Interactive Segmentation of User Interface Logs

Simone Agostinelli, Francesco Leotta, and Andrea Marrella

Sapienza Universita di Roma, Rome, Italy
{agostinelli,leotta,marrella}@diag.uniromal.it

Abstract. Robotic Process Automation (RPA) is an emerging technol-
ogy that relies on software (SW) robots to automate intensive and repeti-
tive tasks (i.e., routines) performed by human users on the application’s
User Interface (UI) of their computer systems. RPA tools are able to
capture in dedicated UI logs the execution of many routines of interest.
A UI log consists of user actions that are mixed in some order that re-
flects the particular order of their execution by the user, thus potentially
belonging to different routines. In the RPA literature, the challenge to
understand which user actions contribute to which routines and cluster
them into well-bounded routine traces is known as segmentation. In this
paper, we present a novel approach to the discovery of routine traces
from unsegmented UT logs, which relies on: (%) a frequent-pattern iden-
tification technique to automatically derive the routine behaviors (a.k.a.
routine segments) as recorded into a UI log, (%) a human-in-the-loop
interaction to filter out those segments not allowed (i.e., wrongly discov-
ered from the Ul log) by any real-world routine under analysis, and (i)
a trace alignment technique to cluster all those user actions belonging
to a specific segment into routine traces. We evaluate our in terms of
supported segmentation variants.

1 Introduction

Robotic Process Automation (RPA) [1] is an emerging technology in the field
of Business Process Management (BPM) that relies on software (SW) robots to
automate intensive and repetitive tasks (in the following, called routines) per-
formed by human users on the application’s User Interface (UI) of their computer
systems. Similarly to traditional BPM Systems (BPMSs), RPA tools are able to
act as effective service orchestrators, but without the need of performing the
manual configuration steps required by whatever BPMS to run a process, e.g.,
the definition of specific business rules, the association of resources to the process
activities, etc. Since many routine tasks can be implemented through scripting
or intelligent recording techniques, RPA projects typically involve comparably
little cost than traditional BPM projects [1]. Overall, the target of existing RPA
tools is to boost the productivity of organizations by reducing manual labor
while improving the operational quality and reducing user input errors.

To take full advantage of this technology, organizations leverage the support of
skilled human experts that: (i) preliminarily observe how routines are executed
on the UT of the involved SW applications (by means of walkthroughs, etc.), (i)

Pre-print copy of the manuscript published by Springer (available at
link.springer.com) identified by doi: 10.1007/978-3-030-91431-8 5

2 S. Agostinelli et al.

convert such observations in explicit flowchart diagrams, which are specified to
depict all the potential behaviors (i.e., segments) of the routines of interest, and
(#3) finally implement the SW robots that automate the routines enactment on
a target computer system. However, the current practice is time-consuming and
error-prone, as it strongly relies on the ability of human experts to correctly
interpret the routines to automate [I4]. Consequently, if SW robots are not
designed for the appropriate scope of their work, then their implementation cost
will increase while no clear business improvement effect will be achieved [13].
To tackle this challenge, in their Robotic Process Mining framework [16], Leno
et al. propose to exploit the User Interface (UI) logs recorded by RPA tools to
automatically discover the candidate routines that can be later automated with
SW robots. Ul logs are sequential data of user actions performed on the UI of
a computer system during many routines’ executions. Typical user actions are:
opening a file, selecting/copying a field in a form or a cell in a spreadsheet, read
and write from/to databases, open emails and attachments, etc.

To date, when considering state-of-the-art RPA technology, it is evident that
the RPA tools available in the market are not able to learn how to automate
routines by only interpreting the user actions stored into UI logs [3]. The main
trouble is that in a UI log there is not an exact 1:1 mapping among a recorded
user action and the specific routine segment it belongs to. In fact, the Ul log
usually records information about several routines whose actions are mixed in
some order that reflects the particular order of their execution by the user. The
issue to automatically understand which user actions contribute to a particular
routine segment inside a Ul log and cluster them into well-bounded routine traces
(i.e., complete execution instances of a routine) is known as segmentation [3U16].
The majority of state-of-the-art segmentation approaches are able to properly
extract routine segments (i.e., repeated routine behaviors) from unsegmented UI
logs when the routine executions are not interleaved from each others. Only few
works are able to partially untangle unsegmented Ul logs consisting of many in-
terleaved routines executions, but with the assumption that any routine provides
its own, separate universe of user actions. This is a relevant limitation, since it
is quite common that real-world routines may share the same user actions (e.g.,
copy and paste data across cells of a spreadsheet) to achieve their objectives.
In this paper, we propose a novel approach to the segmentation of UI logs that
aims to mitigate the aforementioned issue showing its effectiveness in terms of
supported segmentation variants. The approach relies on three key ingredients:

1. a frequent-pattern identification technique to automatically discover the ob-
served segments of the routines as recorded into the Ul log. In this phase,
the risk exists that some wrong segments are discovered, i.e., not allowed
from the real-world routines that are known to be valid at the outset.

2. a human-in-the-loop interaction that enables human experts to visualize the
declarative constraints inferred by the discovered routine segments. Such
constraints describe the temporally extended relations between user actions
that must be satisfied throughout a routine segment (e.g., an action a; must
be eventually followed by an action as). In a nutshell, they collectively deter-

Interactive Segmentation of UI Logs 3

mine the observed behaviors of the routine segments from the Ul log. This
knowledge allows human experts to identify and remove those constraints
that should not be compliant with any real-world routine behavior, thus
filtering out the not valid (i.e., wrongly discovered) routine segments;

3. a trace alignment technique to cluster all the user actions associated to a
valid routine segment into well-bounded routine traces.

We show the feasibility of our approach by employing a dataset of 144 synthetic
UI logs covering different segmentation cases to measure to what extent the
approach is able to (re)discover the valid routine segments from such UI logs.
The rest of the paper is organized as follows. Section [2] introduces a running
example that will be used to explain our approach, and discusses the relevant
background on the segmentation of UI logs with all its potential variants. In
Section [3] we present the details of our approach to the automated segmentation
of UI logs. Section [4] evaluates the feasibility of the proposed approach against
synthetic UI logs. Finally, Section [f| discusses the novelty of our approach against
literature works, while Section [6] draws conclusions, traces future works and
outlines a critical discussion about the general applicability of the approach.

2 Background

2.1 Running Example

In this section, we describe a RPA use case inspired by a real-life scenario at
Department of Computer, Control and Management Engineering (DIAG) of
Sapienza Universita di Roma. The scenario concerns the filling of the travel au-
thorization request form made by personnel of DIAG for travel requiring prior
approval. The request applicant must fill a well-structured Excel spreadsheet
(cf. Fig. [[{a)) providing some personal information, such as her/his bio-data
and the email address, together with further information related to the travel,
including the destination, the starting/ending date/time, the means of transport
to be used, the travel purpose, and the envisioned amount of travel expenses,
associated with the possibility to request an anticipation of the expenses already
incurred (e.g., to request in advance a visa). When ready, the spreadsheet is
sent via email to an employee of the Administration Office of DIAG, which is
in charge of approving and elaborating the request. Concretely, for each row
in the spreadsheet, the employee manually copies every cell in that row and
pastes that into the corresponding text field in a dedicated Google form (cf. Fig.
[{b)), accessible just by the Administration staff. Once the data transfer for a
given travel authorization request has been completed, the employee presses the
“Submit” button to submit the data into an internal database.

In addition, if the request applicant declares that s/he would like to use her/his
personal car as one of the means of transport for the travel, then s/he has to
fill a dedicated web form required for activating a special insurance for the part
of the travel that will be performed with the car. This further request will be
delivered to the Administration staff via email, and the employee in charge of

4 S. Agostinelli et al.

travel authorizationxisx ~ pe e = a X S AP] ENZA

File Home Inseric Layou Formu Dati Revisit Visual Guida & @ =
UNIVERSITA DI ROMA
H37 - S v
A 8 = Travel Authorization Request Procedure
1 Full name Leonardo De Luca
2 Position Professor
3 Email ds_mail@uniromal.it Full name
4 Taxcode LNGVCN19C15A370K
) Department of Computer, Control
In service at N N
5 and Management Engineering
6 Starting date 01/02/2020
s
7 |starting time 17:00 ostion
8 Ending date 01/08/2020
9 Ending time 23:59
10 | Destination New York (USA)
11 |Means of transportation taxi+public transport+car et
12 |Purpose Study period
Anticipation of expenses already |

13 incurred (75%) ©
14 Amount of expenses 1000 EUR

Travel Authorization”) : [« > Texcode
Pronto i) m - 1 + 100% ouranse

(a) Excel spreadsheet (b) Google form

Fig. 1: Uls involved in the use case

processing it can either approve or reject such request. At the end, the applicant
will be automatically notified via email of the approval /rejection of the request.
The above procedure, which involves two main routines (in the following, we
will denote them as R1 and R2), is performed manually by an employee of the
Administration Office of DIAG, and it should be repeated for any new travel
request. Routines such as these ones are good candidates to be encoded with
executable scripts and enacted by means of a SW robot within a commercial
RPA tool. However, unless there is complete a-priori knowledge of the specific
routines that are enacted on the Ul and of their concrete composition, their
automated identification from an UI log is challenging, since the associated user
actions may be scattered across the log, interleaved with other actions that are
not part of the routine under analysis, and potentially shared by many routines.
Based on the above description, it becomes clear that a proper execution of R1
requires a path on the Ul made by the following user actionsEl

— loginMail, to access the client email;

— accessMail, to access the specific email with the travel request;

— downloadAttachment, to download the Excel file including the travel request;

— openWorkbook, to open the Excel spreadsheet;

— openGoogleForm, to access the Google Form to be filled;

— getCell, to select the cell in the i-th row of the Excel spreadsheet;

— copy, to copy the content of the selected cell;

— clickTextField, to select the specific text field of the Google form where the
content of the cell should be pasted;

! Note that the user actions recorded in a UI log can have a finer granularity than the
high-level ones used here just with the purpose of describing the routine’s behavior.

Interactive Segmentation of UI Logs 5

— paste, to paste the content of the cell into a text field of the Google form;
— formSubmit, to finally submit the Google form to the internal database.

Note that the user actions openWorkbook and openGoogleForm can be performed
in any order. Moreover, the sequence of actions (getCell, copy, clickTextField,
paste) will be repeated for any travel information to be moved from the Excel
spreadsheet to the Google form. On the other hand, the path of user actions in
the Ul to properly enact R2 is as follows:

— loginMail, to access the client email;

— accessMail, to access the specific email with the request for travel insurance;

— clickLink, to click the link included in the email that opens the Google form
with the request to activate the travel insurance on a web browser;

— approveRequest, to approve the request on the Google form;

— rejectRequest, to reject the request on the Google form;

Note that the execution of approveRequest and rejectRequest is exclusive.

In the rest of the paper, we concisely represent the universe of user actions of

interest for R1 and R2 as follows: Z = {A,B,C,D,E, F,G,H,I,L,M,N,O},

such that: A = loginMail, B = accessMail, C' = downloadAttachment, D =

openWorkbook, ¥ = openGoogleForm, F' = getCell, G = copy, H = clickTextField,

I = paste, L = formSubmit, M = clickLink, N = approveRequest, O = rejectRequest.

2.2 Segmentation of UI logs

In this section, we provide the relevant background on UI logs and we explain
in detail the issue of segmentation of UI logs with all its potential variants.

A Ul log typically consists of a long sequence of user actions recorded during one
user interaction sessionﬂ Such actions include all the steps required to accom-
plish one or more relevant routines using the UT of one or many sw application/s.
For instance, in Fig. 2] we show a snapshot of a UI log captured using a dedi-
cated action loggeﬂ during the execution of R1 and R2. The employed action
logger enables to record the events happened on the UI, enriched with several
data fields describing their “anatomy”. For a given event, such fields are useful
to keep track the name and the timestamp of the user action performed on the
U, the involved sw application, the resource that performed the action, etc.
As shown in Fig.[2] a UT log is not specifically recorded to capture pre-identified
routines. A UT log may contain multiple and interleaved executions of one/many
routine/s (cf. in Fig. [2f the blue/red boxes that group the user actions belonging
to R1 and R2, respectively), as well as redundant behavior and noise. We consider
as redundant any user action that is unnecessary repeated during the execution of
a routine, e.g., a text value that is first pasted in a wrong field and then is moved
in the right place through a corrective action on the UI. On the other hand, we

2 We interpret a user session as a group of interactions that a single user takes within
a given time frame on the Ul of a specific computer system.
3 lhttps://github.com/bpm-diag/smartRPA.

https://github.com/bpm-diag/smartRPA

6 S. Agostinelli et al.

A B c D E F G H | J
1 timestamy user categol application event type event src_path clipboard content workbook worksheet cell content
2 |2020-04-06 1347 Simone Mail Outlook loginMail
3 J2020-04-06 13:47 Simone_ Mail Outlook accessMail
4 |2020-04-06 1347 Simone Mail Outlook downloadAttachment
5 |2020-04-06 13:47 Simone MicrosoftOffice Microsoft Excel openVWorkbook C:\Users\Simone\D: missione acrichiesta missione.xlsx_Fogliol
6 |2020-04-06 13:47 Simone MicrosoftOffice Microsoft Excel openWindow C:\Wsers\Simone\Desktop richiesta missione.xlsx Foglio1
7 |2020-04-06 13-47 Simone MicrosoftOffice Microsoft Excel afterCalculate
8 |2020-04-06 13:47 Simone_ MicrosoftOffice Microsoft Excel resizeWindow C:\WUsers\Simone\Desktay richiesta missione xlsx_Foglio1
9 |2020-04-06 13:47 Simone Browser Chrome openGoogleForm
10 |2020-04-06 13:47 Simone MicrosoftOffice Microsoft Excel getCell richiesta missione xlsx Fogliol Simone Agostinelli
11 /2020-04-06 13:47 Simone Clipboard Clipboard copy Simone Agostinelli
12 |2020-04-06 13-47 Simone Browser Chrome clickTextField
13 |2020-04-06 13-48 Simone _Mail OM clickLink
14 |2020-04-06 13:48 Simone Browser Chrome paste Simone Agostinell
15 2020-04-06 13:48 Simone _Browser Chrome changeField
16 |2020-04-06 13:48 Simone Browser Clm aggrweREHuesl
17 12020-04-06 13-48 Simone MicrosoftCffice Microsoft Excel getCell richiesta missione xisx Foglio1 Dottorando
18 [2020-04-06 13:48 Simone _ Clipboard Clipboard copy Dottorando
19 2020-04-06 1348 Simone_ MicrosoftOffice _ Microsoft Excel resizeWindow C:\Wsers\Simone\Desktaj richiesta missione xIsx_Faoglio1
20 |2020-04-06 13:48 Simone Browser Chrome clickTextField
21 |2020-04-06 13:48 Simone Browser Chrome paste Dottorando

Fig. 2: Snapshot of a Ul log captured during the executions of R1 and R2

consider as noise all those actions that do not contribute to the achievement of
any routine target, e.g., a window that is resized. In Fig. 2] the sequences of user
actions that are not surrounded by a blue/red box can be safely labeled as noise.

In this context, segmentation techniques aim first to extract from a Ul log all
those user actions that are compliant with a specific routine segment, i.e., with
a repetitive routine behavior as observed in the UI log. Then, the target is to
cluster such user actions into well-bounded routine traces, which are complete
and independent execution instances of the routine within the UI log. Such traces
are finally stored in a dedicated routine-based logs, which capture all the user
actions happened during many different executions of the routine and compliant
with a specific routine segment, thus achieving the segmentation task. It is worth
noticing that a routine-based log obtained in this way can eventually be employed
by the commercial RPA tools to synthesize executable scripts in form of SW
robots that will emulate the routine behavior.

For example, an allowed routine segment of R1is (A, B, C, D, £, F', G, H, I,
L). From the description of the use case, allowed routine segments are also those
ones where: (i) A is skipped (if the user is already logged in the client email);
(ii) the pair of actions (D, E) is performed in reverse order; (i) the sequence
of actions (I, ¢, H, I) is executed several time before submitting the Google
form. On the other hand, two allowed routine segments can be observed from
R2: (A, B, M, N) and (A, B, M, O), again with the possibility to skip A, i.e.,
the access to the client email. Note that A and B can be employed by both R1
and R2 to achieve their targets. By analyzing the log, it can be noted that: A
is potentially involved in the enactment of any execution of R1 and R2, while
B is required by all executions of R1 and R2, but it is not clear the association
between the single executions of B and the routine segments they belong to.
Any observed execution of user actions in the Ul log that matches with one of
the above routine segments can be considered as a valid routine trace.

According to [B], we can distinguish between three major forms of UT logs, which
can be categorized as follows:

Interactive Segmentation of UI Logs 7

— Case 1. A UI log captures many not interleaved (case 1.1) or interleaved
(case 1.2) executions of the same routine.

— Case 2. A Ul log captures many executions of different routines, but with
the assumption that different routines do not have any user action in com-
mon. Four variants of this case can be identified: clear separation in the
UI log between the routines’ executions (case 2.1); many executions of the
same routine can be recorded in an interleaved fashion, but the executions
of different routines are separated from each others (case 2.2); the execu-
tions of different routines can be recorded in an interleaved fashion, but the
executions of a specific routine can not be enacted in an interleaved way
(case 2.3); the executions of any routine can be always interleaved from
each others (case 2.4).

— Case 3. Similarly to Case 2, it provides four variants (cases 3.1, 3.2, 3.3,
and 3.4)), with the only difference that a same kind of user action can be
employed by many different routines to achieve their objectives, e.g., the Ul
log associated with the running example in Section belongs to Case 3.

While the literature does not provide works able to properly segment UI logs
including user actions “shared” by many routine executions, in this paper we
propose an approach that is able to relax this assumption and to achieve the
following segmentation cases: 1.1, 2.1, 2.8, 3.1 and 3.3.

3 Approach

Our approach to the segmentation of Ul logs can be considered a semi-supervised
one, as it integrates the usage of automated techniques with the intervention of
human experts in some specific points of the approach. To be more precise, as
shown in Fig. 3] starting from an unsegmented UI log previously recorded by
a RPA tool, the first step is to inject into the Ul log the end-delimiters of the
routines under examination. An end-delimiter is a dummy action added to the
Ul log immediately after the user action that is known to complete a routine
execution. If we consider our running example in Section [2.1] an end-delimiter
is always required after the final action of R1, i.e., formSubmit, and after one
of the final actions or R2, i.e., approveRequest or rejectRequest. In this paper,
we assume that the knowledge of the final action(s) of a routine is given at the
outset. Such information can be obtained, for example, by interviewing the users
that are in charge to execute the routines of interest.

The second step of the approach consists of automatically extracting the ob-
served routines’ behaviors (i.e., the routine segments) directly from the UT log
with the end-delimiters. To this aim, we employ a frequent-pattern identification
technique [9], which has been properly customized for this purpose.

Since from the previous step there is the possibility that some (not allowed)
segments are identified as if they would be valid, the third step of the approach
involves a human-in-the-loop interaction to filter out these segments. Specif-
ically, we automatically infer the declarative constraints (i.e., the temporally
extended relations between user actions) that must be satisfied throughout a

8 S. Agostinelli et al.

Ul log Ul log with delimiters

¢ ¢ N '
| Delimiters > Segments Trace
LOC Injection —> 9! —> —> | A E— E—
Identification Alignment

Segments routine routine-based

filtering traces log

A

human-in-the-loop

Fig. 3: Overview of our general approach to the segmentation of UI logs

routine segment. In this way, we enable human experts to identify and remove
those constraints that should not be compliant with any real-world routine be-
havior, thus removing the wrongly discovered routine segments from the UT log.
Finally, starting from any of the remaining (valid) routine segments, we employ
a customized version of a trace alignment technique in Process Mining [2] to
automatically detect and extract the routine traces by the original Ul log. Such
traces will be stored in a dedicated routine-based log. Therefore, the final outcome
of our segmentation approach will be a collection of as many routine-based logs
as are the number of valid routine segments. By identifying the routine traces,
we are also able to filter out those actions in the UI log that are not part of the
routine under observation and hence are redundant or represent noise.

In the following sections, we discuss in detail all the steps of our approach,
instantiating them over the running example of Section [2.1

3.1 Segments Discovery through Frequent-Pattern Identification

Pattern identification is a common task in data sequences analysis. As an ex-
ample, in the field of smart spaces, patterns are identified in sensor logs repre-
senting human routines [I7]. These patterns are then used to learn models of
human behavior that can be used at runtime for activity recognition or anomaly
detection. In such a scenario, authors in [9] proposed an approach based on min-
imum description length (MDL) principle. In this paper, we have customized
the technique presented in [9] for automatically identifying the routine segments
from UI logs with the end-delimiters properly converted into ad-hoc datasets.
The algorithm takes as input a dataset of a sequence of sensor events witnessing
human interactions with the environment. At each step, the algorithm looks for
patterns that best compress the dataset. A pattern consists of a specific sequence
of sensor events and all of its occurrences in the dataset. In our RPA application
scenario, the sensor events represent the user actions involved in each routine(s)
execution(s), and the frequent patterns are the discovered routine segments.
Starting from a single pattern for each different sensor event, the algorithm
at each step tries to extend patterns aiming at the best compression possible.
Every instance of the pattern, in particular, is replaced by a symbol associated
to the pattern. The compression of a dataset D given a pattern P is given

Interactive Segmentation of UI Logs 9

D=O
p=C P Joe(_ P X P > P-=0000

Fig.4: A dataset compression step in segments discovery

by the formula W%L(P), where DL(D) represent the description length,

measured for example in bits of the dataset with the current patterns, DL(D|P)
represents the description length of D if all of the occurrences of P are replaced
with a symbol, and DL(P) represents the description length of the pattern, which
must be taken into account in compression evaluation. The algorithm stops as
soon as no further compression is possible, returning all the patterns found (i.e.,
all the discovered routine segments). Fig. 4| shows a compression step where
a pattern P of repeating events (for simplicity colors have been used instead
of labels) is identified and the dataset is compressed accordingly. Noteworthy,
for certain parts of the dataset, no pattern is found whose definition improve
compression (with the exception of the initial patterns of length one).

We show now how an execution instance of the above algorithm can be applied
to the following UT log (that already includes the end-delimiters) generated from
the running example of Section 2.1} U = {A, B, C\1, Dy1, Evy, Fii, Gio, Hig,
Iy, Li1, X, B, Moy, No1, Z, B, Cia, D12, Evo, Fia, Gio, Hi2, I12, L12, X, B,
Maa, Oa2, Z, ..., A, B, Cy(i1), Y1, D11y, By, Figi-), Gii-1), Gia-1),s
Gigi-ys Hig-nyy Ligi-1ys L1y, X, By, Ma—1), Nag-1), 2, ..., B, Yn_1,
C,'I,', D“, E],‘, Yn7 F[,‘, (;'lj, H'l,',]’[,‘, I],‘, [],‘, le X, B, J\Jgi, 021‘, Z} For the
sake of understandability, we use a numerical subscript ji associated to any user
action to indicate that it belongs to the ¢ — th execution of the j — th routine
under study. This information is not recorded into the UI log, and discovering
it (i.e., the identification of the subscripts) is one of the “implicit” effects of
segmentation when routine traces are built. Note that A and B are not decorated
with subscripts since they can potentially belong to executions of R1 or R2. The
log contains elements of noise, i.e., user actions Yxe 1,3 that are not allowed by
R1 and R2, and redundant actions like (- and I that are unnecessary repeated
multiple times. X and Z are the end-delimiters for the executions of R1 and R2.
The delimiters injection stage is crucial to drive the discovery of the largest pos-
sible set of valid routine segments, otherwise the technique would detect only
a small subset of them. For example, let us suppose that the UI log includes
only user actions related to two routines A and B without the presence of any
end-delimiter. In this case, the Ul log will likely include different sequences of
consecutive routine segments of the kind A*, B* or AB*. In this condition, any
compression algorithm will likely merge multiple routine segments into cumu-
lative symbols (e.g., AAA, BB, ABAB) rather than highlighting single routine
executions. This issue becomes less relevant when between the execution of two
separate routines there are no repetitive actions. However, while the latter as-
sumption is reasonable in case of recording of human habits, it is far from being

10 S. Agostinelli et al.

realistic in case of Ul logs recording low-level user actions performed during the
interaction with a computer system.

Based on the foregoing, the output of the segments discovery stage is represented
by a set of identified frequent segments (some of them may not be compliant
with the real-world routine behaviors, see the next section), as follows:

- {(F, G),{C, D, EY, {H, I, L), {C, D, E, F,G, H, I, L}, (B, C, D, E, F,
G, H,I,L), (A, B,C, D, E, F, G, H,I, L)}
— {{A,B), (B, M), (B, M,0), (B, M,N)}

3.2 Human-in-the-loop Interaction

Once the routine segments have been discovered, the possibility exists that many
of them represent not allowed routine behaviors. This happens because a Ul log
combines the execution of several routines that are usually interleaved from each
others. In addition, in case of routines that make use of the same kinds of user
actions to achieve their goals, it may happen that new patterns of repeated
user actions, which represent potential not allowed routine segments, are rather
detected as valid ones within the Ul log.

On the basis of the experiments performed in Section [4 it becomes clear that
the employed frequent-pattern identification algorithm is able to (re)discover
the allowed routine segments that are known to be recorded in the input Ul
logs. However, since there is the possibility that some (not allowed) segments
are identified as if they would be valid, a human-in-the-loop interaction is re-
quired to filter out all those routine segments representing behaviors that should
not be allowed by any real-world routine of interest. Specifically, starting from
the discovered routine segments, we invoke for any of these segments the De-
clare Miner algorithm implemented in [6] to infer the declarative constraints
(i.e., the temporally extended relations between user actions) that must be sat-
isfied throughout the segments. The constraints are represented using Declare,
a well-known declarative process modeling language introduced in [I0]. Declare
constraints can be divided into four main groups: existence, relation, mutual and
negative constraints. We notice that the use of declarative notations has been
already demonstrated as an effective tool to visually support expert users in the
analysis of event logs [21].

At this point, one or more human expert(s) may be involved to evaluate the
constraints derived for any routine segment and remove those ones that are
considered not compliant with any real-world routine behavior. Detecting and
removing these constraints means to filter out all the not allowed (i.e., wrongly
discovered) routine segments.

For example, if we consider the discovered segment (C', D, I}, the following (sim-
ple) Declare constraints (among the others) hold: Init(C') and End(F), meaning
that routines’ executions starting with C' or ending with £ have been discovered
into the Ul log. An expert user that is aware of the behavior of the real-world
routines under analysis can immediately understand that the above Declare con-
straints should not hold in reality, since R1 and R2 can start only with A or

Interactive Segmentation of UI Logs 11

B and end with ., O or N. For this reason, the above Declare constraints can
be considered both as wrongly representative of the routines under analysis. As
a consequence, all the discovered segments for which one of the above Declare
constraints hold can be immediately discarded. For the sake of space, we do
not show here all the Declare constraints that hold for any of the discovered
segments. However, we point out that the iterative analysis of the Declare con-
straints associated to the discovered segments will support the human experts
to easily detect and filter out those segments that must not be later emulated by
SW robots. The list of allowed segments for our running example is the following:

- {(B,C,D,E,F,G, H,1,L), (A, B, C,D,E,F,G, I, L)}
- {<B,]\[,O>, <B7]\[>N>}

3.3 Trace Alignment

Trace alignment [2] is a conformance checking technique within Process Mining
that replays the content of any trace in a log against a process model, one
event at a time. For each trace in the log, the technique identifies the closest
corresponding trace that can be parsed by the model, i.e., an alignment.

We perform trace alignment by constructing an alignment of a Ul log U (note
that we can consider the entire content of the UI log as a single trace) and a pro-
cess model W (representing a valid routine segment) as a Petri Net, which allows
us to exactly pinpoint where deviations occur. Specifically, we relate “moves”
in the log to “moves” in the model in order to establish an alignment between
U and W. However, it may be that some of the moves in the log cannot be
mimicked by the model and vice versa. In particular, we are interested in syn-
chronous moves between U and W. If they exist, the user actions involved in
such synchronous moves are extracted and stored into a routine-based log.

We have implemented a customized version of the above trace alignment algo-
rithm as a supervised segmentation technique [4] that is able to segment a UI
log and achieve all variants of cases 1, 2 and (partially) 3 except when there are
interleaved executions of shared user actions by many routines. In that case, the
risk exists that a shared user action is associated to a wrong routine execution
(i.e., case 3.3 and 3.4 are not covered). Thus, while in [4], to make the algorithm
works, it is required to know a-priori the structure (i.e., the flowchart) of the
routines to identify in the UI log (cf. [20]), the novelty of the proposed approach
is to semi-automatically discover such structures in the form of routine segments,
and then used them as input for the supervised segmentation technique in [4].
In the case of our running example, starting from the outcome of the previous
step (i.e., the valid routine segments), the output of the trace alignment will be
a set of four routine-based logs generated as follows:

— Uw1 = {(A11, Ba1, Ci1, Diy, Fu, Fioy, Gy, Hin, Ty Lin)y oo, (Asg—1y,
Bii—1), Cigi—1), Digi—1), Eigi—1)s Figi—1), Gig—1), Higi—1), Tigi—1)s Ligi—1), '}

- UW2 = {<B127 (/']27 D|27 FH_’, Fl'_’, (:12, []127]|27]<127 >, ceey <B11,7 (—"1/7 D|/’ F]/,
Fui, Gus, Hus, i, L)}

— Uws = {(Ba1, Ma1, Na1), ..., (B2@i—1), Magi—1), Nogi—1))}

— Uws = {(Bzz7 Mz, O22), ..., (Bai, Moy, 02;',)}

12 S. Agostinelli et al.

Table 1: Experiments’ results. For each segmentation case the number of actions
is 28, 21 and 20 (resp.). Only logs with 20 different allowed segments are shown
here, and the number of valid routine behaviors is the 70% of the 1000s that
were introduced in the UI logs, while the other 30% may be affected by noise.

Case 1 |# discovered segments (valid/wrong)
Noise | 0% 10% 20%
no repetitive actions 20/2 20/88 20/118
repetitive actions 20/11 16/161 16/179
Case 2 |# discovered segments (valid/wrong)
Noise | 0% 10% 20%
no repetitive actions 20/2 20/59 20/69
repetitive actions 20/10 20/132 20/136
Case 3 |# discovered segments (valid/wrong)
Noise | 0% 10% 20%
no repetitive actions 20/6 20/53 20/67
repetitive actions 20/13 20/146 20/170

4 Evaluation

To investigate the feasibility of our approach to the automated segmentation of
UT logs, we assessed to what extent it is able to (re)discover routine segments
that are known to be recorded into the input UI logs. Specifically, we have
synthetically generated 144 different UI logs, in a way that each UI log consisted
of 1000 routine executions and was characterized by a unique configuration by
varying the following inputs:

— wvalid_routine_segments: number of different routines segments (5/10/15/20),
in terms of allowed behaviors, included in the Ul log.

— alphabet_size: size of the alphabet of user actions for each segmentation case:
Case 1 (13/18/23/28); Case 2 (15/16/18/21); Case 3 (13/15/17/20).

— walid_traces: percentage of allowed behaviors recorded into the UT log (50%/
70%/100%). The remaining portion of the UI log (50%/30%) may be dirty,
i.e., it contains routine executions potentially affected by noise.

— percentage of noise in the remaining (dirty) portion of the Ul log (10%/20%).

The synthetic Ul logs generated for the test and the complete list of results
can be analyzed at: http://tinyurl.com/icsoc2021. The implementation of our
approach is available: https://github.com/bpm-diag/INTSEG. For the sake of
space, we present in Table[IJonly a view of the results in one of the most complex
cases to tackle. The results indicate that the approach scales very well in case
of an increasing number of different routine segments to be discovered and with
an alphabet of user actions of growing size. The computation time is not shown,

http://tinyurl.com/icsoc2021
https://github.com/bpm-diag/INTSEG

Interactive Segmentation of UI Logs 13

since it ranges from milliseconds for UI logs with 5 different routine segments
up to few seconds for Ul logs with 20 segments. This result was expected, since
more segments in a Ul log means more executions to analyze and interpret.

By analyzing the results, we can infer that the approach is able to discover the
same allowed routine segments that were synthetically introduced in the routine
executions recorded in the UI logs, achieving the following segmentation cases:
1.1, 2.1, 2.8, 3.1 and 3.3. On the other hand, our approach seems to lack in the
computation of valid routine segments in presence of repetitive user actions (i.e.,
user actions that are repeated in a loop), when there are several routine segments
generated by different executions of the same routine. This is due to the fact that
similar sequences of user actions tend to be compressed together, and since they
are generated from the same routine, the risk exists that different sequences are
wrongly recognized as the same and bounded together, thus leading to a number
of routine segments lower than ones that were synthetically introduced.

5 Related work

Segmentation is currently considered as one of the “hot” key research effort to
investigate [3U10] in the RPA field. Concerning RPA-related techniques, Bosco et
al. [8] provide a method that exploits rule mining and data transformation tech-
niques, able to discover routines that are fully deterministic and thus amenable
for automation directly from UI logs. This approach is effective in case of Ul
logs that keep track of well-bounded routine executions (cases 1.1 and 2.1), and
becomes inadequate when the Ul log records information about several routines
whose actions are potentially interleaved. In this direction, Leno et al. [I5] pro-
pose a technique to identify execution traces of a specific routine relying on the
automated synthesis of a control-flow graph, describing the observed directly-
follow relations between the user actions. This technique is able to achieve cases
1.1, 1.2 and 2.1, and (only) partially the cases 2.2, 2.3 and 2.4, losing in accu-
racy in presence of recurrent noise and interleaved routine executions. The main
limitation of the above techniques is tackled in [4], which presents a supervised
segmentation technique that is able to achieve all variants of cases 1, 2 and (par-
tially) 3 except when there are interleaved executions of shared user actions by
many routines. In this paper, we exploit the technique presented in [4] to the
discovery of routine traces given a set of input routine segments.

Even if more focused on traditional business processes in BPM rather than on
RPA routines, Fazzinga et al. [I1] employ predefined behavioral models to es-
tablish which process activities belong to which process model. The technique
works well when there are no interleaved user actions belonging to one or more
routines, since it is not able to discriminate which event instance (but just the
event type) belongs to which process model. This makes [I1] effective to tackle
cases 1.1, 2.1 and 3.1. Closely related to [II], there is the work of Liu [I8]. The
author proposes a probabilistic approach to learn workflow models from inter-
leaved event logs, dealing with noises in the log data. Since each workflow is
assigned with a disjoint set of operations, the work [I8] is able to achieve both

14 S. Agostinelli et al.

cases 1.1 and 2.1, but partially cases 2.2, 2.3 and 2.4 (the approach can lose
accuracy in assigning operations to workflows).

There exist other approaches whose the target is not to exactly resolve the seg-
mentation issue. Many research works exist that analyze UI logs at different
levels of abstraction and that can be potentially useful to realize segmentation
techniques. With the term “abstraction” we mean that groups of user actions
to be interpreted as executions of high-level activities. Baier et al. [7] propose
a method to find a global one-to-one mapping between the user actions that
appear in the UI log and the high-level activities of a given model. Similarly,
Ferreira et al. [12], starting from a state-machine model describing the routine
of interest in terms of high-level activities, employ heuristic techniques to find
a mapping from a “micro-sequence” of user actions to the “macro-sequence” of
activities in the state-machine model. Finally, Mannhardt et al. [19] present a
technique that map low-level event types to multiple high-level activities (while
the event instances, i.e., with a specific timestamp in the log, can be coupled
with a single high-level activity). However, segmentation techniques in RPA must
enable to associate low-level event instances (i.e., user actions) to multiple rou-
tines, making abstractions techniques ineffective to tackle all those cases where
is the presence of interleaving user actions of many routines. As a consequence,
all abstraction techniques are effective to achieve cases 1.1 and 2.1 only.

6 Discussion and Concluding Remarks

In this paper we have presented an approach that tackles the segmentation chal-
lenge relying on three main steps: (i) a frequent-pattern identification technique
to automatically derive the observed routine behaviors from a UI log, (i) a
human-in-the-loop interaction to filter out those behaviors not allowed by any
real-world routine execution, and (%ii) a trace alignment technique in Process
Mining to cluster all user actions belonging to a specific routine behavior into
well-bounded routine traces. Our approach is based on a semi-supervised as-
sumption, since we know a-priori the end-delimiters to be associated to any user
action that ends a routine execution. On the other hand, the approach is not
aware of the concrete behavior of the routines of interest, which will be discov-
ered by the approach itself. For this reason, we consider this contribution as an
important step towards the development of a more complete and unsupervised
technique to the segmentation of UI logs.

The presented approach is able to extract routine traces from unsegmented UI
logs that record in an interleaved fashion many different routines but not the
routine executions, thus losing in accuracy when there is the presence of inter-
leaving executions of the same routine. In addition, it is also able to properly
deal with shared user actions required by all routine executions in the UI log,
thus achieving the cases 1.1, 2.1, 2.3, 3.1, and 3.3.

As a future work, we are going to perform a robust evaluation: (i) on real-world
case studies with heterogeneous UT logs, and (7) on the impact of the human-in-
the-loop interaction to filter out wrongly discovered routine segments. In addi-

Interactive Segmentation of UI Logs 15

tion, we aim at relaxing the semi-supervised assumption by employing machine
learning and DNN techniques to automatically identify the end-delimiters.

Acknowledgments. This work has been supported by the “Dipartimento di
Eccellenza” grant, the H2020 project DataCloud and the Sapienza grant BPbots.

References

1. Van der Aalst, W.M., Bichler, M., Heinzl, A.: Robotic process automation. Bus
Inf Syst Eng 60 (2018)
2. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-Based Fitness in Confor-
mance Checking. In: ACSD’11. pp. 57-66. IEEE (2011)
3. Agostinelli, S., Marrella, A., Mecella, M.: Research Challenges for Intelligent
Robotic Process Automation. In: BPM 2019 Int. Workshops, AI4BBPM’19 (2019)
4. Agostinelli, S., Marrella, A., Mecella, M.: Automated Segmentation of User Inter-
face Logs. In: RPA. Management, Technology, Applications. De Gruyter (2021)
5. Agostinelli, S., Marrella, A., Mecella, M.: Exploring the Challenge of Automated
Segmentation in Robotic Process Automation. In: 15th Int. Conf. on Research
Challenges in Information Science, RCIS’21 (2021)
6. Alman, A., Di Ciccio, C., Haas, D., Maggi, F.M., Nolte, A.: Rule mining with
RuM. In: ICPM’20. IEEE (2020)
7. Baier, T., Rogge-Solti, A., Mendling, J., Weske, M.: Matching of Events and Ac-
tivities: an Approach Based on Behavioral Constraint Satisfaction. In: SAC (2015)
8. Bosco, A., Augusto, A., Dumas, M., La Rosa, M., Fortino, G.: Discovering Au-
tomatable Routines from User Interaction Logs. In: 17th Int. Conf. on Business
Process Management (Forum track). pp. 144-162 (2019)
9. Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity Discovery and Activity Recogni-
tion: A New Partnership. IEEE Transactions on Cybernetics 43(3), 820-828 (2013)
10. van Der Aalst, W.M., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between flexibility and support. Comp. Sc.-Res. and Dev. 23(2) (2009)
11. Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E., Pontieri, L.: Efficiently Inter-
preting Traces of Low Level Events in Business Process Logs. Inf. Syst. 73 (2018)
12. Ferreira, D.R., Szimanski, F., Ralha, C.G.: Improving Process Models by Mining
Mappings of Low-Level Events to High-Level Activities. Inf. Syst. 43(2) (2014)
13. Gao, J., van Zelst, S.J., Lu, X., van der Aalst, W.M.P.: Automated Robotic Process
Automation: A Self-Learning Approach. In: CooplIS’19. pp. 95-112. Springer (2019)
14. Jimenez-Ramirez, A., Reijers, H.A., Barba, 1., Del Valle, C.: A Method to Improve
the Early Stages of the Robotic Process Automation Lifecycle. In: CAiSE (2019)
15. Leno, V., Augusto, A., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.:
Identifying Candidate Routines for Robotic Process Automation from Unseg-
mented UI Logs. In: 2nd Int. Conf. on Process Mining. pp. 153-160 (2020)
16. Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic Process
Mining: Vision and Challenges. Bus. & Inf. Sys. Eng. pp. 1-14 (2020)
17. Leotta, F., Mecella, M., Sora, D., Catarci, T.: Surveying Human Habit Modeling
and Mining Techniques in Smart Spaces. Future Internet 11(1), 23 (2019)
18. Liu, X.: Unraveling and Learning Workflow Models from Interleaved Event Logs.
In: 2014 IEEE Int. Conf. on Web Services. pp. 193-200 (2014)
19. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M., Toussaint, P.J.:
Guided Process Discovery — A Pattern-based Approach. Inf. Syst. 76 (2018)
20. Marrella, A.: What Automated Planning Can Do for Business Process Manage-
ment. In: BPM 2017 International Workshops, AI4BBPM’17 (2017)
21. Rovani, M., Maggi, F.M., de Leoni, M., van der Aalst, W.M.: Declarative process
mining in healthcare. Expert Systems with Applications 42(23) (2015)

	Interactive Segmentation of User Interface Logs

