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Abstract. In the era of Big Data and Internet-of-Things (IoT), all real-world
environments are gradually becoming cyber-physical (e.g., emergency manage-
ment, healthcare, smart manufacturing, etc.), with the presence of connected de-
vices and embedded ICT systems (e.g., smartphones, sensors, actuators) produc-
ing huge amounts of data and events that influence the enactment of the Cyber
Physical Processes (CPPs) enacted in such environments. A Process Management
System (PMS) employed for executing CPPs is required to automatically adapt its
running processes to anomalous situations and exogenous events by minimising
any human intervention at run-time. In this paper, we tackle this issue by introduc-
ing an approach and an adaptive Cognitive PMS that combines process execution
monitoring, unanticipated exception detection and automated resolution strate-
gies leveraging on well-established action-based formalisms in Artificial Intelli-
gence, which allow to interpret the ever-changing knowledge of cyber-physical
environments and to adapt CPPs by preserving their base structure.
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1 Introduction

In the last years, we have witnessed the emergence of new computing paradigms, such
as Industry 4.01, Health 2.0 (e.g., cf. [1]) and mobile-based emergency management
[2], in which the interplay of Internet-of-Things (IoT) devices, i.e., devices attached
to the Internet, cloud computing, Software-as-a-Service (SaaS), and Business Process
Management (BPM) create the so-called cyber-physical environments and give rise to
the concept of Cyber-Physical Systems (CPSs). The role of CPSs is to monitor the
physical processes enacted in cyber-physical environments, create a virtual copy of
the physical world and make decentralized decisions, by introducing automated and
intelligent support of workers in their increasingly complex work [3].

1 cf. H. Kagermann, W. Wahlster and J. Helbig: Recommendations for implementing the
strategic initiative Industrie 4.0: Final report of the Industrie 4.0 Working Group, 2013,
Frankfurt, http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_
Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_
report__Industrie_4.0_accessible.pdf



A relevant aspect in these environments lies in the fundamental role played by the
processes orchestrating the different actors (software, humans, robots, etc.) involved in
the CPS. We refer to these processes as cyber-physical processes (CPPs), whose en-
actment is influenced by user decision making and coupled with contextual data and
knowledge production coming from the cyber-physical environment. According to [4],
Cognitive Process Management Systems (CPMSs) are the key technology for support-
ing CPPs. A PMS is said to be cognitive when it involves additional processing con-
structs that are at a semantic level higher than those of conventional PMSs. These con-
structs are called cognitive BPM constructs and include data-driven activities, goals, and
plans [4]. Their usage can open opportunities for new levels of automation for CPPs,
such as - for example - the automated synthesis of adaptation strategies at run-time
exploiting solely the process knowledge and its expected evolution.

During the enactment of CPPs, variations or divergence from structured reference
models are common due to exceptional circumstances arising (e.g., autonomous user
decisions, exogenous events, or contextual changes), thus requiring the ability to prop-
erly adapt the process behavior. Process adaptation can be seen as the ability of a
process to react to exceptional circumstances (that may or may not be foreseen) and to
adapt/modify its structure accordingly. Exceptions can be either anticipated or unantic-
ipated. An anticipated exception can be planned at design-time and incorporated into
the process model, i.e., a (human) process designer can provide an exception handler
that is invoked during run-time to cope with the exception. Conversely, unanticipated
exceptions refer to situations, unplanned at design-time, that may emerge at run-time
and can be detected only during the execution of a process instance, when a mismatch
between the computerized version of the process and the corresponding real-world pro-
cess occurs. To cope with those exceptions, a PMS is required to allow ad-hoc process
changes for adapting running process instances in a context-dependent way.

The fact is that, in cyber-physical environments, the number of possible anticipated
exceptions is often too large, and traditional manual implementation of exception han-
dlers at design-time is not feasible for the process designer, who has to anticipate all
potential problems and ways to overcome them in advance [5]. Furthermore, antic-
ipated exceptions cover only partially relevant situations, as in such scenarios many
unanticipated exceptional circumstances may arise during the process instance execu-
tion. Therefore, the process designer often lacks the needed knowledge to model all the
possible exceptions at the outset, or this knowledge can become obsolete as process
instances are executed and evolve, by making useless her/his initial effort.

To tackle this issue, in this paper we summarize the main ideas discussed in [6] and
introduce our work on SmartPM2, a CPMS able to automatically adapt CPPs at run-
time when unanticipated exceptions occur, thus requiring no specification of recovery
policies at design-time. The general idea builds on the dualism between an expected
reality and a physical reality: process execution steps and exogenous events have an
impact on the physical reality and any deviation from the expected reality results in a
mismatch to be removed to allow process progression.

To that end, we have resorted to three popular action-based formalisms and tech-
nologies from the field of Knowledge Representation and Reasoning (KR&R): situation

2 The reader interested to the very technical details may refer to [7, 8, 6].
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calculus [9], IndiGolog [10], and automated planning [11, 12]. We used the situation cal-
culus logical formalism to model the underlying domain in which processes are to be
executed, including the description of available tasks, contextual properties, tasks’ pre-
conditions and effects, and the initial state. On top of such model, we used the IndiGolog
high-level agent programming language for the specification of the structure and control
flow of processes. Importantly, we customized IndiGolog to monitor the online execu-
tion of processes and detect potential mismatches between the model and the actual
execution. If an exception invalidates the enactment of the processes being executed, an
external state-of-the-art classical planner is invoked to synthesise a recovery procedure
to adapt the faulty process instance.

The choice of adopting action-based formalisms from the KR&R field is motivated
by their ability to provide the right cognitive level needed when dealing with dynamic
situations in which data (values) play a relevant role in system enactment and automated
reasoning over the system progress. In the field of BPM, many other formalisms (in
particular Petri Nets-based and process algebras) have been successfully adopted for
process management, but all of them are somehow based on synthesis techniques of
the control-flow, when considering their automated reasoning capabilities. This implies
the level of abstraction over dealing with data and dynamic situations is fairly “raw”,
when compared with KR&R methods in which automated reasoning over data values
and situations is much more developed [13, 14, 9]. The choice of KR&R technologies
allowed us to develop a principled, clean and simple-to-manage framework for process
adaptation based on relevant data manipulated by the process, without compromising
efficiency and effectiveness of the proposed solution.

The rest of the paper is organized as follow. Section 2 introduces conceptual archi-
tecture for CPMSs that manage CPPs. Such an architecture is then instantiated in the
SmartPM approach and system outlined in Section 3. Finally Section 4 concludes the
paper by discussing our approach in the larger context and presenting possible future
evolutions.

2 A Conceptual Architecture for Managing CPPs

CPSs are having widespread applicability and proven impact in multiple areas,
like aerospace, automotive, traffic management, healthcare, manufacturing, emer-
gency management [15]. According to [16], any physical environment which contains
computing-enabled devices can be considered as a cyber-physical environment.

The trend of managing CPPs, i.e., processes enacted in cyber-physical environ-
ments, has been fueled by two main factors. On the one hand, the recent development
of powerful mobile computing devices providing wireless communication capabilities
have become useful to support mobile workers to execute tasks in such dynamic set-
tings. On the other hand, the increased availability of sensors disseminated in the world
has lead to the possibility to monitor in detail the evolution of several real-world objects
of interest. The knowledge extracted from such objects allows to depict the contingen-
cies and the context in which processes are carried out, by providing a fine-grained
monitoring, mining, and decision support for them.
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We devise in the following a conceptual architecture to concretely build an adaptive
CPMS in cyber-physical environments. The management of a CPP requires additional
challenges to be considered if compared with a traditional “static” business process.
On the one hand, there is the need of representing explicitly real-world objects and
technical aspects like device capability constraints, sensors range, actors and robots
mobility, etc. On the other hand, since cyber-physical environments are intrinsically
“dynamic”, a CPMS providing real-time monitoring and automated adaptation features
during process execution is required.

To this end, the role of the data perspective becomes fundamental. Data, includ-
ing information processed by process tasks as well as contextual information, are the
main driver for triggering process adaptation, as focusing on the control flow perspec-
tive only - as traditional PMSs do - would be insufficient. In fact, in a cyber-physical
environment, a CPP is genuinely knowledge and data centric: its control flow must be
coupled with contextual data and knowledge production and process progression may
be influenced by user decision making. This means that traditional imperative models
have to be extended and complemented with the introduction of specific cognitive con-
structs such as data-driven activities and declarative elements (e.g., tasks preconditions
and effects) which enable a precise description of data elements and their relations, so
as to go beyond simple process variables, and allow establishing a link between the
control flow and the data perspective.

Starting from the above considerations, coupled with the experience gained in the
area and lessons learned from several projects involving CPSs, we have devised a con-
ceptual architecture to build a CPMS for the management of CPPs, which supports
the so-called Plan-Act-Learn cycle for cognitively-enabled processes [4]. As shown in
Fig. 1, we identified 5 main architectural layers that we present in a bottom-up fashion.

The cyber-physical layer consists mainly of two classes of physical components:
(i) sensors (such as GPS receivers, RFID chips, 3D scanners, cameras, etc.) that col-
lect data from the physical environment by monitoring real-world objects and (ii) ac-
tuators (robotic arms, 3D printers, electric pistons, etc.), whose effects affect the state
of the physical environment. The cyber-physical layer is also in charge of providing
a physical-to-digital interface, which is used to transform raw data collected by the
sensors into machine-readable events, and to convert high-level commands sent by the
upper layers into raw instructions readable by the actuators. The cyber-physical layer
does not provide any intelligent mechanism neither to clean, analyse or correlate data,
nor to compose high-level commands into more complex ones; such tasks are in charge
of the uppers layer.

On top of the cyber-physical layer lies the service layer, which contains the set of
services offered by the real-world entities (software components, robots, agents, hu-
mans, etc.) to perform specific process tasks. In the service layer, available data can
be aggregated and correlated, and high-level commands can be orchestrated to provide
higher abstractions to the upper layers. For example, a smartphone equipped with an
application allowing to sense the position and the posture of a user is at this layer, as
it collects the raw GPS, accellerometer and motion sensor data and correlates them to
provide discrete and meaningful information.
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Fig. 1: A conceptual architecture for CPPs.

On top of the service layer, there are two further layers interacting with each other.
The enactment layer is in charge of (i) enacting complex processes by deciding which
tasks are enabled for execution, (ii) orchestrating the different available services to per-
form those tasks and (iii) providing an execution monitor to detect the anomalous situa-
tions that can possibly prevent the correct execution of process instances. The execution
monitor is responsible for deciding if process adaptation is required. If this is the case,
the adaptation layer will provide the required algorithms to (i) reason on the available
process tasks and contextual data and to (ii) find a recovery procedure for adapting
the process instance under consideration, i.e., to re-align the process to its expected
behaviour. Once a recovery procedure has been synthesized, it is passed back to the
enactment layer for being executed.

Finally, the design layer provides a GUI-based tool to define new process specifica-
tions. A process designer must be allowed not only to build the process control flow, but
also to explicitly formalize the data reflecting the contextual knowledge of the cyber-
physical environment under study. It is important to underline that data formalization
must be performed without any knowledge of the internal working of the physical com-
ponents that collect/affect data in the cyber-physical layer. To link tasks to contextual
data, the GUI-based tool must go beyond the classical “task model” as known in the
literature, by allowing the process designer to explicitly state what data may constrain
a task execution or may be affected after a task completion. Finally, besides specify-
ing the process, configuration files should also be produced to properly configure the
enactment, the services and the sensors/actuators in the bottom layers.
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Fig. 2: An overview of the SmartPM approach.

3 The SmartPM Approach and System

SmartPM (Smart Process Management) is an approach and an adaptive CPMS imple-
menting a set of techniques that enable to automatically adapt process instances at run-
time in the presence of unanticipated exceptions, without requiring an explicit defini-
tion of handlers/policies to recover from tasks failures and exogenous events. SmartPM
adopts a layered service-based approach to process management, i.e., tasks are exe-
cuted by services, such as software applications, humans, robots, etc. Each task can be
thus seen as a single step consuming input data and producing output data.

To monitor and deal with exceptions, the SmartPM approach leverages on [17]’s
technique of adaptation from the field of agent-oriented programming, by specializing
it to our CPP setting (see Fig. 2). We consider adaptation as reducing the gap between
the expected reality EXP, the (idealized) model of reality used by the CPMS to reason,
and the physical reality PHY, the real world with the actual conditions and outcomes.
While PHY records what is concretely happening in the real environment during a pro-
cess execution, EXP reflects what it is expected to happen in the environment. Process
execution steps and exogenous events have an impact on PHY and any deviation from
EXP results in a mismatch to be removed to allow process progression. At this point,
a state-of-the-art automated planner is invoked to synthesise a recovery procedure that
adapts the faulty process instance by removing the gap between the two realities.

To realize the above approach, the implementation of SmartPM covers the model-
ing, execution and monitoring stages of the CPP life-cycle. To that end, the architecture
of SmartPM relies on five architectural layers.

The design layer provides a graphical editor developed in Java that assists the pro-
cess designer in the definition of the process model at design-time. Process knowledge
is represented as a domain theory that includes all the contextual information of the
domain of concern, such as the people/services that may be involved in performing the
process, the tasks, the data and so forth. Data are represented through some atomic
terms that range over a set of data objects, which depict entities of interest (e.g., capa-
bilities, services, etc.), while atomic terms can be used to express properties of domain
objects (and relations over objects). Tasks are collected in a repository and are described
in terms of preconditions - defined over atomic terms - and effects, which establish their
expected outcomes. Finally, a process designer can specify which exogenous events may
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be caught at run-time and which atomic terms will be modified after their occurrence.
Once a valid domain theory is ready, the process designer uses the graphical editor to
define the process control flow through the standard BPMN notation among a set of
tasks selected from the tasks repository.

The enactment layer is in charge of managing the process execution. First of all,
the domain theory specification and the BPMN process are automatically translated
into situation calculus [9] and IndiGolog [10] readable formats. Situation calculus is
used for providing a declarative specification of the domain of interest (i.e., available
tasks, contextual properties, tasks preconditions and effects, what is known about the
initial state). Then, an executable model is obtained in the form of an IndiGolog program
to be executed through an IndiGolog engine. To that end, we customized an existing
IndiGolog engine3 to (i) build a physical/expected reality by taking the initial context
from the external environment; (ii) manage the process routing; (iii) collect exogenous
events from the external environment; (iv) monitor contextual data to identify changes
or events which may affect process execution. Once a task is ready for being executed,
the IndiGolog engine assigns it to a proper process participant (that could be a software,
a human actor, a robot, etc.) that provides all the required capabilities for task execution.

The service layer acts as a middleware between process participants, the enactment
layer and the cyber-physical layer. Specifically, in the service layer, process participants
interact with the engine through a Task Handler, an interactive GUI-based software ap-
plication realized for Android devices that supports the visualization/execution of as-
signed tasks by selecting an appropriate outcome. Possibly such an Android application
can exploit sensors and actuators (e.g., an Arduino board connected through Bluetooth,
as currently realized in our implementation), thus effectively offering services over the
cyber-physical layer. Every step of the task life cycle - ranging from the assignment
to the release of a task - requires an interaction between the IndiGolog engine and the
task handlers. The communication between the IndiGolog engine and the task handlers
is mediated by the Communicator Manager component (which is essentially a web
server) and established using the Google Cloud Messaging service.

To enable the automated synthesis of a recovery procedure, the adaptation layer
relies on the capabilities provided by a planner component (the LPG-td planner [18]),
which assumes the availability of a classical planning problem, i.e., an initial state and
a goal to be achieved, and of a planning domain definition that includes the actions to
be composed to achieve the goal, the domain predicates and data types. Specifically,
if process adaptation is required, we translate (i) the domain theory defined at design-
time into a planning domain, (ii) the physical reality into the initial state of the planning
problem and (iii) the expected reality into the goal state of the planning problem. The
planning domain and problem are the input for the planner component. If the planner is
able to synthesize a recovery procedure δa, the Synchronization component combines
δ′ (which is the remaining part of the faulty process instance δ still to be executed),
with the recovery plan δa, builds an adapted process δ′′ = (δa;δ′) and converts it into
an executable IndiGolog program so that it can be enacted by the IndiGolog engine.
Otherwise, if no plan exists for the current planning problem, the control passes back
to the process designer, who can try to manually adapt the process instance.

3 http://sourceforge.net/projects/indigolog/

7



The cyber-physical layer is tightly coupled with the physical components available
in the domain of interest. Since the IndiGolog engine can only work with defined discrete
values, while data gathered from physical sensors have naturally continuous values, the
system provides several web tools that allow process designers to associate some of
the data objects defined in the domain theory with the continuous data values collected
from the environment. For example, we developed several web tools to associate the
data collected from sensors (GPS, temperature, noise level, etc.) to discrete values. We
provided a concrete example of a location web tool that allows process designers to
mark areas of interest from a real map and associate them to discrete locations. The
mapping rules generated are then saved into the Communication Manager and retrieved
at run-time to allow the matching of the continuous data values collected by the specific
sensor into discrete data objects.

4 Concluding Remarks

We are at the beginning of a profound transformation of BPM due to advances in AI and
Cognitive Computing [4]. Cognitive systems offer computational capabilities typically
based on large amount of data, which provide cognition power that augment and scale
human expertise. The aim of the emergent field of cognitive BPM is to offer the com-
putational capability of a cognitive system to provide analytical support for processes
over structured and unstructured information sources. The target is to provide proactiv-
ity and self-adaptation of the running processes against the evolving conditions of the
application domains in which they are enacted.

In this direction, our paper summarizes the most interesting results reported in [6],
which have been devoted to the realization of a general approach, a concrete framework
and a CPMS implementation, called SmartPM, for automated adaptation of CPPs. Our
purpose was to demonstrate that the combination of procedural and imperative models
with cognitive BPM constructs such as data-driven activities and declarative elements,
along with the exploitation of techniques from the field of AI such as situation calculus,
IndiGolog and classical planning, can increase the ability of existing PMSs of supporting
and adapting CPPs in case of unanticipated exceptions.

Existing approaches dealing with unanticipated exceptions typically rely on the in-
volvement of process participants at run-time, so that authorized users are allowed to
manually perform structural process model adaptation and ad-hoc changes at the in-
stance level. However, CPPs demand a more flexible approach recognizing the fact that
in real-world environments process models quickly become outdated and hence require
closer interweaving of modeling and execution. To this end, the adaptation mechanism
provided by SmartPM is based on execution monitoring for detecting failures and con-
text changes at run-time, without requiring to predefine any specific adaptation policy
or exception handler at design-time (as most of the current approaches do).

From a general perspective, our planning-based automated exception handling ap-
proach should be considered as complementary with respect to existing techniques,
acting as a “bridge” between approaches dealing with anticipated exceptions and ap-
proaches dealing with unanticipated exceptions. When an exception is detected, the
run-time engine may first check the availability of a predefined exception handler, and
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if no handler was defined it can rely on an automated synthesis of the recovery process.
In the case that our planning-based approach fails in synthesizing a suitable handler (or
an handler is generated but its execution does not solve the exception), other adaptation
techniques need to be used. For example, if the running process provides a well-defined
intended goal associated to its execution, we could resort to the van Beest’s work [19]
and do planning from first-principle to achieve such a goal. Conversely, if no intended
goal is associated to the process, a human participant can be involved, leaving her/him
the task of manually adapting the process instance. Future work will include an ex-
tension of our approach to “stress” the assumptions imposed by the usage of classical
planning techniques for the synthesis of the recovery procedure, which frame the scope
of applicability of the approach for addressing more expressive problems, including
incomplete information, preferences and multiple task effects.

The current implementation of SmartPM is developed to be effectively used by pro-
cess designers and practitioners.4 Users define processes in the well-known BPMN lan-
guage, enriched with semantic annotations for expressing properties of tasks, which al-
low our interpreter to derive the IndiGolog program representing the process. Interfaces
with human actors (such as specific graphical user applications in Java) and software
services (through Web service technologies) allow the core system to be effectively
used for enacting processes. Although the need to explicitly model process execution
context and annotate tasks with preconditions and effects may require some extra mod-
eling effort at design-time (also considering that traditional process modeling efforts
are often mainly directed to the sole control flow perspective), the overhead is com-
pensated at run-time by the possibility of automating exception handling procedures.
While, in general, such modeling effort may seem significant, in practice it is compara-
ble to the effort needed to encode the adaptation logic using alternative methodologies
like happens, for example, in rule-based approaches.
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