
a university for the worldreal
R

© 2009, www.yawlfoundation.org

Formal Approaches to Business

Processes through Petri Nets

Nick Russell

Arthur H. M. ter Hofstede

a university for the worldreal
R

2© 2009, www.yawlfoundation.org

Acknowledgement

These slides summarize the content of Chapter 2 of the book:

A.H.M. ter Hofstede, W. van der Aalst, M. Adams, N. Russell.

Modern Business Process Automation. YAWL and its support

environment. Springer, 2010.

These slides have been prepared by or inspired by slides of the

following people:

– Wil van der Aalst, TUE & QUT

– Michael Adams, QUT

– Lachlan Aldred, QUT

– Bartek Kiepuszewski, Moreton, BMS, Cutter Consortium

– Marcello La Rosa, QUT

– Petia Wohed, SU/KTH

– Moe Wynn, QUT

a university for the worldreal
R

3© 2009, www.yawlfoundation.org

• One of the frequent criticisms of modeling notations is

that they are imprecise and, as a consequence, subject

to varying interpretations by different parties.

• Describing a candidate modeling notation in terms of a

formal technique provides an effective means of

minimizing the potential for ambiguity.

• To do so, it is necessary to describe both the syntax

and semantics of the modeling formalism using a well-

founded technique.

• Suitable techniques for doing so generally stem from

mathematical foundations and include general-purpose

modeling approaches such as Petri nets.

Introduction

a university for the worldreal
R

4© 2009, www.yawlfoundation.org

• Petri nets have proven to be a particularly effective

mechanism for modeling the dynamic aspects of

processes.

• Petri Nets they have three specific advantages:

– Formal semantics despite the graphical nature.

– State-based instead of event-based.

– Abundance of analysis techniques.

• Many variant exist: we will analyze workflow nets and

reset nets.

• Petri Nets have been chosen as the formal underpinning

for the YAWL language (it will be discussed in an

upcoming lecture).

Petri Nets

a university for the worldreal
R

5© 2009, www.yawlfoundation.org

Overview

• Formal foundations for modeling

languages in BPM

– Petri nets

– Some fundamental results

– Workflow nets

– Mapping workflow concepts to Petri nets

– Reset nets

a university for the worldreal
R

6© 2009, www.yawlfoundation.org

Petri Nets

• Originate from C.A. Petri’s PhD thesis (1962).

• They were originally conceived as a technique for the

description and analysis of concurrent behaviour in

distributed systems.

• Based on a few simple concepts, yet expressive.

• They have a simple graphical format and a precise

operational semantics that makes them an attractive

option for modeling the static and dynamic aspects of

processes.

• Many analysis techniques exist.

• Many extensions and variants have been defined over

the years.

a university for the worldreal
R

7© 2009, www.yawlfoundation.org

Applications

• Applications in many different areas,

such as databases, software engineering,

formal semantics, etc.

• There are two main uses of Petri nets for

workflows:

– Specifications of workflows.

– Formal foundation for workflows

(semantics, analysis of properties).

a university for the worldreal
R

8© 2009, www.yawlfoundation.org

Petri Nets: Basics

place transition arc

• A Petri Net takes the form of a directed bipartite graph where

the nodes are either places or transitions.

• Places represent intermediate states that may exist during the

operation of a process. Places are represented by circles.

• Places can be input/output of transitions. Transitions correspond

to the activities or events of which the process is made up.

Transitions are represented by rectangles or thick bars.

• Arcs connect places and transitions in a way that places can only

be connected to transitions and vice-versa.

or

a university for the worldreal
R

9© 2009, www.yawlfoundation.org

Petri Nets: Definition

• Formally a Petri net N is a triple (P, T, F) where

– P is a finite set of places

– T is a finite set of transitions where P ∩ T =

– F  (P x T  T x P) is the set of arcs known as

the flow relation

• A directed arc from a place p to a transition t

indicates that p is an input place of t. Formally:
–  t = {p  P | (p, t)  F}

• A directed arc from a transition t to a place p

indicates that p is an output place of t. Formally:
– t  = {p  P | (t, p)  F}

– With an analogous meaning, we can define:

– p  = {t  T | (p, t)  F} and  p = {t  T | (t, p)  F}

a university for the worldreal
R

10© 2009, www.yawlfoundation.org

Petri Net: Example

P = {p1, p2, p3, p4}

T = {t1, t2, t3}

F = {(p1, t1), (p2, t1), (t1, p3), (p2, t2), (t2, p4), (p4, t3), (t3,p2)}

t1  = {p3};  t1 = {p1, p2};  p2 = {t3};  p1 = ; p2  = {t1, t2}

p1

p2

t1

t2

t3

p3

p4

a university for the worldreal
R

11© 2009, www.yawlfoundation.org

Petri Nets: Example

p1 p2

t1

t2

t3

p3

P = ...

T = …

F = ...

t1  = …… ;  t1 = …… ;  p2 = …… ; p2  =

a university for the worldreal
R

12© 2009, www.yawlfoundation.org

Markings

• The operational semantics of a Petri Net is described in terms
of particular marks called tokens (graphically represented as
black dots).

• Places in Petri Nets can contain any number of tokens. The
distribution of tokens across all of the places in a net is called a
marking. For a Petri net an initial marking M0 needs to be
specified.

• Marking assigns tokens to places; formally, a marking M of a
Petri net N = (P,T,F) is a function M: P -> NAT.

• The marking below is formally captured by the following
marking M = {(p1,1),(p2,2),(p3,0)}.

p1 p2 p3

a university for the worldreal
R

13© 2009, www.yawlfoundation.org

State of a Petri Net

• A state can be compactly described as shown in the
following example:

– 1p1+2p2 + 0p3 is the state with one token in place p1, two tokens
in p2 and no tokens in p3.

– We can also represent this state in the following (equivalent) way:
p1+2p2.

• We can also describe an ordering function ≥ over the set
of possible states such that, given a Petri net N = (P,T,F)
and markings M and M′, M ≥ M′ iff for all p in P: M(p) ≥
M′(p). M > M′ iff M ≥ M′ and M ≠ M′.

p1 p2 p3

a university for the worldreal
R

14© 2009, www.yawlfoundation.org

Enabled Transitions

• The operational semantics of Petri nets are characterized by the notion

of a transition executing or “firing”. A transition in a Petri net can “fire”

whenever there are one or more tokens in each of its input places.

• The execution of a transition occurs in accordance with the following

firing rules:

1. A transition t is said to be enabled if and only if each input place p of t

contains at least one token. Only enabled transitions may fire.

– Formally, a transition t is enabled in a marking M iff for each p, with p •t,

M(p) > 0. (see definition 2.7 of [DE95])

2. If transition t fires, then t consumes one token from each input place

p of t and produces one token for each output place p of t .

p1

p2

p3
T1 is enabled and

may fire!

T1 is not enabled!

T1 fires! When a transition

fires, the marking and the state

of the Petri Net change.

t1
p1

p2

p3

t1

p1

p2

p3

t1

a university for the worldreal
R

15© 2009, www.yawlfoundation.org

Firing a Transition: Example

BEFORE AFTER

a university for the worldreal
R

16© 2009, www.yawlfoundation.org

Firing Transitions: Further Examples

• It is assumed that the firing of a transition is an atomic action that occurs

instantaneously and cannot be interrupted.

• If there are multiple enabled transitions, any one of them may fire;

however, for execution purposes, it is assumed that they cannot fire

simultaneously.

• An enabled transition is not forced to fire immediately but can do so at a

time of its choosing.

• These features make Petri nets particularly suitable for modeling

concurrent process executions.

a university for the worldreal
R

17© 2009, www.yawlfoundation.org

Firing Transitions

• Given a Petri Net (P,T,F) and an initial state M, we have the
following notations that characterize the firing of a given
transition t:

– M t M′ indicates that if transition t is enabled in state M, then firing t
in M results in state M’. Formally, notation M t M′, is defined by:

• M′(p) = M(p) if p  •t  t• or p  •t  t•

• M′(p) = M(p) - 1 if p  •t and p  t•

• M′(p) = M(p) + 1 if p  t• and p  •t

– M  M′ indicates that there is a transition t such that M t M′.

– M  M′ denotes the firing sequence  = t0 t1
… tn-1 that leads from

state M to state M’, such that

M = M0 
t0 M1 

t1 M2 … Mn-1 
tn-1 Mn = M′

Note that the transitions do not have to be different!

– A state M’ is called reachable from state M (we write M * M′) iff
there is a firing sequence  that leads from state M to state M’.
• Informally, a marking is reachable from another marking if there is a sequence of

transitions that can fire from the first marking to arrive at the second marking.

a university for the worldreal
R

18© 2009, www.yawlfoundation.org

Petri nets: Order Fulfillment Example

First, a take order

task is executed.

Then, pack order and

check account tasks are

executed in parallel.

When pack order and check account

tasks have been both completed, the

credit check task is executed.

If the customer has sufficient credit

remaining, the order is despatched.

If the customer has not sufficient credit

the decline order runs and, finally, the

return stock task ensures that the

items from the order are returned to

the warehouse.

a university for the worldreal
R

19© 2009, www.yawlfoundation.org

Petri nets: Example of a

vending machine (source [DE95] p. 4)

candy storage

refill

dispense

candy

ready for insertion

insert coin

holding

coin

reject coin

ready to dispense

accept coin

request for refill

a university for the worldreal
R

20© 2009, www.yawlfoundation.org

candy storage

refill

dispense

candy

ready for insertion

insert coin

holding

coin

reject coin

ready to dispense

accept coin

request for refill

a university for the worldreal
R

21© 2009, www.yawlfoundation.org

Petri net example: Elevator 1

Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga

a university for the worldreal
R

22© 2009, www.yawlfoundation.org

Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga

Petri net example: Elevator 2

a university for the worldreal
R

23© 2009, www.yawlfoundation.org

Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga

Petri net example: Elevator 3

a university for the worldreal
R

24© 2009, www.yawlfoundation.org

Modelling Exercise

• We want to model with a Petri Net the behaviour

of two traffic lights at an intersection, in a way that

they cannot be green or yellow at the same time.

• Conversely, they are allowed to signal red at the

same time.

a university for the worldreal
R

25© 2009, www.yawlfoundation.org

Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga

Solution Traffic Lights

a university for the worldreal
R

26© 2009, www.yawlfoundation.org

Homeworks

• Two traffic lights at an intersection. If one is red, the other

should be green etc. (many discussions on modelling traffic

lights through Petri nets can be found on the internet).

• A producer and a consumer producing and consuming

(resp.) indefinitely. The consumer cannot consume more

than the producer has produced thus far. How does your

model change if the buffer between them is of limited size?

(this is a well-known concurrency problem)

• Two parallel processes with two critical sections. If one of

the two processes is in its critical section, the other process

should not be able to enter its critical section and vice

versa. (this is also a well-known concurrency problem)

a university for the worldreal
R

27© 2009, www.yawlfoundation.org

Coverable Markings

• Coverability is a weaker notion than reachability. A marking
M is coverable iff a reachable marking M′ exists such that
M′ ≥ M (see e.g. Definition 5 in [HAAR09]).

• Example: Given the Petri net and marking in figure,
p1+p2+p3 is a reachable marking, while p1+p3 is a
coverable marking (but not reachable).

• To decide whether a given marking M is reachable is a
DSPACE(exp)-hard problem.

p1 p2 p3t1 t2

a university for the worldreal
R

28© 2009, www.yawlfoundation.org

Properties

• A Petri net N with initial marking M0 is live iff for every
reachable marking M and every transition t there exists a
marking M’ reachable from M which enables t. (see definition
2.16 of [DE95]).

• More informally: A Petri net with initial marking M0 is live if, no
matter what marking has been reached from M0, it is possible
to ultimately fire any transition by progressing through some
further firing sequence.

• The notion of liveness is important since it demonstrates that at
least one transition can fire in every reachable state. A live Petri
net guarantees deadlock-free operation.

• A Petri net N with initial marking M0 is deadlock free iff every
reachable marking enables some transition (see definition 2.16
of [DE95]).

a university for the worldreal
R

29© 2009, www.yawlfoundation.org

Properties

• A Petri net N with initial marking M0 is k-bounded iff for
every reachable marking M, M(p)  k (k is the minimal
number for which this holds). (see definition 2.20 of
[DE95]).

– A 1-bounded net is called safe.

– The property of boundness ensures that the number of tokens
cannot grow arbitrarily.

• A Petri net N is strongly connected iff for every pair of
nodes (places or transitions) x and y there is a path from x
to y and vice-versa.

a university for the worldreal
R

30© 2009, www.yawlfoundation.org

Is this Petri Net live and bounded?

A bounded but non-live Petri net

p1 p2

p3

p4

t1

t2

t3 t4

M0 = (1,0,0,1)

M1 = (0,1,0,1)

M2 = (0,0,1,0)

M3 = (0,0,0,1)

a university for the worldreal
R

31© 2009, www.yawlfoundation.org

Is this Petri Net live and bounded?

p1

t1

p2 p3

t2 t3

p4 p5

t4 An unbounded but live Petri net

M1 = (0, 1, 1, 0, 0)

M2 = (0, 0, 0, 1, 1)

M3 = (1, 1, 0, 0, 0)

M4 = (0, 2, 1, 0, 0)

M0 = (1, 0, 0, 0, 0)

a university for the worldreal
R

32© 2009, www.yawlfoundation.org

Exercise

• Is the vending machine live?

• Is it deadlock free?

• Is it bounded?

• Is it strongly connected?

• Can a marking be reached with tokens both in “ready for

insertion” and “ready to dispense”?

• Give an example of a marking that is coverable but not

reachable.

a university for the worldreal
R

33© 2009, www.yawlfoundation.org

Free Choice Petri nets

• Many verification problems in Petri nets have a high

complexity.

• Free Choice Petri nets are a subclass of Petri nets

with a “nice” tradeoff between expressiveness and

analyzability (see e.g. [DE95]).

• All elementary workflow concepts are essentially free

choice.

• In a Free Choice Petri net “the result of the choice

between two transitions can never be influenced by the

rest of the system” [DE95]

a university for the worldreal
R

34© 2009, www.yawlfoundation.org

Example of a Conflict

a university for the worldreal
R

35© 2009, www.yawlfoundation.org

Free Choice Petri nets: Definition

(see [DE95] p63-64)

• In a Free Choice Petri net, every pair of transitions either

share all their input places, or they share none.

• Formally, a Petri net N = (P,T,F) is free choice iff for all

transitions t,t’:

– •t  •t’    •t = •t’

– For any free-choice net, a t' in conflict with an

enabled transition t , is also enabled.

a university for the worldreal
R

36© 2009, www.yawlfoundation.org

Workflow nets:

Motivation

• Wil van der Aalst has proposed the use of Petri nets for
workflow modelling. In [Aalst96] three benefits are argued:

– Petri nets are formally defined;

– Petri nets support the notion of being “in between” performing tasks
through the notion of place;

– Petri nets have associated analysis techniques.

• He proposes a particular subclass of Petri nets, called
Workflow nets (WF-nets) for this purpose.

• In a workflow net, transitions represent the tasks that

comprise a business process and places represent the

conditions preceding and following the tasks.

a university for the worldreal
R

37© 2009, www.yawlfoundation.org

Workflow nets:

Definition

• A workflow net has a single start place and a single end

place.
– This means that workflow nets closely correspond to real-life processes

that tend to have a specific starting point and a specific end point.

• Every transition in the workflow net is on a path from the

start to the end place.
– This ensures that each transition in a workflow net contributes to the

progression of an executing instance towards its end state.

• Definition [AH02, p271-272] A Petri net PN = (P, T, F) is a
WF-net (Workflow net) if and only if:

• There is one source place i  P such that •i = 

• There is one sink place o  P such that o• = 

• Every node x  P  T is on a path from i to o.

a university for the worldreal
R

38© 2009, www.yawlfoundation.org

Exercise: Candidate WF-nets?

a university for the worldreal
R

39© 2009, www.yawlfoundation.org

Workflow nets:

Definition

• It is important to note that the previous definition
traces the minimal requirements for a workflow net.

• However, it does not guarantee (by itself) that a
candidate workflow net will not potentially be
subject to deadlock or livelock.

• To ensure that any given process instance behaves
in a predictable way, in [AH02] a number of so-
called soundness criteria are formulated.

a university for the worldreal
R

40© 2009, www.yawlfoundation.org

Workflow nets: Soundness

Definition [soundness]: A procedure modeled in the form of a WF-net PN =

(P, T, F) is sound if and only if:

– [Option to Complete] Given an initial marking i, from every marking M

reachable from i, there exists a firing sequence leading from state M to state o.

Formally:

• Basically, this means that the any executing instance of the workflow net

must eventually terminate, i.e., net is free of deadlock and infinite loops.

– [Proper Completion] State o is the only state reachable from state i with at least

one token in place o. Formally:

• When the workflow terminates no other tasks are still running and termination

is signalled only once. At the moment of termination, there must be one

token in the end place o and all other places in the WF-net must be empty.

– [No Dead Tasks] For every transition t, a marking M reachable from i (i * M)

can be found that enables t.

• The workflow does not contain any superfluous parts that can never be

activated. In a nutshell, dead transitions are not allowed.

a university for the worldreal
R

41© 2009, www.yawlfoundation.org

Workflow Net Constructs

Automatic tasks

execute as soon as

they are enabled.

User tasks are passed to

human resources for

execution once enabled.

External tasks only proceed

once they are enabled and a

required message or signal is

received from the operating

environment.

Time tasks only proceed once

they are enabled and a specified

(time-based) deadline occurs.

In WF-net there are some notational

enhancements (often termed “syntactic

sugar”) for split and join constructs that

simplify the specification of a workflow net.

The basics of Petri nets can be

used to understand the

semantics of some elementary

modeling concepts in WF-nets.

a university for the worldreal
R

42© 2009, www.yawlfoundation.org

Parallelism: AND-split

A

B

C

B

C

• According to the WfMC [WfMC], an AND-

split is “a point within the workflow where a

single thread of control splits into two or

more threads which are executed in parallel

within the workflow, allowing multiple

activities to be executed simultaneously.”

• The execution of A enables both task B and

task C. As a result, task B and task C are

executed in parallel (in an arbitrary order).

• In WF-nets, a special construct for AND-

split is introduced.

AND-split

A

a university for the worldreal
R

43© 2009, www.yawlfoundation.org

Parallelism: AND-join

B

C

D

B

C

• According to the WfMC [WfMC], an AND-

join is “a point in the workflow where two or

more parallel executing activities converge

into a single common thread of control.”

• Task D is enabled after execution both B

and C, i.e., D is used to synchronize two

subflows.

• In WF-nets, a special construct for AND-

JOIN is introduced.

AND-join

D

a university for the worldreal
R

44© 2009, www.yawlfoundation.org

Conditional Routing: XOR-split

A

B

C

B

C

• According to the WfMC [WfMC], a XOR-

split is “a point within the workflow where a

single thread of control makes a decision

upon which branch to take when

encountered with multiple alternative

workflow branches.”

• Note that the exclusive nature of the choice,

i.e. only one of the outgoing branches can

be chosen (i.e., either task B or C can be

executed).

• In WF-nets, a special construct for XOR-

spit is introduced.

XOR-split

A

a university for the worldreal
R

45© 2009, www.yawlfoundation.org

Conditional Routing: XOR-join

B

C

D

B

C

• According to the WfMC [WfMC], a XOR-

join is “a point within the workflow where

two or more alternative activity(s) workflow

branches re-converge to a single common

activity as the next step within the workflow.

• As no parallel activity execution has

occurred at the join point, no

synchronization is required.

• Therefore, D is enabled when B or C

complete.

• In WF-nets, a special construct for XOR-

JOIN is introduced.XOR-join

D

a university for the worldreal
R

46© 2009, www.yawlfoundation.org

Workflow net Example –

order fulfillment process

The take order task is externally

triggered when an order request

is received.

Most tasks are undertaken

by human resources (i.e.,

staff).

The decline order task runs

automatically with the customer receiving

a notification either by email or fax.

a university for the worldreal
R

47© 2009, www.yawlfoundation.org

Workflow nets: How to decide soundness?

(see [AH02] p276)

• In [Aalst97] it was shown that soundness for a WF-net
could be determined in terms of liveness and
boundedness. In [AH02] p.276 this is explained as
determining that a workflow net PN is sound is
equivalent to determining to whether the net PN’ which
is constructed through the addition of an extra transition
t, where •t = {o} and t• = {i}, is live and bounded.

• As pointed out in [AH02] p.277, the computational
complexity of determining whether a WF-net is sound
may be quite high. Restrictions (e.g. requiring the net to
be free choice) can be imposed to make this more
tractable, see the discussion in [AH02] p277-286.

• At Eindhoven University of Technology the Workflow
Analyzer (WOFLAN) was developed which is freely
available for download.

a university for the worldreal
R

48© 2009, www.yawlfoundation.org

Workflow Animation – Erroneous WF

Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga

a university for the worldreal
R

49© 2009, www.yawlfoundation.org

Workflow Animation – Another Erroneous WF

Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga

a university for the worldreal
R

50© 2009, www.yawlfoundation.org

Workflow Animation – Correct WF

Animation by Wil van der Aalst, Vincent Almering and Herman Wijbenga

a university for the worldreal
R

51© 2009, www.yawlfoundation.org

Reset nets

• While Petri nets and Workflow nets provide an effective

means of modeling a business process, they are not able to

capture the notion of cancelation.

– This is a significant omission, given the relative frequency of

cancelation in real-life processes.

• Reset nets extend Petri nets with a special type of arc, the reset

arc, to capture the notion of cancelation.

• Like normal input arcs, reset arcs connect places to transitions.

• However, they operate in a different way: when a transition to

which a reset arc is connected fires, any place connected to the

transition by reset arcs is emptied of any tokens that it may

contain.

• Note that the tokens in places attached to a transition by reset arcs

play no part in the enablement of the transition.

– This makes reachability undecidable.

a university for the worldreal
R

52© 2009, www.yawlfoundation.org

Reset nets

place transition arc reset arc

a university for the worldreal
R

53© 2009, www.yawlfoundation.org

Reset nets: formal definition

• Formal definitions are based on [DFS98, FRSB02, FS01].

• Syntactically a Reset net is a tuple (P, T, F, R) where

– (P, T, F) is a Petri net with a finite set of places P, a finite set of transitions

T , and a flow relation F  (P x T  T x P);

– R: T  2P is a function associating reset places with transitions.

• A reachable marking M’ is defined by:

– first removing the tokens needed to enable t from its input places t;

– then removing all tokens from reset places associated with t (i.e., R(t));

– and finally by adding tokens to its output places t.

• Let N = (P, T, F, R) be a Reset net and M a marking.
– A transition t  T is enabled iff •t ≤ M.

– An enabled transition t can fire thus changing the state to M’, denoted M

t M’, with M’ = (M − •t)[P\R(t)] +t•.

• The definition of occurrence sequence extends naturally

from Petri nets.

a university for the worldreal
R

54© 2009, www.yawlfoundation.org

Reset nets

a university for the worldreal
R

55© 2009, www.yawlfoundation.org

Reset nets: the order fulfillment process

a university for the worldreal
R

56© 2009, www.yawlfoundation.org

Sources and References

• [Aalst96] Wil M. P. van der Aalst. Three Good Reasons for Using a Petri-net-based Workflow Management System. In S.
Navathe and T. Wakayama, editors, Proceedings of the International Working Conference on Information and Process
Integration in Enterprises (IPIC’96), pages 179-201, Cambridge, Massachusetts, November 1996.

• [Aalst97] Wil M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo, editors, Applications and Theory of
Petri Nets 1997, volume 1248 of Lecture Notes in Computer Science, pp 407-426, Springer Verlag, 1997.

• [AH02] Wil M.P. van der Aalst and Kees M. van Hee. Workflow Management: Models, Methods, and Systems. The MIT Press,
2002.

• [JB96] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture and Implementation. International
Thomson Computer Press, 1996.

• [BW90] J. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Computer Science 18, Cambridge
University Press, 1990.

• [DE95] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer Science 40, Cambridge
University Press, 1995.

• [DFS98] C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decidability and undecidability. In K. Larsen, S.
Skyum, and G. Winskel, editors, Proceedings of the 25th International Colloquium on Automata, Languages and Programming
(ICALP’98), volume 1443 of Lecture Notes in Computer Science, pages 103–115, Aalborg, Denmark, July 1998. Springer.

• [FRSB02] A. Finkel, J.-F. Raskin, M. Samuelides, and L. van Begin. Monotonic extensions of petri nets: Forward and backward
search revisited. Electronic Notes in Theoretical Computer Science, 68(6):1–22, 2002.

• [FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical Computer Science, 256(1–
2):63–92, April 2001.

• [JK09] K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and Validation of Concurrent Systems, Springer 2009.

• [Peterson81] J.L.A. Peterson. Petri net theory and the modeling of systems. Prentice Hall, 1981.

• [HAAR09] A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell (editors). Modern Business Process
Automation: YAWL and Its Support Environment. Springer, 2010.

• [WfMC] Workflow Management Coalition - Terminology & Glossary, Document number WFMC-TC-1011, Document Status 3.0,
February 1999. Downloaded from http://www.aiim.org/wfmc/mainframe.htm. (this document contains the quoted definitions)

• [KHA03] B. Kiepuszewski, A.H.M. ter Hofstede and W.M.P. van der Aalst. Fundamentals of Control Flow in Workflows. Acta
Informatica 39(3):143-209, 2003.

• [KHB00] B. Kiepuszewski, A.H.M. ter Hofstede, C. Bussler. On Structured Workflow Modelling. Proceedings CAiSE’2000,
Lecture Notes in Computer Science 1789, Stockholm, Sweden, June 2000.

• [Kie03] B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling in Workflows. PhD thesis,
Queensland University of Technology, Brisbane, Australia, 2003.

• www.workflowcourse.com (among others for the animations)

