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AI and Autonomous Behaviour

 The challenge of building devices that act autonomously is at

the center of the AI research from its origins.

 At the center of the problem of autonomous behavior is the

control problem (or action selection problem).

 specify a controller that selects the action to do next

 Traditional hard-coded solutions specify a pre-scripted

controller in a high-level language.

They do not suffer combinatorial explosion.

The burden is all put on the programmer.

Hard-coded solutions are usually biased and tend to constraint the

search in some way.

 The question of action selection for AI researchers is:

 What is the best way to intelligently constrain this search?
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AI and Autonomous Behaviour

 Two approaches in AI to tackle autonomous behavior:

 Learning-based approach

 The controller is learnt from experience.

Discovery and interpretation of meaningful patterns for a given task.

Learned solutions are usually black-box.

 Model-based approach

 The controller is derived automatically from a model of the

domain of interest, the actions, the current state, and the goal.

The models are all conceived to be general.

The problem of solving a model is computationally intractable.

In this lecture, we introduce the basic ingredients of automated planning 

and the PDDL language for representing planning problems.
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Automated Planning

 In AI, automated planning is conceived as the: 

model-based approach for the automated 

synthesis of plans of actions to achieve goals.

PLANNERMODEL

ALGORITHM

LANGUAGE

PLAN OF ACTIONSstructure of the 

environment, 

actions, initial 

state and goal

express the 

model in 

compact 

form

search strategy to 

navigate the model
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Planning Models

 Several classes of planning models, which depend on

the properties of the problems to be represented:

 full or partial observability of the current state;

 uncertainty in the initial state (fully or partially known);

 uncertainty in the actions dynamics (deterministic or not);

 uncertainty represented by sets of states or probability distributions;

 the type of feedback (full, partial or no state feedback).

Planning is computationally

intractable even for the 

simplest models…

..BUT..

…classical planners

solve efficiently

real problems

with hundreds

of propositions!
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Classical Planning Model

 finite and discrete state space S

 a known initial state I ∈ 𝑆

 a set 𝑆𝐺 ⊆ 𝑆 of goal states

 actions 𝐴 𝑠 ⊆ A applicable in each s ∈ 𝑆

 a deterministic transition function 𝑠′ = 𝑓 𝑎, 𝑠 for a ∈ 𝐴 𝑠

 positive action costs c(a,s)

 A solution or plan is a sequence of applicable actions

π = 𝑎0 , … , 𝑎𝑛 that maps I into 𝑆𝐺
 There are states 𝑠0 , … , 𝑠𝑛+1 such that 𝑠𝑖+1 = 𝑓(𝑎𝑖 , 𝑠𝑖) and 𝑎𝑖 ∈ 𝐴 𝑠𝑖 for i =

0,…, n and 𝑠𝑛+1 ∈ 𝑆𝐺

 A plan is optimal if it minimizes the sum of action costs
σ𝑖=0,…,𝑛 c(𝑎𝑖 , 𝑠𝑖). If costs are all 1, plan cost is plan length.
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Example: The Blocks World Domain

 Given a set of blocks of various colors sitting on a table, the 

goal is to build one or more vertical stacks of these blocks.

 Initial state: I

 Goal: G

 Available actions: moving a block 

 from the table to the top of another block 

 from the top of another block to the table 

 from the top of one block to the top of another block 

A B C

I

A

B

C
G
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Planning Domain Definition Language

 The standard representation language for automated

planners is known as the Planning Domain Definition

Language (PDDL).

 Components of a PDDL planning task:

 Objects: Things in the world that interest us.

 Predicates: Properties of objects that we are interested in; they

can be true or false.

 Initial state: The state of the world that we start in.

 Goal specification: Things that we want to be true.

 Actions/Operators: Ways of changing the state of the world.
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Planning Domain Definition Language

 Problems in PDDL are expressed in two separate parts:

 PDDL Planning Domain PD (available actions and predicates

representing explicit representation of the world).

 PDDL Planning Problem PR (objects, initial state I and goal

condition G).

 A planner that takes in input a problem encoded in PDDL is

said to be domain-independent, since it is able to

automatically produce a plan without knowing what the actions

and domain stand for.

 PDDL provides the ground for performing a direct comparison

between different planning techniques and algorithms and

evaluating against classes of problems.
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Domain files

 Domain files look like this:

(define (domain <domain name>)

<PDDL code for predicates>

<PDDL code for first action>

[...]

<PDDL code for last action>

)

 <domain name> is a string that identifies the planning domain,

e.g., blocks-world.

 Example on the web: blocks-world.pddl
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Problem files

 Problem files look like this:

(define (problem <problem name>)

(:domain <domain name>)

<PDDL code for objects>

<PDDL code for initial state>

<PDDL code for goal specification>

)

 <problem name> is a string that identifies the planning task, e.g.

blocks-world-3.

 <domain name> must match the domain name in the

corresponding domain file.

 Example on the web: blocks-world-3.pddl
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Example: The Blocks World Domain

 Predicates: Is a block clear (i.e., with no block on top)? Does

a block have another block on top of it?

 Actions/Operators: Clear blocks can be moved on top of

another block or on the table, respectively.

 Initial state: Blocks A, B and C are initial arranged on the

table.

 Goal specification: re-arrange the blocks so that C is on A

and A is on B.

 Objects: The blocks locations.

Blocks can be on the table or on

top of another block. Four blocks

for the specific instance.
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The Blocks World in PDDL 
Planning Domain

(define (domain blocks-world) 

(:requirements :strips) 

(:objects block)

(:predicates (on ?x ?y - block) 

(clear ?x - block)) 

Objects of the domain and 

predicates describe 

the state of the world.
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The Blocks World in PDDL 
Planning Domain

(:action move 

:parameters (?b ?x ?y - block)     

:precondition (and (on ?b ?x) 

(clear ?b) (clear ?y))   

:effect (and (not (on ?b ?x)) (not (clear ?y)) 

(on ?b ?y) (clear ?x)))

Actions are described in terms of 

preconditions under which an 

action can be executed, and 

effects on the state of the world.

Both preconditions and effects 

are stated in terms of the predicates.
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The Blocks World in PDDL 
Planning Domain

(:action moveToTable

:parameters (?b ?x - block)

:precondition (and (on ?b ?x) (clear ?b))

:effect (and (on ?b table) (clear ?x) 

(not (on ?b ?x)))

)

Action moveToTable is necessary 

to properly represent the fact that the 

table does not have to be clear to move 

a block onto it.
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The Blocks World in PDDL 
Planning Problem

(:init

(on A table) (clear A) 

(on B table) (clear B) 

(on C table) (clear C)) 

Initial State I

Goal G

(:goal 

(and (on C A) (on A B)) 

)

A B C

I

A

B

C
G

Objects

(:objects A B C table - block)
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The Blocks World in PDDL 
Optimal Plan

Begin plan 

1. (move A table B) 

2. (move C table A) 

End plan 

Since S2 is a state satisfying 

the goal G, the solution found 

is a valid plan.
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The Blocks World in PDDL 
SubOptimal Plan

Begin plan 

1. (move B table A)

2. (move B A table)

3. (move A table B)

2. (move C table A)

End plan 

The quality of a solution depends

by the specific search algorithm

employed by the planner.

A B C

I

A

B

C
G
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Graph of a planning problem

A

B C

A

B C A

B

C

A

B

C

A

B C

……

…………

……G

The size of the graph

(i.e., the number of states) 

is exponential in the 

number of blocks.

Given n blocks, the states 

include all the n! possible 

towers of n blocks plus 

additional combinations 

of lower towers. A B C

I
For classical planning, 

the general problem of 

coming up with a plan is 

PSPACE-complete
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Challenge of automated planning

 Challenge: achieving both generality and scalability.

 Generality: A planner can solve arbitrary problem instances.

 A planner does not know what the actions, and domain stand for.

 This is very different from writing a domain-specific solver.

 Scalability: Planners embed very effective domain-independent

heuristics to drive the searching task towards the goal.

 An heuristic function provides an estimate of the cost to reach the goal from

the current state (Examples: Best-First Search, A*, Hill Climbing, etc).

 State-of-the art planners** provide customized implementations of

the search algorithms with different properties of completeness,

optimality, and memory complexity.

**Cf. http://icaps-conference.org/index.php/main/competitions
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Extensions of PDDL

 Several extensions of PDLL:

 PDDL 1.2: Base version of the language. Among the basic constructs, it

includes STRIPS, ADL and conditional effects.

 PDDL 2.1: It introduces numeric fluents (e.g., to model non-binary

resources such as time, distance, weight, etc.), plan-metrics (to allow

quantitative evaluation of plans, and not just goal-driven), and

durative/continuous actions (which could have variable, non-discrete

length, conditions and effects).

 PDDL 2.2: It introduces derived predicates (to model the dependency

of given facts from other facts), and timed initial literals (to model

exogenous events occurring independently from plan-execution).

 PDDL 3.0: It introduces preferences (hard- and soft-constraints, in form

of logical expressions, to be satisfied in specific points of the plan).

 PDDL 3.1: It introduces object fluents (functions' range can be any

object-type).
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Notes on action effects

 In the base version of PDDL (v1.2), action effects can be

more complicated than seen so far.

 They can be universally quantified:

(forall (?v1 ... ?vn))

<effects>

 They can be conditional:

(when <condition>

<effect>)

 We now investigate a concrete problem (trace alignment in process

mining) solved by planning techniques that require the use of

conditional effects and universal quantification in actions effect.



Andrea Marrella 23
A Concise Introduction to 

Automated Planning and PDDL

The Blocks World in PDDL 
Conditional effects

(:action move 

:parameters (?b ?x ?y - block)     

:precondition (and (on ?b ?x) (clear ?b))   

:effect (and (not (on ?b ?x)) (clear ?x))

(when (clear ?y)

(and (on ?b ?y) (not (clear ?y))))

(when (not (clear ?y))

(on ?b table))

)

)
Using conditional effects allows to

model a single planning action

that represent blocks movement.
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Conformance Checking

event logprocess model

Execution by a Process
Management System

Any execution of a 

process model produces 

a new execution trace

(i.e., a process instance)

recorded in an event log.

regulations
Concrete process executions 

are compliant with regulations

and laws? 
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The trace alignment problem

 Process models are typically not enforced by information systems

(human behavior is often involved).

 Traces can be dirty, with spurious or missing events.

 Trace alignment is the problem of cleaning such dirty traces

against process models to the aim of:

 verify if a trace is compliant with its underlying process model;

 identifying the root and the severity of each deviation;

 repairing the trace to make it compliant with the process model.

 The existing techniques to compute optimal alignments

 provide ad-hoc implementations of the A* algorithm.

 do not scale efficiently when process models and event logs are of

considerable size.

SOLUTION: The problem of computing optimal alignments can be 

formulated as a planning problem in PDDL, which employs 

conditional effects and universal quantifiers.
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 Given a trace t and a DECLARE model D (which is used to define

the regultions) find the optimal alignment of t with respect to D.

 A DECLARE model D = (A,πD) consists of a set of activities A involved in a

process and a collection of temporal constraints πD defined over A.

 DECLARE constraints (aka templates) define parameterized classes of

properties and enjoy a precise semantics in LTLf (LTL over finite traces).

Trace alignment

Existence(A)

LTL Formalization: ◊A

A occurs at least 1 time.

BCAAC ✓ BCC ✗

Absence(C)

LTL Formalization: ￢◊C

A never occur.

BAA ✓ BCAC ✗

Response(A, B)

LTL Formalization:  (A→◊B)

If A occurs, then B occurs after A.

BCAAC ✗ CAACB ✓ BCC ✓
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From LTLf to DFAs

Existence(A)

LTL Formalization: ◊A

A occurs at least 1 time.

BCAAC ✓ BCC ✗

Absence(C)

LTL Formalization: ￢◊C

A never occur.

BAA ✓ BCAC ✗

Response(A, B)

LTL Formalization:  (A→◊B)

If A occurs, then B occurs after A.

BCAAC ✗ CAACB ✓ BCC ✓

s0 s1
A

*
￢A

s2 s3
C

*
￢C

s4 s5

A￢A ￢B

B

 For any LTLf formula there exists a DFA that accepts all the traces

satisfying the formula.
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Automata-based 

solution

 Trace alignment can be solved using automata:

 One automaton for the trace (trace automaton).

 Accepts input trace (<C,B>) plus all other traces, however…

 …changes wrt. input trace must be marked by add/del, e.g.,

 <C,B,C> = C B addC

 <B,C,B,B> = delC B addC addB addB

 Adds and dels have (possibly different) positive costs.

C
t1 t2

B
t0

add*add* add*

delC delB

G. De Giacomo, F. M. Maggi, A.

Marrella, F. Patrizi, On the Disruptive

Effectiveness of Automated Planning for

LTLf-based Trace Alignment. AAAI 2017
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Automata-based solution

 One automaton per constraint (constraint automaton)

augmented to account for adds and dels.

 Accepts all (possibly repaired) traces satisfying the constraint.

 An alignment is a sequence of syncronous steps performed

in all augmented constraint automata and in the augmented

trace automaton such that -- at the end of the alignment -- each

automaton is in at least one accepting state.

s4 s5

A

￢A ￢B

B

del*del* addB

addA
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An example of Trace Alignment 

CTrace: <C,B>

Existence(A): ◊A

s0
A

s1

*
￢A

t1 t2
B

t0

Absence(C): ￢◊C

s0 s1
C

*
￢C

s4 s5

A

￢A ￢B

B

LTLf Constraints

Response(A,B): □(A→◊B)
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An example of Trace Alignment 

C

add* add* add*

delC delB

Existence(A): ◊A

s0
A

s1

*
￢A

t1 t2
B

t0

addA

del* del*

Absence(C): ￢◊C

s0 s1
C

*
￢C addC

del* del*

s4 s5

A

￢A ￢B

B

del*del* addB

addA

Trace: <C,B>

LTLf Constraints

Augmented

trace 

automaton

and 

augmented

constraint

automata

Response(A,B): □(A→◊B)
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An example of Trace Alignment 

C

add* add* add*

delC delB

Existence(A): ◊A

s0
A

s1

*
￢A

t1 t2
B

t0

addA

del* del*

Absence(C): ￢◊C

s0 s1
C

*
￢C addC

del* del*

Response(A,B): □(A→◊B) s4 s5

A

￢A ￢B

B

del*del* addB

addA

Trace: <C,B>

LTLf Constraints

Optimal Plan: <delC,addA,B>

…if adds and dels

have unitary cost.
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Trace alignment problem in PDDL

 The automata-based approach can be recast as a cost-optimal

planning problem using PDDL.

 Planning Domain:

 Input events modeled by synchronization actions with null cost.

 Adds and dels modeled by planning actions with positive costs.

 Domain propositions encode the structure and the dynamics of the

augmented trace and of all augmented constraint automata.

 Problem:

 Initial state: all automata in their starting state.

 Goal state: all automata in (at least one) final state.

 Solution:

 Optimal (i.e., minimal-cost) plan to reach the goal state.
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PDDL Planning Domain
Boolean Predicates

(types trace_state automaton_state – state activity)

(:predicates

(trace ?t1 – trace_state

?e - activity

?t2 – trace_state)

(automaton ?s1 – automaton_state

?e - activity

?s2 – automaton_state)

(cur state ?s - state)

(final state ?s - state)

)

It captures the activities 

involved in a transition 

between two states of a 

constraint/trace automaton.

They hold if s is the current/accepting state 

of a trace/constraint automaton.

They identify the states of any constraint 

automaton and of the trace automaton.

They hold if there exists a transition in the 
trace/constraint automaton from two states, being e

the activity involved in the transition.
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PDDL Planning Domain
Sync action

(:action sync

:parameters (?t1 - trace_state ?e – activity

?t2 - trace_state)

:precondition (and (cur_state ?t1) (trace ?t1 ?e ?t2))

:effect(and (not (cur_state ?t1)) (cur_state ?t2)

(forall (?s1 ?s2 - automaton_state)

(when (and (cur_state ?s1)

(automaton ?s1 ?e ?s2))

(and (not (cur_state ?s1))

(cur_state ?s2))))))

It is applied only if there exists a transition from 
the current state t1 of the trace automaton to a 

subsequent state t2, being e the activity 

involved in the transition. The action has no cost, 

as it stands for no change in the trace.

CONDITIONAL EFFECT: The action is performed in 

each constraint automaton for which there exists 
a transition involving the activity e that connects 

s1 – the current state of the automaton –

with a different state s2. 
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PDDL Planning Domain
Add action

(:action add

:parameters (?e - activity)

:effect (and (increase (total-cost) 1)

(forall (?s1 ?s2 - automaton_state)

(when (and (cur_state ?s1)

(automaton ?s1 ?e ?s2))

(and (not (cur_state ?s1))

(cur_state ?s2))))))

CONDITIONAL EFFECT: The action is performed 
only for transitions involving the activity e

between two different states of any constraint 

automaton, with the current state of the 

trace automaton that remains the same after 

the execution of the action.

Add actions make total cost of the 

alignment increasing of a predefined value.
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PDDL Planning Domain
Del action

(:action del

:parameters (?t1 - trace_state ?e – activity ?t2 - trace_state)

:precondition (and (cur_state ?t1) (trace ?t1 ?e ?t2))

:effect(and (increase (total-cost) 1)

(not (cur_state ?t1)) (cur_state ?t2)))

Del actions make total cost of the 

alignment increasing of a predefined value.

It yields a single move

in the trace automaton.
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Initial and Goal State in PDDL

(:objects

t0 t1 t2 – trace_state

s4 s5 – automaton_state

A B – activity)

(:init

(= (total-cost) 0)

(cur_state t0)

(trace t0 C t1)

(trace t1 B t2)

(final_state t2)

(cur_state s4)

(automaton s4 A s5)

(automaton s5 B s4)

(final_state s5))

(:goal (forall (?s - state)

(imply (cur_state ?s)(final_state ?s))))

(:metric minimize (total-cost))

C
t1 t2

B
t0

add*add* add*

delC delB

Trace

s4 s5

A

￢A ￢B

B

del*del* addB

addA

□ (A→◊B):

Minimization of the total cost of the alignment.

Representation of 

the trace automaton.

Representation of the 

constraint automaton.
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Concluding Remarks

 Planning models are all general in the sense that they are not

bound to specific problems or domains.

 This generality is coupled with the notion of intelligence

which requires the ability to deal with new problems.

 The price for generality is computational:
 planning over models represented in compact form is intractable in the worst

case, yet currently large classical problems can be solved very quickly.

 Suggested reading and resources

 Fast Downward planning system: http://www.fast-downward.org/

 Int. Plan. Comp.: http://www.icaps-conference.org/index.php/Main/Competitions

 Book: Hector Geffner, Blai Bonet: A Concise Introduction to Models and Methods

for Automated Planning. Synthesis Lectures on Artificial Intelligence and Machine

Learning, Morgan & Claypool Publishers 2013, ISBN 9781608459698

http://www.fast-downward.org/
http://www.icaps-conference.org/index.php/Main/Competitions

