elementi, es. "primo",
1 all’apertura abbiamo i1niziato un
elenco, , quindi adesso lo chiudiamo.

XML - SAX - un‘applicazione (6/6)

menuFi1ori.SAX.php

function characterData($parser, $data) { I

characterData()
global $currentTag, $currentAttr, $menuScelto; | riceve il parser, e

1l contenuto
switch ($currentTag) { testuale (extra tag)

i di un elemento
case '"'Dish'':

IT (strstr($menuScelto, S$currentAttr[-“diet™])) {

echo "$data'; - —
3 Se 1l tag e Dish (e nel nostro

[~ caso non puo” essere altro .),
break; si stampa i1l contenuto, che
default- corrisponde al nome di un piatto
echo $data; < - — - -
* " Se e altro non si fa nulla (qui in realta” stampiamo
break; ™~ $data, ma si tratta di una stringa vuota
1 (verificare, ad esempio aggiungendo alcuni "-"
prima e dopo attorno a $data)
+
?>
</body>
</html>

controlla le tre versioni di questo script:

ci sono variazioni progressive fatte per
ottenere codice html piu” ordinato

risorse

esercizi

Sperimentare l'uso di temperature.1.php, cambiando la presentazione dei dati. Fare lo stesso con temperature.2.php, cambiando le
modalita” di sperimentazione (aggiungere un bottone per scegliere la quantita” di citta mostrate in ogni schermata).

Esaminare il codice html prodotto da menuFiori.Sax.php e verificare come potrebbe essere reso piu” ordinato. Le version V2 e V3
di quello script cercano di raggiungere una resa migliore del codice html, in due passi. Esaminarne i risultati (I'html prodotto)
senza guardare il loro codice e provare a realizzarle.

modifica di un file XML con DOM

nella directory pubblica in XML2/gestioneFileXML c'e’ una piccola applicazioncina minima, con commenti:
eseguirla, comprendendo il funzionamento dei vari passi; in questo modo ci si impadronisce della tecnica di gestione dei file xml
attraverso I'api dom e si puo” poi scegliere e adattare qualcuno dei meccanismi nello svolgimento dell'esercizio da sottomettere e nella
tesina.

xml-validators
1) XML Copy Editor e un ambiente che permette editing e validazioni varie di file XML, anche in base a XML Schema

2) gli esempi visti a lezione, con validate() (temperature.xml) e schemaValidate() (libri.6.xml) forniscono uno spunto sull'uso di queste
funzioni PHP su documenti gestiti tramite DOM: utilizzarli per validare i vari esempi applicabili (libri*.xml) rispetto alle definizioni dtd o
xsd disponibili. Scrivere gli schemi mancanti negli esempi libri*.xml e provarli con il validatore opportuno.

xml-documentation - XML (1.0, 1.1 mod), DTD, Schema, DOM, SAX) Per tutto (tranne sax) www.w3.org/
XML-Schema
- http://www._.w3.0org/TR link a varie risorse del W3C; cercando "Schema" si vedono descrizioni delle specifiche, un documento
"Associating Schemas with XML documents 1.0, documenti con la specifica (diversi) e un primer che potrebbe essere utile.

DOM (www.w3.0rg/DOM/)
- la pagina del DOM living standard https://dom.spec.whatwg.org/

PHP binding per DOM at http://[php.net (search for XML): http://php.net/manual/en/book.dom.php

SAX project website sax.sourceforge.net/
in particolare vedi Events Vs. Trees: http://www.saxproject.org/event._html

Namespace specification: Sito w3c https://www.w3.org/TR/REC-xml-names/

Linguaggi per il Web, M. Temperini — lweb — XML2 48747

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

