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Abstract. The Internet-of-Things (IoT) refers to a network of con-
nected and interacting devices (e.g., sensors, actuators) collecting and
exchanging data over the Internet. In the last years, we have witnessed
an increasing presence of IoT devices in scenarios of the Business Process
Management (BPM) domain, which can strongly influence the coordina-
tion of the real-world entities (e.g., humans, robots) that execute specific
tasks or entire business processes in such environments. While, on the
one hand, the IoT can provide many opportunities for improving BPM
initiatives, on the other hand, it poses challenges that require enhance-
ments and extensions of the current state-of-the-art in BPM. This paper
discusses how BPM can benefit from IoT, (i) showing which emerging
challenges have to be tackled to integrate the IoT technology in a BPM
project, and (4i) presenting concrete case studies on process adaptation
and habit mining exploiting IoT and addressing the specific challenges
posed by IoT itself.
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1 Introduction

Business Process Management (BPM) is an active area of research based on the
observation that each product and/or service that an organization offers, is the
outcome of a number of performed activities. Business processes (BPs) are the
key instrument for organizing such activities and improving the understanding of
their interrelationships. Nowadays, BPs are enacted in many complex industrial
(e.g., manufacturing, logistics, retail) and non-industrial (e.g., emergency man-
agement, healthcare, smart environments) domains [I0]. In all these domains,
we have witnessed an increasing presence of Internet-of-Things (IoT) devices
(e.g., sensors, RFIDs, video cameras, actuators) that operate over the existing
network infrastructure, including the Internet, to collect data from the phys-
ical environment, monitor in detail the evolution of several real-world objects
of interest, and actuate concrete feedbacks (e.g., in the form of suggestions or
alerts) in response to the observed information. From a BPM perspective, the
knowledge extracted from the physical environment by IoT devices allows to
depict the contingencies and the context in which BPs are carried out, providing
a fine-grained monitoring, mining, and decision support for them.
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The interplay of IoT devices with BPM can provide many opportunities for
improving the enactment of BPs. For example, among the main benefits, the
execution of BPs can be driven by event data detected at real-time, enabling
BPs to become more adaptive and reactive to what is happening in the real
world. However, on the other hand, there is a conflict between the stability and
meaningfulness of the services at work in a BP as opposed to the dynamic and
changing environment that IoT is able to offer. This poses several challenges to
concretely interconnect the two worlds and make them interact, which require
enhancements and extensions to the current state-of-the-art in BPM.

According to the BPM-Meet-IoT manifesto [4], sixteen challenges have been
identified to make this vision a reality. In this contribution, we focus on two
specific areas from the BPM literature where it is strongly required to tackle
these challenges, namely habit mining and process adaptation.

In Section [2] we show how data collected by IoT devices (a.k.a. IoT data)
should be properly abstracted and managed when willing to employ BP discov-
ery techniques [I] to model human habits as “personal processes”. Secondly, in
Section [3] we present a reference conceptual architecture to build a BPM engine
that is able to reason over the discrete counterpart of the “continuous” IoT data
for achieving automated adaptation of running BPs in case of unanticipated
exceptions. Finally, in Section [d] we conclude the paper.

2 Visual Process Maps for Habit Mining

A smart space (e.g., a smart house) represents a typical example of IoT envi-
ronment. The aim of a smart space is providing people with automatic or semi-
automatic services realizing the concept of ambient intelligence (Aml). To this
aim, a set of both software and hardware networked artefacts, acting as sensors
(e.g, presence, temperature sensors) or actuators (e.g., ovens, rolling shutters),
are coordinated according to a previously acquired knowledge expressed in the
form of models representing human preferences and environmental dynamics.
Models in smart spaces are usually classified as specification-based, which are
hand-made by experts, or learning-based, which are instead obtained by applying
machine learning and data mining. In the first case, models are usually based
on logic formalisms, relatively easy to read and validate (once the formalism is
known to the reader), but their creation requires a major cost in terms of ex-
pert time and effort. In the latter case, the model is automatically learned from
a training set (whose labeling cost may vary according to the proposed solu-
tion) but employed formalisms are usually not “explanaible” due to the statistic
techniques they are based on, making them less immediate to understand.
Authors in [5] suggested that applying methods originally taken from BPM
to human habits may represent a compromise between specification-based and
learning-based methods, provided that the gap between raw sensor measure-
ments and human actions can be filled in by performing a log-preprocessing
step. Such a step may consist of simple inferences on data, or complex machine
learning algorithms. On the line of this argument, [2I6] propose the Visual Pro-
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Fig. 1. The conceptual architecture of the Visual Process Maps (VPM) system.

cess Maps (VPM) system, consisting of a complete pipeline formed by (i) a tool
for the visual analysis of sensor logs, (ii) a method to transform raw movement
measurements into actions, and (74) a method to identify and visually ana-
lyze precedence relationships between human actions through the employment
of fuzzy mining [3].

Figure [1] shows the conceptual architecture of VPM. A smart space pro-
duces, during runtime, a sensor log containing raw measurements from available
sensors. Measurements can be produced by a sensor on a periodic base (e.g.,
temperature) or whenever a particular event is detected (e.g., a door opening).
The current version of VPM focuses on sensor logs produced by a grid of Passive
InfraRed (PIR) sensors triggering upon the detection of an object entering their
field of view and automatically reset after a fixed amount of time since the last
detected movement. The detection area of a PIR can be usually tuned to cover
different area sizes ranging from a tile on the floor to an entire room.

The first step of VPM consists in a visual analysis tool, named Trajectory
Visualization Tool, able to “play” specific portions of a log, perform automatic
analysis tasks and visualize the result. Here, playing means to animate the sensor
log showing the trajectory followed by a person in the house. The tool also allows
to produce an event log obtained from the sensor log by aggregating simple
PIR sensor measurements into sub-trajectories representing movement actions
belonging to the following categories: (a) moving between areas of the house,
(b) staying still under a PIR, or (¢) moving in a specific area of the house.

Such an event log can be used as input for fuzzy mining. The rationale here
is that, if we know the location of devices that humans can interact with inside
the space, we can associate to each of these movement actions, the physical
actions performed by humans (e.g., using the oven). As an example, if the model
contains a precedence relation between the action “moving inside the bathroom”
and “stay under the PIR sensor corresponding to the bed”, we have a clear idea
of the human actions determined by the movement actions.

The process extracted by fuzzy mining depends on how the sensor log fed into
VPM is labeled. If no label is available, the mined process model will represent
the daily habit of a person. If instead, labels corresponding to the beginning and
the end of daily routines are available, it is possible to obtain specialized process
models for them.
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Fig. 2. A conceptual architecture for BPs enacted in IoT-based environments.
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3 A Conceptual Architecture for Process Adaptation

During the enactment of BPs in IoT-based environments, variations or diver-
gence from structured reference models are common due to exceptional circum-
stances arising in form of exogenous events, thus requiring the ability to properly
adapt the process behavior. Process adaptation can be seen as the ability of a
BP to react to exceptional circumstances (that may or may not be anticipated)
and to adapt/modify its structure accordingly.

Since in IoT-based environments the number of possible anticipated excep-
tions is often too large, manual implementation of exception handlers at design-
time is not feasible, since it is required to anticipate all potential problems and
ways to overcome them in advance directly in the BP [10]. Furthermore, in such
environments, many unanticipated exogenous events may arise during the BP
execution, and the needed knowledge to tackle such events at the outset is often
missing. Finally, a BPM engine can only reason over a discrete knowledge of the
world, thus requiring to convert the continuous raw data collected by the IoT
technology into discrete information.

To tackle this issue, we summarize the main ideas discussed in [89] and
we introduce our architectural solution to build a BPM engine that is able to
automatically adapt BPs at run-time when unanticipated exceptions occur in
IoT-based environments, thus requiring no specification of recovery policies at
design-time. The general idea builds on the dualism between an expected reality
and a physical reality: process execution steps and exogenous events have an
impact on the physical reality and any deviation from the expected reality results
in a mismatch to be removed to allow process progression. As shown in Figure
we identified 5 main architectural layers that we present in a bottom-up fashion.

The cyber-physical layer consists mainly of two classes of physical compo-
nents: (i) sensors (such as GPS receivers, RFIDs, 3D scanners, cameras, etc.)
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that collect data from the physical environment by monitoring real-world objects
and (%) actuators (robotic arms, 3D printers, electric pistons, etc.), whose effects
affect the state of the physical environment. The cyber-physical layer is also in
charge of providing a physical-to-digital interface, which is used to transform raw
data collected by the sensors into machine-readable events, and to convert high-
level commands sent by the upper layers into raw instructions readable by the
actuators. The cyber-physical layer does not provide any intelligent mechanism
neither to clean, analyse or correlate data, nor to compose high-level commands
into more complex ones; such tasks are in charge of the uppers layer.

On top of the cyber-physical layer lies the service layer, which contains the set
of services offered by the real-world entities (software, robots, agents, humans,
etc.) to perform specific BP activities. In the service layer, available data can
be aggregated and correlated, and high-level commands can be orchestrated
to provide higher abstractions to the upper layers. For example, a smartphone
equipped with an application allowing to sense the position and the posture of a
user is at this layer, as it collects the raw GPS, accellerometer and motion sensor
data and correlates them to provide discrete and meaningful information.

On top of the service layer, there are two further layers interacting with each
other. The enactment layer is in charge of (i) enacting complex BPs by deciding
which activities are enabled for execution, (i) orchestrating the different avail-
able services to perform those activities and (4ii) providing an execution monitor
to detect the anomalous situations that can possibly prevent the correct execu-
tion of BP instances. The execution monitor is responsible for deciding if process
adaptation is required. If this is the case, the adaptation layer will provide the
required algorithms to (i) reason on the available BP activities and contextual
data and to (i) find a recovery procedure for adapting the BP instance under
consideration, i.e., to re-align the BP to its expected behaviour. Once a recovery
procedure has been synthesized, it is passed back to the enactment layer for
being executed.

Finally, the design layer provides a GUI-based tool to define new BP speci-
fications. A BP designer must be allowed not only to build the BP control flow,
but also to explicitly formalize the data reflecting the contextual knowledge of
the IoT-based environment under study. It is important to underline that data
formalization must be performed without any knowledge of the internal working
of the physical components that collect/affect data in the cyber-physical layer.
To link activities to contextual data, which are the main driver for triggering
process adaptation, the GUI-based tool must go beyond the classical “activity
model” as known in the literature, by allowing the BP designer to explicitly
state what data may constrain an activity execution or may be affected after an
activity completion or an exogenous event. Finally, besides specifying the BP,
configuration files should also be produced to properly configure the enactment,
the services and the sensors/actuators in the bottom layers.

The SMARTPM system presented in [7] is a concrete instantiation of the
above reference architecture.
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4 Concluding Remarks

This paper provides an introduction to the IoT with the eyes of a BPM re-
searcher. The focus is on identifying and presenting those IoT features that
directly impact BPM, i.e., data, quality and granularity of such data, events,
identification of process instances, etc. In particular, we have focused on the is-
sue of dealing with continuous and frequent data readings, and on the low level
of abstraction provided by IoT measurements wrt. the traditional concept of
“events” and “traces” in the BPM literature. Through two specific outcomes
of our research activities, we have exemplified the above concepts in order to
provide insights for further research.
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