
An Adaptive Process Management System Implementation
based on Situation Calculus, Indigolog and Classical Planning

Andrea Marrella and Massimo Mecella
Sapienza - Universitá di Roma, Italy
{marrella|mecella}@dis.uniroma1.it

Sebastian Sardina
RMIT University, Melbourne, Australia

sebastian.sardina@rmit.edu.au

Abstract
In this paper, we introduce an adaptive Process
Management System implementation that com-
bines business process execution monitoring, unan-
ticipated exception detection and automated reso-
lution strategies leveraging on well-established for-
malisms developed for reasoning about actions in
Artificial Intelligence, including the situation cal-
culus, IndiGolog and classical planning. Such for-
malisms provide a natural framework for the for-
mal specification of explicit mechanisms to model
world changes and responding to anomalous sit-
uations, exceptions, exogenous events in an auto-
mated way during process execution.

1 Introduction
In recent years, Business Process Management (BPM) ap-
proaches and technologies received considerable attention, as
they are highly relevant from a practical point of view while
offering many technical challenges for researchers. BPM fo-
cuses on overseeing how work is performed in a company by
managing and optimising its business processes. Nowadays,
the automation of business processes not only spans classi-
cal business domains (e.g., banks and governmental agen-
cies), but also new settings such as healthcare, domotics or
emergency management. More and more such processes are
cyber-physical, as the information flowing through the pro-
cess is often produced by human activities or is acquired by
sensors and software services. Consequently, the execution
context of these processes is more complex and not entirely
predictable, as increasing amounts of data may influence un-
expectedly the running of process instances.

Today there is an abundance of Process Management Sys-
tems (PMSs) driven by semi-formal activity-centric process
modeling languages to enact and manage traditional business
processes. However, such PMSs shy away from dealing with
the inherent dynamic nature of processes enacted in cyber-
physical domains, which must be robust and adaptable to un-
expected conditions [Di Ciccio et al., 2015].

In this paper, we tackle the above challenge by presenting
SmartPM, a PMS implementation for automatically adapt-
ing processes enacted in cyber-physical domains in case of
unanticipated exceptions and exogenous events. SmartPM

aims at demonstrating that a targeted use of some well-
established formalisms for reasoning about actions in Ar-
tificial Intelligence (AI), such as situation calculus [Reiter,
2001], IndiGolog [De Giacomo et al., 2009] and classical
planning [Ghallab et al., 2004], provides a natural frame-
work for the formal specification of explicit mechanisms to
model world changes and responding to anomalous situations
in an automated way during process execution. Specifically
(the formal model underlying SmartPM is described in [Mar-
rella et al., 2014]): (i) situation calculus theories are used to
model the process data and to represent the set of tasks of the
application domain of interest; (ii) the IndiGolog high-level
agent language provides the formal executable semantics for
processes in cyber-physical domains; (iii) classical planning
techniques are used to synthesize resolution strategies in case
of unanticipated exceptions and exogenous events.

2 The Approach and the System
SmartPM relies on an approach (cf. Figure 1) that builds on
the dualism between an expected reality Ψ, the (idealized)
model of reality used by the PMS to reason, and a physical
reality Φ, the real world with the actual values of conditions
and outcomes. While Φ records what is concretely happening
in the real environment during a process execution, Ψ reflects
what it is expected to happen. Process execution steps and ex-
ogenous events have an impact on Φ and any deviation from
Ψ results in the invocation of a state-of-the-art planner, which
synthesises a recovery procedure to adapt the faulty process
instance by removing the gap between the two realities.

To realize this approach, the implementation of SmartPM
covers the modeling, execution and monitoring stages of the
process life-cycle, by capturing the connection of imple-
mented processes with the real-world objects of the cyber-
physical domain of interest. To that end, the architecture of
SmartPM relies on five architectural layers.

The Presentation Layer provides a graphical editor devel-
oped in Java that assists the process designer in the defini-
tion of the process model at design-time. Process knowledge
is represented as a domain theory that includes all the con-
textual information of the domain of concern, such as the
people/services that may be involved in performing the pro-
cess, the tasks, the data and so forth. Data are represented
through some atomic terms that range over a set of data ob-
jects, which depict entities of interest (e.g., capabilities, ser-



Figure 1: An overview of the SmartPM approach.

vices, etc.), while atomic terms can be used to express proper-
ties of domain objects (and relations over objects). Tasks are
collected in a repository and are described in terms of pre-
conditions - defined over atomic terms - and effects, which
establish their expected outcomes. Finally, a process designer
can specify which exogenous events may be catched at run-
time and which atomic terms will be modified after their oc-
currence. Once a valid domain theory is ready, the process
designer uses the graphical editor to define the process con-
trol flow through the standard BPMN notation among a set of
tasks selected from the tasks repository.

The Execution and Service Layers are in charge of man-
aging the process enactment. First of all, the domain the-
ory specification and the BPMN process are automatically
translated into situation calculus and IndiGolog readable for-
mats. Situation calculus is used for providing a declarative
specification of the domain of interest (i.e., available tasks,
contextual properties, tasks preconditions and effects, what is
known about the initial state). Then, an executable model is
obtained in the form of an IndiGolog program to be executed
through an IndiGolog engine. To that end, we customized
an existing IndiGolog engine1 to (i) build a physical/expected
reality by taking the initial context from the external environ-
ment; (ii) manage the process routing; (iii) collect exogenous
events from the external environment; (iv) monitor contex-
tual data to identify changes or events which may affect pro-
cess execution. Once a task is ready for being executed, the
IndiGolog engine assigns it to a proper process participant
(that could be software applications, human actors, robots,
etc.) that provides all the required capabilities for task execu-
tion. Process participants interact with the engine through a
Task Handler, an interactive GUI-based application realized
for Android devices that supports the visualization/execution
of assigned tasks by selecting an appropriate outcome. The
communication between the IndiGolog engine and the task
handlers is mediated by the Communicator Manager compo-
nent and through the Google Cloud Messaging service.

To enable the automated synthesis of a recovery proce-
dure, the Adaptation Layer relies on the capabilities provided
by a PDDL-based planner component (the LPG-td planner2),
which assumes the availability of a planning problem, i.e.,
an initial state and a goal to be achieved, and of a planning
domain definition that includes the actions to be composed
to achieve the goal, the domain predicates and data types.

1http://sourceforge.net/projects/indigolog/
2http://lpg.unibs.it/lpg/

Specifically, if process adaptation is required, we translate
(i) the domain theory defined at design-time into a planning
domain, (ii) the physical reality into the initial state of the
planning problem and (iii) the expected reality into the goal
state of the planning problem. The planning domain and
problem are the input for the planner component. If the plan-
ner is able to synthesize a recovery procedure δa, the Syn-
chronization component combines δ′ (which is the remaining
part of the faulty process instance δ still to be executed), with
the recovery plan δa, builds an adapted process δ′′ = (δa; δ′)
and converts it into an executable IndiGolog program so that
it can be enacted by the IndiGolog engine. Otherwise, if no
plan exists for the current planning problem, the process de-
signer can try to manually adapt the faulty process instance.

The Cyber-Physical Layer is tightly coupled with the phys-
ical components available in the domain of interest. Since the
IndiGolog engine can only work with defined discrete values,
while data gathered from physical sensors have continuous
values, the system provides several web tools that allow pro-
cess designers to associate some of the data objects defined in
the domain theory with the continuous data values collected
from the environment. For example, we developed a web tool
(as a Google Maps plugin) that allows to mark areas of inter-
est from a real map (by selecting latidude/longitude values)
and associate them to the discrete locations defined during the
design stage of a process. The mapping rules generated are
then saved into the Communication Manager and retrieved at
run-time to allow the matching of the continuous data values
collected by the specific sensor into discrete data objects.

SmartPM has been validated through several exper-
iments that confirm the effectiveness of its AI-based
approach for adapting processes in medium-sized
cyber-physical domains (cf. [Marrella et al., 2014]).
More information about the system can be found at:
http://www.dis.uniroma1.it/∼smartpm.

Acknowledgments. This work has been partly supported by
the Italian projects SM&ST, RoMA and NEPTIS. The authors
would like to thanks Pätris Halapuu for his valuable help in
the SmartPM development.

References
[De Giacomo et al., 2009] Giuseppe De Giacomo, Yves

Lespérance, Hector Levesque, and Sebastian Sardina. In-
diGolog: A High-Level Programming Language for Embedded
Reasoning Agents. In Multi-Agent Prog. Springer, 2009.

[Di Ciccio et al., 2015] Claudio Di Ciccio, Andrea Marrella, and
Alessandro Russo. Knowledge-Intensive Processes: Character-
istics, Requirements and Analysis of Contemporary Approaches.
J. Data Semantics, 4(1), 2015.

[Ghallab et al., 2004] Malik Ghallab, Dana S. Nau, and Paolo
Traverso. Automated Planning: Theory and Practice. Morgan
Kaufmann, 2004.

[Marrella et al., 2014] Andrea Marrella, Massimo Mecella, and Se-
bastian Sardina. SmartPM: An Adaptive Process Management
System through Situation Calculus, IndiGolog, and Classical
Planning. In KR, 2014.

[Reiter, 2001] Raymond Reiter. Knowledge in action: logical foun-
dations for specifying and implementing dynamical systems. MIT
press, 2001.


