
Linguaggi per il Web, M.Temperini – lweb – XML2

XML2

XML – spazi di nomi: per gestire il clash tra nomi di
attributi che si ripetono in piu` linguaggi

XML – schemi: piu` espressivi delle dtd, e + "XML"

DOM – Document Object Model: accesso delle
applicazioni XML ai documenti XML

SAX – un approccio diverso all'accesso ai file XML

1/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – Namespace (0/3)

clash di nomi
? <?xml version="1.0" encoding="UTF-8"?>

<data>
<record>

<title>Il grande atlante geografico</title>
<location>
<title>Monte Bianco</title>
<coordinates>

<latitude>45.8326</latitude>
<longitude>6.8650</longitude>

</coordinates>
</location>
<position>
<chapter>22</chapter>
<pages>

<init>2932</init>
<endit>2933</endit>

</pages>
</position>

</record>
</data>

Un esempio

2/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – Namespace (0/3)
Uno spazio dei nomi e` definito per denotare un dominio applicativo in cui il
codice XML deve agire. Sostanzialmente, esso serve a permettere di distinguere tra
tag che hanno il medesimo nome ma fanno riferimento ad elementi diversi (in
linguaggi diversi).

?
in questo documento ci sono elementi di due
linguaggi,

un linguaggio definito per applicazioni GIS
(Geographic Information System)

ed uno ... al solito, bibliografico

in entrambi c'e` un elemento <title> con
significati diversi ...

Cosi`, abbiamo <title> che occorre nel
documento due volte con significati diversi
cioe`
con significati che ci si aspetterebbe di poter
gestire in modi diversi

Come distinguere tra i due significati in questo
medesimo contesto?
Come evitare che l'applicazione xml che gestisce
il file faccia confusione?

Un esempio

<?xml version="1.0" encoding="UTF-8"?>
<data>

<record>
<title>Il grande atlante geografico</title>

<location>
<title>Monte Bianco</title>
<coordinates>

<latitude>45.8326</latitude>
<longitude>6.8650</longitude>

</coordinates>
</location>
<position>

<chapter>22</chapter>
<pages>

<init>2932</init>
<endit>2933</endit>

</pages>
</position>

</record>
</data>

3/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – Namespace (1/3)
Uno spazio dei nomi e` definito per denotare un dominio applicativo in cui il codice XML deve agire.
Sostanzialmente, esso serve a permettere di distinguere tra tag che hanno il medesimo nome ma fanno
riferimento ad elementi diversi (in linguaggi diversi).

?
Altro esempio: un documento in cui c'e` un elemento <title> riferito al titolo di un libro e un altro, che
e` il classico <title> di xhtml.
Stesse domande di prima ... come fare?

<?xml version="1.0" encoding="UTF-8"?>
<libri>
<book>
<author>J. A. Ellison</author>
<title>The Great ...</title>
<webPresentation>
<html><head><title>guarda!</title>
</head><body> ditutto</body></html>

</webPresentation>
</book>
<book>

...
</book>

...
</libri>

4/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – Namespace (1/3)
come fare?

<?xml version="1.0" encoding="UTF-8"?>
<libri>
<book>
<author>J. A. Ellison</author>
<title>The Great ...</title>
<webPresentation>
<html><head><title>guarda!</title>
</head><body> ditutto</body></html>

</webPresentation>
</book>
<book>

...
</book>

...
</libri>

inventandosi un prefisso che specifichi meglio ciascun
nome di elemento ed eviti ogni possibile ambiguita`

<liber:libri>
<liber:book>

<liber:author>J...</liber:author>
<liber:title>The G...</liber:title>
<liber:webPresentation>
<xhtml:html><xhtml:head>
<xhtml:title>guarda!</xhtml:title>
</xhtml:head><xhtml:body>di tutto,
immagini</xhtml:body></xhtml:html>

</liber:webPresentation>
</liber:book>
<liber:book>... </liber:book>...

</liber:libri>

Il prefisso identifica uno spazio di nomi, legati da un'appartenenza concettuale: si
tratta di un'entita` puramente teorica - non e` definita fisicamente

5/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - Namespace (2/3)

L'identificatore che funge da prefisso, rappresentante di uno spazio di nomi, deve essere
ragionevolmente unico!

<?xml version="1.0" encoding="UTF-8"?>
<liber:libri xmlns:liber="http://www.lweb.uni/spazidinomi/llll">

<liber:book>
<liber:author>J...</liber:author>
<liber:title>The G...</liber:title>
...

</liber:libri>

<?xml version="1.0" encoding="UTF-8"?>
<liber:libri

xmlns:liber="http://www.lweb.uni/spazidinomi/llll"
xmlns:xhtml="http://www.w3.org/1812/xhtml">

<liber:book>
...

<liber:webPresentation>
<xhtml:html><xhtml:head>
<xhtml:title>guarda!</xhtml:title>

...
</liber:libri>

6/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - Namespace (2/3)

L'identificatore che funge da prefisso, rappresentante di uno spazio di nomi, deve essere
ragionevolmente unico!
Ad esempio, liber non e` ragionevolmente unico: Un altro sviluppatore xml potrebbe aver usato un
prefisso uguale, con scopi scorrelati dai nostril. Magari, un giorno, nostri "liber -prefixed-documenti"
verranno processati insieme agli altri "liber -prefixed-documenti" e ci sara` confusione.

L'uso di una URI come nome del namespace sembra una soluzione.
<?xml version="1.0" encoding="UTF-8"?>
<liber:libri xmlns:liber="http://www.lweb.uni/spazidinomi/llll">

<liber:book>
<liber:author>J...</liber:author>
<liber:title>The G...</liber:title>
...

</liber:libri>

<?xml version="1.0" encoding="UTF-8"?>
<liber:libri

xmlns:liber="http://www.lweb.uni/spazidinomi/llll"
xmlns:xhtml="http://www.w3.org/1812/xhtml">

<liber:book>
...

<liber:webPresentation>
<xhtml:html><xhtml:head>
<xhtml:title>guarda!</xhtml:title>

...
</liber:libri>

Dichiarazione "locale" di
xmlnamespace associato
all'identif. liber

Qui ci sono due spazi di nomi, cui le
diverse occorrenze di <title> fanno
riferimento: ogni tag è qualified e
l'applicazione xml non dovrebbe
soffrire ambiguità nel distinguerli.

7/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – Namespace (3/3)

SPAZIO DI NOMI DI DEFAULT

<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns="http://www.lweb.uni/spazidinomi/llll"

xmlns:xhtml="http://www.w3.org/2006/xhtml">
<book>

...
<webPresentation>
<xhtml:html><xhtml:head>
<xhtml:title>guarda!</xhtml:title>

...
</libri>

Si scrive <libri>, <webPresentation> ... ma si
intende per default

<http://www.lweb.uni/spazidinomi/llll:libri>,
<http://www.lweb.uni/spazidinomi/llll:webPrese

ntation>, ...

8/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – Namespace (3/3)

Se uno spazio di nomi (namespace) e` dichiarato senza identificatore-prefisso, tutti i nomi
(che non facciano uso di altri prefissi) sono qualificati da esso per default.

<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns="http://www.lweb.uni/spazidinomi/llll"

xmlns:xhtml="http://www.w3.org/2006/xhtml">
<book>

...
<webPresentation>
<xhtml:html><xhtml:head>
<xhtml:title>guarda!</xhtml:title>

...
</libri>

Si scrive <libri>, <webPresentation> ... ma si
intende per default

<http://www.lweb.uni/spazidinomi/llll:libri>,
<http://www.lweb.uni/spazidinomi/llll:webPrese

ntation>, ...NB
L'applicazione xml puo` distinguere tra tag che potrebbero essere confondibili, sfruttando il loro
prefisso, definito dal namespace. Ma

"http://www.lweb.uni/spazidinomi/llll"
"http://www.w3.org/2006/xhtml">

sono solo sequenze di caratteri progettate per essere il piu` possibile uniche, nel senso di indicare
univocamente lo spazio di nomi all'interno di un documento xml (o per un gruppo di documenti xml
processati insieme).
Non sono indirizzi di risorse particolari (nulla impedisce che a quell'indirizzo ci sia un file, e di solito e`
cosi`, ma qualunque cosa ci sia dentro non e` necessariamente significativa).

9/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - Schema
1) definizione di grammatica di linguaggio di markup

alternativa alla definizione mediante DTD

2) scritta in un file .xsd.

3) goodbye !DOCTYPE. (altre modalita` di associazione del file XML alla sua grammatica.

<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="libri.5.xsd">
<book isbn="0" rating="ottimo">
<author>
<name>J. Audreay</name>
<surname>Ellison</surname>

</author>
<title>O Mestre Cozinheiro</title>
<year>1967</year>
<publisher>Crown Publishers, Inc.</publisher>
<edition>3</edition>
<preface>
<name>Joan</name>
<surname>Walley</surname>

</preface>
</book>

… altri book
</libri>

libri.5.xml

celeste = XML document; giallo = grammatica (schema)

10/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - Schema
Un metodo alternativo (alla definizione di DTD) per specificare il linguaggio di markup con cui
il documento xml e` scritto.

La schema definition viene scritta in un file .xsd. Il documento xml viene fatto riferire allo
schema cui deve conformarsi (cosi` puo` essere validato).
(Per le dtd c'era la clausola !DOCTYPE. Per gli schemi no … quindi la dichiarazione che
associa il doc XML alla XSD segue altre modalita`: ad esempio questa qui sotto, simile ad una
dichiarazione doctype … vedremo altri due modi ... ; l'ultimo con namespaces).
<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="libri.5.xsd">
<book isbn="0" rating="ottimo">
<author>
<name>J. Audreay</name>
<surname>Ellison</surname>

</author>
<title>O Mestre Cozinheiro</title>
<year>1967</year>
<publisher>Crown Publishers, Inc.</publisher>
<edition>3</edition>
<preface>
<name>Joan</name>
<surname>Walley</surname>

</preface>
</book>

… altri book
</libri>

libri.5.xml

xsi?
XML Schema Instance Namespace, which is used to
associate XML Schemas with instance documents

Dichiarazione che questo
documento xml si vuole
conformare alla
definizione di documento
data in libri.5.xsd

(la schema definition potrebbe aver
definito un namespace ad hoc per i libri:
in tal caso qui si potrebbe fare
riferimento al namespace direttamente
– vedi dopo)

celeste = XML document; giallo = grammatica (schema)

11/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - definizione di uno schema (1/3)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="libri">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="book" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
…

</xsd:schema>

<!ELEMENT libri (book*)>)

libri.5.xsd

XML SCHEMA = documento xml,
ns XMLSchema
definisce i costituenti sintattici del linguaggio di markup "target"

celeste = XML document; giallo = grammatica (schema) 12/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - definizione di uno schema (1/3)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="libri">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="book" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
…

</xsd:schema>

Un elemento libri e` un elemento costruito come una
sequenza di un qualsiasi numero di altri elementi definiti
(altrove) con il nome “book”.

(definizione equivalente a <!ELEMENT libri (book*)>)

libri.5.xsd

Uno schema e` un documento xml, scritto usando elementi come schema,
element, complexType, sequence, choice, attribute, … che
specifica i costituenti sintattici del linguaggio di markup "target"

ComplexType = un elemento “complex” contiene sottoelementi e/o attributi; il nome puo` anche non essere
corrispondente ad un elemento effettivamente usato nel documento, ma costituire invece un simbolo usato
per permettere la definizione di altri elementi - vedi nomeCognome dopo …).

xs più standard di xsd 13/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - definizione di uno schema (2/3)

<xsd:element name="book">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="author" minOccurs="1" maxOccurs="unbounded" />
<xsd:element ref="title" />
<xsd:element ref="year" minOccurs="0" maxOccurs="1" />
<xsd:element ref="publisher" />
<xsd:element ref="edition" minOccurs="0" maxOccurs="1" />
<xsd:element ref="preface"/>

</xsd:sequence>

</xsd:complexType>
</xsd:element>

libri.5.xsd

<!ELEMENT book (author+, title, year?, ...

14/47

Linguaggi per il Web, M.Temperini – lweb – XML2

Un simpleType definisce uno schema di contenuto per un elemento o un attributo. Il contenuto dell'elemento puo` essere
specificato in modo molto piu` preciso, di quanto si puo` fare in una DTD, usando i tipi di dato implementati (predefiniti), come
string, boolean, numeric decimal, date, anyURI,… e derivati, come long, nonPositiveInteger,
short,...

minOccurs, maxOccurs quantificano (remember ?,+,*)

XML - definizione di uno schema (2/3)

<xsd:element name="book">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="author" minOccurs="1" maxOccurs="unbounded" />
<xsd:element ref="title" />
<xsd:element ref="year" minOccurs="0" maxOccurs="1" />
<xsd:element ref="publisher" />
<xsd:element ref="edition" minOccurs="0" maxOccurs="1" />
<xsd:element ref="preface"/>

</xsd:sequence>

<xsd:attribute name="isbn" type="xsd:string" use="required" />
<xsd:attribute name="rating" use="optional" default="suff">

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="suff"/>
<xsd:enumeration value="buono"/>
<xsd:enumeration value="ottimo"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

</xsd:element>

libri.5.xsd

prohibited / optional / required

default / fixed

15/47

Linguaggi per il Web, M.Temperini – lweb – XML2

Un simpleType definisce uno schema di contenuto per un elemento o un attributo. Il contenuto dell'elemento puo` essere
specificato in modo molto piu` preciso, di quanto si puo` fare in una DTD, usando i tipi di dato implementati (predefiniti), come
string, boolean, numeric decimal, date, anyURI,… e derivati, come long, nonPositiveInteger,
short,...

minOccurs, maxOccurs quantificano (remember ?,+,*)

XML - definizione di uno schema (2/3)

<xsd:element name="book">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="author" minOccurs="1" maxOccurs="unbounded" />
<xsd:element ref="title" />
<xsd:element ref="year" minOccurs="0" maxOccurs="1" />
<xsd:element ref="publisher" />
<xsd:element ref="edition" minOccurs="0" maxOccurs="1" />
<xsd:element ref="preface"/>

</xsd:sequence>

<xsd:attribute name="isbn" type="xsd:string" use="required" />
<xsd:attribute name="rating" use="optional" default="suff">

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="suff"/>
<xsd:enumeration value="buono"/>
<xsd:enumeration value="ottimo"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

</xsd:element>

libri.5.xsd

prohibited / optional / required

default / fixed

<!ELEMENT book (author+, title, year?,
publisher, edition?, preface)>

<!ATTLIST book isbn CDATA #REQUIRED
rating (suff | buono | ottimo) "suff">

16/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - definizione di uno schema (3/3)

<xsd:element name="author" type="nomeCognome" />

<xsd:element name="title" type="xsd:string"/>

<xsd:element name="year" type="xsd:integer"/>

<xsd:element name="publisher" type="xsd:string"/>

<xsd:element name="edition" type="xsd:short"/>

<xsd:element name="preface" type="nomeCognome" />

<xsd:complexType name="nomeCognome">
<xsd:sequence>

<xsd:element ref="name"/>
<xsd:element ref="surname"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name="name" type="xsd:string" />
<xsd:element name="surname" type="xsd:string" />
</xsd:schema>

<!ELEMENT author (name, surname)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT edition (#PCDATA)>
<!ELEMENT preface (name, surname)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>

libri.5.xsd

La definizione (piu`) esatta del tipo di un valore (valore di un attributo o contenuto di un elemento) permette
verifiche piu` approfondite:

17/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - definizione di uno schema (3/3)

<xsd:element name="author" type="nomeCognome" />

<xsd:element name="title" type="xsd:string"/>

<xsd:element name="year" type="xsd:integer"/>

<xsd:element name="publisher" type="xsd:string"/>

<xsd:element name="edition" type="xsd:short"/>

<xsd:element name="preface" type="nomeCognome" />

<xsd:complexType name="nomeCognome">
<xsd:sequence>

<xsd:element ref="name"/>
<xsd:element ref="surname"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name="name" type="xsd:string" />
<xsd:element name="surname" type="xsd:string" />
</xsd:schema>

<!ELEMENT author (name, surname)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT edition (#PCDATA)>
<!ELEMENT preface (name, surname)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>

libri.5.xsd

La definizione (piu`) esatta del tipo di un valore (valore di un attributo o contenuto di un elemento) permette
verifiche piu` approfondite: ad esempio, in libri.5.sb.xml, tra gli altri problemi, un <edition> e` riempito
con una stringa: che succede durante la validazione?)

nomeCognome e` un complexType
definito piu` sotto

Questi elementi hanno un
contenuto definibile

semplicemente mediante
tipi base

correggi libri.5.sb.xml 18/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – variazioni sul precedente schema
<xsd:element name="preface">
<xsd:complexType>
<xsd:choice>
<xsd:element ref="name"/>
<xsd:element ref="surname"/>

</xsd: choice>
</xsd:complexType>

</xsd:element>

<!ELEMENT preface (name | surname)>

nonsense

<xsd:element name="preface">
<xsd:complexType>

<xsd:all>
<xsd:element ref="name"/>
<xsd:element ref="surname"/>

</xsd: all>
</xsd:complexType>

</xsd:element>

name e surname devono esserci;
in qualunque ordine

<xsd:element name="year">
<xsd:restriction base="xsd:integer>
<xsd:minExclusive value="-4000" />
<xsd:maxExclusive value="4000" />

</xsd:restriction>
</xsd:element>

year compreso (strett.)
tra -4000 e +4000

19/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – variazioni sul precedente schema
<xsd:element name="preface">
<xsd:complexType>
<xsd:choice>
<xsd:element ref="name"/>
<xsd:element ref="surname"/>

</xsd: choice>
</xsd:complexType>

</xsd:element>

<!ELEMENT preface (name | surname)>

<xsd:element name="preface">
<xsd:complexType>

<xsd:all>
<xsd:element ref="name"/>
<xsd:element ref="surname"/>

</xsd: all>
</xsd:complexType>

</xsd:element>

name e surname devono
esserci;
in qualunque ordine

<xsd:element name="year">
<xsd:restriction base="xsd:integer>
<xsd:minExclusive value="-4000" />
<xsd:maxExclusive value="4000" />

</xsd:restriction>
</xsd:element>

year compreso (strett.) tra -4000 e +4000

Pregi dell'XML-schema

- e` XML, quindi processabile
con un'applicazione XML

- e` una specifica w3c

- permette di specificare
meglio il tipo di dati dei
valori di attributi e del
contenuto di un elemento

- anche i limiti di questi valori
possono essere specificati
meglio che con i
quantificatori *,?,+
usati nelle DTD.

20/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – Schema (associazione al file xml)

1) usiamo un solo spazio di nomi (quello che definisce xsi:noNamespaceSchemaLocation)

2) usiamo anche altri spazi di nomi; in questo caso uno, dato come default, cui fa riferimento la
grammatical che vogliamo associare al documento

<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="libri.5.xsd">
<book isbn="0" rating="ottimo">
<author>
<name>J. Audreay</name>
<surname>Ellison</surname>

… libri.5.xml

<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns=“http://www.diag.uniroma1.it/repository”
xsi:schemaLocation="http://www.diag.uniroma1.it/repository libri.5.xsd">
<book isbn="0" rating="ottimo">

<author>

<name>J. Audreay</name> …

libri.5.schemalocation.xml

21/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – Schema (associazione al file xml)
1) Il primo metodo di associazione consiste nell’usare lo spazio di nomi XMLSchema-instance (da cui xsi …).
Questo serve per applicare definizioni di spazi di nomi al documento xml – la xml-instance. Poi, senza ulteriori
namespace, si puo` indicare il file .xsd di riferimento. La validazione procede basandosi su quest'ultimo.

<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="libri.5.xsd">
<book isbn="0" rating="ottimo">
<author>
<name>J. Audreay</name>
<surname>Ellison</surname>

… libri.5.xml

2bis) Se si vuole che il documento faccia riferimento non solo ad una definizione di schema ma anche ad un
namespace dichiarato esplicitamente, c’e` un attributo schemaLocation da riempire (e quindi non si usa piu`
l’attributo noNamespaceSchemaLocation …). In questo esempio c’e` un namespace chiaramente definito
(associato all’identificatore liber) che viene usato per qualificare i nomi degli elementi. (Si puo` lasciare che
questo identificatore sia di default – in questo caso quel che e` tra parentesi va cancellato, senno` che default
e`?): per gli elementi in questo namespace si fara` riferimento alla schema definition accoppiata al
namespace nella dichiarazione di schemaLocation.

<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns(:liber)=“http://www.diag.uniroma1.it/repository”
xsi:schemaLocation="http://www.diag.uniroma1.it/repository libri.5.xsd">
<(liber:)book isbn="0" rating="ottimo">

<(liber:)author>

<(liber:)name>J. Audreay</(liber:)name> …

libri.5.schemalocation.xml

22/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – Schema (associazione al file xml)
Il primo metodo di associazione consiste nell’usare lo spazio di nomi XMLSchema-instance (da cui xsi …).
Questo serve per applicare definizioni di spazi di nomi al documento xml – la xml-instance. Poi, senza ulteriori
namespace, si puo` indicare il file .xsd di riferimento. La validazione procede basandosi su quest'ultimo.

Se si vuole che il documento faccia riferimento non solo ad una definizione di schema ma anche ad un
namespace dichiarato esplicitamente, c’e` un attributo schemaLocation da riempire (e quindi non si usa piu`
l’attributo noNamespaceSchemaLocation …). In questo esempio c’e` un namespace chiaramente definito
(associato all’identificatore liber) che viene usato per qualificare i nomi degli elementi. (Si puo` lasciare che
questo identificatore sia di default – in questo caso quell che e` tra parentesi va cancellato, senno` che
default e`?): per gli elementi in questo namespace si fara` riferimento alla schema definition accoppiata al
namespace nella dichiarazione di schemaLocation.
<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns(:liber)=“http://www.diag.uniroma1.it/repository”
xsi:schemaLocation="http://www.diag.uniroma1.it/repository libri.5.xsd">
<(liber:)book isbn="0" rating="ottimo">

<(liber:)author>

<(liber:)name>J. Audreay</(liber:)name> … Vedi altro modo
ancora (nel seguito)

ev. sequenza di coppie nms/schema, se ci sono piu` nms

libri.5.schemalocation.xml

namespace di questo
documento xml

questo ns e`associato a questa schema def.

<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="libri.5.xsd">
<book isbn="0" rating="ottimo">
<author>
<name>J. Audreay</name>
<surname>Ellison</surname>

… libri.5.xml

23/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – Associazione implicita di schema a documento

<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns="http://www.lweb.uni/spazidinomi/libri/">

<book isbn="0" rating="ottimo">
<author>
<name>J. Audreay</name>
<surname>Ellison</surname>

</author>
<title>The Great Scandinavian COOKBOOK</title>
...

</libri>

3) Un terzo modo di collegare il documento (in questo esempio libri.6.xml)
allo schema (libri.6.xsd).

libri.6.xml

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:lbr="http://www.lweb.uni/spazidinomi/libri/"
targetNamespace="http://www.lweb.uni/spazidinomi/libri/">

<xsd:element name="libri">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="lbr:book" maxOccurs="unbounded" />

...
</xsd:element>

libri.6.xsd (directory "with schema validation" in DOM)

24/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML – Associazione implicita di schema a documento

<?xml version="1.0" encoding="UTF-8"?>
<libri xmlns="http://www.lweb.uni/spazidinomi/libri/">

<book isbn="0" rating="ottimo">
<author>
<name>J. Audreay</name>
<surname>Ellison</surname>

</author>
<title>The Great Scandinavian COOKBOOK</title>
...

</libri>

Questo documento xml fa riferimento ad uno
spazio di nomi target, "definito" nel file
.xsd (il quale xsd deve essere passato al
validatore insieme al documento da validare)

3) Un terzo modo di collegare il documento (in questo esempio libri.6.xml)
allo schema (libri.6.xsd).

libri.6.xml

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:lbr="http://www.lweb.uni/spazidinomi/libri/"
targetNamespace="http://www.lweb.uni/spazidinomi/libri/">

<xsd:element name="libri">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="lbr:book" maxOccurs="unbounded" />

...
</xsd:element>

Viene specificato uno spazio di nomi (in questo caso
con tag lbr) per gli elementi dei documenti xml che
fanno riferimento a questa grammatica. Il target name
space è quello che verrà indicato nei documenti xml.

libri.6.xsd (directory "with schema validation" in DOM)

25/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - "programmazione XML"

Con una DTD, o con un XML-Schema, si ha la capacita` di scrivere la definizione di un linguaggio di
markup, cui si intende conformare un certo gruppo di documenti destinato ad un progetto. Se e` nota la
sintassi e c’e` accordo sulla semantica dei documenti XML, questi possono essere visualizzati e processati.

La processazione di un documento XML, mediante un'applicazione XML, e` fatta con lo scopo di
- visualizzare solo parti di documento,
- visualizzarle in modo confacente all'utente destinatario,
- creare documenti usando i dati contenuti nel file xml,
- consultare informazioni contenute nel documento,
- aggiungere informazioni in parti del documento,
- modificarle …

Per scrivere un'applicazione XML si puo` far uso di qualsiasi linguaggio di programmazione. Di solito ci
si appoggia su API definite appositamente e supportate da una implementazione nel linguaggio prescelto.
Cosi` si possono progettare applicazioni in modo piu` o meno astratto, usando le definizioni della API, e
sfruttando un linguaggio prescelto per ottenere un programma che giri.

Nel seguito:
- Document Object Model (DOM)

- standard W3C;
- implementazioni (binding) in Perl, Php, Javascript, Asp, Vb, Java, C++, …

- Simple API for XML processing (SAX)
- non w3c
- implementazioni in Php, Perl, Python, C++, Java, Javascript, …?

26/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - Document Object Model
Il DOM fornisce una
interpretazione del documento
XML come albero di oggetti,
insieme con una serie di
funzioni che permettono di
visitare e trattare tali oggetti;

<?xml version="1.0" ?>
<Menu meal="pranzo">

<antipasto>
<Dish diet="carne">prosciutto e melone</Dish>
<Dish diet="vegan">Insalata di funghi</Dish>

</antipasto>
<primo>
<Dish diet="carne">agnolotti al ragu`</Dish>

</primo>
<secondo>
<Dish diet ="vegan">Bistecca di soia</Dish>

</secondo>
<dolce-frutta >
<Dish>gelato (vari gusti)</Dish>
<Dish diet="vegan">Amarene farcite</Dish>

</dolce-frutta>
</Menu>

Element
Menu

Element
antipasto

Element
primo

Element
secondo

Attribute
meal

Element
dolce-frutta

Element
Dish

Element
Dish

Attr
carne

Text
prosc...

Attr
vegan

Text
Insalata...

Attr
carne

Text
prosc...

Element
Dish

Attr
vegan Text

Biste...

Element
Dish

Element
Dish

Element
Dish

Text
gelato...

Attr
vegan

Text
Amarene...

Document

Attr
carne

27/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - DOM
La definizione del DOM e` quella di un'interfaccia indipendente dalla piattaforma hardware/software (compreso il
linguaggio di programmazione che si usa per le applicazioni).

Document
Element
Attribute
CharacterData:

Text,
CDATASection,
Comment

DocumentType
ProcessingInstruction

XML - DOM - nodi

Attributes
ChildNodes nodeList con i figli di un nodo - bordo

rosso fig. precedente = childNodes di
element Menu (bordo rosa =...antipasto)

FirstChild, LastChild
NextSibling, PreviousSibling
ParentNode
NodeType es. Element, Text, Attribute ...
NodeName es. il tag, nome attr …
NodeValue es. null, testo cont, valore …

E proprieta` dei nodi

28/47

Linguaggi per il Web, M.Temperini – lweb – XML2

lastChild

XML - DOM - proprieta` e metodi dei nodi
Attributes
ChildNodes
FirstChild, LastChild
NextSibling, PreviousSibling
ParentNode
NodeType es. Element, Text, Attribute ...
NodeName es. il tag, #text, nome attr
NodeValue es. null, testo cont, valore

appendChild(newChild)
cloneNode(deep)
hasAttributes()
hasChildNodes()
insertBefore(newNode, refNode)
removeChild(nodeName)
replaceChild(newNode, oldNode)

Element
Menu

Element
antipasto

Element
primo

Attribute
meal

Attr
vegan

Text
Insalata...

Attr
carne

Text
prosc...

Attr
carne

Text
prosc...Element

Dish

Element
Dish

nextSibling firstChild

childNodes

parentNode

Element
Dish

chiamati inviando richiesta al nodo interessato

29/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - DOM - un'applicazione (1/3)

<?xml version="1.0" encoding="UTF-8"?>
<temperature_records>

<record>
<town>algiers</town>
<temperature>23</temperature>
<humidity>56%</humidity>

</record>
<record>
<town>alicante</town>
<temperature>24</temperature>
<humidity>18%</humidity>

</record>
<record>

<town>amsterdam</town>
<temperature>4</temperature>
<humidity>36%</humidity>

</record>
...

/xml.DOM/temperature.xml

XML application
che usa il "binding"

PHP per il DOM

30/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - DOM - un'applicazione (2/3)

...

<table border="1" cellspacing="3" ...

<caption>Temperature registrate ...

<?php
$xmlString = "";
foreach (file("temperature.xml") as $node) {

$xmlString .= trim($node);
}
$doc = new DOMDocument();
$doc->loadXML($xmlString);
$root = $doc->documentElement;
$elementi = $root->childNodes;

for ($i=0; $i<$elementi->length; $i++) {
$elemento = $elementi->item($i);
$town = $elemento->firstChild;
$townName = $town->textContent;

...

xml scaricato in un array e messo in una stringa (con
trim() tagliamo gli ' ', '\n' … altrimenti avremmo molti
elementi in piu` - fittizi!)

temperature.1.php

$doc e` un oggetto DomDocument,
contenente il parsing eseguito
da loadXML()sulla stringa xml

document_element(), chiamata su un
oggetto DomDocument, restituisce un
DomNode che e` la radice del doc
(elemento <temperature_records>

Ora $elementi contiene la nodeList
dei figli di $root, cioe` tutti gli
elementi <record>, organizzata come
un array

$elementi->item($i) e` uno dei <record>, ed e` dotato di tre figli (primo,
secondo e ultimo … rispettivamente town, temperature, humidity)

31/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - DOM - un'applicazione (3/3)

...

for ($i=0; $i<$elementi->length; $i++) {
$elemento = $elementi->item($i);

$town = $elemento->firstChild;
$townName = $town->textContent;

$temp = $town->nextSibling;
$tempValue = $temp->textContent;

$humid = $elemento->lastChild;
$humidValue = $humid->textContent;

print "<tr><td>$townName</td><td
class=\"centrat\">$tempValue</td><td
class=\"centrat\">$humidValue</td></tr
>\n";

}
echo "</tbody>\n</table>";
?>
</body></html>

i-esimo elemento <record>

vedi temperature.1.php, anche
versioni con comments e validate

$town ora contiene il primo figlio
di $record[i], cioe` il
sottoelemento <town>

textContent() restituisce il testo
contenuto nell'elemento: il nome
della citta`

nextSibling() applicato ad un
DomNode, restituisce il prossimo
nodo nella nodeList cui
appartiene il nodo.

Ultimo figlio nella childNode list
dell'elemento $record

si tratta del sottoelemento
<humidity>

Ora i tre valori calcolati strada facendo, in riferimento al <record>
($elemento) corrente, possono essere inseriti in una riga della tabella

si puo` fare con css? 32/47

Linguaggi per il Web, M.Temperini – lweb – XML2

PHP binding per DOM

(Solo alcuni) Pls cfr. documentazione php
DOMDocument — The DOMDocument class
DOMDocument::__construct — Creates a new DOMDocument object
DOMDocument::createAttribute — Create new attribute
DOMDocument::createElement — Create new element node
DOMDocument::getElementsByTagName — Searches for all elements with given tag name
DOMDocument::load — Load XML from a file
DOMDocument::loadXML — Load XML from a string
DOMDocument::save — Dumps the internal XML tree back into a file
DOMElement::__construct — Creates a new DOMElement object
DOMElement::getAttribute — Returns value of attribute
DOMElement::getElementsByTagName — Gets elements by tagname
DOMElement::setAttribute — Adds new attribute
DOMNode — The DOMNode class
DOMNode::appendChild — Adds new child at the end of the children
DOMNode::cloneNode — Clones a node
DOMNode::insertBefore — Adds a new child before a reference node
DOMNode::replaceChild — Replaces a child
DOMNodeList — The DOMNodeList class
DOMNodelist::item — Retrieves a node specified by index
DOMText — The DOMText class
DOMText::__construct — Creates a new DOMText object

33/47

http://it.php.net/manual/en/class.domdocument.php
http://it.php.net/manual/en/domdocument.construct.php
http://it.php.net/manual/en/domdocument.createattribute.php
http://it.php.net/manual/en/domdocument.createelement.php
http://it.php.net/manual/en/domdocument.getelementsbytagname.php
http://it.php.net/manual/en/domdocument.load.php
http://it.php.net/manual/en/domdocument.loadxml.php
http://it.php.net/manual/en/domdocument.save.php
http://it.php.net/manual/en/domelement.construct.php
http://it.php.net/manual/en/domelement.getattribute.php
http://it.php.net/manual/en/domelement.getelementsbytagname.php
http://it.php.net/manual/en/domelement.setattribute.php
http://it.php.net/manual/en/class.domnode.php
http://it.php.net/manual/en/domnode.appendchild.php
http://it.php.net/manual/en/domnode.clonenode.php
http://it.php.net/manual/en/domnode.insertbefore.php
http://it.php.net/manual/en/domnode.replacechild.php
http://it.php.net/manual/en/class.domnodelist.php
http://it.php.net/manual/en/domnodelist.item.php
http://it.php.net/manual/en/class.domtext.php
http://it.php.net/manual/en/domtext.construct.php

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - DOM - seconda applicazione

<?xml version="1.0"
encoding="UTF-8"?>
<temperature_records>

<record>
<town>algiers</town>
<temperature>23</temperature>
<humidity>56%</humidity>

</record>
<record>
<town>alicante</town>
<temperature>24</temperature>
<humidity>18%</humidity>

</record>
<record>

<town>amsterdam</town>
<temperature>4</temperature>
<humidity>36%</humidity>

</record>
...

/xml.DOM/temperature.xml

si puo` fare
con css?

Per la prima applicazione
bastavano anche le css … (+ o -)
questa e` po' piu` sofisticata

34/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - DOM - seconda applicazione (2/3)
<?php
$pageLength = 6;
...

$records = $doc->documentElement->childNodes;

if (isset($_GET['next'])) {
$first = $_GET['next'];

} else {
$first = 0;

}

if ($records->length - $first < $pageLength) {
$last = $records->length;

} else {
$last = $first + $pageLength;

}

for ($i=$first; $i<$last; $i++) {
$record = $records->item($i);
$town = $record->firstChild;
$townName = $town->textContent;

Numero di elementi
da stampare per pag

temperature.2.php

next, se c'e`, ci dice da quale
record bisogna ripartire
nella stampa

$first sara` il punto di
partenza nella prossima
stampa;

$last il punto di arrivo

Ciclo modificato rispetto a
prima solo nei valori
iniziali e finali di $i: in
questo script viene visitata
solo una porzione della lista
$records[]

35/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - DOM - seconda applicazione (3/3)

...
if ($last < $records->length - 1) {

echo "\n<p>prossimo
gruppo di stampe >>></p>";

} else {
echo '\n<p>** Fin **</p>';

}
...

temperature.2.php

Finita la tabella, rimane da scrivere la linea finale
questa e` del tipo

PHP_SELF?next=$last ($last = indice ult stampato)
oppure ** FIN **

36/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - SAX - Simple API for XML

- parsing del documento

- niente albero in memoria

- l'incontro di un tag e` un evento … gestito mediante attivazione di un metodo di callback

startDocument - cosa fare all'inizio del documento (radice)

endDocument - cosa fare in chiusura dei lavori

startElement - attivato quando si incontra un elemento

endElement - attivato quando ... il tag chiusura di un elemento

characters - gestione contenuto elemento

37/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - SAX - Simple API for XML
<?xml version="1.0" ?>
<Menu meal="pranzo">

<antipasto>
<Dish diet="carne">
prosciutto e melone

</Dish>
<Dish diet="vegan">
Insalata di funghi

</Dish>
</antipasto>
<primo>
<Dish diet="carne">
agnolotti al ragu`

</Dish>
</primo>
<secondo>
<Dish diet ="vegan">
Bistecca di soia

</Dish>
</secondo>
<dolce-frutta >
<Dish>
gelato (vari gusti)

</Dish>
<Dish diet="vegan">
Amarene farcite

</Dish>
</dolce-frutta>

</Menu>

endElement

startElement

endElement

startElement

endElement

startElement

characters

endElement

startElement

characters

startElement

endElement

endElement

startElement

characters

38/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - SAX - Simple API for XML

Contrariamente all'approccio DOM,
in cui il documento viene rappresentato in una struttura, residente in memoria, ad albero di
oggetti e il parsing del documento avviene traversando quella struttura,

in un'applicazione basata su SAX
il documento viene analizzato mediante un suo diretto scorrimento, durante il quale l'incontro
con ciascun tag genera un "evento" che viene trattato dal gestore per esso previsto.

I diversi approcci possono essere fatti corrispondere a diversi pregi alternativi. Forse l'approccio DOM e`
piu` intuitivo e permette di limitare la quantita` di codice da scrivere; sicuramente l'approccio SAX e`
piu` efficiente, in termini di tempo di processazione e occupazione di memoria. L'approccio SAX e`
migliore per la gestione di una parte di un grande documento: la parte puo` essere localizzata e
circoscritta velocemente, senza dover caricare un enorme albero e traversarlo.

Quando un'applicazione SAX trova un tag, attiva un metodo di callback, come ad esempio

startDocument - cosa fare all'inizio del documento (radice)
endDocument - cosa fare in chiusura dei lavori
startElement - attivato quando si incontra un elemento
endElement - attivato quando ... il tag chiusura di un elemento
characters - gestione contenuto elemento

39/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - SAX - un'applicazione

Il file .xml contiene un documento avente radice <Menu>,
articolato in <antipasto>, <primo>, <secondo> e <dolce-frutta>.
Ogni <Dish> ha un attributo che lo assegna ad una particolare dieta
(cliente che vuol mangiare carne, pesce o vegan).
L'applicazione consente di scegliere un tipo di dieta (o piu`) e
seleziona e presenta solo le voci di menu` che sono per quella dieta.

/xml.SAX/menuFioridiZucca.xml
/xml.SAX/menuFiori.SAX.php

<?xml version="1.0" ?>
<Menu meal="pranzo">

<antipasto>
<Dish diet="carne">prosciutto e melone</Dish>
<Dish diet="vegan">Insalata di funghi</Dish>

</antipasto>
<primo>
<Dish diet="carne">agnolotti al ragu`</Dish>

</primo>
<secondo>
<Dish diet ="vegan">Bistecca di soia</Dish>

</secondo>
<dolce-frutta >
<Dish>gelato (vari gusti)</Dish>
<Dish diet="vegan">Amarene farcite</Dish>

</dolce-frutta> </Menu>

40/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - SAX - un'applicazione (2/6)

... <form action="menuFiori.Sax.php" method="post">
<input type="checkbox" name="menu[]" value="vegan" />Vegan

...</form>
<?php
...
$file = "./menuFioridiZucca.xml";
$menuScelto="";
foreach($_POST['menu`] as $trick => $track)

$menuScelto .= $track." ";
if($menuScelto=="") {
die('<p style="color:
red">indica il tipo di menu\' ...}

$currentTag = "";
$currentAttr = "";

$xmlParser = xml_parser_create();

$caseF = xml_parser_get_option($xmlParser,XML_OPTION_CASE_FOLDING);
if ($caseF == 1) {
xml_parser_set_option($xmlParser, XML_OPTION_CASE_FOLDING, false);}

menuFiori.SAX.php

La form (se le checkbox non furono assegnate, si
scrive in rosso una richiesta dati)

$menuScelto = sequenza delle diete
scelte, separate da ' '

$currentTag contiene il tag corrente durante il parsing
$currentAttr e` l'elenco degli attributi correlati al
tag corrente (per <Dish>, ce n'e` uno solo, individuato
dall'indice associativo 'diet')

xml_parser_create() crea
un'istanza del parser

xml_parser_*_option() permettono di vedere le
opzioni in atto e determinarle (case folding
= conversione automatica dei tag in maiuscol)

41/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - SAX - un'applicazione (3/6)

...

xml_set_element_handler($xmlParser, "startElement", "endElement");
xml_set_character_data_handler($xmlParser, "characterData");

if (!($fp = fopen($file, "r"))) {
die("Cannot open XML data file: $file");}

while ($data = fread($fp, 4096)) {
if (!xml_parse($xmlParser, $data, feof($fp))) {

die(sprintf("XML error: %s at line %d",
xml_error_string(xml_get_error_code($xmlParser)),
xml_get_current_line_number($xmlParser)));

}
}
xml_parser_free($xmlParser);
...

Assegnazione funzioni di callback: si chiamano startElement,
endElement e characterData e sono i metodi da implementare nel
parser, in modo ad hoc per la nostra applicazione

Parsing: il documento viene caricato a lotti;
quando l'analisi del parser evidenzia che
si e` incontrato un tag, viene attivato il
metodo di callback startElement()

Quando il parser incontra un tag di chiusura, parte endElement().
(Dovrebbe essere il tag di chiusura dell’ultimo tag aperto …).
Quasi tutto il codice di questo ciclo e` error handling …
Al termine il parser viene smaterializzato.

42/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - SAX - un'applicazione

Il file .xml contiene un documento avente radice <Menu>,
articolato in <antipasto>, <primo>, <secondo> e <dolce-frutta>.
Ogni <Dish> ha un attributo che lo assegna ad una particolare dieta
(cliente che vuol mangiare carne, pesce o vegan).
L'applicazione consente di scegliere un tipo di dieta (o piu`) e
seleziona e presenta solo le voci di menu` che sono per quella dieta.

<?xml version="1.0" ?>
<Menu meal="pranzo">
<antipasto>
<Dish diet="carne">prosciutto e melone</Dish>
<Dish diet="vegan">Insalata di funghi</Dish>

</antipasto>
<primo>
<Dish diet="carne">agnolotti al ragu`</Dish>

</primo>
<secondo>
<Dish diet ="vegan">Bistecca di soia</Dish>

</secondo>
<dolce-frutta >
<Dish>gelato (vari gusti)</Dish>
<Dish diet="vegan">Amarene farcite</Dish>

</dolce-frutta>
</Menu>

elementi: Menu, antipasto, primo,
secondo, dolce-frutta, Dish

43/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - SAX - un'applicazione (4/6)

function startElement($parser, $name, $attribs) {

global $currentTag, $currentAttr, $menuScelto;
$currentTag = $name;
$currentAttr = $attribs;

switch ($name) {
case "Menu":

$tipoPasto = "per un {$currentAttr['meal']}";
... menu` $tipoPasto adatto a($menuScelto)</p>";

break;
case "Dish":

if (strstr($menuScelto,$currentAttr['diet'])) {
echo "";

}
break;

default:
echo "<h3>$name</h3>";
break;

}
}

menuFiori.SAX.php

startElement() riceve
il parser,
il nome del tag
incontrato
e la lista dei
suoi attributi

Se il tag e` menu, si prepara la stringa $tipoPasto,
che conterra` ad. es "per un pranzo"

Se l’elemento e` Dish,
se $menuScelto contiene il valore associato all’attr.
diet di questo elemento, si prepara la linea di
elenco (characterData stampera` il contenuto di Dish)

Antipasto, primo, secondo, dolce-frutta: si stampa il nome
dell'elemento per introdurre l’elenco di piatti di quella sezione
del pasto (iniziando l’elenco che verra` costruito con i prossimi
elementi incontrati).

44/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - SAX - un'applicazione (5/6)

function endElement($parser, $name) {
global $currentTag, $currentAttr;

switch ($name) {
case "Menu":

echo "<p style=\"color: blue; font-size: larger;\">
buon appetito!</p>";
break;

case "Dish": if (strstr(…
echo "";

break;
default:

echo "";
break;

}

}

menuFiori.SAX.php

<?xml version="1.0" ?>
<Menu meal="pranzo">
<antipasto>
<Dish diet="carne">prosciutto e melone</Dish>
<Dish diet="vegan">Insalata di funghi</Dish>

</antipasto>
<primo>
<Dish diet="carne">agnolotti al ragu`</Dish>

</primo>
<secondo>
<Dish diet ="vegan">Bistecca di soia</Dish>

</secondo>
<dolce-frutta >
<Dish>gelato (vari gusti)</Dish>
<Dish diet="vegan">Amarene farcite</Dish>

</dolce-frutta>
</Menu>

45/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - SAX - un'applicazione (5/6)

function endElement($parser, $name) {
global $currentTag, $currentAttr, $diet, $menuScelto;;

switch ($name) {
case "Menu":

echo "<p style=\"color: blue; font-size: larger;\">
buon appetito!</p>";
break;

case "Dish": if (...)
echo "";

break;
default:

echo "";
break;

}

}

menuFiori.SAX.php

endElement() riceve il parser e il
nome del tag “in chiusura”.
Quando si incontra la chiusura di un
elemento,
- se l’elemento e` Menu, bisogna
augurare buon appetito e basta; …

… se l’elemento in chiusura e` dish,
SE la dieta associata al piatto

corrisponde ad una di quelle
selezionate,
1) all'apertura avevamo iniziato un
, e adesso lo chiudiamo
2) nel frattempo siamo gia` passati
sul contenuto di questo Dish e lo
abbiamo stampato (con characterData),

Per gli altri elementi, es. "primo",
all’apertura abbiamo iniziato un
elenco, , quindi adesso lo chiudiamo.

46/47

Linguaggi per il Web, M.Temperini – lweb – XML2

XML - SAX - un'applicazione (6/6)

function characterData($parser, $data) {
global $currentTag, $currentAttr, $menuScelto;

switch ($currentTag) {
case "Dish":

if (strstr($menuScelto, $currentAttr['diet'])) {
echo "$data";

}
break;

default:
echo $data;
break;

}
}
?>

</body>
</html>

menuFiori.SAX.php

characterData()
riceve il parser, e

il contenuto
testuale (extra tag)

di un elemento

Se il tag e` Dish (e nel nostro
caso non puo` essere altro …),
si stampa il contenuto, che
corrisponde al nome di un piatto

Se e` altro non si fa nulla (qui in realta` stampiamo
$data, ma si tratta di una stringa vuota
(verificare, ad esempio aggiungendo alcuni '-'
prima e dopo attorno a $data)

controlla le tre versioni di questo script:
ci sono variazioni progressive fatte per
ottenere codice html piu` ordinato

47/47

Linguaggi per il Web, M.Temperini – lweb – XML2

risorse
esercizi
Sperimentare l'uso di temperature.1.php, cambiando la presentazione dei dati. Fare lo stesso con temperature.2.php, cambiando le

modalita` di sperimentazione (aggiungere un bottone per scegliere la quantita` di citta` mostrate in ogni schermata).
Esaminare il codice html prodotto da menuFiori.Sax.php e verificare come potrebbe essere reso piu` ordinato. Le version V2 e V3

di quello script cercano di raggiungere una resa migliore del codice html, in due passi. Esaminarne i risultati (l'html prodotto)
senza guardare il loro codice e provare a realizzarle.

modifica di un file XML con DOM
nella directory pubblica in XML2/gestioneFileXML c'e` una piccola applicazioncina minima, con commenti:

eseguirla, comprendendo il funzionamento dei vari passi; in questo modo ci si impadronisce della tecnica di gestione dei file xml
attraverso l'api dom e si puo` poi scegliere e adattare qualcuno dei meccanismi nello svolgimento dell'esercizio da sottomettere e nella
tesina.

xml-validators
1) XML Copy Editor e` un ambiente che permette editing e validazioni varie di file XML, anche in base a XML Schema
2) gli esempi visti a lezione, con validate() (temperature.xml) e schemaValidate() (libri.6.xml) forniscono uno spunto sull'uso di queste

funzioni PHP su documenti gestiti tramite DOM: utilizzarli per validare i vari esempi applicabili (libri*.xml) rispetto alle definizioni dtd o
xsd disponibili. Scrivere gli schemi mancanti negli esempi libri*.xml e provarli con il validatore opportuno.

xml-documentation - XML (1.0, 1.1 mod), DTD, Schema, DOM, SAX) Per tutto (tranne sax) www.w3.org/
XML-Schema

- http://www.w3.org/TR link a varie risorse del W3C; cercando "Schema" si vedono descrizioni delle specifiche, un documento
"Associating Schemas with XML documents 1.0", documenti con la specifica (diversi) e un primer che potrebbe essere utile.

DOM (www.w3.org/DOM/)
- la pagina del DOM living standard https://dom.spec.whatwg.org/

PHP binding per DOM at http://php.net (search for XML): http://php.net/manual/en/book.dom.php

SAX project website sax.sourceforge.net/
in particolare vedi Events Vs. Trees: http://www.saxproject.org/event.html

Namespace specification: sito w3c https://www.w3.org/TR/REC-xml-names/

48/47

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

