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• One of the frequent criticisms of modeling notations is 

that they are imprecise and, as a consequence, subject 

to varying interpretations by different parties. 

• Describing a candidate modeling notation in terms of a 

formal technique provides an effective means of 

minimizing the potential for ambiguity. 

• To do so, it is necessary to describe both the syntax

and semantics of the modeling formalism using a well-

founded technique. 

• Suitable techniques for doing so generally stem from 

mathematical foundations and include general-purpose 

modeling approaches such as Petri nets.

Introduction
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• Petri nets have proven to be a particularly effective 

mechanism for modeling the dynamic aspects of 

processes. 

• Petri Nets they have three specific advantages:

– Formal semantics despite the graphical nature.

– State-based instead of event-based.

– Abundance of analysis techniques.

• Many variant exist: we will analyze workflow nets and 

reset nets.

• Petri Nets have been chosen as the formal underpinning 

for the YAWL language (it will be discussed in an 

upcoming lecture).

Petri Nets
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Overview

• Formal foundations for modeling 

languages in BPM

– Petri nets

– Some fundamental results

– Workflow nets

– Mapping workflow concepts to Petri nets

– Reset nets
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Petri Nets

• Originate from C.A. Petri’s PhD thesis (1962).

• They were originally conceived as a technique for the 

description and analysis of concurrent behaviour in 

distributed systems.

• Based on a few simple concepts, yet expressive.

• They have a simple graphical format and a precise 

operational semantics that makes them an attractive 

option for modeling the static and dynamic aspects of 

processes.

• Many analysis techniques exist.

• Many extensions and variants have been defined over 

the years.
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Applications

• Applications in  many different areas, 

such as databases, software engineering, 

formal semantics, etc.

• There are two main uses of Petri nets for 

workflows:

– Specifications of workflows.

– Formal foundation for workflows 

(semantics, analysis of properties).
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Petri Nets: Basics

place transition arc

• A Petri Net takes the form of a directed bipartite graph where 

the nodes are either places or transitions.

• Places represent intermediate states that may exist during the 

operation of a process. Places are represented by circles.

• Places can be input/output of transitions. Transitions correspond 

to the activities or events of which the process is made up. 

Transitions are represented by rectangles or thick bars.

• Arcs connect places and transitions in a way that places can only 

be connected to transitions and vice-versa.

or
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Petri Nets: Definition

• Formally a Petri net N is a triple (P, T, F) where 

– P is a finite set of places

– T is a finite set of transitions where P ∩ T = 

– F  (P x T  T x P) is the set of arcs known as 

the flow relation

• A directed arc from a place p to a transition t

indicates that p is an input place of t. Formally: 
–  t = {p  P | (p, t)  F}

• A directed arc from a transition t to a place p

indicates that p is an output place of t. Formally: 
– t  = {p  P | (t, p)  F} 

– With an analogous meaning, we can define:

– p  = {t  T | (p, t)  F} and  p = {t  T | (t, p)  F} 
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Petri Net: Example

P = {p1, p2, p3, p4}

T = {t1, t2, t3}

F = {(p1, t1), (p2, t1), (t1, p3), (p2, t2), (t2, p4), (p4, t3), (t3,p2)}

t1  = {p3};  t1 = {p1, p2};  p2 = {t3};  p1 = ; p2  = {t1, t2}

p1

p2

t1

t2

t3

p3

p4
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Petri Nets: Example

p1 p2

t1

t2

t3

p3

P = ...

T = …

F = ...

t1  = …… ;  t1 = …… ;  p2 = …… ; p2  = ......
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Markings

• The operational semantics of a Petri Net is described in terms 
of particular marks called tokens (graphically represented as 
black dots    ). 

• Places in Petri Nets can contain any number of tokens. The 
distribution of tokens across all of the places in a net is called a 
marking. For a Petri net an initial marking M0 needs to be 
specified.

• Marking assigns tokens to places; formally, a marking M of a 
Petri net N = (P,T,F) is a function M: P -> NAT.

• The marking below is formally captured by the following 
marking M = {(p1,1),(p2,2),(p3,0)}. 

p1 p2 p3
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State of a Petri Net

• A state can be compactly described as shown in the 
following example: 

– 1p1+2p2 + 0p3 is the state with one token in place p1, two tokens 
in p2 and no tokens in p3. 

– We can also represent this state in the following (equivalent) way: 
p1+2p2.

• We can also describe an ordering function ≥ over the set 
of possible states such that, given a Petri net N = (P,T,F) 
and markings M and M′, M ≥ M′ iff for all p in P: M(p) ≥
M′(p).  M > M′ iff M ≥ M′ and M ≠ M′.

p1 p2 p3
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Enabled Transitions

• The operational semantics of Petri nets are characterized by the notion 

of a transition executing or “firing”. A transition in a Petri net can “fire” 

whenever there are one or more tokens in each of its input places.

• The execution of a transition occurs in accordance with the following 

firing rules:

1. A transition t is said to be enabled if and only if each input place p of t 

contains at least one token. Only enabled transitions may fire.

– Formally, a transition t is enabled in a marking M iff for each p, with p •t, 

M(p) > 0. (see definition 2.7 of [DE95])

2. If transition t fires, then t consumes one token from each input place 

p of t and produces one token for each output place p of t . 

p1

p2

p3
T1 is enabled and 

may fire!

T1 is not enabled!

T1 fires! When a transition 

fires, the marking and the state 

of the Petri Net change.

t1
p1

p2

p3

t1

p1

p2

p3

t1
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Firing a Transition: Example

BEFORE AFTER
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Firing Transitions: Further Examples

• It is assumed that the firing of a transition is an atomic action that occurs 

instantaneously and cannot be interrupted. 

• If there are multiple enabled transitions, any one of them may fire; 

however, for execution purposes, it is assumed that they cannot fire 

simultaneously. 

• An enabled transition is not forced to fire immediately but can do so at a 

time of its choosing. 

• These features make Petri nets particularly suitable for modeling 

concurrent process executions.



a university for the worldreal
R

17© 2009, www.yawlfoundation.org

Firing Transitions

• Given a Petri Net (P,T,F) and an initial state M, we have the 
following notations that characterize the firing of a given 
transition t:

– M t M′ indicates that if transition t is enabled in state M, then firing t 
in M results in state M’. Formally, notation M t M′, is defined by:

• M′(p) = M(p) if p  •t  t• or p  •t  t•

• M′(p) = M(p) - 1 if p  •t  and p  t•

• M′(p) = M(p) + 1 if p  t•  and p  •t

– M  M′ indicates that there is a transition t such that M t M′. 

– M  M′ denotes the firing sequence  = t0 t1
… tn-1 that leads from 

state M to state M’, such that 

M = M0 
t0 M1 

t1 M2 … Mn-1 
tn-1 Mn = M′

Note that the transitions do not have to be different!

– A state M’ is called reachable from state M (we write M * M′) iff
there is a firing sequence  that leads from state M to state M’.
• Informally, a marking is reachable from another marking if there is a sequence of 

transitions that can fire from the first marking to arrive at the second marking.
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Petri nets: Order Fulfillment Example

First, a take order

task is executed.

Then, pack order and

check account tasks are 

executed in parallel.

When pack order and check account 

tasks have been both completed, the 

credit check task is executed.

If the customer has sufficient credit 

remaining, the order is despatched.

If the customer has not sufficient credit 

the decline order runs and, finally, the 

return stock task ensures that the 

items from the order are returned to 

the warehouse.
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Petri nets: Example of a 

vending machine (source [DE95] p. 4)

candy storage

refill

dispense

candy

ready for insertion

insert coin

holding

coin

reject coin

ready to dispense

accept coin

request for refill
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candy storage

refill

dispense

candy

ready for insertion

insert coin

holding

coin

reject coin

ready to dispense

accept coin

request for refill
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Petri net example: Elevator 1

Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga
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Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga

Petri net example: Elevator 2
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Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga

Petri net example: Elevator 3
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Modelling Exercise

• We want to model with a Petri Net the behaviour 

of two traffic lights at an intersection, in a way that 

they cannot be green or yellow at the same time. 

• Conversely, they are allowed to signal red at the 

same time.
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Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga

Solution Traffic Lights
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Homeworks

• Two traffic lights at an intersection. If one is red, the other 

should be green etc. (many discussions on modelling traffic 

lights through Petri nets can be found on the internet).

• A producer and a consumer producing and consuming 

(resp.) indefinitely. The consumer cannot consume more 

than the producer has produced thus far. How does your 

model change if the buffer between them is of limited size? 

(this is a well-known concurrency problem)

• Two parallel processes with two critical sections. If one of 

the two processes is in its critical section, the other process 

should not be able to enter its critical section and vice 

versa. (this is also a well-known concurrency problem)
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Coverable Markings

• Coverability is a weaker notion than reachability. A marking 
M is coverable iff a reachable marking M′ exists such that 
M′ ≥ M (see e.g. Definition 5 in [HAAR09]).

• Example: Given the Petri net and marking in figure, 
p1+p2+p3 is a reachable marking, while p1+p3 is a 
coverable marking (but not reachable).

• To decide whether a given marking M is reachable is a 
DSPACE(exp)-hard problem. 

p1 p2 p3t1 t2
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Properties

• A Petri net N with initial marking M0 is live iff for every 
reachable marking M and every transition t there exists a 
marking M’ reachable from M which enables t. (see definition 
2.16 of [DE95]).

• More informally: A Petri net with initial marking M0 is live if, no 
matter what marking has been reached from M0, it is possible 
to ultimately fire any transition by progressing through some 
further firing sequence.

• The notion of liveness is important since it demonstrates that at 
least one transition can fire in every reachable state. A live Petri 
net guarantees deadlock-free operation.

• A Petri net N with initial marking M0 is deadlock free iff every 
reachable marking enables some transition (see definition 2.16 
of [DE95]).
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Properties

• A Petri net N with initial marking M0 is k-bounded iff for 
every reachable marking M, M(p)  k (k is the minimal 
number for which this holds). (see definition 2.20 of 
[DE95]).

– A 1-bounded net is called safe.

– The property of boundness ensures that the number of tokens 
cannot grow arbitrarily.

• A Petri net N is strongly connected iff for every pair of 
nodes (places or transitions) x and y there is a path from x 
to y and vice-versa.
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Is this Petri Net live and bounded?

A bounded but non-live Petri net

p1 p2

p3

p4

t1

t2

t3 t4

M0 = (1,0,0,1)

M1 = (0,1,0,1)

M2 = (0,0,1,0)

M3 = (0,0,0,1)
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Is this Petri Net live and bounded?

p1

t1

p2 p3

t2 t3

p4 p5

t4 An unbounded but live Petri net

M1 = (0, 1, 1, 0, 0)

M2 = (0, 0, 0, 1, 1)

M3 = (1, 1, 0, 0, 0)

M4 = (0, 2, 1, 0, 0)

M0 = (1, 0, 0, 0, 0)
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Exercise

• Is the vending machine live?

• Is it deadlock free?

• Is it bounded?

• Is it strongly connected?

• Can a marking be reached with tokens both in “ready for 

insertion” and “ready to dispense”?

• Give an example of a marking that is coverable but not 

reachable.
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Free Choice Petri nets

• Many verification problems in Petri nets have a high 

complexity.

• Free Choice Petri nets are a subclass of Petri nets 

with a “nice” tradeoff between expressiveness and 

analyzability (see e.g. [DE95]).

• All elementary workflow concepts are essentially free 

choice.

• In a Free Choice Petri net “the result of the choice 

between two transitions can never be influenced by the 

rest of the system” [DE95]
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Example of a Conflict
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Free Choice Petri nets: Definition

(see [DE95] p63-64)

• In a Free Choice Petri net, every pair of transitions either 

share all their input places, or they share none.

• Formally, a Petri net N = (P,T,F) is free choice iff for all 

transitions t,t’:

– •t  •t’    •t = •t’

– For any free-choice net, a t' in conflict with an 

enabled transition  t , is also enabled.
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Workflow nets:

Motivation

• Wil van der Aalst has proposed the use of Petri nets for 
workflow modelling. In [Aalst96] three benefits are argued:

– Petri nets are formally defined;

– Petri nets support the notion of being “in between” performing tasks 
through the notion of place;

– Petri nets have associated analysis techniques.

• He proposes a particular subclass of Petri nets, called 
Workflow nets (WF-nets) for this purpose. 

• In a workflow net, transitions represent the tasks that 

comprise a business process and places represent the 

conditions preceding and following the tasks.
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Workflow nets:

Definition

• A workflow net has a single start place and a single end 

place. 
– This means that workflow nets closely correspond to real-life processes 

that tend to have a specific starting point and a specific end point.

• Every transition in the workflow net is on a path from the 

start to the end place. 
– This ensures that each transition in a workflow net contributes to the 

progression of an executing instance towards its end state.

• Definition [AH02, p271-272] A Petri net PN = (P, T, F) is a 
WF-net (Workflow net) if and only if:

• There is one source place i  P such that •i = 

• There is one sink place o  P such that o• = 

• Every node x  P  T is on a path from i to o.
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Exercise: Candidate WF-nets?
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Workflow nets:

Definition

• It is important to note that the previous definition 
traces the minimal requirements for a workflow net. 

• However, it does not guarantee (by itself) that a 
candidate workflow net will not potentially be 
subject to deadlock or livelock.

• To ensure that any given process instance behaves 
in a predictable way, in [AH02] a number of so-
called soundness criteria are formulated. 
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Workflow nets: Soundness

Definition [soundness]: A procedure modeled in the form of a WF-net PN = 

(P, T, F) is sound if and only if:

– [Option to Complete] Given an initial marking i, from every marking M 

reachable from i, there exists a firing sequence leading from state M to state o.

Formally:

• Basically, this means that the any executing instance of the workflow net 

must eventually terminate, i.e., net is free of deadlock and infinite loops.

– [Proper Completion] State o is the only state reachable from state i with at least 

one token in place o. Formally:

• When the workflow terminates no other tasks are still running and termination 

is signalled only once. At the moment of termination, there must be one 

token in the end place o and all other places in the WF-net must be empty.

– [No Dead Tasks] For every transition t, a marking M reachable from i (i * M) 

can be found that enables t.

• The workflow does not contain any superfluous parts that can never be 

activated. In a nutshell, dead transitions are not allowed.
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Workflow Net Constructs

Automatic tasks

execute as soon as 

they are enabled.

User tasks are passed to 

human resources for 

execution once enabled.

External tasks only proceed 

once they are enabled and a 

required message or signal is 

received from the operating 

environment.

Time tasks only proceed once 

they are enabled and a specified 

(time-based) deadline occurs.

In WF-net there are some notational 

enhancements (often termed “syntactic 

sugar”) for split and join constructs that 

simplify the specification of a workflow net.

The basics of Petri nets can be 

used to understand the 

semantics of some elementary 

modeling concepts in WF-nets.
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Parallelism: AND-split

A

B

C

B

C

• According to the WfMC [WfMC], an AND-

split is “a point within the workflow where a 

single thread of control splits into two or 

more threads which are executed in parallel 

within the workflow, allowing multiple 

activities to be executed simultaneously.”

• The execution of A enables both task B and 

task C. As a result, task B and task C are 

executed in parallel (in an arbitrary order). 

• In WF-nets, a special construct for AND-

split is introduced.

AND-split

A
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Parallelism: AND-join

B

C

D

B

C

• According to the WfMC [WfMC], an AND-

join is “a point in the workflow where two or 

more parallel executing activities converge 

into a single common thread of control.”

• Task D is enabled after execution both B 

and C, i.e., D is used to synchronize two 

subflows.

• In WF-nets, a special construct for AND-

JOIN is introduced.

AND-join

D
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Conditional Routing: XOR-split

A

B

C

B

C

• According to the WfMC [WfMC], a XOR-

split is “a point within the workflow where a 

single thread of control makes a decision 

upon which branch to take when 

encountered with multiple alternative 

workflow branches.”

• Note that the exclusive nature of the choice, 

i.e. only one of the outgoing branches can 

be chosen (i.e., either task B or C can be 

executed).

• In WF-nets, a special construct for XOR-

spit is introduced.

XOR-split

A
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Conditional Routing: XOR-join

B

C

D

B

C

• According to the WfMC [WfMC], a XOR-

join is “a point within the workflow where 

two or more alternative activity(s) workflow 

branches re-converge to a single common 

activity as the next step within the workflow.

• As no parallel activity execution has 

occurred at the join point, no 

synchronization is required. 

• Therefore, D is enabled when B or C 

complete.

• In WF-nets, a special construct for XOR-

JOIN is introduced.XOR-join

D
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Workflow net Example –

order fulfillment process

The take order task is externally 

triggered when an order request 

is received.

Most tasks are undertaken

by human resources (i.e., 

staff).

The decline order task runs 

automatically with the customer receiving 

a notification either by email or fax.
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Workflow nets: How to decide soundness?

(see [AH02] p276)

• In [Aalst97] it was shown that soundness for a WF-net 
could be determined in terms of liveness and 
boundedness. In [AH02] p.276 this is explained as 
determining that a workflow net PN is sound is 
equivalent to determining to whether the net PN’ which 
is constructed through the addition of an extra transition 
t, where •t = {o} and t• = {i}, is live and bounded.

• As pointed out in [AH02] p.277, the computational 
complexity of determining whether a WF-net is sound 
may be quite high. Restrictions (e.g. requiring the net to 
be free choice) can be imposed to make this more 
tractable, see the discussion in [AH02] p277-286.

• At Eindhoven University of Technology the Workflow 
Analyzer (WOFLAN) was developed which is freely 
available for download.
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Workflow Animation – Erroneous WF

Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga



a university for the worldreal
R

49© 2009, www.yawlfoundation.org

Workflow Animation – Another Erroneous WF

Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga
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Workflow Animation – Correct WF

Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga
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Reset nets

• While Petri nets and Workflow nets provide an effective 

means of modeling a business process, they are not able to 

capture the notion of cancelation.

– This is a significant omission, given the relative frequency of 

cancelation in real-life processes.

• Reset nets extend Petri nets with a special type of arc, the reset 

arc, to capture the notion of cancelation.

• Like normal input arcs, reset arcs connect places to transitions.

• However, they operate in a different way: when a transition to 

which a reset arc is connected fires, any place connected to the 

transition by reset arcs is emptied of any tokens that it may 

contain.

• Note that the tokens in places attached to a transition by reset arcs 

play no part in the enablement of the transition.

– This makes reachability undecidable.
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Reset nets

place transition arc reset arc
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Reset nets: formal definition

• Formal definitions are based on [DFS98, FRSB02, FS01].

• Syntactically a Reset net is a tuple (P, T, F, R) where

– (P, T, F) is a Petri net with a finite set of places P, a finite set of transitions 

T , and a flow relation F  (P x T  T x P);

– R: T  2P is a function associating reset places with transitions.

• A reachable marking M’ is defined by:

– first removing the tokens needed to enable t from its input places t;

– then removing all tokens from reset places associated with t (i.e., R(t));

– and finally by adding tokens to its output places t.

• Let N = (P, T, F, R) be a Reset net and M a marking. 
– A transition t  T is enabled iff •t ≤ M.

– An enabled transition t can fire thus changing the state to M’, denoted M 

t M’, with M’ = (M − •t)[P\R(t)] +t•. 

• The definition of occurrence sequence extends naturally 

from Petri nets.
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Reset nets
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Reset nets: the order fulfillment process
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