Linguaggi per il Web

Ingegneria Informatica, Ingegneria dell'Informazione,
Sapienza Universita di Roma, sede di Latina

15 Maggio 2025

Corrado Di Benedetto

ARGOMENTI

» Introduzione
= XMLHttpRequest
= J[SON

= Framework Ajax

INTRODUZIONE

= AJAX ¢ I’acronimo di Asynchronous JavaScript And XML

= B’ stato introdotto nel 2005 da Jesse James Garrett (padre di
AJAX) e reso popolare, sempre nello stesso anno, da Google

= Permette di creare una interfaccia web dinamica, ad esempio
I’autocompletamento della search box di Google con una lista
di suggerimenti del server

CHE COSK E AJAX ?

Non €& una singola tecnologia, ma bensi una collezione di
tecnologie:

1.

JavaScript: per interagire con il browser e gestire gli
eventi

XHTML + CSS: per la presentazione della pagina web

DOM: per accedere e manipolare la struttura XHTML
della pagina web

XML: il formato per scambiare i dati tra il server e il client

Oggetto XMLHttpRequest: per scambiare in modalita
asincrona i dati tra il server e il client

CHE COSA E HJAX ?

= Oggl ha un significato estensivo che comprende tutte le
tecnologie native dei browser che permettono una
comunicazione asincrona con un server

= E’ asincrono, ovvero i dati scambiati fra client e server sono
caricati in background senza bloccare il comportamento della
pagina

= A differenza dell’approccio classico permette l'aggiornamento
dinamico di una pagina web senza il completo ricaricamento

©

CHE COSK E AJAX ?

user interface

A
HTTP request

HTML+CSS data

\J

web server

Y A

datastores, backend
processing, legacy systems

classic
web application model

Jesse James Garrett / adaptivepath.com

user interface
:
it L*(|3$ data
[Ajax engine]

HTTP request
Y
web and/or XML server

Y A

datastores, backend
processing, legacy systems

Ajax

web application model

CHE COSK E AJAX ?

= Le tecnologie di base di Ajax sono JavaScript, XML e
XHTML, ma l'uso di JavaScript e del XML non €
obbligatorio

= Ajax permette lo scambio di dati con il server usando
anche altre tecnologie, come ad esempio JSON (

)

COME FUNZIONA AJAX ?

Browser Client Server-side Systems

HTTP Request

@ XMLHttpRequest
A Web Server
XMLHttpRequest @
callback() <
| @ XML Data A
JavaScript HTML & data
cal CSS data exchange
O] } !
User Interface datastores

COME FUNZIONA RJAX ?

1. L'utente genera un evento, ad esempio il passaggio del
mouse su un elemento HTML, a cui corrisponde un gestore
di eventi JavaScript

2. Il gestore di eventi crea un oggetto XMLHttpRequest

3. [Esso interagisce attraverso una richiesta asincrona con il
server di BackEnd

4. Un componente software di BackEnd (es. PHP, ASPX, JSP)
riceve e elabora la richesta e poi risponde in XML

5. L'oggetto XMLHttpRequestriceve ed elabora I’XML di
risposta e poi aggiorna il DOM

COME FUNZIONA AJAX ?

JavaScript XMLHttpRequest BackendServer
T | |
: : |
| | |
I I |
I I |
I I |
I I |
I I |
| | |
onMouseOver() | creates : |
» > '
|
|
|
:
T |
send | getDetails |
XML response
callback

DOVE USARE AJAX ?

= Form: Aumenta sensibilmente le prestazioni di una form
HTML

= Comunicazione: Utile nella progettazione di componenti
software per la comunicazione, ad esempio chat, bottoni di
voto, messaggi thread, rating, ecc.

= News: RSS feeds puo essere gestito con tecnologia Ajax (es.
Google News)

= Manipolazione dei dati: Ad esempio ’ordinamento o il
filtraggio dei dati di una tabella oppure I’autocompletamento
di un campo di una form HTML

DOVE USARE AJAX ?

Osservazioni

= Ajax non € la soluzione ad ogni problema

= La gestione di grandi quantita di dati con Ajax puo portare a

problemi di prestazioni o di altro tipo

= Usare Ajax solo quando i widget JavaScript tradizionali non
sono sufficienti o quando bisogna gestire i dati scambiati con

1l server

ESEMPI DI TECNOLOGIA RJAX

= Applicazioni web che implementano Ajax:

Google

= Gmalil e Mappe, Calendario, Home Page Personalizzate e
Search Box Google

Yahoo

= Home Page diYahoo, un gran numero di personalizzazioni e
di caratteristiche, come le anteprime delle e-mail

Altri Esempi
= Youtube, Facebook, ...

PREGI

Usabilita
» Interattivita

Velocita
= Minore quantita di dati scambiati

= Parte della computazione sul client

Portabilita
= Supportato dai principali browser

= Indipendente dalla piattaforma
= Non richiede plug-in

DIFETTL

Usabilita
= Non funziona il pulsante back e 1 segnalibri

= | motori di ricerca non indicizzano i contenuti dinamici

Accessibilita
= Non supportato dai browser non-visuali

» Richiede meccanismi di accesso alternativi

Configurazione
= JavaScript abilitato

= Oggetti ActiveX abilitati in IE

Compatibilita
= Test sul diversi browser

= Richiede funzionalita alternative per i browser che non
supportano JavaScript

COMPATIBILITA DEI BROWSER

Compatibili con Ajax:
= Internet Explorer dalla versione 5
= Mozilla Firefox dalla versione 7.1
= Konqueror dalla versione 3.2
= Safari dalla versione 1.2
= Opera dalla versione 8.0
= Chrome

Non compatibile con Ajax:
= Versioni precedenti a quelle viste sopra

= Tutti 1 browser testuali
= Tutti 1 browser per disabili visivi (screen-reader, browser vocali, ...)
= Tutti 1 browser precedenti al 1997

©

ARGOMENTI

= Introduzione
= XMLHttpRequest
= J[SON

= Framework Ajax

0GGETTO XMLHTTPREQUEST

= E’ di fondamentale importanza in Ajax, tutti 1 browser moderni lo
supportano nativamente (IE5 e IE6 usano un ActiveX)

= E’ usato per scambiare i1 dati in background con un server o
aggiornare parti di pagina senza ricaricarla completamente

= [IW3C ha uno studio in corso per renderlo uno Standard Internet:

https://www.w3.org/TR/XMLHttpRequest/

INTERFACCIA STANDARD W3C

[NoInterfaceObject]

interface XMLHttpRequestEventTarget : EventTarget {// for future use};

[Constructor]

interface XMLHttpRequest : XMLHttpRequestEventTarget {

// event handler attributes

attribute Function onreadystatechange;

// states
const unsigned short UNSENT = 0;
const unsigned short OPENED = 1;

const unsigned short HEADERS RECEIVED = 2;
const unsigned short LOADING = 3;
const unsigned short DONE = 4;

readonly attribute unsigned short readyState;

INTERFACCIA STANDARD W3C

// request

void open (DOMString method, DOMString url);

void open (DOMString method, DOMString url, boolean async);

void open (DOMString method, DOMString url, boolean async, DOMString? user);

void open (DOMString method, DOMString url, boolean async, DOMString? user, DOMString? password);
void setRequestHeader (DOMString header, DOMString wvalue) ;

void send();

void send (Document data);

void send([AllowAny] DOMString? data);

void abort () ;

// response

readonly attribute unsigned short status;
readonly attribute DOMString statusText;
DOMString getResponseHeader (DOMString header);
DOMString getAllResponseHeaders () ;

readonly attribute DOMString responseText; @

readonly attribute Document responseXML; }i

CREAZIONE DELL'0GGETTO

= Tutti 1 browser moderni (IE7+, Firefox, Chrome, Safari e
Opera) implementano 'interfaccia W3C con un oggetto nativo
XMLHttpRequest

= Lia sintassi per la creazione €:

variable = new XMLHttpRequest() ;

= Mentre le vecchie versioni di Internet Explorer (IE5 e IE6)
usano un oggetto ActiveX:

variable = new ActiveXObject ("Microsoft.XMLHTTP") ;

CREAZIONE DELL'0GGETTO

Per gestire tutti 1 browser bisogna controllare se il browser
supporta I’oggetto XMLHttpRequest :

var xmlhttp;

1f (window.XMLHttpRequest)
{// IE7+, Firefox, Chrome, Opera, Safari
xmlhttp = new XMLHttpRequest () ;
}
else
{// IE6, IES5
xmlhttp = new

ActiveXObject ("Microsoft .XMLHTTP") ;

INVIO DELLA RICHIESTA

Per inviare una richiesta al server bisogna usare 1 metodi
open () € send () dell’oggetto XMLHttpRequest:

open (method, url, async): specifica il tipo dirichiesta
o method: GET o POST
o url:indirizzo server
L async:true (asincrona) o false (sincrona)

send (string) : invia la richiesta al server
= string:solo POST

Esempio

xmlhttp.open ("GET", "ajax info.txt",true);

xmlhttp.send() ;

OPEN(METHDD, ..., ...)

= GET e piu semplice di POST, e puo essere usato nella
maggilor parte dei casl

Andrebbe usata la richiesta POST quando:

a) Non e possibile utilizzare un file memorizzato nella cache
(aggiornamento di un file o di un database sul server),
infatti la GET controlla e eventualmente usa il file in cache

b) Bisogna inviare al server una grande quantita di dati
(POST non ha limitazioni in dimensione)

c) Bisogna inviare l'input utente

RICHIESTA G£T

a. Una semplice richiesta GET:
xmlhttp.open ("GET", "demo get.php", true);

xmlhttp.send() ;

b. Nel precedente esempio potremo ottenere un risultato
presente nella cache, per ovviare si pud aggiungere un ID
univoco all’'URL:

xmlhttp.open ("GET",
"demo get.php?t=" + Math.random(),
true) ;

xmlhttp.send () ;

RICHIESTA G£T

C.

Se s1 vuole inviare informazioni con il metodo GET,
bisogna aggiungere informazioni all’'URL:

xmlhttp.open ("GET",
"demo getZ.php?fname=Henry&lname=Ford",
true) ;

xmlhttp.send() ;

RICHIESTA POST

a. Una semplice richiesta POST:

xmlhttp.open ("POST", "demo post.php", true);

xmlhttp.send() ;

b. Per fare una POST dei dati, come una formm HTMI,, si deve
aggiunge un header HTTP con il metodo
setRequestHeader () e specificare nel metodo send () il
dato che vuole inviare:

xmlhttp.open ("POST", "ajax test.php", true);

xmlhttp.setRequestHeader ("Content-type",
"application/x-www—-form-urlencoded") ;

xmlhttp.send ("fname=Henry&lname=Ford") ;

setRequestHeader (header, value): aggiunge alla richiesta HT'TP
un nome e un valore di un header

OPEN(..., URL ...)

=][]l parametro url specifica I'indirizzo di un file sul server:

xmlhttp.open ("GET", "ajax test.php", true);

= Il file pud essere di tipo testuale (.txt e .xml), oppure un
componente software lato server (.aspx, .php, .jsp, ...) che
elabora la richiesta e poi risponde

OPEN(..., ..., 4SYAC)

= Per parlare di Ajax il parametro async deve essere impostato a true:

xmlhttp.open ("GET", "ajax test.php", true);

= L'invio di richieste asincrone offre un miglioramento delle
prestazioni perché gli script non aspettano la risposta del server,
fanno altro per poi riprendere quando questa arriva

= Quando un server € sovraccarico e risponde con ritardo, le richieste
sincrone possono causare rallentamenti o fermi della applicazione

©

RICHIESTE SINCRONE E ASINCRONE

classic web application model (synchronous)

user activity user activity user activity

Jesse James Garrett / adaptivepath.com

RICHIESTA SINCRONA

= ’uso di async = false non € raccomandato, pudé andar bene per
piccole quantita di dati

= Quando si usa async = false,non si deve implementare la funzione
collegata al gestore di eventi onreadystatechange, ma basta inserire
del codice dopo l'istruzione send ()

Esempio
xmlhttp.open ("GET", "ajax info.txt", false);
xmlhttp.send () ;

document.getElementById ("myDiv") .innerHTML = xmlhttp.responseText;

RICHIESTA ASINCRONA

= Quando si usa async = true, Sl deve implementare la funzione
collegata al gestore di eventi onreadystatechange da eseguire quando
la risposta e pronta

Esempio
xmlhttp.onreadystatechange = function ()
{
1if (xmlhttp.readyState == 4 && xmlhttp.status == 200)

{
document.getElementById ("myDiv") .1innerHTML

= xmlhttp.responseText;

}
xmlhttp.open ("GET", "ajax info.txt", true);

xmlhttp.send() ;

RISPOSTA DEL SERVER

= Le proprieta per ottenere la risposta del server sono:
1. responseText

2. responseXML

= Se la risposta non € XML, usare la proprieta responseText che
restituisce una stringa

Esempio

document.getElementById ("myDiv") .innerHTML = xmlhttp.responseText;

©

RISPOSTA DEL SERVER

= Se la risposta del server € XML e si vuole fare il parse, usare
la proprieta responseXxML

Esempio

xmlDoc = xmlhttp.responseXML;
txt = n";

x = xmlDoc.getElementsByTagName ("ARTIST") ;

for (i=0; i < x.length; i++)
{
txt = txt + x[1].childNodes[0] .nodeValue

+ n
n;

document.getElementById ("myDiv") .innerHTML = txt;

PROPRIETA

= readyState: contiene lo stato di XMLHttpRequest

: richiesta non inizializzata (UNSENT)

: connessione al server stabilita (OPENED)

: richiesta ricevuta (HEADERS RECEIVED)

: elaborazione richiesta in corso (LOADING)

s~ w DD O

: richiesta completa e risposta pronta (DONE)

= status: contiene il codice di stato HTTP

0: se lo stato € UNSENT 0 OPENED
200: 0k
404:pagina non trovata

EVENTI

= Quando € inviata una richiesta ad un server e si vuole fare una
qualche azione basata sulla risposta, si utilizza I’evento collegato a
onreadystatechange dell’oggetto XMLHttpRequest

= La funzione collegata al gestore di eventi onreadystatechange €
invocata automaticamente ad ogni cambiamento della
proprieta readyState, essa specifica cosa accadra quando la
risposta del server e pronta

ESEMPIO EVENTI

xmlhttp.onreadystatechange = function ()
{
if (xmlhttp.readyState == 4 // Stato XMLHttpRequest: DONE
&&
xmlhttp.status == 200) // Stato HTTP: OK

document.getElementById ("myDiv") .innerHTML
= xmlhttp.responseText;

}

I’'evento onreadystatechange € scatenato 4 volte, una volta
per ogni cambio dello stato di XMLHttpRequest (readyState)

ARGOMENTI

= Introduzione
= XMLHttpRequest
= [SON

= Framework Ajax

JSON

= JavaScript Object Notation € un semplice formato per lo
scambio dei dati, insieme all’XML, ¢ il formato piu comune per la

trasmissione dei dati su canale HTTP da parte delle applicazioni
Ajax.

= Come per '’XML, JSON contiene sia dato sia etichetta
permettendo la creazione di strutture dati autodescrittive

= 51 basa su un sottoinsieme del linguaggio di programmazione
JavaScript (Standard ECMA-262 terza edizione)

https://ecma-international.org/wp-content/uploads/ECMA-262_14th_edition_june_2023.pdf

JSON

= E’un formato testuale completamente indipendente dal
linguaggio di programmazione, esistono librerie J[SON per la
maggior parte dei linguaggi (C, C++, Java, Python, Perl, PHP).

= Definisce un piccolo insieme di regole di formattazione per la
rappresentazione di strutture dati portabili, ed € basato sul
concetto di oggetto JavaScript e di array associativo (array i
cui indici sono parole).

TIPI DI DATO JSON
Tigo [perriions

Number
String
Boolean

Array

Value

Object

numero in uno dei formati JavaScript
raccolta di caratteri Unicode (stringa)
vero o falso

raccolta ordinata di valori

puod essere una stringa, un numero, vero o falso,
nullo, un oggetto o un array

serie non ordinata di nomi/valori

rany N

JSON OBJECT

E’ una serie non ordinata di nomi/valori
Inizia con { e finisce con }

Ogni nome é seguito da :

La coppia di nome/valore sono separata da ,

":i_l_-,lll: IlEll.lFJlll.l
“language”: "JAVA",
"price": 588,

©

JSON VALUE

* Pud essere una stringa tra virgolette, o un numero, o vero o
falso o nullo, o un oggetto o un array

* Queste strutture possono essere annidate

value

JSON NUMBER

JSON STRING

* E’una raccolta di caratteri Unicode tra virgolette
* Per le sequenze di escape utilizza la barra rovesciata
* Un carattere e una stringa di lunghezza uno

or control character

guotation mark

reverse solidus

solidus

backspace

form feed
line feed
carriage return

character tabulation

4 hexadecimal digits

JSON ARRAY

- E’una raccolta ordinata di valori
* Comincia con [e finisce con |

1
* I'valori sono separati da , "book": [
{
"id":“ﬂl"J
"language”: "Java",
array _— "edition™: "third",
— "author”: "Herbert Schildt”,
value
] ¥,
{
“id":“E?"J
"language": "C++",
"edition": "second",
"author®: "E.Balagurusamy",
h

JSON CON PHP

= PHP versione 5.2.0 mette a disposizione delle funzioni per
lavorare con JSON

Restituisce la rappresentazione

Json_encode JSON di un valore

json_decode Decodifica una stringa JSON

Restituisce 1'ultimo errore

json_last_error
avvenuto

FUNZIONE JSON_ENCODE

= Sintassi

string json encode (Svalue [, Soptions = 0])

= Parametri
value — Il valore da codificare, utilizza solo la codifica UTF-8

options — facoltative, i valori possibili sono:

JSON HEX QUOT, JSON HEX TAG, JSON HEX AMP, JSON HEX APOS,
JSON NUMERIC CHECK, JSON PRETTY PRINT,

JSON UNESCAPED SLASHES, JSON FORCE OBJECT

ESEMPI JSON_ENCODE

< ?php
farr = array('a’ => 1, 'b" =» 2, 'c' =» 3, 'd’' =>4, 'e' =» 5};
echo json_encode(%arr);

>

{"a":1,"b":2,"c":3,"d":4,"e":5}

<?php
class Emp {
public $name = "";
public $hobbies = "";
public $birthdate = "";

[—_—]

%e = new Emp();

Ze-»name = “"sachin”;

%e->hobbies = "sports”;

%e->birthdate date('m/d/Y h:i:s a', "8/5/1974 12:28:83 p");
%e->birthdate = date('m/d/Y h:i:s a', strtotime("8/5/1974 12:20:83"));

echo json_encode(%e);
)

{"name":"sachin”,"hobbies™:"sports”,"birthdate™:"88%,/05/1974 12:20:83 pm"} @

FUNZIONE JSON_DECODE

= Sintassi
mixed json decode ($json string [,Sassoc = false

[, Sdepth = 512 [, Soptions = 0 1]1)
= Parametri

json string — la stringa json codificata UTF-8

assoc — € un booleano, quando & TRUE restituisce gli oggetti convertiti in

un array associativo
depth — € un intero che specifica la profondita della ricorsione

options — € un intero di JSON decode, JSON BIGINT AS STRING €

supportato

ESEMPIO JSON_DECODE

< ?php
$json = "{"a":1,"b":2,"c":3,"d":4,"e":5}";

var_dump(json_decode($json)); object(stdClass)#1 (5) {
var_dump(json_decode($json, true)); [a"] => int(1)
P ["b"] => int(2)
["c"] => int(3)
["d"] => int(4)
["e"] => int(5)

["a"] => int(1)
["b"] => int(2)
["c"] => int(3)
["d"] => int(4)
["e”] => int(5)

ARGOMENTI

= Introduzione
= XMLHttpRequest
= J[SON

= Framework Ajax

FRAMEWORK RJAX

Sono librerie JavaScript che semplificano la creazione di

applicazioni che implementano Ajax, i cui scopi fondamentali sono:

1. Astrazione: gestiscono le differenze tra un browser e l'altro
e forniscono un modello unico di programmazione
compatibile con molti browser

2. Struttura: forniscono un modello omogeneo di progetto
dell'applicazione, indicando con esattezza dove e come
inserire le caratteristiche specifiche dell'applicazione

3. Libreria di widget: forniscono una ricca collezione di
componenti di presentazione assemblabili per creare
velocemente interfacce sofisticate e modulari

FRAMEWORK RJAX

Librerie JavaScript

" JQuery (

JavaScript Framework
= Angular]s (

= React (

= Backbone (

= Ember (

https://jquery.com/
https://angularjs.org/
https://facebook.github.io/react/
http://backbonejs.org/
http://emberjs.com/

RISORSE

https://it.wikipedia.org/wiki/AJAX

https://www.w3schools.com/js/js ajax intro.asp

https://www.ietf.org/rfc/rfc4627.txt?number=4627

https://www.w3schools.com/jsref/jsref obj json.asp

https://developer.mozilla.org/en/AJAX/Getting Started

https://www.w3.org/TR/XMLHttpRequest/

Pro Apache Struts with Ajax by John Carnell, Rob Harrop, Kunal Mittal (2006)
(CHAPTER 12 - Struts and Ajax)

https://www.json.org/json-it.html

https://ecma-international.org/wp-content/uploads/ECMA-262 14th edition june 2023.pdf

https://it.wikipedia.org/wiki/AJAX
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.ietf.org/rfc/rfc4627.txt?number=4627
https://www.w3schools.com/jsref/jsref_obj_json.asp
https://developer.mozilla.org/en/AJAX/Getting_Started
https://www.w3.org/TR/XMLHttpRequest/
https://www.json.org/json-it.html
https://ecma-international.org/wp-content/uploads/ECMA-262_14th_edition_june_2023.pdf

	Diapositiva 1: Seminario Introduzione ad Ajax
	Diapositiva 2: Argomenti
	Diapositiva 3: Introduzione
	Diapositiva 4: Che cosa è Ajax ?
	Diapositiva 5: Che cosa è Ajax ?
	Diapositiva 6: Che cosa è Ajax ?
	Diapositiva 7: Che cosa è Ajax ?
	Diapositiva 8: Come funziona Ajax ?
	Diapositiva 9: Come funziona Ajax ?
	Diapositiva 10: Come funziona Ajax ?
	Diapositiva 11: Dove usare Ajax ?
	Diapositiva 12: Dove usare Ajax ?
	Diapositiva 13: Esempi di tecnologia Ajax
	Diapositiva 14: Pregi
	Diapositiva 15: Difetti
	Diapositiva 16: Compatibilità dei browser
	Diapositiva 17: Argomenti
	Diapositiva 18: Oggetto XMLHttpRequest
	Diapositiva 19: Interfaccia Standard W3C
	Diapositiva 20: Interfaccia Standard W3C
	Diapositiva 21: Creazione dell’Oggetto
	Diapositiva 22: Creazione dell’Oggetto
	Diapositiva 23: Invio della Richiesta
	Diapositiva 24: Open(method, …, …)
	Diapositiva 25: Richiesta GET
	Diapositiva 26: Richiesta GET
	Diapositiva 27: Richiesta POST
	Diapositiva 28: Open(…, url, …)
	Diapositiva 29: Open(…, …, async)
	Diapositiva 30: Richieste Sincrone e Asincrone
	Diapositiva 31: Richiesta Sincrona
	Diapositiva 32: Richiesta Asincrona
	Diapositiva 33: Risposta del server
	Diapositiva 34: Risposta del server
	Diapositiva 35: Proprietà
	Diapositiva 36: Eventi
	Diapositiva 37: Esempio eventi
	Diapositiva 38: Argomenti
	Diapositiva 39: JSON
	Diapositiva 40: JSON
	Diapositiva 41: Tipi di dato JSON
	Diapositiva 42: JSON Object
	Diapositiva 43: JSON Value
	Diapositiva 44: JSON Number
	Diapositiva 45: JSON String
	Diapositiva 46: JSON Array
	Diapositiva 47: JSON con PHP
	Diapositiva 48: Funzione json_encode
	Diapositiva 49: Esempi json_encode
	Diapositiva 50: Funzione json_decode
	Diapositiva 51: Esempio json_decode
	Diapositiva 52: Argomenti
	Diapositiva 53: Framework Ajax
	Diapositiva 54: Framework Ajax
	Diapositiva 55: Risorse

