
SEMINARIO
INTRODUZIONE AD
AJAX

Linguaggi per il Web

Ingegneria Informatica, Ingegneria dell'Informazione,
Sapienza Università di Roma, sede di Latina

15 Maggio 2025

Corrado Di Benedetto

1

ARGOMENTI

▪ Introduzione

▪ XMLHttpRequest

▪ JSON

▪ Framework Ajax

2

INTRODUZIONE

▪ AJAX è l’acronimo di Asynchronous JavaScript And XML

▪ E’ stato introdotto nel 2005 da Jesse James Garrett (padre di
AJAX) e reso popolare, sempre nello stesso anno, da Google

▪ Permette di creare una interfaccia web dinamica, ad esempio
l’autocompletamento della search box di Google con una lista
di suggerimenti del server

3

CHE COSA È AJAX ?

Non è una singola tecnologia, ma bensì una collezione di
tecnologie:

1. JavaScript: per interagire con il browser e gestire gli
eventi

2. XHTML + CSS: per la presentazione della pagina web

3. DOM: per accedere e manipolare la struttura XHTML
della pagina web

4. XML: il formato per scambiare i dati tra il server e il client

5. Oggetto XMLHttpRequest: per scambiare in modalità
asincrona i dati tra il server e il client

4

CHE COSA È AJAX ?

▪ Oggi ha un significato estensivo che comprende tutte le
tecnologie native dei browser che permettono una
comunicazione asincrona con un server

▪ E’ asincrono, ovvero i dati scambiati fra client e server sono
caricati in background senza bloccare il comportamento della
pagina

▪ A differenza dell’approccio classico permette l'aggiornamento
dinamico di una pagina web senza il completo ricaricamento

5

CHE COSA È AJAX ?

6

CHE COSA È AJAX ?

▪ Le tecnologie di base di Ajax sono JavaScript, XML e
XHTML, ma l'uso di JavaScript e del XML non è
obbligatorio

▪ Ajax permette lo scambio di dati con il server usando
anche altre tecnologie, come ad esempio JSON (JavaScript
Object Notation)

7

COME FUNZIONA AJAX ?

8

COME FUNZIONA AJAX ?

1. L’utente genera un evento, ad esempio il passaggio del
mouse su un elemento HTML, a cui corrisponde un gestore
di eventi JavaScript

2. Il gestore di eventi crea un oggetto XMLHttpRequest

3. Esso interagisce attraverso una richiesta asincrona con il
server di BackEnd

4. Un componente software di BackEnd (es. PHP, ASPX, JSP)
riceve e elabora la richesta e poi risponde in XML

5. L’oggetto XMLHttpRequest riceve ed elabora l’XML di
risposta e poi aggiorna il DOM

9

COME FUNZIONA AJAX ?

10

DOVE USARE AJAX ?

▪ Form: Aumenta sensibilmente le prestazioni di una form
HTML

▪ Comunicazione: Utile nella progettazione di componenti
software per la comunicazione, ad esempio chat, bottoni di
voto, messaggi thread, rating, ecc.

▪ News: RSS feeds può essere gestito con tecnologia Ajax (es.
Google News)

▪ Manipolazione dei dati: Ad esempio l’ordinamento o il
filtraggio dei dati di una tabella oppure l’autocompletamento
di un campo di una form HTML

11

DOVE USARE AJAX ?

Osservazioni

▪ Ajax non è la soluzione ad ogni problema

▪ La gestione di grandi quantità di dati con Ajax può portare a

problemi di prestazioni o di altro tipo

▪ Usare Ajax solo quando i widget JavaScript tradizionali non

sono sufficienti o quando bisogna gestire i dati scambiati con

il server

12

ESEMPI DI TECNOLOGIA AJAX

▪ Applicazioni web che implementano Ajax:

Google

▪ Gmail e Mappe, Calendario, Home Page Personalizzate e
Search Box Google

Yahoo

▪ Home Page di Yahoo, un gran numero di personalizzazioni e
di caratteristiche, come le anteprime delle e-mail

Altri Esempi

▪ Youtube, Facebook, …

13

PREGI

Usabilità

▪ Interattività

Velocità

▪ Minore quantità di dati scambiati

▪ Parte della computazione sul client

Portabilità

▪ Supportato dai principali browser

▪ Indipendente dalla piattaforma

▪ Non richiede plug-in

14

DIFETTI

Usabilità

▪ Non funziona il pulsante back e i segnalibri

▪ I motori di ricerca non indicizzano i contenuti dinamici

Accessibilità

▪ Non supportato dai browser non-visuali

▪ Richiede meccanismi di accesso alternativi

Configurazione

▪ JavaScript abilitato

▪ Oggetti ActiveX abilitati in IE

Compatibilità

▪ Test sui diversi browser

▪ Richiede funzionalità alternative per i browser che non
supportano JavaScript

15

COMPATIBILITÀ DEI BROWSER

Compatibili con Ajax:

▪ Internet Explorer dalla versione 5

▪ Mozilla Firefox dalla versione 7.1

▪ Konqueror dalla versione 3.2

▪ Safari dalla versione 1.2

▪ Opera dalla versione 8.0

▪ Chrome

 Non compatibile con Ajax:

▪ Versioni precedenti a quelle viste sopra

▪ Tutti i browser testuali

▪ Tutti i browser per disabili visivi (screen-reader, browser vocali, …)

▪ Tutti i browser precedenti al 1997

16

ARGOMENTI

▪ Introduzione

▪ XMLHttpRequest

▪ JSON

▪ Framework Ajax

17

OGGETTO XMLHTTPREQUEST

▪ E’ di fondamentale importanza in Ajax, tutti i browser moderni lo
supportano nativamente (IE5 e IE6 usano un ActiveX)

▪ E’ usato per scambiare i dati in background con un server o
aggiornare parti di pagina senza ricaricarla completamente

▪ Il W3C ha uno studio in corso per renderlo uno Standard Internet:

https://www.w3.org/TR/XMLHttpRequest/

18

https://www.w3.org/TR/XMLHttpRequest/

INTERFACCIA STANDARD W3C
[NoInterfaceObject]

interface XMLHttpRequestEventTarget : EventTarget {// for future use};

[Constructor]

interface XMLHttpRequest : XMLHttpRequestEventTarget {

 // event handler attributes

 attribute Function onreadystatechange;

 // states

 const unsigned short UNSENT = 0;

 const unsigned short OPENED = 1;

 const unsigned short HEADERS_RECEIVED = 2;

 const unsigned short LOADING = 3;

 const unsigned short DONE = 4;

 readonly attribute unsigned short readyState;

 19

INTERFACCIA STANDARD W3C
// request

 void open(DOMString method, DOMString url);

 void open(DOMString method, DOMString url, boolean async);

 void open(DOMString method, DOMString url, boolean async, DOMString? user);

 void open(DOMString method, DOMString url, boolean async, DOMString? user, DOMString? password);

 void setRequestHeader(DOMString header, DOMString value);

 void send();

 void send(Document data);

 void send([AllowAny] DOMString? data);

 void abort();

 // response

 readonly attribute unsigned short status;

 readonly attribute DOMString statusText;

 DOMString getResponseHeader(DOMString header);

 DOMString getAllResponseHeaders();

 readonly attribute DOMString responseText;

 readonly attribute Document responseXML; };

20

CREAZIONE DELL’OGGETTO

▪ Tutti i browser moderni (IE7+, Firefox, Chrome, Safari e
Opera) implementano l’interfaccia W3C con un oggetto nativo
XMLHttpRequest

▪ La sintassi per la creazione è:

 variable = new XMLHttpRequest();

▪ Mentre le vecchie versioni di Internet Explorer (IE5 e IE6)
usano un oggetto ActiveX:

 variable = new ActiveXObject("Microsoft.XMLHTTP");

21

CREAZIONE DELL’OGGETTO

Per gestire tutti i browser bisogna controllare se il browser
supporta l’oggetto XMLHttpRequest :

var xmlhttp;

if (window.XMLHttpRequest)

 {// IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp = new XMLHttpRequest();

 }

else

 {// IE6, IE5

 xmlhttp = new

 ActiveXObject("Microsoft.XMLHTTP");

 }

22

INVIO DELLA RICHIESTA
Per inviare una richiesta al server bisogna usare i metodi
open()e send()dell’oggetto XMLHttpRequest:

open(method, url, async): specifica il tipo di richiesta

▪ method: GET o POST

▪ url: indirizzo server

▪ async: true (asincrona) o false (sincrona)

send(string): invia la richiesta al server

▪ string: solo POST

Esempio

xmlhttp.open("GET","ajax_info.txt",true);

xmlhttp.send();

23

OPEN(METHOD, …, …)

▪ GET è più semplice di POST, e può essere usato nella
maggior parte dei casi

Andrebbe usata la richiesta POST quando:

a) Non è possibile utilizzare un file memorizzato nella cache
(aggiornamento di un file o di un database sul server),
infatti la GET controlla e eventualmente usa il file in cache

b) Bisogna inviare al server una grande quantità di dati
(POST non ha limitazioni in dimensione)

c) Bisogna inviare l’input utente

24

RICHIESTA GET

a. Una semplice richiesta GET:

xmlhttp.open("GET","demo_get.php",true);

xmlhttp.send();

b. Nel precedente esempio potremo ottenere un risultato
presente nella cache, per ovviare si può aggiungere un ID
univoco all’URL:

 xmlhttp.open("GET",

 "demo_get.php?t=" + Math.random(),

 true);

 xmlhttp.send();

25

RICHIESTA GET

c. Se si vuole inviare informazioni con il metodo GET,
bisogna aggiungere informazioni all’URL:

xmlhttp.open("GET",

"demo_get2.php?fname=Henry&lname=Ford",

true);

xmlhttp.send();

26

RICHIESTA POST
a. Una semplice richiesta POST:

xmlhttp.open("POST","demo_post.php",true);

xmlhttp.send();

b. Per fare una POST dei dati, come una form HTML, si deve
aggiunge un header HTTP con il metodo
setRequestHeader()e specificare nel metodo send() il
dato che vuole inviare:

xmlhttp.open("POST","ajax_test.php",true);

xmlhttp.setRequestHeader("Content-type",

"application/x-www-form-urlencoded");

xmlhttp.send("fname=Henry&lname=Ford");

setRequestHeader(header, value): aggiunge alla richiesta HTTP
un nome e un valore di un header

27

OPEN(…, URL, …)

▪ Il parametro url specifica l’indirizzo di un file sul server:

xmlhttp.open("GET", "ajax_test.php", true);

▪ Il file può essere di tipo testuale (.txt e .xml), oppure un
componente software lato server (.aspx, .php, .jsp, ...) che
elabora la richiesta e poi risponde

28

OPEN(…, …, ASYNC)

▪ Per parlare di Ajax il parametro async deve essere impostato a true:

xmlhttp.open("GET", "ajax_test.php", true);

▪ L'invio di richieste asincrone offre un miglioramento delle
prestazioni perché gli script non aspettano la risposta del server,
fanno altro per poi riprendere quando questa arriva

▪ Quando un server è sovraccarico e risponde con ritardo, le richieste
sincrone possono causare rallentamenti o fermi della applicazione

29

RICHIESTE SINCRONE E ASINCRONE

30

RICHIESTA SINCRONA

▪ L’uso di async = false non è raccomandato, può andar bene per
piccole quantità di dati

▪ Quando si usa async = false, non si deve implementare la funzione
collegata al gestore di eventi onreadystatechange, ma basta inserire
del codice dopo l’istruzione send()

Esempio

xmlhttp.open("GET", "ajax_info.txt", false);

xmlhttp.send();

document.getElementById("myDiv").innerHTML = xmlhttp.responseText;

31

RICHIESTA ASINCRONA

▪ Quando si usa async = true, si deve implementare la funzione
collegata al gestore di eventi onreadystatechange da eseguire quando
la risposta è pronta

Esempio

xmlhttp.onreadystatechange = function()

{

if(xmlhttp.readyState == 4 && xmlhttp.status == 200)

{

document.getElementById("myDiv").innerHTML

= xmlhttp.responseText;

}

}

xmlhttp.open("GET", "ajax_info.txt", true);

xmlhttp.send();

32

RISPOSTA DEL SERVER

▪ Le proprietà per ottenere la risposta del server sono:
1. responseText

2. responseXML

▪ Se la risposta non è XML, usare la proprietà responseText che
restituisce una stringa

Esempio

document.getElementById("myDiv").innerHTML = xmlhttp.responseText;

33

RISPOSTA DEL SERVER

▪ Se la risposta del server è XML e si vuole fare il parse, usare
la proprietà responseXML

Esempio

xmlDoc = xmlhttp.responseXML;

txt = "";

x = xmlDoc.getElementsByTagName("ARTIST");

for (i=0; i < x.length; i++)

{

 txt = txt + x[i].childNodes[0].nodeValue

 + "
";

}

document.getElementById("myDiv").innerHTML = txt;

34

PROPRIETÀ

▪ readyState: contiene lo stato di XMLHttpRequest

0: richiesta non inizializzata (UNSENT)

1: connessione al server stabilita (OPENED)

2: richiesta ricevuta (HEADERS_RECEIVED)

3: elaborazione richiesta in corso (LOADING)

4: richiesta completa e risposta pronta (DONE)

▪ status: contiene il codice di stato HTTP

0: se lo stato è UNSENT o OPENED

200: ok

404: pagina non trovata

35

EVENTI

▪ Quando è inviata una richiesta ad un server e si vuole fare una
qualche azione basata sulla risposta, si utilizza l’evento collegato a
onreadystatechange dell’oggetto XMLHttpRequest

▪ La funzione collegata al gestore di eventi onreadystatechange è
invocata automaticamente ad ogni cambiamento della
proprietà readyState,essa specifica cosa accadrà quando la
risposta del server è pronta

36

ESEMPIO EVENTI

xmlhttp.onreadystatechange = function()

{

if (xmlhttp.readyState == 4 // Stato XMLHttpRequest: DONE

&&

xmlhttp.status == 200) // Stato HTTP: OK

{

document.getElementById("myDiv").innerHTML

= xmlhttp.responseText;

}

}

L’evento onreadystatechange è scatenato 4 volte, una volta
per ogni cambio dello stato di XMLHttpRequest (readyState)

37

ARGOMENTI

▪ Introduzione

▪ XMLHttpRequest

▪ JSON

▪ Framework Ajax

38

JSON

▪ JavaScript Object Notation è un semplice formato per lo
scambio dei dati, insieme all’XML, è il formato più comune per la
trasmissione dei dati su canale HTTP da parte delle applicazioni
Ajax.

▪ Come per l’XML, JSON contiene sia dato sia etichetta
permettendo la creazione di strutture dati autodescrittive

▪ Si basa su un sottoinsieme del linguaggio di programmazione
JavaScript (Standard ECMA-262 terza edizione)

https://ecma-international.org/wp-content/uploads/ECMA-262_14th_edition_june_2023.pdf

39

https://ecma-international.org/wp-content/uploads/ECMA-262_14th_edition_june_2023.pdf

JSON

▪ E’ un formato testuale completamente indipendente dal
linguaggio di programmazione, esistono librerie JSON per la
maggior parte dei linguaggi (C, C++, Java, Python, Perl, PHP).

▪ Definisce un piccolo insieme di regole di formattazione per la
rappresentazione di strutture dati portabili, ed è basato sul
concetto di oggetto JavaScript e di array associativo (array i
cui indici sono parole).

40

TIPI DI DATO JSON

Tipo Descrizione

Number numero in uno dei formati JavaScript

String raccolta di caratteri Unicode (stringa)

Boolean vero o falso

Array raccolta ordinata di valori

Value
può essere una stringa, un numero, vero o falso,

nullo, un oggetto o un array

Object serie non ordinata di nomi/valori

41

JSON OBJECT

42

• E’ una serie non ordinata di nomi/valori

• Inizia con { e finisce con }

• Ogni nome è seguito da :

• La coppia di nome/valore sono separata da ,

JSON VALUE

43

• Può essere una stringa tra virgolette, o un numero, o vero o

falso o nullo, o un oggetto o un array

• Queste strutture possono essere annidate

JSON NUMBER

44

JSON STRING

45

• E’ una raccolta di caratteri Unicode tra virgolette

• Per le sequenze di escape utilizza la barra rovesciata

• Un carattere è una stringa di lunghezza uno

JSON ARRAY

46

• E’ una raccolta ordinata di valori

• Comincia con [e finisce con]

• I valori sono separati da ,

JSON CON PHP

▪ PHP versione 5.2.0 mette a disposizione delle funzioni per
lavorare con JSON

47

Funzioni Librerie

json_encode
Restituisce la rappresentazione

JSON di un valore

json_decode Decodifica una stringa JSON

json_last_error
Restituisce l’ultimo errore

avvenuto

FUNZIONE JSON_ENCODE

▪ Sintassi

string json_encode ($value [, $options = 0])

▪ Parametri

value − Il valore da codificare, utilizza solo la codifica UTF-8

options − facoltative, i valori possibili sono:

JSON_HEX_QUOT, JSON_HEX_TAG, JSON_HEX_AMP, JSON_HEX_APOS,

JSON_NUMERIC_CHECK, JSON_PRETTY_PRINT,

JSON_UNESCAPED_SLASHES, JSON_FORCE_OBJECT

48

ESEMPI JSON_ENCODE

49

FUNZIONE JSON_DECODE

▪ Sintassi

mixed json_decode ($json_string [,$assoc = false

[, $depth = 512 [, $options = 0]]])

▪ Parametri

json_string − la stringa json codificata UTF-8

assoc − è un booleano, quando è TRUE restituisce gli oggetti convertiti in

un array associativo

depth − è un intero che specifica la profondità della ricorsione

options − è un intero di JSON decode, JSON_BIGINT_AS_STRING è

supportato
50

ESEMPIO JSON_DECODE

51

ARGOMENTI

▪ Introduzione

▪ XMLHttpRequest

▪ JSON

▪ Framework Ajax

52

FRAMEWORK AJAX

Sono librerie JavaScript che semplificano la creazione di
applicazioni che implementano Ajax, i cui scopi fondamentali sono:

1. Astrazione: gestiscono le differenze tra un browser e l'altro
e forniscono un modello unico di programmazione
compatibile con molti browser

2. Struttura: forniscono un modello omogeneo di progetto
dell'applicazione, indicando con esattezza dove e come
inserire le caratteristiche specifiche dell'applicazione

3. Libreria di widget: forniscono una ricca collezione di
componenti di presentazione assemblabili per creare
velocemente interfacce sofisticate e modulari

53

FRAMEWORK AJAX

Librerie JavaScript

▪ jQuery (https://jquery.com/)

JavaScript Framework

▪ AngularJS (https://angularjs.org/)

▪ React (https://facebook.github.io/react/)

▪ Backbone (http://backbonejs.org/)

▪ Ember (http://emberjs.com/)

54

https://jquery.com/
https://angularjs.org/
https://facebook.github.io/react/
http://backbonejs.org/
http://emberjs.com/

RISORSE

▪ https://it.wikipedia.org/wiki/AJAX

▪ https://www.w3schools.com/js/js_ajax_intro.asp

▪ https://www.ietf.org/rfc/rfc4627.txt?number=4627

▪ https://www.w3schools.com/jsref/jsref_obj_json.asp

▪ https://developer.mozilla.org/en/AJAX/Getting_Started

▪ https://www.w3.org/TR/XMLHttpRequest/

▪ Pro Apache Struts with Ajax by John Carnell, Rob Harrop, Kunal Mittal (2006)
(CHAPTER 12 - Struts and Ajax)

▪ https://www.json.org/json-it.html

▪ https://ecma-international.org/wp-content/uploads/ECMA-262_14th_edition_june_2023.pdf

55

https://it.wikipedia.org/wiki/AJAX
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.ietf.org/rfc/rfc4627.txt?number=4627
https://www.w3schools.com/jsref/jsref_obj_json.asp
https://developer.mozilla.org/en/AJAX/Getting_Started
https://www.w3.org/TR/XMLHttpRequest/
https://www.json.org/json-it.html
https://ecma-international.org/wp-content/uploads/ECMA-262_14th_edition_june_2023.pdf

	Diapositiva 1: Seminario Introduzione ad Ajax
	Diapositiva 2: Argomenti
	Diapositiva 3: Introduzione
	Diapositiva 4: Che cosa è Ajax ?
	Diapositiva 5: Che cosa è Ajax ?
	Diapositiva 6: Che cosa è Ajax ?
	Diapositiva 7: Che cosa è Ajax ?
	Diapositiva 8: Come funziona Ajax ?
	Diapositiva 9: Come funziona Ajax ?
	Diapositiva 10: Come funziona Ajax ?
	Diapositiva 11: Dove usare Ajax ?
	Diapositiva 12: Dove usare Ajax ?
	Diapositiva 13: Esempi di tecnologia Ajax
	Diapositiva 14: Pregi
	Diapositiva 15: Difetti
	Diapositiva 16: Compatibilità dei browser
	Diapositiva 17: Argomenti
	Diapositiva 18: Oggetto XMLHttpRequest
	Diapositiva 19: Interfaccia Standard W3C
	Diapositiva 20: Interfaccia Standard W3C
	Diapositiva 21: Creazione dell’Oggetto
	Diapositiva 22: Creazione dell’Oggetto
	Diapositiva 23: Invio della Richiesta
	Diapositiva 24: Open(method, …, …)
	Diapositiva 25: Richiesta GET
	Diapositiva 26: Richiesta GET
	Diapositiva 27: Richiesta POST
	Diapositiva 28: Open(…, url, …)
	Diapositiva 29: Open(…, …, async)
	Diapositiva 30: Richieste Sincrone e Asincrone
	Diapositiva 31: Richiesta Sincrona
	Diapositiva 32: Richiesta Asincrona
	Diapositiva 33: Risposta del server
	Diapositiva 34: Risposta del server
	Diapositiva 35: Proprietà
	Diapositiva 36: Eventi
	Diapositiva 37: Esempio eventi
	Diapositiva 38: Argomenti
	Diapositiva 39: JSON
	Diapositiva 40: JSON
	Diapositiva 41: Tipi di dato JSON
	Diapositiva 42: JSON Object
	Diapositiva 43: JSON Value
	Diapositiva 44: JSON Number
	Diapositiva 45: JSON String
	Diapositiva 46: JSON Array
	Diapositiva 47: JSON con PHP
	Diapositiva 48: Funzione json_encode
	Diapositiva 49: Esempi json_encode
	Diapositiva 50: Funzione json_decode
	Diapositiva 51: Esempio json_decode
	Diapositiva 52: Argomenti
	Diapositiva 53: Framework Ajax
	Diapositiva 54: Framework Ajax
	Diapositiva 55: Risorse

