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The increasing application of process-oriented approaches in new challenging dynamic domains beyond busi-
ness computing (e.g., healthcare, emergency management, factories of the future, home automation, etc.)
has led to reconsider the level of flexibility and support required to manage complex knowledge-intensive
processes in such domains. A knowledge-intensive process is influenced by user decision making and cou-
pled with contextual data and knowledge production, and involves performing complex tasks in the “phys-
ical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and
knowledge-intensive processes must be robust to unexpected conditions and adaptable to unanticipated ex-
ceptions, recognizing that in real-world environments it is not adequate to assume that all possible recovery
activities can be predefined for dealing with the exceptions that can ensue. To tackle this issue, in this paper
we present SmartPM, a model and a prototype Process Management System featuring a set of techniques
providing support for automated adaptation of knowledge-intensive processes at run-time. Such techniques
are able to automatically adapt process instances when unanticipated exceptions occur, without explicitly
defining policies to recover from exceptions and without the intervention of domain experts at run-time,
aiming at reducing error-prone and costly manual ad-hoc changes, and thus at relieving users from complex
adaptations tasks. To accomplish this, we make use of well-established techniques and frameworks from
Artificial Intelligence, such as situation calculus, IndiGolog and classical planning. The approach, which is
backed by a formal model, has been implemented and validated with a case study based on real knowledge-
intensive processes coming from an emergency management domain.

Categories and Subject Descriptors: Applied Computing [Enterprise computing]: Business process man-
agement—Business process management systems; Computing methodologies [Artificial intelligence]:
Knowledge representation and reasoning; Computing methodologies [Artificial intelligence]: Planning
and scheduling

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Classical planning, IndiGolog, Knowledge-intensive processes, Perva-
sive applications, Process adaptation, Process modeling and execution, Situation calculus

ACM Reference Format:

Andrea Marrella, Massimo Mecella and Sebastian Sardina. 2016. Intelligent Process Adaptation in the
SmartPM System ACM Trans. Intell. Syst. Technol. V, N, Article 0 ( 2016), 57 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

This paper is concerned with the use of of three well-established Knowledge Rep-
resentation and Reasoning (KR&R) techniques—reasoning about actions, high-level
programming, and automated planning—for the automated adaptation of knowledge-
intensive processes that execute in highly dynamic settings. The work falls within the
scope of Business Process Management (BPM) [van der Aalst 2013], an active area of
research that is highly relevant from a practical point of view while offering many
technical challenges for computer scientists and researchers.

BPM solutions have been prevalent in both industry products and academic proto-
types since the late 1990s [Weske 2012]. BPM is based on the observation that each
product and/or service that a company provides to the market is the outcome of a num-
ber of activities performed. Business processes are the key instruments for organizing
such activities and improving the understanding of their interrelationships. Examples
of traditional business processes include insurance claim processing, order handling,
and personnel recruitment. In order to support the design and automation of business
processes, a new generation of information systems, called Process Management Sys-
tems (PMSs) have become increasingly popular during the last decade [Weske 2012].
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A PMS is a software system that manages and executes business processes involving
people, applications, and information sources on the basis of process models [Dumas
et al. 2005]. The basic constituents of a process model are tasks, describing the various
activities to be performed by process participants (i.e., software applications, agents,
or humans). The procedural rules to control such tasks, described by so-called “rout-
ing” constructs such as sequences, loops, parallel, and alternative branches, define the
control flow of the process. A PMS, then, takes a process model (containing the process’
tasks and control flow) and manages the process routing by deciding which tasks are
enabled for execution. Once a task is ready for execution, the PMS assigns it to those
participants capable of carrying it on. The representation of a single execution of a
process model is called a process instance [Dumas et al. 2013].

Current maturity of process management methodologies has led to the application of
process-oriented approaches in new rich challenging domains beyond business comput-
ing, such as healthcare [Lenz and Reichert 2007], emergency management [Marrella
et al. 2012], factories of the future [Seiger et al. 2014] and home automation [Helal
et al. 2005]. In addition to this, the current generation of mobile devices and their
wireless communication capabilities have become useful to support mobile workers,
allowing them to execute processes and tasks in dynamic environments. In those set-
tings, processes generally reflect “preferred work practices,” and the control flow is
influenced by user decision making and coupled with contextual data and knowledge
production. Such processes are known as knowledge-intensive processes (KiPs) [Di Ci-
ccio et al. 2014]—genuinely knowledge and data centric—and require the integration
of the data dimension with the traditional control flow dimension by considering them
as a whole.

During the enactment of KiPs, variations or divergence from structured reference
models are common due to exceptional circumstances arising (e.g., autonomous user
decisions, exogenous events, or contextual changes), thus requiring the ability to prop-
erly adapt the process behavior. According to [Sadiq et al. 2001], Process Adaptation
can be seen as the ability of a process to react to exceptional circumstances (that may
or may not be foreseen) and to adapt/modify its structure accordingly. Exceptions are
generally defined as distinct identifiable events which occur at a specific point in time
during the execution of a process instance and result in deviations from normal execu-
tion arising during a business process [Russell et al. 2006].

Exceptions can be either anticipated or unanticipated. An anticipated exception can
be planned at design-time and incorporated into the process model, i.e., a (human)
process designer can provide an exception handler that is invoked during run-time to
cope with the exception. Conversely, unanticipated exceptions generally refer to situ-
ations, unplanned at design-time, that may emerge at run-time and can be detected
only during the execution of a process instance, when a mismatch between the comput-
erized version of the process and the corresponding real-world process occurs. To cope
with those exceptions, a PMS is required to allow ad-hoc process changes for adapting
running process instances in a situation- and context-dependent way.

In knowledge-intensive scenarios, the fact is that the number of possible anticipated
exceptions is often too large, and traditional manual implementation of exception han-
dlers at design-time is not feasible for the process designer, that has to anticipate
all potential problems and ways to overcome them in advance [Reichert and Weber
2012]. Furthermore, anticipated exceptions cover only partially relevant situations, as
in knowledge-intensive scenarios many unanticipated exceptional circumstances may
arise during the process instance execution. Therefore, the process designer often lacks
the needed knowledge to model all the possible exceptions at the outset, or this knowl-
edge can become obsolete as process instances are executed and evolve, by making
useless her/his initial effort.
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To tackle this issue, we develop in this paper an approach, together with an actual
implementation, to automatically adapt KiPs at run-time when unanticipated excep-
tions occur, thus requiring no specification of recovery policies at design-time. The gen-
eral idea builds on the dualism between an expected reality and a physical reality: pro-
cess execution steps and exogenous events have an impact on the physical reality and
any deviation from the expected reality results in a mismatch (or exception) to be re-
moved to allow process progression. To that end, we shall resort to three popular Artifi-
cial Intelligence (AI) “technologies”: situation calculus [Reiter 2001], IndiGolog [De Gi-
acomo et al. 2009], and classical planning [Nau et al. 2004; Geffner and Bonet 2013].
We use the situation calculus formalism to model the domain in which KiPs are to
be executed, including available tasks, contextual properties, tasks’ preconditions and
effects, and the initial state. On top of such a logic-based model, we use the IndiGolog
high-level agent programming language for the specification of the structure and con-
trol flow of KiPs. We customize IndiGolog to monitor the online execution of KiPs and
detect potential mismatches between the model and the actual execution. If an ex-
ception invalidates the enactment of the KiP being executed, an external state-of-the-
art planner is invoked to synthesise a recovery procedure to adapt the faulty process
instance. We refer to this adaptive framework for KiPs as SmartPM (Smart Process
Management), described in Section 4.

The SmartPM framework has been implemented by relying on an existing IndiGolog
interpreter [De Giacomo et al. 2009] and the state-of-the-art planning system
LPG-td [Gerevini et al. 2004]. Furthermore, a graphical tool that allows non-experts in
AI entering knowledge on processes has been provided. The sum of these components
is the SmartPM implemented system, whose architecture is described in Section 5.

Besides providing the conceptual framework and the system architecture, we vali-
dated the approach with a case study based on real KiPs coming from an emergency
management domain (Section 6). In Section 7, we position SmartPM with respect to the
existing state-of-the-art adaptive PMSs and we compare it with other works that ex-
ploit AI techniques for enhanced process adaptation. Then, in Section 8 we conclude by
providing a critical discussion about the general applicability of the SmartPM approach
in dynamic domains and by tracing future work.

The choice of adopting AI technologies, and in particular those provided by the
KR&R field, is motivated by their ability to provide the right abstraction level needed
when dealing with dynamic situations in which data (values) play a relevant role
in system enactment and automated reasoning over the system progress. In the
field of BPM, many other formalisms and technologies are being used, such as Petri
Nets [van Der Aalst 1996], Coloured Petri Nets [Jensen and Kristensen 2009], Work-
flow Nets [van der Aalst 1998], YAWL nets [ter Hofstede et al. 2009], BPMN [BPMI.org
and OMG 2011] and process algebras [Puhlmann and Weske 2005], with varying de-
grees of automated reasoning support over them. While Petri Nets and Worklow Nets
do not support data-based decisions as well as data-driven execution of any kind due
to the lack of data-awareness [Meyer et al. 2011], other formalisms such as Coloured
Petri Nets, YAWL Nets, BPMN and Process Algebras are potentially all fine solutions
for realizing our framework. However, the level of abstraction provided for manipulat-
ing data values and reasoning over dynamic changes is not formally specified (in the
case of YAWL), performed at shallow level (in the case of BPMN) or at very low level (in
the case of Coloured Petri Nets and Process Algebras), since such formalisms mainly
focus on the control-flow perspective of a business process. Conversely, the KR&R field
is rich of algorithms and systems that support the user in the creation, acquisition,
adaptation, evolution, and sharing of data knowledge for specifying and implementing
dynamic systems [Reichgelt 1991; Brachman and Levesque 2004; Reiter 2001]. As we
will see in the further, the choice of KR&R technologies allows us to develop a very
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clean and simple-to-manage framework for process adaptation based on relevent data
manipulated by the process, without compromising efficiency and effectiveness of the
proposed solution.

This paper extends our previous work presented in [Marrella et al. 2014] in various
directions. First of all, we revise our original framework to deal with exogenous events
as possible source of exception, a relevant aspect that was neglected in our previous
work. This has required a substantial rework of the formal approach, to consider as-
pects such as the analysis of the impact of exogenous events on the contextual domain,
which possibly entails the abortion of some running tasks for the maintenance of data
consistency. Second, we insert a formal result showing that the “triggering” of adap-
tation performed by SmartPM is correct (cf. Theorem 4.9). Third, we describe the sys-
tem’s architecture and implementation, providing details on the system components,
their technological features and their relationships. Fourth, we provide a more real-
istic running example and more extended explanations of the whole approach. Fifth,
the related work section has been extended significantly to cover the state of the art
of adaptive PMSs. Sixth, we provide more experimental tests, performed with two dif-
ferent state-of-the-art planners, to synthesize recovery plans for different adaptation
problems. Finally, we provide an appendix that shows the basic ingredients for mod-
eling the process knowledge and the contextual properties of a dynamic environment
in SmartPM, with special emphasis on the implemented user interface that assists the
process designer in the definition of such a knowledge.

Before describing the technical proposal, we first provide an overview of our case
study (Section 2) and some preliminary notions (Section 3) necessary to understand
the rest of the paper.

2. CASE STUDY

Processes that are inherently knowledge-intensive can be found in several fields and
domains. Human resource management, implementation projects, patient case man-
agement in hospitals, criminal investigations, domotics are all examples of domains
that were subject to case studies and have been considered for the definition of scenar-
ios and use cases for KiPs (for example, in [Lenz and Reichert 2007; Helal et al. 2005;
Mundbrod et al. 2013]).

According to recent research studies investigating the role of KiPs in BPM [Kems-
ley 2011; Rosenfeld 2011; Harrison-Broninski 2013; Di Ciccio et al. 2014], almost all
the classes of business processes may include elements that make them knowledge-
intensive. The knowledge dimension may emerge, for example, in the way knowledge
workers deal with unexpected exceptions in well structured processes, which reflect
highly predictable routine work with low flexibility requirements and controlled in-
teractions among process participants (such as administrative processes). Conversely,
in loosely structured or unstructured work practices, the knowledge intensity lies in
the way knowledge workers put in place their experience and expertise (that can not
be easily formalized or shared through a well structured process) to the definition of
the best course of actions. No explicit process model can be associated to unstructured
processes, which are typically tied to the scope of groupware systems [Ellis et al. 1991]
and are therefore outside the scope of our paper.

Conversely, we frame our discussion on a specific class of KiPs representing struc-
tured processes with ad hoc exceptions [Di Ciccio et al. 2014]. They have similar charac-
teristics than structured processes, as they reflect operational activities that typically
comply with a predefined plan. Although, the occurrence of external events and excep-
tions can make the structure of the process less rigid. The actual course of action may
deviate from the predefined reference work practices and process adaptation strategies
(that are not known in advance and may not be known until the time that the process
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(a) Initial context (b) Failed GO(loc00, loc33) (c) Recover act1 connectivity

(d) Successful GO(loc03, loc33) (e) Recover act2 connectivity (f) Final stage

Fig. 1. A train derailment situation; area and context of the intervention.

has started execution) may be required. Several real-world processes belong to this
class of KiPs; for example, processes for automotive, traffic management, smart man-
ufacturing, emergency management, and consumer appliances [Lee 2008; Rajkumar
et al. 2010]. The trend of managing KiPs in such domains has been fueled by the in-
creased availability of sensors disseminated in the world that has led to the possibility
to monitor in detail the evolution of the real-world objects of interest. The knowledge
extracted from such objects allows to depict the contingencies and the context in which
KiPs are carried out (including “technical” aspects like device capability constraints,
wireless networking, device mobility, etc.), by consenting a fine-grained monitoring,
mining, and decision support for them.

To make our discussion more concrete, our case study and evaluation involves a dis-
aster management inspired by the European project WORKPAD.1 [Capata et al. 2008;
Humayoun et al. 2009a; 2009b; Marrella et al. 2011; Catarci et al. 2013] The proposed
example attempts at highlighting, in an accessible manner, the key ingredients and
ideas of the proposed approach in a simplified setting. Specifically, let us consider the
emergency management scenario described in Figure 1(a), in which a train derailment
situation is depicted in a grid-type map. For the sake of simplicity, the train is com-
posed of a locomotive (located at loc33) and two coaches (located at loc32 and loc31,
respectively).

1The WORKPAD project investigates how the use of a process-oriented approach can enhance the level
of collaboration provided to first responders that act in emergency scenarios. The official web page of the
project at: http://www.dis.uniroma1.it/∼workpad

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article 0, Publication date: 2016.

Page 5 of 57 Transactions on Intelligent Systems and Technology

https://mc.manuscriptcentral.com/tist



0:6 Andrea Marrella, Massimo Mecella, Sebastian Sardina

(a) Main process (b) Adapted process after a task fail-
ure

(c) Adapted process after
an exogenous event

Fig. 2. An emergency response plan and its adaptation.

During the management of complex emergency scenarios, teams of first responders
act in disaster locations to achieve specific goals. In our train derailment situation,
the goal of an incident response plan is to evacuate people from the coaches and take
pictures for evaluating possible damages to the locomotive. To that end, a response
team is sent to the derailment scene. The team is composed of four first responders,
called actors, and two robots, initially all located at location cell loc00. It is assumed
that actors are equipped with mobile devices for picking up and executing tasks, and
that each provide specific capabilities. For example, actor act1 is able to extinguish fire
and take pictures, while act2 and act3 can evacuate people from train coaches. The two
robots, in turn, are designed to remove debris from specific locations. When the battery
of a robot is discharged, actor act4 can charge it.

In order to carry on the response plan, all actors and robots ought to be continu-
ally inter-connected. The connection between mobile devices is supported by a fixed
antenna located at loc00, whose range is limited to the dotted squares in Figure 1(a).
Such a coverage can be extended by robots rb1 and rb2, which have their own inde-
pendent (from antenna) connectivity to the network and can act as wireless routers to
provide network connection in all adjacent locations.

An incident response plan is defined by a set of activities that are meant to be exe-
cuted on the field by first responders, and are predicated on specific contexts. There-
fore, the information collected on-the-fly is used for defining and configuring at run-
time the incident response plan at hand. A possible concrete realization of an incident
response plan for our scenario is shown in Figure 2(a), using the Business Process
Model and Notation (BPMN).2 Such a process is composed of three parallel branches,
with tasks instructing first responders to act for evacuating people from train coaches
in loc31 and loc32, taking pictures of the locomotive, and assessing the gravity of the
accident (through the task UPDATESTATUS).

Due to the high dynamism of the environment, there are a wide range of exceptions
that can ensue. Because of that, there is not a clear anticipated correlation between a

2See www.omg.org/spec/BPMN/
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change in the context and a change in the process. So, suppose for instance that actor
act1 is sent to the locomotive’s location, by assigning to it the task GO(loc00, loc33) in
the first parallel branch. Unfortunately, however, the actor happens to reach location
loc03 instead. The actor is now located at a different position than the desired one,
and most seriously, is out of the network connectivity range (cf. Figure 1(b)). Since all
participants need to be continually inter-connected to execute the process, the PMS
has to first find a recovery procedure to bring back full connectivity, and then find a
way to re-align the process. To that end, provided robots have enough battery charge,
the PMS may first instruct the first robot to move to cell loc03 (cf. Figure 1(c)) in order
to re-establish network connection to actor act1, and then instruct the second robot
to reach location loc23 in order to extend the network range to cover the locomotive’s
location loc33. Finally, task GO(loc03, loc33) is reassigned to actor act1 (cf. Figure 1(d)).
The corresponding updated process is shown in Figure 2(b), with the encircled section
being the recovery (adaptation) procedure.

Notice that after the recovery procedure, the enactment of the original process can
be resumed to its normal flow. For example, in the third parallel branch, actor act2
can now be instructed to reach loc31. However, even if act2 completes its task as ex-
pected (cf. Figure 1(e)), a further exception is thrown. In fact, act2 is out of the network
connectivity range and, again, the PMS may instruct the first robot to move from cell
loc03 to cell loc20 in order to re-establish network connection to actor act2 (cf. top of
Figure 1(c)). At this point, act2 may start evacuating people from loc31.

We note that the execution of a KiP can also be jeopardized by the occurrence of
exogenous events. Indeed, exogenous events could change, in asynchronous manner,
some contextual properties of the scenario in which the process is under execution,
hence possibly requiring the KiP to be adapted accordingly. Moreover, an exogenous
event may possibly lead to the forced termination of a running task. For example,
suppose that a rock slide collapses in location loc31 (cf. Figure 1(e)) while act2 is evalu-
ating the damages in that area (i.e., act2 is executing the UPDATESTATUS(loc31) task).
In such a case, the PMS needs first to abort the running task UPDATESTATUS(loc31)
(the presence of a rock slide may possibly prevent the correct execution of the task),
and then to find a recovery procedure that allows to remove the rock slide from loc31
by maintaining all the process participants inter-connected to the network. A possi-
ble solution is shown in Figure 1(f), and consists of instructing act4 to reach loc20 for
recharging the battery of rb1, of moving the robot rb1 in loc31 in order to remove debris,
and finally of reassigning the UPDATESTATUS(loc31) task to act2. The corresponding
adapted process is shown in the bottom of Figure 1(c).

The point is that it is not adequate to assume that the process designer can pre-
define all possible recovery activities for dealing with unanticipated exceptions and
exogenous events in domains that are knowledge-intensive as the one just described:
the recovery procedure will depend on the actual context (e.g., the positions of partic-
ipants, the range of the main network, robot’s battery levels, whether a location has
become dangerous to get it, etc.) and there are too many of them to be considered.

3. PRELIMINARIES

The proposed approach is based on KR&R methods and technologies, namely situation
calculus, IndiGolog and classical planning. Before providing a self-contained concise
introduction to them, we would like to highlight the motivations for such choices in-
stead of more traditional business process execution engines. Many other formalisms
(in particular Petri Nets-based and process algebras) have been successfully adopted
for process management, but all of them are somehow based on synthesis techniques
of the control-flow, when considering their automated reasoning capabilities. This im-
plies the level of abstraction over dealing with data and dynamic situations is quite

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article 0, Publication date: 2016.

Page 7 of 57 Transactions on Intelligent Systems and Technology

https://mc.manuscriptcentral.com/tist
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raw, when compared with KR&R methods in which automated reasoning over data
values and situations is much more developed. Clearly all approaches, in the end, po-
tentially can lead to an automated adaptation framework; our argument is that the
use of KR&R methods allows us to reach such an ambitious goal through a very clean
and simple-to-manage framework, as presented in the following, without compromis-
ing the efficiency of the solution (which in general may be an issue when adopting
KR&R technologies).

Situation Calculus and Basic Action Theories. The situation calculus is a logical lan-
guage designed for representing and reasoning about dynamic domains [Reiter 2001].
The dynamic world is seen as progressing through a series of situations as a result
of various actions being performed. A situation s is a first-order term denoting the
sequence of actions performed so far. The special constant S0 stands for the initial sit-
uation, where no action has yet occurred, whereas a special binary function symbol
do(a, s) denotes the situation resulting from the performance of action a in situation s.
A situation s is a sub-situation of s′, denoted s ⊑ s′, iff s is a prefix of s′. Formally, the
relation is axiomatized as follows: s ⊑ s′ ≡ [s = s′ ∨ (∃a, s′′).s′ = do(a, s′′) ∧ s ⊑ s′′].

Example 3.1. The action OPEN(x) is used to open a door x. The situation term
do(OPEN(d2), do(OPEN(d1), S0)) denotes the situation resulting from first opening door
d1 in S0 and then opening door d2.

In situation calculus, relations and functions whose value may change from one situa-
tion to the next are modeled by means of so-called fluents. Technically, relations whose
truth values vary from situation to situation are called relational fluents. They are de-
noted by predicate symbols taking a situation term as their last argument. Similarly,
functions whose values vary from situation to situation are called functional fluents,
and are denoted by function symbols taking a situation term as their last argument.
For example, the relational fluent DoorOpen(x, s) may denote that door x is open in
situation s, whereas the functional fluent Floor(x, s) may denote the floor number that
elevator x is at in situation s. A special predicate Poss(a, s) is used to state that action a
is executable in situation s, whereas special (situation-independent) predicate Exog(a)
is used to denote that a is an exogenous event (i.e., an event originating from the exter-
nal environment). We write φ(~x) to denote a formula whose free variables are among
variables ~x. A fluent-formula is one whose only situation term mentioned is situation
variable s.

Within this language, one can formulate action theories describing how the world
changes as the result of the available actions. A basic action theory (BAT) [Reiter 2001]
D = Σ ∪ DS0

∪ Dposs ∪ Dss ∪ Duna includes:

Σ. domain-independent foundational axioms to describe the structure of situations
and some auxiliary relations like ⊑ and Executable(s);
Dss. one successor state axiom per fluent capturing the effects and non-effects (i.e.,
frame) of actions;
Dposs. one precondition axiom per action specifying when the action is executable;
Duna. unique name axioms for actions; and
DS0

. initial state axioms describing what is true initially in S0, as well as auxiliary
situation independent information, such as axioms for predicate Exog(a).

In particular, the successor state axiom for a relational fluent F (~x, s) is an axiom of
the form F (~x, do(a, s)) ≡ ΨF (~x, a, s),

3 where ΨF (~x, a, s) is a fluent-formula character-

3Free variables are assumed to be universally quantified.
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izing the dynamics of fluent F (~x, s). When F (~x, s) is a functional fluent, its successor
state axiom has the form [F (~x, do(a, s)) = v] ≡ ΓF (~x, a, v, s), where ΓF (~x, a, v, s) states
that the fluent takes value v when action a is executed in situation s and satisfies
the functional constraint |= (∀~x, a, s)∃v.ΓF (~x, a, v, s)∧ (∀v′).v′ 6= v ⊃ ¬ΓF (~x, a, v

′, s). Im-
portantly, ΨF (~x, a, s) and ΓF (~x, a, v, s) can accommodate [Reiter 2001]’s solution to the
frame problem.4

Example 3.2. The successor state axioms for relational fluent DoorOpen(x, s) and
functional fluent Floor(x, s) are as follows:

DoorOpen(x, do(a, s)) ≡
a = OPEN(x) ∧ ¬Locked(x, s) ∧ ¬DoorOpen(x, s) ∨
[DoorOpen(x, s) ∧ a 6= CLOSE(x)];

Floor(x, do(a, s)) = v ≡
(a = UP(x) ∧ v = Floor(x, s) + 1) ∨ (a = DOWN(x) ∧ v = Floor(x, s)− 1) ∨
[Floor(x, s) = v ∧ a 6= UP(x) ∧ a 6= DOWN(x)].

That is, a door x is open in situation do(a, s) iff a denotes the action of opening x (that
is closed and not locked5 in s), or x is already open in s and a is not the action of closing
it. Similarly, elevator x is in floor v if it was in floor v− 1 (v+1) after moving up (down)
one floor, or it is already in floor v and the action just executed is not one moving up or
down such elevator.

In addition, precondition axioms are of the form Poss(a(~x), s) ≡ Πa(~x, s), where Πa(~x, s)
is a fluent-formula defining the conditions under which action a can be legally exe-
cuted in situation s. Using Poss, we can define what it means for a situation s to be
executable, that is, every action is possible, using the following definition:

Executable(s) ≡ s = S0 ∨ (∃a, s′).s = do(a, s′) ∧ Poss(a, s′) ∧ Executable(s′).

Example 3.3. The action of opening a door in situation s is possible only if the door
is closed in s, and an elevator can go down only if it is not in the first floor:

Poss(OPEN(x), s) ≡ ¬DoorOpen(x, s);

Poss(DOWN(x), s) ≡ (Floor(x, s) > 1).

Finally, DS0
is a collection of first-order sentences whose only situation term mentioned

is the situation constant S0. For example, if sentence ∀x.Floor(x, s) = 1 is included in
DS0

, then it represents the fact that all elevators are (parked) in the first floor initially.

The IndiGolog high-level language. On top of situation calculus action theories, logic-
based programming languages can be defined, which, in addition to the primi-
tive actions, allow the definition of complex actions. In particular, we focus on
IndiGolog [De Giacomo et al. 2009], the latest in the Golog-like family of programming
languages for autonomous agents providing a formal account of interleaved action,
sensing, and planning. IndiGolog programs are meant to be executed online, in that,
at every step, a legal next action is selected for execution, performed in the world, and
its sensing outcome gathered. To account for planning, a special look-ahead construct

4In AI, the frame problem is the challenge of capturing the effects of actions in a succinct way, without
having to represent explicitly a large number of intuitively obvious non-effects [Reiter 2001].
5The relational fluent Locked(x, s) denotes that door x is locked in situation s.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article 0, Publication date: 2016.

Page 9 of 57 Transactions on Intelligent Systems and Technology

https://mc.manuscriptcentral.com/tist



0:10 Andrea Marrella, Massimo Mecella, Sebastian Sardina

Σ(δ)—the search operator—is provided to encode the need for solving (i.e., finding a
complete execution) program δ offline.

IndiGolog allows us to define every well-structured process as defined in [van der
Aalst et al. 2003]; it is equipped with all standard imperative constructs (e.g., sequence,
conditional, iteration, etc.) to be used on top of situation calculus primitives actions. An
IndiGolog program is meant to run relative to a BAT, providing meaning to primitive
actions and conditions in the program. Here we concentrate on the fragment defined
by the following constructs:

a atomic action
φ? test for a condition
δ1; δ2 sequence
πx.δ(x) nondeterministic choice of argument
δ∗ nondeterministic iteration
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile while loop
proc P (~x) do δ(x) endProc procedure
δ1‖δ2 concurrency
δ1〉〉δ2 prioritized concurrency
〈φ → δ〉 interrupt
Σ(δ) lookahead search

Test program φ? can be executed if condition φ holds true, whereas program πx.δ(x)
executes program δ(x) for some nondeterministic choice of a binding for variable x,
and δ∗ executes δ zero, one, or more times. The interleaved concurrent execution of two
programs is represented with constructs δ1‖δ2 and δ1〉〉δ2; the latter considering δ1 at
higher priority level (i.e., δ2 can perform a step only if δ1 is blocked or completed). The
interrupt construct 〈φ → δ〉 states that program δ ought to be executed to completion
if φ happens to become true. Let’s focus on it:

〈 φ → δ 〉
def
= while Interrupts running do

if φ then δ else false? endIf
endWhile

To see how this works, first assume that the special fluent Interrupts running is iden-
tically true. When an interrupt 〈φ → δ〉 gets control from higher priority processes,
suspending any lower priority processes that may have been advancing, it repeatedly
executes δ until φ becomes false. Once the interrupt body δ completes its execution,
the suspended lower priority processes may resume. The control release also occurs if
φ cannot progress (e.g., since no action meets its precondition).

IndiGolog programs are meant to be executed online, one step at a time, with non-
deterministic choices resolved arbitrarily. Because of that, there is no guarantee a
programs will terminate successfully and dead-end blocking situations (e.g., an action
not being possible) may be reached. To deal with that and the fact that backtracking
actions executed in the real world may not always be an option, IndiGolog incorporates
the so-called search construct Σ(δ), which performs lookahead reasoning on δ to guar-
antee that a full, terminating, execution of δ will be eventually achieved. In concrete,
every step performed on program δ will be one that is part of a terminating execution
(see below for its formal semantics).

By properly combining prioritized concurrency and interrupts, together with
IndiGolog’s default online execution style, it is possible to design processes that are
sufficiently open and reactive to dynamic environments. Furthermore, by resorting to
the search operator, one can specify local places in programs where lookahead reason-
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Intelligent Process Adaptation in the SmartPM System 0:11

ing is required. Both aspects will end up being fundamental for our adaptive process
management framework in the next section.

Formally, the semantics of IndiGolog is specified in terms of single-step transitions,
using the following two predicates ([De Giacomo et al. 2009]):

— Trans(δ, s, δ′, s′), which holds if one step of program δ in situation s may lead to situ-
ation s′ with δ′ remaining to be executed; and

— Final(δ, s), which holds if program δ may legally terminate in situation s.

For example, the axioms for a primitive action a, sequence, and non-deterministic
choice of programs, concurrency, and lookahead search are as follows:

Primitive action:

Trans(a, s, δ′, s′) ≡ s′ = do(a, s) ∧ Poss(a, s) ∧ δ′ = nil
Final(a, s) ≡ false

Sequence:

Trans(δ1; δ2, s, δ
′, s′) ≡

Trans(δ1, s, δ
′

1, s
′) ∧ δ′ = δ′1; δ2 ∨ Final(δ1, s) ∧ Trans(δ2, s, δ

′, s′)
Final(δ1; δ2, s, δ

′, s′) ≡ Final(δ1, s) ∧ Final(δ2, s)

Non-deterministic choice of programs:

Trans(δ1 | δ2, s, δ
′, s′) ≡ Trans(δ1, s, δ

′, s′) ∨ Trans(δ2, s, δ
′, s′)

Final(δ1 | δ2, s) ≡ Final(δ1, s) ∨ Trans(δ2, s)

Concurrency:

Trans(δ1‖δ2, s, δ
′, s′) ≡

Trans(δ1, s, δ
′

1, s
′) ∧ δ′ = δ′1‖δ2 ∨ Trans(δ2, s, δ

′

2, s
′) ∧ δ′ = δ1‖δ

′

2

Final(δ1‖δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Lookahead search:

Trans(Σ(δ), s, δ′, s′) ≡
Trans(δ, s, δ′′, s′) ∧ δ′ = Σ(δ′′) ∧ (∃δf , sf ).Trans

∗(δ′′, s′′, δf , sf ) ∧ Final(δf , sf )
Final(Σ(δ), s) ≡ Final(δ, s)

Here, Trans
∗ stands for the reflexive transitive closure of Trans. Observe that a single

transition on a program Σ(δ) is one that can be eventually extended, via a sequence of
follow-up transitions, to a final configuration. Importantly, the lookahead construct is
propagated to the next remaining program, which guarantees that every future single
step will also have such property: every step of Σ(δ) is “safe” and leads to a successful
run of program δ.

Using Trans and Final, one can formalize the notion of online execution for a given
initial program δ0 from an initial situation S0 as a sequence of so-called configurations
λ = (δ0, S0)(δ1, S1) · · · (δn, Sn) such that D ∪ C |= Trans(δi, Si, δi+1, Si+1), for all i ∈
{0, . . . , n − 1}. Here, D is a BAT and C is the set of axioms characterizing relations
Trans and Final, together with some extra necessary axioms requiring for encoding
programs as terms as described in [De Giacomo et al. 2000]. We say that the execution
is final, or terminating, whenever D ∪ C |= Final(δn, Sn) applies.

Classical Planning. Planning systems are problem-solving algorithms that operate
on explicit representations of states and actions [Nau et al. 2004; Geffner and Bonet
2013]. PDDL [McDermott et al. 1998] is the standard planning representation lan-
guage; it allows one to formulate a planning problem P = 〈I,G,PD〉, where I is the
initial state, G is the goal state, and PD is the planning domain. In turn, a planning
domain PD is built from a set of propositions describing the state of the world (a state
is characterized by the set of propositions that are true) and a set of operators (i.e.,
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0:12 Andrea Marrella, Massimo Mecella, Sebastian Sardina

actions) that can be executed in the domain. Each operator is characterized by its pre-
conditions and effects, stated in terms of the domain propositions.

There exist several forms of planning in the AI literature. In this paper, we focus
on classical planning, characterized by fully observable, static, and deterministic do-
mains. A solution for a classical planning problem P is a sequence of operators—a
plan—whose execution transforms the initial state I into a state satisfying the goal G.
Such a plan is computed in advance and then carried out (unconditionally). The field of
classical planning has experienced huge advances in the last twenty years, leading to
a variety of concrete solvers (i.e., planning systems) that are able to create plans with
thousands of actions for problems containing hundreds of propositions. In this work,
we represent planning domains and planning problems using PDDL 2.2 [Edelkamp and
Hoffmann 2004], which includes operators with disjunctive preconditions and derived
predicates.

4. THE SMARTPM APPROACH

We adopt a service-based approach to process management. Thus, tasks are executed
by services, such as software applications, human actors, robots, etc. Each task can be
seen as a single step consuming input data and producing output data.

In this section, we show how one can put together the three AI frameworks described
above to build an adaptive PMS—which we shall name SmartPM—that is able to not
only enact KiPs, but also to automatically adapt them in case of unanticipated ex-
ceptions. Intuitively, situation calculus theories will be used to model the contextual
information in which the process is meant to run, IndiGolog programs will encode the
KiP to be carried out, and planning systems will be used to support the automated
adaptation of a process when needed.

4.1. SmartPM Basic Action Theory

A situation calculus BAT DSmartPM for a SmartPM application specifies:

(1) the tasks and services of the domain of concern;
(2) the support framework for managing the task life-cycle;
(3) the contextual setting in which processes operate; and
(4) the support framework for the monitoring of processes.

Let us start by describing the first three ones. So, to encode tasks and services, we
use some non-fluent predicates:

— Service(srv): srv is a service (i.e., a process participant). The predicate can be special-
ized into further predicates (e.g., Actor(srv) and Robot(srv)) describing the specific
services’ roles;

— Task(t): t is a task (e.g., GO or TAKEPHOTO may denote the tasks of navigating or
taking pictures);

— Capability(c): c is a capability (e.g., camera or extinguisher may denote the ability
to take pictures or extinguish fire);

— Provides(srv, c): service srv provides capability c; and
— Requires(t, c): task t requires the capability c.

Observe all these predicates are rigid: their truth values do not depend on a situation
term and are hence static. A service srv is able to perform certain task t iff srv provides
all capabilities required by the task t. This is captured formally using the following
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Intelligent Process Adaptation in the SmartPM System 0:13

Fig. 3. The protocol for task assignment and execution in SmartPM.

abbreviation:6

Capable(srv, t)
def
= ∀c.Requires(t, c) ⊃ Provides(srv, c).

To talk about concrete runs of tasks, we associate them with unique identifiers. A
task instance is then a tuple t : id, where t is a task and id is an identifier.

The life-cycle of tasks involves the execution of four primitive actions executed by
the PMS and two external actions arising from services. More concretely, the protocol
for the execution of a task t goes as follows:

(1) First, the PMS assigns task instance t : id to a service srv by performing primitive
action ASSIGN(srv, id, t,~i, ~oe), where~i is an input data vector associated to t : id and
~oe is a vector of expected (sensing result) outputs.

(2) When a service is ready for task execution, it generates the external action
READYTOSTART(srv, id, t).

(3) Next, the PMS performs primitive action START(srv, id, t) to authorize the service
in question that is formally allowed to start carrying out the task instance.

(4) A specific task finishes execution when either:
(a) The service completes the task and hence generates the external action

FINISHED(srv, id, t,~i, ~or), with ~or representing a vector of physical actual out-
comes returned by the task execution (we use ǫ to denote the empty output).

(b) An exogenous event (e.g., an actor being lost in unexpected location) interfering
with the task in question (e.g., actor navigation) arises and hence invalidating
the task.

In both cases, the PMS informs (or acknowledges) the corresponding service of the
task completion by means of executing primitive action ACKCOMPL(srv, id, t).

(5) In either of the above two cases for termination, the PMS updates the properties
(i.e., the fluents) to reflect the effects of the task just completed.

(6) Finally, the PMS releases the task from the service via action RELEASE(srv, id, t).

Note that we suppose to work in domains in which services, tasks, input and output
data vectors are finite. As illustrated in Figure 3, the protocol for task assignment
and execution has been applied to an instance of the task GO (specifically, GO : id1)

6An abbreviation is a predicate (with situation argument s) defined by means of a formula uniform in s.
Abbreviations, unlike fluents, are not directly affected by actions. However, similarly to fluents, their truth
value may vary from situation to situation.
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0:14 Andrea Marrella, Massimo Mecella, Sebastian Sardina

which instructs actor act1 to move from location loc00 to location loc33. The input data
vector and the expected output associated to GO : id1 are~i=[loc00, loc33] and ~oe = [loc33]
respectively7 Note that when act1 launches the FINISHED action (meaning that GO has
been completed), the physical output associated to GO : id1 is ~or = [loc33], i.e, it is equal
to ~oe = [loc33], that is the final destination expected at design-time. Conversely, the
process in Figure 2(b) reflects a wrong execution of the task GO, with a physical output
different from the expected one (i.e., ~or 6= ~oe).

The above protocol for the life-cycle of tasks is captured by means of a set of domain-
independent fluents and actions. The relevant successor state axioms (including [Re-
iter 2001]’s solution to the frame problem) and precondition axioms are as follows:

Assigned(srv, id, t, do(a, s)) ≡

(∃~i, ~oe)a = ASSIGN(srv, id, t,~i, ~oe) ∨ [Assigned(srv, id, t, s) ∧ a 6= RELEASE(srv, id, t)];

Ready(srv, id, t, do(a, s)) ≡ [a = READYTOSTART(srv, id, t) ∨ Ready(srv, id, t, s)];

Running(srv, id, t, do(a, s)) ≡
a = START(srv, id, t) ∨ [Running(srv, id, t, s) ∧ a 6= ACKCOMPL(srv, id, t)];

Free(srv, s)
def
= (∄t, id)Assigned(srv, id, t, s).

Poss(ASSIGN(srv, id, t,~i, ~oe), s) ≡ Free(srv, s) ∧ Capable(srv, t) ∧ Φ(srv, t,~i, ~oe, s);

Poss(START(srv, id, t), s) ≡ Assigned(srv, id, t, s) ∧ Ready(srv, id, t, s);

Poss(ACKCOMPL(srv, id, t), s) ≡ Running(srv, id, t, s);

Poss(RELEASE(srv, id, t), s) ≡ ¬Running(srv, id, t, s) ∧ Assigned(srv, id, t, s).

Most of these axioms are self-explanatory. Observe that a task can be assigned to
a service only if this is “free” (i.e., not currently assigned any other task) and ca-
pable of performing the task (i.e., provides all capabilities required for the task). In
addition, depending on each application, a further Φ(srv, t,~i, ~oe, s) requirement may
need to be met. When the service produces a READYTOSTART(srv, id, t) action for
an assigned task, it becomes ready for execution, thus allowing the PMS to instruct
actual execution via action START(srv, id, t). A specific task instance is then consid-
ered “running” in the service until completion is acknowledged by the PMS (via ac-
tion ACKCOMPL(srv, id, t)) Finally, a non-running task can be released from a service
(which in term leaves the service “free” for a new assignment).

To record the expected output of task instance id : t when assigned to a service, we
define a functional fluent ExOut(id, t, s), whose successor state axiom is as follows:

ExOut(id, t, do(a, s)) = ~o ≡

(∃srv,~i, ~o)a = ASSIGN(srv, id, t,~i, ~oe) ∧ ~o = ~oe ∨ ExOut(id, t, s) = ~o.

That is, the expected output of a task instance is determined by the assignment step
(and never changes). Initial expected outcomes are initialized to “no value” (ǫ) via an
axiom (∀t, id).ExOut(id, t, S0) = ǫ in the set of axioms DS0

characterizing the initial
state of the system.

The BAT shall also contain a set of domain-dependent fluents, together with their
corresponding precondition and successor state axioms, capturing the contextual sce-
nario in which the process is meant to be executed. We call such fluents data fluents.

7We make use of a Prolog-like notation to represent vectors of inputs/expected outputs/physical outputs as
a list of constants enclosed between squared brackets.
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Intelligent Process Adaptation in the SmartPM System 0:15

They can be seen as features of the world whose value may change from situation to sit-
uation. In general, data fluents will be affected upon the release of an assignment task,
that is, whenever a task is considered fully executed. In addition, the actual outcome
result of a task is used to define the fluent in question. Importantly, the successors
state axioms will follow the following template:

F(~x, do(a, s)) = v ≡ γF (~x, a, v, s) ∨ [F(~x, s) = v ∧ (¬∃v)γF (~x, a, v, s)], (1)

where γF (~x, a, v, s) states the conditions under which action a executed in situation
s will cause data fluent F(~x, s) to take value v. In the context of our setting, two
type of actions will be mentioned in γF (~x, a, v, s), namely, (i) actions of the form

FINISHED(srv, id, Tk,~i, ~or) reporting the completion of some task instance id : Tk that
would affect the data fluent and (ii) exogenous events that would also affect the value
of the data fluent (e.g., an actor got lost in an unexpected location).

Example 4.1. Suppose that, in our emergency scenario, functional data fluent
At(srv, s) is used to keep track of the location of service srv in the domain. The flu-
ent is affected by tasks GO and MOVE, but also by exogenous event PUSHED which
causes to lose track of the actor’s location.

Hence, the successor state axiom for the fluent follows the template (1) above with
γF (~x, a, v, s) being instantiated as follows:

γAt(srv, a, v, s)
def
=

(∃id, ls, ld, t)
(a = FINISHED(srv, id, t, [ls, ld], [v]) ∧ t ∈ {GO, MOVE} ∧ (Actor(srv) ∨ Robot(srv))) ∨
(a = PUSHED(srv) ∧ Actor(srv) ∧ v = “lost”).

In words, actor/robot srv is in location v if srv has just completed the task GO or MOVE

whose actual physical outcome result is v, or if human service actor srv got lost and v
records the fact that we lost track of its position. Observe that even when a navigation
task has just been finished, the new location v of srv may happen to be different to the
expected (destination) location ld.

Besides data fluents, an application will generally require further domain-
dependent rigid predicates to represent the static properties of a contextual scenario.
Such predicates do not change their value during process execution. For example, our
case study requires to define a predicate Neigh(loc1, loc2) to expresses the neighbor-
hood property between two locations, and a predicate Covered(loc) to indicate that a
location loc is directly covered by the network range provided by the main base net-
work.

Using the core data fluents and static predicates, one can also define helpful abbre-
viations, such as the following one to capture network connectivity of a service at any
point in time.

Example 4.2. The abbreviation Connected(srv, s) denotes that actor srv is within
network connectivity range and is defined as follows:

Connected(srv, s)
def
=

∃l.At(srv, s) = l ∧ Actor(srv) ∧ (Covered(l) ∨ ∃r.Robot(r) ∧ Neigh(l,At(r, s)).

That is, a human service actor is connected iff it is at a location l that is covered by
the main base network, or l is adjacent to a robot providing network connectivity in its
surroundings.

Now, in KiPs, data fluents and abbreviations will be often used for defining the pre-
conditions of domain tasks. By doing so, the PMS can reason, at run-time, about the
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0:16 Andrea Marrella, Massimo Mecella, Sebastian Sardina

active process instance relative to the current context. For example, while we have
given above a generic precondition for assigning tasks to services, one can also incor-
porate domain-specific restrictions for task assignment.

Example 4.3. The following precondition axiom defines when the PMS can assign a
navigation task to a human actor and robot services:

Poss(ASSIGN(srv, id, GO, [ls, ld], [le]), s) ≡
Free(srv, s) ∧ Capable(srv, GO) ∧
Actor(srv) ∧ (At(srv, s) = ls) ∧ Connected(srv, s) ∧ (le = ld);

Poss(ASSIGN(srv, id, MOVE, [ls, ld], [le]), s) ≡
Free(srv, s) ∧ Capable(srv, MOVE) ∧
Robot(srv) ∧ (At(srv, s) = ls) ∧ (le = ld) ∧
EnoughBattery(BatteryLevel(srv, s),MoveStep(ls, ld)).

So, besides the service being available and capable of carrying out the navigation task,
it also needs to be an actor located at the source location ls and currently connected
to the network. In addition, the expected outcome of the task instance ought to be the
destination location ld. A similar MOVE action can be used to instruct robots to move
between two locations, though it is also required the robot’s current battery level is
enough to move from source ls to destination ld. This latter “constraint” is represented
through the abbreviation EnoughBattery, which is defined over the fluent BatteryLevel
(it records the battery charge level of a robot in a specific situation) and the static pred-
icate MoveStep (it indicates the cost for a robot to move between two specific locations).

Before addressing the issue of how monitoring is modeled in KiPs, we provide the
full successor state axiom of another data fluent which is affected by both actions and
asynchronous exogenous events.

Example 4.4. Data fluent Status(l, s), which denotes the state of location l at sit-
uation s, is affected by three domain tasks that could report the status of locations,
as well as two exogenous events: event ROCKSLIDE(l) indicates that a rock slide has
collapsed at location l, while event FIRERISK(l) reflects a sudden fire burnt in one of
the coaches at location l.

Status(l, do(a, s)) = v ≡
[(∃srv, id, t)a = FINISHED(srv, id, t, [l], [v]) ∧

t ∈ {UPDATESTATUS, REMOVEDEBRIS, EXTINGUISHFIRE}] ∨
[a = ROCKSLIDE(l) ∧ v = debris] ∨
[a = FIRERISK(l) ∧ v = fire] ∨
[Status(l, s) = v ∧
¬(∃srv, id, t, v′)(a = FINISHED(srv, id, t, [l], [v′]) ∧

t ∈ {UPDATESTATUS, REMOVEDEBRIS, EXTINGUISHFIRE}) ∧
a 6= ROCKSLIDE(l) ∧ a 6= FIRERISK(l)].

In words, tasks UPDATESTATUS, EXTINGUISHFIRE, and REMOVEDEBRIS are all meant
to report the status of the location they operate on, upon completion. Moreover, rock
slide or fire burnt events also change the status of the corresponding location.

This concludes the exposition of the first three aspects of a SmartPM action theory, as
listed above. We notice that the apparent simplicity, clearness and intuitiveness of the
action theory is a direct consequence of having adopted a KR&R-based approach, which
provides - as previously stated - the right level of abstraction for modeling knowledge
data and the evolution of dynamic situations. In the following section, we will focus on
how our framework is able to deal with exception monitoring and management.
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4.1.1. Exception Monitoring. We now turn our attention to the mechanism for automati-
cally detecting failures/exceptions. In a nutshell, an exception occurs when a task does
not produce the expected outcomes or an exogenous event arises.

To monitor and deal with exceptions, we leverage on [De Giacomo et al. 1998]’s tech-
nique of adaptation from the field of agent-oriented programming, by specializing it
to our KiP setting. We consider adaptation as reducing the gap between the “expected
reality,” the (idealized) model of reality, and the “physical reality,” the real world with
the actual conditions and outcomes. A misalignment of the two realities stems from
errors or exceptions in the tasks’ outcomes or the occurrence of exogenous events, and
may require explicit intervention.

The “physical” reality captures the actual value of fluents (and abbreviations) as
observed from the system, and is encoded via the data fluents (and abbreviations), as
described above (e.g., fluent At(srv, s) and abbreviation Connected(srv, s)).

The “expected” reality, in turn, is captured with another set of fluents and abbrevi-
ations, one for each one in the physical reality. So, for every data fluent F (~x, s), a new
fluent Fexp(~x, s) (F -expected) is used to represent the value of F (~x, s) in the “expected”
(or “desired”) execution. Technically, if F (~x, do(a, s)) is a relational data fluent with
successor state axiom F (~x, do(a, s)) ≡ ΨF (~x, a, s), then we build Fexp(~x, s)’s counterpart
as follows (the one for functional fluent is built in analogous way):

Fexp(~x, do(a, s)) ≡

[(∃srv, id, t,~i, ~or)a = FINISHED(srv, id, t,~i, ~or) ⊃

Ψ∗

F (~x, FINISHED(srv, id, t,~i,ExOut(id, t, s)), s)] ∨

[(∃srv, id, t,~i)Exog(a) ∧ InteractExogTaskF (a, srv, id, t,~i) ∧ Running(srv, id, t, s) ⊃

ΨF (~x, FINISHED(srv, id, t,~i,ExOut(id, t, s)), s)] ∨
[a 6= FINISHED ⊃ Fexp(~x, s)].

(2)
where Ψ∗

F (~x, a, s) is obtained by replacing every fluent X mentioned in ΨF (~x, a, s) (the
right-hand-side formula of F ’s successor state axioms) with its expected version Xexp.

The first condition states that the expected value of the fluent is the value that the
fluent would get if all tasks executed so far since the last alignment point end with
their expected output (denoted with term ExOut(id, t, s)). Basically, when a FINISHED

action is invoked, the F ’s successor state axiom is used with the expected outcome in
place of the real outcome (i.e., ~or is replaced with ExOut(id, t, s)).

The second condition is more complex and relates to the occurrence of an exter-
nal exogenous event affecting the data fluent whose value was expected to be af-
fected by a running task. In a nutshell, it says that if an exogenous event arises
(e.g., the fact an actor got lost) that affects the fluent (e.g., actor’s location) which
in turn was meant to be affected by a running task (e.g., a navigation task)—that
is, InteractExogTaskF (a, srv, id, t,~i) will hold true—then assume that the task has fin-
ished with its expected outcome. By doing so, the expected version of a fluent will take
the expected value of the fluent as if the running task would have finished successfully.
Importantly, it turns out that, when data fluents adhere to the template (1) above, we
can define when an exogenous event a interacts with a data fluent F and a task in-
stance as follows (both relational and functional data fluent version are provided):

InteractExogTaskF (a, srv, id, t,~i)
def
=

(∃~x, a′).(γ+
F (~x, a, srv, s) ∨ γ−

F (~x, a, srv, s)) ∧

a′ = FINISHED(srv, id, t,~i,ExOut(id, t, s)) ∧ (γ+
F (~x, a′, srv, s) ∨ γ−

F (~x, a′, srv, s));

InteractExogTaskF (a, srv, id, t,~i)
def
=

(∃~x, v, v′).γF (~x, a, srv, v, s) ∧ γF (~x, FINISHED(srv, id, t,~i,ExOut(id, t, s)), srv, v′, s).
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In words, an exogenous event a interacts with a fluent F and a task instance id : t
whenever (a) action a sets the (truth) value of the fluent (first conjunct); and (b) the
finishing of task instance id : t with its expected outcome would affect the (truth) value
of the fluent F as well.

Example 4.5. Consider again the situation described in Figure 1(e), depicting a
rock slide collapsed in location loc31 while act2 was evaluating the damages in that
area (i.e., act2 was executing the UPDATESTATUS(loc31) task). Due to the successor
state axiom for fluent Status(x, s), exogenous event ROCKSLIDE(loc31) will immedi-
ately set the value of data fluent Status(loc31, s) to “debris” (see Example 4.4). How-
ever, such a fluent was expected to be eventually affected by current running task
UPDATESTATUS(loc31), which is being executed by actor act2. That is, the exogenous
event interferes with the task. To resolve this interaction, the PMS will force the task
UPDATESTATUS(loc31) to terminate (see next section). Moreover, the corresponding
expected fluent Statusexp(loc31, s) shall be set to the expected outcome that would be
returned if the task would have not been aborted (see Figure 4). This is exactly what
the third condition amounts to. Notice that, as a result, the real value of the fluent and
its expected value will typically differ after such exogenous event.

We note also that this treatment of exogenous events is coherent with the typical
semantics adopted by the majority of PMSs (see [Grefen et al. 2001; Leymann 2001]),
where each task is considered as a black box activity, non-interruptible, but possibly
compensable in case of abortion. The mechanism adopted by SmartPM consists of con-
sidering an aborted task as if it has been completely executed. Notably, the solution
performs correctly when the control flow of the process is well-structured, an assump-
tion we rely on (cf. Section 3).

Finally, the third condition states that for all other cases, the expected fluent keeps
the value it had before (i.e., inertia law is applicable).

Similarly, for each abbreviation A(s)
def
= Ψ(s), an extra abbreviation Aexp(s) is defined

as Aexp(s)
def
= Ψ∗(s), where Ψ∗(s) is obtained by replacing each fluent (or abbreviation)

X in Ψ(s) with its expected version Xexp.
Therefore, given a physical reality, an expected reality can be seen as the collection

of values of the expected versions of data fluents and abbreviations.

Example 4.6. Upon (syntactic and semantic) simplification, the expected version
for fluent Atexp(srv, s) is as follows:

Atexp(srv, do(a, s)) = l ≡

[(∃id,~i, t, ~or)a = FINISHED(srv, id, t,~i, ~or) ⊃
t ∈ {GO, MOVE} ∧ (Actor(srv) ∨ Robot(srv)) ⊃ l = ExOut(id, t, s))] ∨

[(∃id, t,~i)a = PUSHED(srv) ∧ Actor(srv) ∧ Running(srv, id, t, s) ∧ t ∈ {GO, MOVE} ⊃
l = ExOut(id, t, s)] ∨

¬(∃id,~i, t, ~or)a = FINISHED(srv, id, t,~i, ~or) ∧
¬(∃id, t)a = PUSHED(srv) ∧ Actor(srv) ∧ Running(srv, id, t, s) ∧ t ∈ {GO, MOVE} ⊃

Atexp(srv, s) = l].

For abbreviation Connected(x, s), however, we want to force the con-
straint/expectation of always being connected, and hence we simply take

Connectedexp(x, s)
def
= true.

Next, using the data fluents and their expected versions, a misalignment can be
recognized and a recovery procedure may be needed. However, it may only be impor-
tant to check for mismatches among some properties of the world. So, a data fluent (or
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Fig. 4. Task abortion due the occurrence of an exogenous event.

abbreviation) is considered relevant by the process designer if its evolution should be
monitored during process enactment. We assume then that the designer specifies ab-
breviation Misaligned(s) to characterize misalignment situations that would require
process adaptation. The general form of such an abbreviation is as follows:

Misaligned(s)
def
=

∃ ~x1.ΦF 1( ~x1, s) ⊃ ¬[F 1( ~x1, s) ≡ F 1
exp( ~x1, s)] ∨

...
∃ ~xn.ΦFn( ~xn, s) ⊃ ¬[Fn( ~xn, s) ≡ Fn

exp( ~xn, s)],

where F i(~xi, s), with i ∈ {1, . . . , n}, are all the data fluents and abbreviations used in
the SmartPM application. Each condition ΦF i(~xi, s) states the conditions under which
data fluent F i(~xi, s) is relevant and needs to be traced for “misalignment.”

Example 4.7. In our case study, we are interested, among other things, in moni-
toring the correct location of human actors and their permanent connectivity to the
network. Technically, we model that as follows:

Misaligned(s)
def
=

∃x1.Actor(x1) ⊃ ¬[At(x1, s) ≡ Atexp(x1, s)] ∨
∃x1.Actor(x1) ⊃ ¬[Connected(x1, s) ≡ Connectedexp(x1, s)] ∨
∃l1.Location(l1) ⊃ ¬[Status(l1, s) ≡ Statusexp(l1, s)] ∨

...

Observe the definition is not concerned about exceptions on the location of robots, for
example.

This concludes the explanation on what type of situation calculus BAT we shall use
in a SmartPM application. Let us call such a theory DSmartPM.

4.2. SmartPM High-Level Program

A SmartPM application involves the online execution (see Section 3) of IndiGolog pro-
gram (SmartPM‖δexog) modeling the concurrent execution of the specific application
with special program δexog = (πa.Exog(a)?; a)∗ accounting for all potential exogenous
events that may arise from the external environment. Algorithm 1 shows a fragment
of the IndiGolog program for a SmartPM application. The program, as any high-level
program, is meant to be executed relative to a DSmartPM BAT as developed above, which
shall give meaning to conditions and primitive statements in the program (i.e., ac-
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tions). We note that the only domain-dependent part in Algorithm 1 is procedure Pro-
cess–all other procedures remain unchanged across applications.

The top-level part of the PMS involves five interrupts running at different priorities,
as long as the domain process is yet not finished. The highest three priority programs
deal with automated process adaptation; the fourth deals with actual process execu-
tion; and the last one forces the system to wait for further changes.

At top priority, the PMS immediately acknowledges (to the corresponding service)
the termination of a task (and releases it from the service), of any that happens to
be deemed just completed. A running task is deemed complete if it was just reported
finished by the service, or an exogenous event has just happened that interacts with
some fluent and some instance task. In the latter case, the PMS shall abort the task in
question as an exogenous event has changed a property of the world that was related to
the outcome of the task. Formally, this is captured with the following auxiliary fluent
(which is used in the SmartPM procedure):

Completed(srv, id, t, do(a, s)) ≡

(∃~i, ~or)a = FINISHED(srv, id, t,~i, ~or) ∨

(∃~i)a = Exog(a) ∧
∨

F InteractExogTaskF (a, srv, id, t,~i) ∧ Running(srv, id, t, s) ∨
Completed(srv, id, t, s).

If no exogenous event-action-task interaction has been identified, then the main
procedure checks whether a misalignment has been identified (i.e., fluent Misaligned
holds). If so, process adaptation is initiated by calling procedure Adapt (see subsec-
tion 4.3 below). The third interrupt triggers whenever there is a misalignment but
the adaptation procedure (in the second priority interrupt) was not able to not find a
successful plan to repair such misalignment. In that case, the whole execution waits,
for some exogenous events that can allow the system to adapt. Though outside the
scope of this paper, another possibility in such cases would be to resort to alterna-
tive orthogonal adaptation techniques, such as planning from first-principles (as done
in [van Beest et al. 2014]) or just require human intervention (see Section 8 for further
discussion on this).

Whenever there is no adaptation process in place, the PMS runs the IndiGolog pro-
gram reflecting the actual KiP (fourth interrupt), by executing procedure Process.
Recall that the actual KiP (cf. Figure 1(a)) is indeed modelled as yet another IndiGolog
program. Managing the life-cycle of a task instance—procedure ManageExecution—
involves selecting a free and capable service for carrying the task out, assigning the
task to the chosen service, and instructing the start of its execution. Note the use of the
non-deterministic choice of argument πsrv.δ(srv) to select (any) appropriate service.

Finally, at the lowest priority (when the process cannot advance) the PMS just waits
for an external action to arrive from one of the services (e.g., a FINISHED action sig-
naling the completion of a running task). We note that, while waiting, the (human)
process designer could also manually intervene (for example, by adding new services
or updating the capabilities of existing services).

4.3. Process Adaptation via Classical Planning

Possibly the most interesting part of the procedure involves procedure Adapt. An
adaptation is very simple: find a sequence of actions that will resolve the misalign-
ment. This is exactly what the code inside the search operator Σ does: pick and execute
actions zero, one, or more times such that abbreviation Misaligned(s) becomes false. Ob-
serve that because the adaptation mechanism runs at higher priority than the actual
process, the recovery plan found will be run before whatever part of the domain process
remains to be executed.
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ALGORITHM 1: IndiGolog high-level program for PMS.

Proc SmartPM
〈(srv, id, task),¬Finished ∧ Completed(srv, id, task) ∧ Running(srv, id, task) →

ACKCOMPL(srv, id, task); RELEASE(srv, id, task)〉 〉〉
〈¬Finished ∧ Misaligned → Adapt〉 〉〉
〈¬Finished ∧ Misaligned → WAIT〉 〉〉
〈¬Finished → Process; FINISH〉 〉〉
〈¬Finished → WAIT〉.

Proc Adapt
Σ[(πa.a)∗;¬Misaligned?];

Proc ManageExecution(Task, id, Input,ExpOut)
(π srv).

(Capable(srv,Task) ∧ Free(srv))?;
ASSIGN(srv, id,Task, Input,ExpOut);
START(srv, id,Task);

Proc Process
[Branch1 ‖ Branch2 ‖ Branch3]

Proc Branch1
ManageExecution(GO, id1, [loc00, loc33], [loc33]);
ManageExecution(TAKEPHOTO, id2, [loc33], [ok]);
ManageExecution(UPDATESTATUS, id3, [loc33], [ok])

Proc Branch2
ManageExecution(GO, id4, [loc00, loc32], [loc32]);
ManageExecution(EVACUATE, id5, [loc32], [ok]);
ManageExecution(UPDATESTATUS, id6, [loc32], [ok])

Proc Branch3
ManageExecution(GO, id7, [loc00, loc31], [loc31]);
ManageExecution(EVACUATE, id8, [loc31], [ok]);
ManageExecution(UPDATESTATUS, id9, [loc31], [ok])

Putting it all together, let us formally capture the type of adaptation realized by our
approach.

Definition 4.8. Let S be a ground situation term such that DSmartPM |=
Misaligned(S).

We say that situation S is recoverable if and only if it is the case that DSmartPM |=
∃s′.S < s′ ∧ executable(s′) ∧ ¬Misaligned(s′).

That is, a given situation can be recovered if there is an executable sequence of
actions from it that will eventually resolve the misalignment between the physical
and expected realities.

So, the following result states that when the execution reaches a misalignment, the
SmartPM procedure (i) will not execute the main process (encoded in procedure Pro-
cess and running at the fourth priority level); and (ii) will execute the first action of a
plan to recover the current situation from misalignment, if such a plan exists (other-
wise, the system just waits; see above).

THEOREM 4.9. Let (δ0, S0)(δ1, S1) · · · (δn, Sn)(δn+1, Sn+1) be an online execution of
IndiGolog program δ0 = (SmartPM‖δexog) such that DSmartPM |= Misaligned(Sn) ∧
¬Finished(Sn) and if Sn+1 = do(An+1, Sn), DSmartPM |= ¬Exog(An+1). Then:

(1) δn = (δ1n 〉〉 δ2n 〉〉 δ3n 〉〉 δ4n 〉〉 δ5n)‖δexog and δn+1 = (δ1n+1 〉〉 δ
2
n+1 〉〉 δ

3
n+1 〉〉 δ

4
n+1 〉〉 δ

5
n+1)‖δexog;

(2) δ4n+1 = δ4n, that is, procedure Process representing the main business process has

not executed in the last execution step, and δ5n+1 = δ5n; and
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(3) if situation Sn is recoverable, then:
(a) δ3n+1 = δ3n, that is, the last execution step is due to the first or second priority

program; and
(b) if δ1n+1 = δ1n, then Sn+1 = do(A,Sn) and D |= ∃s.Sn+1 ⊑ s ∧ Executable(s) ∧

¬Misaligned(s).
(4) if situation Sn is not recoverable, then either δ1n+1 6= δ1n, then Sn+1 = do(WAIT, Sn).

PROOF. The first point only states the shape of the program at steps n and n+ 1 and
it follows directly from the semantics of the prioritized concurrency 〉〉 and the fact that
programs at each priority level are interrupts.

The second point follows from the fact that because DSmartPM |= ¬Finished(Sn) ∧
Misaligned(Sn), the third priority process is always enabled and ready to execute; hence,
the fourth and fifth priority processes will remain still.

For the third point, suppose that Sn is indeed a recoverable situation, as per Defi-
nition 4.8. Now, because by assumption we are only interested in steps generated by
the SmartPM process (and not the exogenous events arising), the last execution step
has to be due to one of the first first three priority processes in SmartPM, that is, δ1n,
δ2n, or δ3n. However, because we know that Sn is recoverable, there exists a sequence of
actions that will eventually make fluent Misaligned(s) false, and therefore the Adapt
procedure running at the second priority level is enabled and will generate an action if
executed. All this implies that the third priority process will remain still and that if the
last execution step was not due to the first priority process (to respond to a task that has
just completed), then Sn+1 is due to procedure Adapt and corresponds to an action A
that is the first action in a sequence of executable actions leading to a future situation
in which fluent Misaligned(s) is false. That is, the third item follows.

Finally, if however Sn is not recoverable, then procedure Adapt can not execute any
step (i.e., it is blocked); this means that the third priority process is enabled and a WAIT

action is generated by the SmartPM procedure.

Importantly, the above result also makes explicit the limits of our adaptation frame-
work: if there is no plan able to resolve the existing mismatch, the system just waits
(fourth point) and other orthogonal adaptation techniques would need to be used, see
discussion in Section 8.

While this specification of the automated adaptation procedure turns out to be ex-
tremely clean and simple, the direct use of the native search operator provided by the
IndiGolog architecture [De Giacomo et al. 2009] poses serious problems in terms of effi-
ciency. The fact is that the search operator provided by IndiGolog amounts to a generic
and incremental (i.e., done at every step) search; as a result, direct implementations
are not able to cope with even extremely easy adaptation tasks.

But, while the search operator is meant to handle any IndiGolog high-level program
(including ones containing nested search operators), our SmartPM system uses a spe-
cific type of program that turns out to encode a (classical) planning problem. So, lever-
aging on the recent progress of classical planning systems, we implement the search
operator call in procedure Adapt, by using an off-the-shelf planner to synthesise the
recovery plan, and then fit such a plan back into the IndiGolog framework. Specifically,
we used the LPG-td system [Gerevini et al. 2004], one of the many state-of-the-art
planning systems available. The basic search scheme of LPG-td is inspired by Walk-
sat [Selman et al. 1994], an efficient procedure for solving SAT-problems; as expected,
it outperforms the blind search operator by several orders of magnitudes (cf. Section 6).
Nonetheless, our approach is orthogonal to other planning systems.
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We do not go over all the details on how the interface between IndiGolog and LPG-td
has been implemented but just go over the main ingredients.8 First of all, given a BAT
DSmartPM for a KiP application as above (Section 4.1), the corresponding PDDL planning
domain is built (and stored) offline. Because we are not concerned with the external
actions generated by services to acknowledge the start and termination of assigned
processes (i.e., actions READYTOSTART and FINISHED), we do not model the full PMS
assign-start-acknowledge-release task life-cycle, but just encapsulates them all in the
actual name of the task being handled (e.g., GO). By doing that, we assume that the
life-cycle of a task instance will follow its normal (expected) evolution. The SmartPM
BAT will define a form of tasks and services repository, which may include entities
not used in the current running process. So, the PDDL domain for our case study will
contain, among others, the following action schema modeling the GO task:9

(:action go
:parameters (?srv - actor ?from - location ?to - location)
:precondition

(and (provides ?srv movement) (free ?srv)
(at ?srv ?from) (connected ?srv))

:effect (and (not (at ?srv ?from)) (at ?srv ?to)))

Note that the task-action in the planning system will contain the service in charge and
its expected effects.

Then, whenever a search operator adaptation program is called in procedure Adapt,
the current physical reality is encoded as the planning problem initial state (as the set
of fluents that are true) and the expected reality is encoded as the problem goal state
(by taking the collection of relevant fluents to be as their expected versions). Those two
states, together with the planning domain already pre-computed, are then passed to
the LPG-td system.

Finally, if the planner finds a plan that brings about the (desired) expected reality,
such a plan—built from task names only—is translated into the typical assign-start-
acknowledge-release task life-cycle IndiGolog program. As stated above, such a plan
will run before the actual domain process, which shall resume then, hopefully from the
expected reality. In our running example, the full IndiGolog program would encode the
KiP depicted in Figure 2(b).

5. SYSTEM ARCHITECTURE

Our approach to integration of process execution, knowledge representation and plan-
ning to provide automated adaptation features at run-time is concretely supported
by the SmartPM system, which relies on three main architectural layers as shown in
Figure 5.

The Presentation Layer has a twofold purpose. On one hand, it provides a GUI-
based tool called SmartPM Definition Tool. The SmartPM Definition Tool supports the
process design activity by providing (i) a wizard-based GUI that assists the process
designer in the definition of the process knowledge, and (ii) a graphical editor to de-
sign the control flow of a KiP using a subset of the BPMN 2.0 notation [BPMI.org
and OMG 2011]. The SmartPM Definition Tool has been developed as a standard Java
application, using the Java SE 7 Platform, and the JGraphX open source graphical
library.10 The use of the SmartPM Definition Tool allows a human process designer to

8The integration of PDDL planning with situation calculus and Golog-like languages has been already anal-
ysed in several research works, such as [Claßen et al. 2007b; Claßen et al. 2007a; Fritz et al. 2008].
9In PDDL, the variables are distinguished by a ’?’ character at front, for example ?x1 represents a variable.
The dash ’–’ is used to assign types to the variables. Notice that preconditions and effects of a given action
are bundled together, while in the situation calculus they are spread over multiple axioms.
10http://www.jgraph.com/
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Fig. 5. The architecture of SmartPM.

enter knowledge on processes without being expert of the internal working of the AI
tools involved in the system. This means that a process designer that wants to interact
with SmartPM is not required to model the process knowledge through complex lan-
guages such as situation calculus and IndiGolog. We use such languages for reasoning
on the process under execution and for generating recovery procedures at run-time.

From the process designer perspective, process knowledge is represented as a do-
main theory through SmartML, that is the SmartPM Modeling Language.11 SmartML is
a declarative language used for representing tasks, services and all the contextual in-
formation of the domain of concern. The domain theory involves capturing a set T of
n task definitions and supporting information, such as the people/agents that may be
involved in performing the process (roles or participants), the data and so forth. Data
are represented through some ground atomic terms that range over a set of tuples (i.e.,
unordered sets of zero or more attributes) of data objects, defined over some data types.
In short, a data object depicts an entity of interest (e.g., a location, a specific process
participant, etc.). Tasks are collected in a specific repository, and each task ti ∈ T (with
i ∈ 1..n) is described in terms of its preconditions Prei and effects Effi. Preconditions
are logical constraints defined as a conjunction of atomic terms, and they can be used
to constrain the task assignment and must be satisfied before the task is applied, while
effects establish the outcome of a task after its execution.

Starting from a SmartML specification of the contextual information in which the
process is meant to run, the process designer can define the control flow of a KiP
through the BPMN graphical editor provided by the SmartPM Definition Tool. Note that
the set of tasks composing the control flow must be selected from the repository of
available tasks defined according to SmartML. A screenshot of the workspace of the
SmartPM Definition Tool is shown in Figure 6. The main elements of the workspace are

11We describe the complete syntax of SmartML in the appendix.
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Fig. 6. A screenshot of the SmartPM Definition Tool.

a modeling canvas and a context menu. The modeling canvas is where BPMN process
elements (dragged and dropped from a process elements panel located at the left of the
workspace) are placed to create and modify the control flow of a process specification.
The context menu is a pop-up menu that appears upon a right-click mouse operation
on any blank area of the modeling canvas. It presents several modeling options, but the
main ones allow to (i) create a new domain theory throw a wizard-based GUI, (ii) in-
stantiate an initial description of the execution context and (iii) run the process. The
outcome of the process design activity is a complete XML-encoded process specification
that is passed to the Execution Layer.

On the other side, the Presentation Layer includes every real world device that may
interact with the Execution Layer. In order to manage such an interaction, there is the
need to installing and configuring a Task Handler module on top of every device. The
Task Handler is an interactive GUI-based software application developed in Java that
- during process execution - supports the visualization of assigned tasks and allows
each participant to start task execution and notify task completion by selecting an
appropriate outcome. Figure 7 shows a screenshot of the Task Handler component
provided by SmartPM. In the figure, it is described how the data fluent At(act1) can be
used to represent the effect of the task GO. We show that the output value for At(act1)
(in the example ’loc03’, different from the task’s expected outcome, that is ’loc33’) can
be produced by a sensor (i.e., a GPS device) supporting the Task Handler.

The Execution Layer is in charge of managing and coordinating the execution of
KiPs. It performs task assignment and manages information about services involved in
process execution, tasks to be completed and data modified during process execution.

A KiP built through the BPMN notation and annotated with SmartML is taken as
input from the XML-to-IndiGolog Parser component, which translates this specification
in situation calculus and IndiGolog readable formats, in order to make the process
executable by the IndiGolog engine. Basically, the XML-to-IndiGolog Parser builds a
DSmartPM theory and an IndiGolog high-level program as shown in the previous section.
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Fig. 7. The task handler of SmartPM.

The IndiGolog Engine is a logic-programming implementation of IndiGolog, and al-
lows the incremental execution of high-level IndiGolog programs. It is based on the
IndiGolog interpreter12 developed at University of Toronto (Canada) and RMIT Uni-
versity in Melbourne (Australia). The engine is written in the well-known open source
SWI-Prolog environment.13 Basically, the IndiGolog engine manages the process rout-
ing and decides which tasks are enabled for execution, by taking into account the con-
trol flow, the value of predicates/fluents and precondition and effect axioms associated
to each task. Before a process starts its execution, the IndiGolog engine builds its phys-
ical reality by taking the initial context from the external environment.

The IndiGolog Engine is also in charge of monitoring contextual data in order to
identify changes or events which may affect process execution. Specifically, at each
execution step - i.e., when the completion of a task or an exogenous event has occurred
in situation s - the engine checks if in the new situation do(a, s) (where a is a FINISHED

action or an exogenous event) the physical and expected realities are misaligned. If
this is the case, the engine (i) stops the main process execution, (ii) collects the physical
and expected realities and (iii) sends them to the Synchronization component, that is
in charge to decide if process adaptation is required.

Once a task is ready for being assigned, a component named Communication Man-
ager assigns it to a proper service that is available (i.e., free from any other task as-
signment) and that provides all the required capabilities for task execution. Every
step of the task life-cycle - ranging from the assignment to the release of a task - re-
quires an interaction between the Communication Manager and the devices. For each
real world device, the Communication Manager generates a separate Device Manager,
which is a software component able to interact with the task handlers deployed on the
devices. Each device manager establishes a communications channel with the associ-
ated devices by using TCP/IP stream sockets. Such an interaction is mainly intended
for notifying a device of actions performed by the IndiGolog engine as well as for no-
tifying the engine of actions executed by the task handlers of the devices. Finally, the
Communication Manager provides some ad-hoc sensors for collecting exogenous events
coming from the external environment.

The Adaptation Layer is in charge of reacting to undesired or unforeseen events
which may invalidate process execution. The Synchronization component acts as

12https://bitbucket.org/ssardina/indigolog
13http://www.swi-prolog.org/
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unique entry point for incoming notifications from the Execution Layer, and enforces
synchronization between the IndiGolog engine and the Planner component. When it
receives from the IndiGolog engine a representation of the two realities, it builds a cor-
responding planning problem in PDDL (through the Problem Builder component), by
converting the physical reality into the initial state and the expected reality into the
goal of the planning problem (as described in the previous section).

The Planner component is invoked when the Synchronization component builds a
new planning problem. In addition, the planner needs a specification of the planning
domain (that is, a PDDL specification with tasks and predicates). For this purpose, the
Domain Builder component translates the SmartML specification in a PDDL planning
domain readable by the planner. In the SmartPM system, we synthesize our recovery
plans through the LPG-td planner [Gerevini et al. 2004] (Local search for Planning
Graphs).

In order to invoke the planner, the Synchronization component is required to spec-
ify the value of three parameters indicating: (i) the file containing the set of PDDL
operators (i.e., the planning domain, provided by the Domain Builder), (ii) the file con-
taining a planning problem (i.e., the initial state and goal of the problem, provided by
the Problem Builder) formalized in PDDL and (iii) the running mode, which is either
“speed” (for devising sub-optimal solutions, that do not prove any guarantee other than
the correctness of the solution) and “quality” (for devising solutions obtained under a
pre-specified metric).

Finally, when a plan satisfying the goal is found, it is sent back to a Translator
component, that converts it in a readable format for the IndiGolog engine and passes it
back to the Synchronization component. The Synchronization component combines the
faulty process instance δ′ with the recovery plan δa just found, and builds the adapted
process δ′′ = (δa; δ

′) that will be executed by the IndiGolog Engine. If the Planner is not
able to find any recovery plan for a specific exception, the control is passed back to the
process designer, which can intervene manually to solve the exception.

This concludes the complete overview of the SmartPM system. Let us now look at
some empirical evaluation of such a system.

6. VALIDATION

In order to investigate the feasibility of the SmartPM approach, we performed some
experiments to learn the time amount needed for synthesizing a recovery plan for
different adaptation problems. We made our tests by using two different state-of-the-
arts planners, LPG-td [Gerevini et al. 2004] and Fast-Downward [Helmert 2006; 2009].
LPG-td is based on a stochastic local search - inspired by Walksat [Selman et al. 1994]
- in the space of particular “action graphs” derived from the planning problem spec-
ification. We chose LPG-td as (i) it treats most of the features of PDDL 2.2 and (ii) it
has been developed in two versions: a version tailored to computation speed, named
LPG-td.speed, which produces sub-optimal plans that do not prove any guarantee other
than the correctness of the solution, and a version tailored for plan quality, named
LPG-td.quality. LPG-td.quality differs from LPG-td.speed as it does not stop when the first
plan is found but continues until a stopping criterion is met. In our experiments, the
criterion for plan quality was set to minimal plan length (i.e., as the smallest number
of actions needed for reaching a goal state).

Conversely, Fast Downward is a progression planner that uses hierarchical decom-
positions of planning tasks for computing its heuristic function, called the causal graph
heuristic, which approximates goal distances by solving a hierarchy of “local” planning
problems. To produce quality plans, Fast Downward uses a best-first search in first
iteration to find a plan and a weighted A* search to iteratively decreasing weights of
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Table I. Time performances of LPG-TD.

L-RP #I AT-SOS-i7 AT-SOS-DUO AL-SOS AT-QS-i7 AT-QS-DUO

1 29 0.468 1.982 2 1.039 4.843
2 36 0.472 1.998 3 8.356 18.376
3 32 0.539 2.187 5 27.976 47.987
4 25 0.545 2.313 6 42.767 73.012
5 21 0.547 2.314 8 51.023 86.076
6 17 0.551 2.467 9 67.614 91.160
7 13 0.551 2.617 11 81.406 131.820
8 12 0.591 2.742 13 93.741 132.681
9 9 0.593 2.865 14 94.777 179.772

10 6 0.635 3.032 14 143.540 280.981

Table II. Time performances of Fast Downward.

L-RP #I AT-SOS-i7 AT-SOS-DUO AL-SOS AT-QS-i7 AT-QS-DUO

1 29 1.026 5.034 1 1.172 5.588
2 36 1.067 5.094 2 1.199 5.860
3 32 1.109 5.118 3 1.282 5.989
4 25 1.116 5.127 5 1.328 6.203
5 21 1.123 5.208 6 2.094 8.459
6 17 1.125 5.243 7 5.709 21.875
7 13 1.131 5.443 8 8.616 35.082
8 12 1.139 5.569 9 17.102 69.142
9 9 1.185 5.789 11 28.846 113.636

10 6 1.305 5.943 12 60.975 225.674

Legend. L-RP = length of the recovery plan; #I = number of problem instances; AL-
SOS = average length for sub-optimal plan; AT-SOS-i7/AT-SOS-DUO = average time
for sub-optimal plan computed with a high/low-end machine; and AT-QS-i7/AT-QS-
DUO = average time for quality plan computed with a high/low-end machine.

plans. Notably, if compared with LPG-td, Fast-Downward does not provide any support
to the definition of functional numeric fluents.

The experimental setup was performed with the test case shown in our running
example. We stored in the task repository 20 different emergency management tasks,
annotated with 28 relational predicates and 1 derived predicate. Then, we provided 200
different planning problems of different complexity, by manipulating ad-hoc the values
of the initial state and the goal in order to devise adaptation problems of growing com-
plexity. We ran both LPG-td and Fast-Downward with the above planning problems
and we did our tests by using two different machines: a low-end one based on an Intel
U7300 CPU 1.30GHz Dual Core and 4GB RAM, and a high-end one consisting of an
Intel Core i7-4770S CPU 3.10GHz Quad Core and 16GB RAM (notably the low-end
machine is a representative of a typical computing unit that can be deployed on the
field during emergencies, as a rugged embedded computer).

As shown in Tables I and II, the column labeled as L-RP (that is “Length of the
recovery procedure”) indicates the smallest number of actions needed for devising a
plan of a specific length. The column labeled as AL-SOS (that is “Average length of
a sub-optimal solution”) indicates the average number of actions that compose a sub-
optimal solution for a problem of a given complexity. Finally, the columns with the
prefix “AT-QS” (which stands for “Average time for a quality solution”) and “AT-SOS”
(which stands for “Average time for a sub-optimal solution”) record the computation
time needed for finding a quality solution and a sub-optimal solution by using, respec-
tively, the high-end machine (cf. the suffix “i7”) and the low-end machine (cf. the suffix
“DUO”).
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From the analysis of the results, it is clear that a sub-optimal solution is found in
less time than a quality one, but it generally includes more tasks than the ones strictly
needed. This is particularly true for the LPG-td planner. For example, as shown in
Table I, on 21 different planning problems requiring a recovery procedure of length
5, the LPG-td planner is able to find, on average, a sub-optimal plan in 0.547 seconds
with the high-end machine and 2.314 seconds with the low-end machine (with 3 more
tasks, on average), and a quality plan (which consists exactly of the 5 tasks needed
for the recovery) in 51.023 seconds with the high-end machine and 86.076 seconds with
the low-end machine. Conversely, as shown in Table II, Fast-Downward has better
performances when computing a quality plan, and lower performances in the synthesis
of a sub-optimal plan. In fact, in the case of planning problems requiring a recovery
procedure of length 5, Fast-Downward was able to synthesize a sub-optimal plan, on
average, in 1.123 seconds with the high-end machine and 5.208 second with the low-
end machine, and a quality plan in 2.094 seconds with the high-end machine and 8.459
seconds with the low-end machine. In addition, all sub-optimal solutions provided by
Fast-Downward have better “quality” if compared with the ones produced by LPG-td,
as they require on average only one ore two tasks more than the ones strictly needed.

We notice that business processes, even in dynamic scenarios, are not real-time pro-
cesses (as the ones, e.g., controlling a nuclear plant) but their duration, and the aver-
age duration of tasks, is “human-time”, i.e., in the order of minutes; as an example,
cf. [Jennings et al. 2000], just for comparing with a system with similar functional-
ities applied in an empirical study. Therefore, having automated adaptation solved
in seconds, instead of a manual one solved in minutes - and requiring human opera-
tors for computing it - is undoubtedly an advantage. The experiments reported above
aims at highlighting how performance is made of many dimensions; not only the time
of computation have to be considered, but also other parameters like the number of
tasks found in the solution (e.g., if each task requires minutes to be performed by a
human actor, maybe it is preferable to wait more time - more seconds - in computing
a shorter solution). We have created a framework for adaptation in which users can
easily change the planning techniques, on the basis of their features, as we have for-
malized through KR&R the semantics of processes and of adaptation. We have shown
we can decrease the time of computation to a few seconds (milliseconds on powerful
workstations) by using different planners, maybe losing some expressive power or fea-
tures (e.g., Fast-Downward does not provide any support to the definition of functional
numeric fluents), depending on the specific application domain. In any case, the tech-
niques integrated in our approach are feasible in real applications, being at least an
order of magnitude faster than having human intervention. In future work, we would
like to conduct an empirical study on these issues (length of tasks, how much time
a human perform an adaptation with respect to a software system, and with which
quality, etc.).

6.1. Effectiveness of SmartPM in Adapting Processes

An important aspect to consider during the development of a PMS with adaptation
features concerns its effectiveness in supporting process models having control flows
with different structures. We define effectiveness as the ability of a PMS to complete
the execution of a process model (i.e., to execute all the tasks involved in a path from the
start event to the end event) by adapting automatically its running process instances if
some failure arises, without the need of any manual intervention of the process designer
at run-time.

To evaluate the effectiveness of SmartPM, we developed a software module named
the SmartPM Simulator, which is able to automatically build IndiGolog processes and
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Fig. 8. Analysis of the SmartPM effectiveness. The x-axis states the size of the tasks repository, while the
y-axis indicates the effectiveness in executing process models with a specific structure of the control flow.

corresponding DSmartPM theories, by simulating their execution on the basis of some
customizable parameters:

— Structure of the control flow, with tasks organized in sequence or in 3 or 5 parallel
branches.

— Tasks repository size, equal to 25, 50, or 75 tasks.
— Number of available services in the initial situation for task assignment. We fixed

this value to 5 services.
— Number of task preconditions/effects; we allowed the generation of tasks having a

maximum of 5 conditions in the precondition/effect axioms.
— Number of available fluents; we allowed the generation of 50 relevant data fluents

that may assume boolean values. For each data fluent, the SmartPM Simulator au-
tomatically builds the corresponding expected fluent for monitoring possible tasks
failures.

— Percentage of tasks failures. This parameter may assume two possible values (30%
or 70%), and affects the percentage of tasks error during the process execution. For
example, if a process model is composed by 10 tasks, and the percentage of failures is
equal to 70%, we have that 7 tasks of its running process instance will complete with
some physical outcome different from the one expected, thus requiring the process
to be adapted.

— Percentage of capabilities coverage (30% or 70%), that affects the ability of each avail-
able service to execute the tasks stored in the repository. During the simulation, we
assumed that each task was associated with a unique capability. For example, if the
tasks repository stores 75 tasks and the percentage of capabilities coverage is equal
to 30%, each available service is able to execute at least 22 tasks in the repository.

Given (i) a specific structure of the control flow, (ii) a fixed percentage of capabilities
coverage and (iii) of tasks failures, for each possible size of the tasks repository the
SmartPM Simulator generated 100 process models with control flows composed respec-
tively by 5 to 25 tasks randomly picked from the tasks repository. In total, we tested
3600 process models. Test results are shown in Figure 8. Collected data are organized
in 4 diagrams obtained by combining the percentage of failures (FP ) with the the per-
centage of capabilities coverage (SC). Each bar corresponds to the enactment of 100
different process models with a fixed size of the tasks repository and a specific struc-
ture of the control flow.

The analysis of the performed tests points out some interesting aspect. For example,
let us consider the diagram in Figure 8(a), that shows the effectiveness of SmartPM
in executing processes with a FP equal to 30% and a SC fixed to 30%. When the size
of the tasks repository is equal to 75, the effectiveness of SmartPM in executing 100
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process models composed by a sequence of tasks is equal to 82%. This means that 82
processes out of 100 that were executed have been correctly enacted and completed,
while for the other 18 processes the system did not find any recovery plan for dealing
with an exception occurrence. We can note that the effectiveness decreases if the in-
stances have tasks organized in 3 parallel branches (79%) and in 5 parallel branches
(75%). In general, the effectiveness of the SmartPM system decreases as the number of
parallel branches increases, since more services are possibly involved at the same time
for tasks execution, by letting only few services available for process adaptation and
recovery. Furthermore: (i) when the F.P. increases, the effectiveness of the SmartPM
system decreases; (ii) when the S.C. increases, the effectiveness of the SmartPM sys-
tem increases, because there are more possibilities for a task in the repository to be
selected by an available service; (iii) to have a large tasks repository helps to increase
the effectiveness of the SmartPM system, since the planner has a greater choice when
builds a recovery procedure.

To sum up, the execution of 3600 process models with different structures was a valid
test for measuring the effectiveness of SmartPM, that was able to complete 2537 process
instances, corresponding to an effectiveness of about 70.5%.

7. RELATED WORK

The issue of having software systems automatically and autonomously adapt to chang-
ing conditions has been addressed in the last years under the autonomic and self-
healing systems literature [Ghosh et al. 2007; Psaier and Dustdar 2011]. In such re-
search contexts, SmartPM can be considered as a specific kind of self-healing system
addressing the management of processes through AI-based techniques. In particular,
according to what presented in [Psaier and Dustdar 2011], its main peculiarities are
the use of a context- and data-aware process engine and the ability to reason over dy-
namic contexts, for which the adopted KR&R techniques - as previously discussed - are
particularly suitable.

A research area related to process adaptation is the one of (automatic) Web service
composition [Berardi et al. 2003; Pistore et al. 2005a; 2005b; Agarwal et al. 2005; De
Giacomo et al. 2014]. Notably, most of the approaches to Web service composition adopt
planning-based techniques, as the SmartPM approach does. However, there exists a rel-
evant difference in what SmartPM and Web service composition techniques synthesize
through planning. In Web service composition, given a a set of available services and
a target service, the challenge is to synthesize a possible composition (a.k.a. orchestra-
tion) of the available services such that the target one can be obtained. Depending on
the approach used, the target can be a goal to be reached or a business process to be
reproduced. Conversely, in the SmartPM approach, the aim is to synthesize a recovery
process that repairs the original one in a specific situation of the world by using a set
of tasks stored in a tasks repository. Without any doubt, tasks and services are similar
concepts, as well as a goal/target service is analogous to a situation to be recovered in
SmartPM. However, on the one hand, in Web service composition the most important
fact is to preserve service behaviors (which are in general quite rich, often modeled
as transition systems). On the other hand, in process adaptation (and, in particular,
in SmartPM), the main issue is to preserve as much as possible the original process,
considering also that process tasks are atomic and do not present rich behaviors to be
preserved.

After having provided a general view of the relationships among process adaptation
and other relevant area, in the following we describe the state-of-the-art approaches
to process adaptation considering to what extent users are involved in the process of
defining exception conditions and handling policies (as summarized in Figure 9), which
directly influences the degree of automation provided in the exception resolution and
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Fig. 9. Exception handling and process adaptation approaches.

process adaptation stages. Specifically, we first outline traditional exception handling
techniques used to deal with anticipated exceptions (Section 7.1). Then, we review
the existing approaches allowing ad-hoc process changes for adapting running process
instances in case of unanticipated exceptions (Section 7.2). Finally, we analyze a num-
ber of techniques from the field of AI that have been applied to BPM with the aim of
increasing the degree of automated process adaptation at run-time (Section 7.3).

7.1. Exception Handling

Initial research efforts addressing the need for exception handling in PMSs can be
traced back to the late nineties and early two thousands [Casati et al. 1999; Casati
and Cugola 2001; Eder and Liebhart 1995; 1996; Hagen and Alonso 2000; Klein and
Dellarocas 2000; Luo et al. 2000]. Although possible sources of anticipated exceptions
are different (as outlined in [Casati and Cugola 2001; Eder and Liebhart 1995], they
can be reconducted to activity failures, deadline expirations, resource unavailabilities,
constraint violations and external events) and go beyond technical failures, not sur-
prisingly exception handling approaches in PMSs trace and resemble exception han-
dling mechanisms in programming languages.

Abstracting from the specific techniques and implementations, a common behav-
ioral pattern can be identified. At design-time, the process designer identifies possi-
ble exceptions that may occur, defines exception triggering events and conditions, and
specifies exception handlers associated with the predefined process model. Exception
handlers can be defined for single activities, for selected process regions (including
multiple activities), or for the overall process (as in the case of a try block in program-
ming languages). The main process logic is thus clearly separated from the exception
handling logic. During process execution, timers, messages, errors, constraint viola-
tions and other events might interrupt the process flow: the exception is detected and
thrown. The run-time environment checks for the availability of a suitable exception
handler, which is then invoked to catch the exception (as in the case of a catch block).
Typically, the process (or sub-parts of it) is interrupted and the flow of control passes to
the exception handler. The handler defines specific activities to be performed to recover
from the exception, so that process execution can be possibly resumed.

Typical strategies applied when defining exception handlers for anticipated excep-
tions have been systematized in the form of exception handling patterns [Russell et al.
2006; Lerner et al. 2010; Reichert and Weber 2012]. When for a given exception no ex-
plicit handling logic is defined or the handler is not able to resolve the issue, a process
participant may be notified and involved in the definition of corrective actions.

As extensively discussed in [Adams 2007], exception handling capabilities provided
by academic prototypes and commercial process management systems can be recon-
ducted to the abstract framework introduced before. The different approaches vary in
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the exception types that can be handled and in the way they support the definition
and selection of exception handlers, which can be completely predefined, contextually
selected from a repository or instantiated from templates.

Several exception detection and handler activation techniques [Casati et al. 1999;
Hagen and Alonso 2000; Chiu et al. 2000] adopt a rule-based approach, typically re-
lying on some form of Event-Condition-Action (ECA) rules. ECA rules have the form
“on event if condition do action” and specify to execute the action (i.e., the exception
handler) automatically when the event happens (i.e., when the exception is caught),
provided the a specific condition holds. ECA rules represent a good way for separating
the graphical representation of the process with the “exception handling flow”.

A similar principle has been applied in YAWL [ter Hofstede et al. 2009], where for
each exception that can be anticipated, it is possible to define an exception handling
process, named exlet, which includes a number of exception handling primitives (for
removing, suspending, continuing, completing, failing and restarting a workitem/case)
and one or more compensatory processes in the form of worklets (i.e., self-contained
YAWL specifications executed as a replacement for a workitem or as compensatory
processes). Exlets are linked to specifications by defining specific rules (through the
Rules Editor graphical tool), in the shape of Ripple Down Rules specified as “if condi-
tion then conclusion”, where the condition defines the exception triggering condition
and the conclusion defines the exlet.

7.2. Ad Hoc Process Change

Even though the handling of anticipated exceptions is fundamental for every PMS,
the latter also needs to be able to deal with unanticipated exceptions. Research efforts
dealing with unanticipated exceptions have established the area of adaptive process
management [Weske 2001; Reichert and Weber 2012]. While the introduction of excep-
tion handling techniques for anticipated exceptions increases process flexibility and
adaptation capabilities, a different approach is required for handling unanticipated
exceptions and deviations occurring at run-time. The handling of unanticipated excep-
tions does not assume the availability of predefined exception handlers and relies on
the possibility of performing ad hoc changes over process instances at run-time. The
need to perform complex behavioral changes over a process instance requires struc-
tural adaptation of the corresponding process model. Structural adaptations over the
model then lead to adaptations of the process instance state.

As in the case of exception handling, structural adaptation techniques have been sys-
tematized through the identification and definition of adaptation patterns [Weber et al.
2008]. At a low-level of abstraction, structural model adaptations can be performed by
applying change primitives such as adding/removing nodes, routing elements, edges
and other process elements. At a higher level of abstraction, change operations provide
a set of adaptation patterns to perform model adaptations, such as adding, deleting,
moving or replacing activities or process fragments. A single change operation corre-
sponds to the application of multiple change primitives, hiding the complexity of the
model editing task. Adaptation patterns are not limited to the control flow perspective
and also cover the other process perspectives to perform changes, for example, at the
level of the data flow schema or on process resources. In addition, change operations
performed for one perspective (e.g., control flow) may affect the other perspectives (e.g.,
the data flow) as well, resulting in so-called secondary changes. As a fundamental chal-
lenge and requirement, ad hoc changes must preserve the correctness of the process
model and the executability and continuation of the process instance [Rinderle et al.
2004].

While a good level of support can be provided to ensure correctness and compli-
ance when high-level change operations are performed, the degree of automation in
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performing these changes is generally limited. In adaptive process management envi-
ronments, ad hoc changes are often manually performed by experienced users: process
execution is suspended and the model and state of the affected instance are adapted
by relying on the capabilities of the modeling environment.

In an attempt to increase the level of user support, semi-automated approaches have
been proposed [Rinderle et al. 2005]. They aim at storing and exploit available knowl-
edge about previously performed changed, so that users can retrieve and apply it when
adapting a process. Knowledge retrieval and reuse require to establish a link between
performed changes and the application context, including the occurred exception and
the process state. Contextual information allows in turn to identify similarities be-
tween the current exceptional situation and previous cases. The available knowledge
on how similar cases were handled in the past is used to assist the users, provide rec-
ommendations and suggest possible changes to be applied. Such an approach has been
concretely put into practice using case-based reasoning techniques [Weber et al. 2004;
Minor et al. 2014].

Strong support for adaptive process management and exception handling is provided
by the ADEPT system and its evolutions [Reichert and Dadam 1998; Reichert et al.
2003; Reichert et al. 2005; Lanz et al. 2011]. ADEPTflex offers modeling capabilities
to explicitly define pre-specified exceptions, and supports changes of process instances
to enable different kinds of ad-hoc deviations from the pre-modeled process schemas
in order to deal with run-time exceptions. These features have been extended and
improved in ADEPT2, which provides full support for the structural process change
patterns defined in [Weber et al. 2008], and in ProCycle, which combines ADEPT2
with conversational case-based reasoning (CCBR) methodologies. On the basis of the
ADEPT technology, the AristaFlow BPM Suite was developed, with the aim of trans-
ferring process flexibility and adaptation concepts into an industrial-strength PMS.
Similarly, the workflow management system AgentWork [Müller et al. 2004] relies
on ADEPTflex and exploits a temporal ECA rule model to automatically detect logi-
cal failures and enable both reactive and predictive process adaptation of control- and
data-flow elements. Here, exception handling is limited to single tasks failures, and the
possibility exists for conflicting rules to generate incompatible actions, which requires
manual intervention and resolution.

If compared with traditional exception handling approaches (cf. Section 7.1), we no-
tice that adaptive PMSs deal with unanticipated exceptions by automatically deriving
the try block as the situation in which the PMS does not adequately reflect the real-
world process anymore. As a consequence, one or several process instances have to be
adapted with ad hoc process changes, and the catch block should include those recov-
ery procedures required for realigning the computerized processes with the real-world
ones. The fact is that the common strategy used by the adaptive PMSs is to manu-
ally or semi-automatically define at run-time the catch block. However, in dynamic
and knowledge-intensive working environments, analyzing and defining these adap-
tations “manually” becomes time-demanding and error-prone. Indeed, the designer
should have a global vision of the application and its context to define appropriate
recovery actions, which becomes complicated when the number of relevant context
features and their interleaving increases. Conversely, our SmartPM approach is able to
automatically synthesizing at run-time the catch block, without the need of any man-
ual intervention at run-time, and increases the level of automated process adaptation
if compared with the existing state-of-the-art techniques.

7.3. AI-based Process Adaptation

The AI community has been involved with research on process management for sev-
eral decades, and AI technologies can play an important role in the construction of PMS
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engines that manage complex processes, while remaining robust, reactive, and adap-
tive in the face of both environmental and tasking changes [Myers and Berry 1998].
One of the first works dealing with this research challenge is [Beckstein and Klaus-
ner 1999]. It discusses at high level how the use of an intelligent assistant based on
planning techniques may suggest compensation procedures or the re-execution of ac-
tivities if some anticipated failure arises during the process execution. In [Jarvis et al.
1999] the authors describe how planning can be interleaved with process execution
and plan refinement, and investigates plan patching and plan repair as means to en-
hance flexibility and responsiveness. Similarly, the approach presented in [R-Moreno
and Kearney 2002] highlights the improvements that a legacy workflow application
can gain by incorporating planning techniques into its day-to-day operation. Finally,
the works [Marrella and Lespérance 2013a; 2013b] investigate how to automatically
synthesize process models via partial-order planning techniques starting from an in-
complete description of the process domain.

A goal-based approach for enabling automated process instance change in case of
emerging exceptions is shown in [Gajewski et al. 2005]. If a task failure occurs at run-
time and leads to a process goal violation, a multi-step procedure is activated. It in-
cludes the termination of the failed task, the sound suspension of the process, the auto-
matic generation (through the use of a partial-order planner) of a new complete process
definition that complies with the process goal and the adequate process resumption. A
similar approach is proposed in [Ferreira and Ferreira 2006]. The approach is based
on learning business activities as planning operators and feeding them to a planner
that generates a candidate process model that is able of achieving some business goals.
If an activity fails during the process execution at run-time, an alternative candidate
plan is provided on the same business goals. The major issue of [Gajewski et al. 2005;
Ferreira and Ferreira 2006] lies in the replanning stage used for adapting a faulty
process instance. In fact, it forces to completely redefine the process specification at
run-time when the process goal changes (due to some activity failure), by completely
revolutionizing the work-list of tasks assigned to the process participants (that are
often humans). On the contrary, our approach adapts a running process instance by
modifying only those parts of the process that need to be changed/adapted and keeps
other parts stable.

In the work [Bucchiarone et al. 2011] the authors propose a goal-driven approach
for service-based applications to automatically adapt business processes to run-time
context changes. Process models include service annotations describing how services
contribute to the intended goal, and business policies over domain elements. Contex-
tual properties are modeled as state transition systems capturing possible values and
possible evolutions in the case of precondition violations or external events. Process
and context evolution are continuously monitored and context changes that prevent
goal achievement are managed through an adaptation mechanism based on service
composition via automated planning techniques. However, this work requires that the
process designer explicitly defines the policies for detecting the exceptions at design-
time. Conversely, in SmartPM the recovery procedure is synthesized at run-time, with-
out the need to define any recovery policy at design-time.

A work dealing with process interference is that of [van Beest et al. 2014]. Process
interference is a situation that happens when several concurrent business processes
depending on some common data are executed in a highly distributed environment.
During the processes execution, it may happen that some of these data are modified
causing unanticipated or wrong business outcomes. To overcome this limitation, the
work [van Beest et al. 2014] proposes a run-time mechanism which uses (i) Depen-
dency Scopes for identifying critical parts of the processes whose correct execution de-
pends on some shared variables; and (ii) Intervention Processes for solving the potential
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inconsistencies generated from the interference, which are automatically synthesised
through a domain independent planner based on CSP techniques. While closely related
to van Beest’s work, our account deals with changes in a more abstract and domain-
independent way, by just checking misalignment between expected/physical realities.
Conversely, van Beest’s work requires specification of a (domain-dependent) adapta-
tion policy, based on volatile variables and when changes to them become relevant.

8. DISCUSSION AND CONCLUSION

This paper has been devoted to define a general approach, a concrete framework and
a prototype PMS, called SmartPM, for automated adaptation of KiPs. Our purpose was
to demonstrate that the combination of procedural and imperative models with declar-
ative elements, along with the exploitation of techniques from the field of AI such as
situation calculus, IndiGolog and classical planning, can increase the ability of existing
PMSs of supporting and adapting KiPs in case of unanticipated exceptions.

Existing approaches dealing with unanticipated exceptions typically rely on the in-
volvement of process participants at run-time, so that authorized users are allowed to
manually perform structural process model adaptation and ad-hoc changes at the in-
stance level. However, KiPs demand a more flexible approach recognizing the fact that
in real-world environments process models quickly become outdated and hence require
closer interweaving of modeling and execution. To this end, the adaptation mechanism
provided by SmartPM is based on execution monitoring for detecting failures and con-
text changes at run-time, without requiring to predefine any specific adaptation policy
or exception handler at design-time (as most of the current approaches do).

From a general perspective, our planning-based automated exception handling ap-
proach should be considered as complementary with respect to existing techniques,
acting as a “bridge” between approaches dealing with anticipated exceptions and ap-
proaches dealing with unanticipated exceptions. When an exception is detected, the
run-time engine may first check the availability of a predefined exception handler, and
if no handler was defined it can rely on an automated synthesis of the recovery process.
In the case that our planning-based approach fails in synthesizing a suitable handler
(or an handler is generated but its execution does not solve the exception), other adap-
tation techniques need to be used. For example, if the running process provides a well-
defined intended goal associated to its execution, we could resort to the van Beest’s
work [van Beest et al. 2014] and do planning from first-principle to achieve such a
goal. Conversely, if no intended goal is associated to the process, a human participant
can be involved, leaving her/him the task of manually adapting the process instance.
However, the fact that the SmartPM approach relies on well founded KR&R formalisms
opens the door for many advanced reasoning tasks upon failure and amounts to very
promising future work, e.g., to investigate what parts of the process can not be repaired
or abduce what has gone wrong in the past, in order to assists the user in the manual
definition of the recovery plan.

The use of classical planning techniques for the synthesis of the recovery procedure
has a twofold consequence. On the one hand, we can exploit the good performance
of current state-of-the-art planners to solve small/medium-sized real-world problems
as used in practice. The empirical experiments reported in Tables I and II confirm
the feasibility of the adopted planning-based approach from the timing performance
perspective. On the other hand, classical planning imposes some restrictions for ad-
dressing more expressive problems, including incomplete information, preferences and
multiple task effects. The adoption of classical planning has enforced the adoption of
specific requirements that frame the scope of applicability of the approach, which ba-
sically relies on the following assumptions:
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— process structure can be completely captured in a procedural predefined process
model that explicitly defines the tasks and their execution constraints;

— process execution context can be fully captured as part of the process model, i.e.,
complete information about a fully observable domain is available;

— domain objects and contextual properties representing the state of the world can be
reconducted to a finite set of finite-domain variables; and

— process tasks can be completely specified in term of I/O data elements, preconditions
and deterministic effects.

In addition to the full observability assumption, the SmartPM approach relies on
a high degree of controllability over the environment: when process execution devi-
ates from the prespecified expected behavior (i.e., the physical reality deviates from
the expected one), it should be possible to synthesize a recovery process whose execu-
tion modifies the environment (as reflected in the physical reality) so that the process
instance can progress as expected, according to the prespecified model (basically, the
physical reality is reconducted to the expected reality). When the operational envi-
ronment and process state cannot be reconducted to their expected representation,
we are back to the case where a process cannot be recovered to progress according to
the predefined model, and it is the process itself that has to be (manually or semi-
automatically) adapted to the changed environment. These assumptions result from
the need of balancing between modeling complexity and expressive power, and the
practical requirements that allow to exploit classical planning tools.

Future work will include an extension of our approach to “stress” the above assump-
tions by making the approach applicable to less-controllable domains, such as smart
spaces, with the purpose to maintain the planning process very responsive. In such
domains, the current widespread availability of wireless network technology for mass
consumption has triggered the appearance of plenty of wireless and/or mobile devices
providing applications able to enhance the visitors’ experience in cultural sites. The
“pre-fixed” and static visits of physical spaces have been turned into interactive dy-
namic experiences customized to the human visitors’ behaviours and needs. To make
SmartPM applicable to such domains, we aim at turning the centralized control pro-
vided by SmartPM (in which the reasoning is performed by a single entity, which sub-
sequently instructs the process participants what to do) into a decentralized control, in
which each participant will be provided with her/his mobile device with the SmartPM
system installed into it. The challenge is to provide each SmartPM system with the
ability to adapt the single processes of individual process participants by considering
not only the local knowledge collected by the single participant, but also the knowledge
produced by the other visitors of the smart space and the global knowledge provided
by the smart space as a whole (e.g., the knowledge produced by the sensors installed
in the smart space).

We also notice that, even if the SmartPM approach is able to adapt a process instance
at run-time, it does not allow neither to support hierarchical processes nor to evolve
the original process model on the basis of exceptions captured. Therefore, a second fu-
ture direction of this work is to provide support for executing hierarchical processes,
with high-level processes achieving more general goals that can invoke simpler pro-
cesses to achieve some of their subgoals. We argue that agent-technology (for example,
BDI [Rao and Georgeff 1995], which stands for “beliefe-desire-intensions”) and hier-
archical planners [Nau et al. 2003] can provide promising approaches and methods
to address this challenge. In addition, a third main future work concerns to avoid to
consider all deviations from the process as errors, but as a natural and valuable part
of the work activity, which provides the opportunity for learning and thus evolving the
process model for future instantiations.
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The current prototype of SmartPM is developed to be effectively used by process de-
signers and practitioners.14 Users define processes in the well-known BPMN language,
enriched with semantic annotations for expressing properties of tasks, which allow our
interpreter to derive the IndiGolog program representing the process. Interfaces with
human actors (as specific graphical user applications in Java) and software services
(through Web service technologies) allow the core system to be effectively used for
enacting processes. Although the need to explicitly model process execution context
and annotate tasks with preconditions and effects may require some extra modeling
effort at design-time (also considering that traditional process modeling efforts are of-
ten mainly directed to the sole control flow perspective), the overhead is compensated
at run-time by the possibility of automating exception handling procedures. While,
in general, such modeling effort may seem significant, in practice it is comparable to
the effort needed to encode the adaptation logic using alternative methodologies like
happens, for example, in rule-based approaches.

A further future work will improve the current prototype in order to be compliant
with many other technologies adopted by process practitioners, e.g., RESTful services
and HTML-based user interfaces.
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A process modeling language provides appropriate syntax and semantics to precisely
specify business process requirements, in order to support automated process verifica-
tion, validation, simulation and automation. One of the main obstacles in applying
Artificial Intelligent (AI) techniques to real problems is the difficulty to model the do-
mains. Usually, this requires that people that have developed the AI system carry out
the modeling phase since the representation depends very much on a deep knowledge
of the internal working of the AI tools.

To tackle the above issue, in SmartPM we implemented a GUI-based tool, called the
SmartPM Definition Tool, which supports the process design activity by providing (i) a
wizard-based GUI that assists the process designer in the definition of the process
knowledge, and (ii) a graphical editor to design the control flow of a KiP using a sub-
set of the BPMN 2.0 notation. The use of the SmartPM Definition Tool allows a human
process designer to enter knowledge on processes without being expert of the internal
working of the AI tools involved in the system.

In this appendix, we introduce the main components of the SmartPM Definition Tool,
which combines a modeling language - named the SmartPM Modeling Language
(SmartML) - used for modeling the contextual information in which the process is
meant to run, and a graphical editor to design the control flow of a KiP using the
BPMN 2.0 notation. We notice that a SmartML specification, together with the control
flow of the KiP to be enacted, is translatable in situation calculus, IndiGolog and PDDL
readable formats, and thus executable by the IndiGolog engine provided by SmartPM
and adapted (if needed) through a state-of-the-art planning system. Finally, we show
some screenshots of the SmartPM system in action while executing the KiP introduced
in our running example.

A. THE SMARTPM DEFINITION TOOL

The SmartPM Definition Tool has been developed as a standard Java application, using
the Java SE 7 Platform, and the JGraphX open source graphical library.15 A screenshot
of the workspace of the SmartPM Definition Tool is shown in Figure 10.

The workspace is composed of a Menu Bar, a Menu Toolbar, a Modeling Canvas, a
Process Elements Panel, a Context Menu and an Information View Panel. The Menu
Bar contains several options to assist the process designer in creating, editing, con-
figuring, analysing, maintaining and validating a process control flow built with the
BPMN 2.0 syntax. The Menu Toolbar replaces some of the most important Menu Bar
choices by presenting them in the form of selectable buttons. The Modeling canvas
is where BPMN process elements (dragged and dropped from the Process Elements
Panel) are placed to create and modify the control flow of a process specification. The
Information View Panel provides a high level view of such a control flow. The Con-
text Menu is a pop-up menu that appears upon a right-click mouse operation on any

15http://www.jgraph.com/
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Fig. 10. The workspace provided by the SmartPM Definition Tool.

blank area of the modeling canvas. It presents several modeling options, but the most
relevant are the following:

— Set Domain Theory: This item will display a panel (cf. Figure 11(a)) showing an
aggregated perspective of data, resources, constraints and tasks involved in the cur-
rent process specification. Such an information is presented as a SmartML domain
theory. SmartML is a declarative language used for representing all the contextual
information of the domain of concern (see the next section for its complete syntax).
An Edit menu (cf. Figure 11(b)) provides several features for assisting the user in
the definition of a valid SmartML domain theory. Specifically, it allows a process de-
signer to define her/his own data types and process variables (in the form of atomic
terms, see later) in SmartML, to modify the resource perspective, and to create/edit
new/existing tasks that can be possibly used for the process control flow definition.
Furthermore, it allows to create new exogenous events and associate their occur-
rence to specific contextual changes.

— Set Initial State: This item will display a panel where the process designer can pro-
vide an initial description of the execution context, by instantiating the SmartML
domain theory with a starting condition.

— Deploy and Run Process: When a process is ready for being executed (i.e., a SmartML
domain theory has been defined for it, an initial state has been instantiated on
the domain theory and a control flow for the process has been created), the Run
Process item allows to invoke the XML-to-IndiGolog Parser component (cf. Figure 5).
Such a component translates the SmartML specification and the BPMN control flow
of the process in a IndiGolog program and passes it to the Execution Layer for its
deployment and execution.

In the following two sections, we show the main ingredients required to create a
new process specification with the SmartPM Definition Tool. Specifically, we describe
the basics of the SmartML notation and the relevant subset of BPMN 2.0 used to build
control flows of processes.
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(a) An aggregated perspective of the domain
theory.

(b) The Edit menu.

Fig. 11. Overview of the Domain Theory editor.

A.1. SmartML: The SmartPM Modeling Language

The synthesis of a KiP in SmartPM requires a tight integration of process activities
and contextual data in which the process is embedded in. The context is represented
in the form of a Domain Theory D, that involves capturing a set of tasks ti ∈ T (with
i ∈ 1..n) and supporting information, such as the people/agents that may be involved
in performing the process (roles or participants), the data and so forth. In SmartPM we
adopt a service-based approach to process management. Thus, tasks are executed by
services, such as software applications, human actors, robots, etc.

Tasks are collected in a specific repository, and each task can be considered as a
single step that consumes input data and produces output data. Data are represented
through some ground atomic terms v1[y1], v2[y2], ..., vm[ym] ∈ V that range over a set
of tuples (i.e., unordered sets of zero or more attributes) y1, y2, . . . ym of data objects,
defined over some data types. In short, a data object depicts an entity of interest.

Some data types are pre-specified and used for representing the resource perspective
of the process. For example, in our scenario we need to define data objects for repre-
senting services (e.g., data type Service={act1, act2, act3, act4, rb1, rb2}) and capabilities
(e.g., data type Capability={extinguisher,movement,...,hatchet}).

Resource Perspective :

Service = {act1,act2,act3,act4,rb1,rb2}
Capability = {movement,hatchet,camera,gprs,extinguisher,battery,digger,
powerpack}

Since the data types Service and Capability are pre-defined for being used in the
framework, a process designer is just required to provide values (i.e., to associate data
objects) to the above types. Furthermore, the data type Service can be customized de-
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(a) The Service Perspective panel. (b) The Capability Perspective
panel.

(c) The Data Perspective panel.

Fig. 12. Panels for customizing the resource and data perspectives.

pending on the specific service provider. Therefore, since our contextual scenario in-
volves both human actors and robots, a process designer can specialize the data type
Service by introducing two further data types Actor and Robot. Their data objects must
be a subset of the ones introduced through the data type Service.

Service Providers :

Actor = {act1,act2,act3,act4}
Robot = {rb1,rb2}

Figures 12(a) and 12(b) show a couple of screenshots of the Service Perspective panel
and of the Capability Perspective panel, which are used for updating the resources (i.e.,
services, providers and capabilities) involved in the process.

In order to describe the contextual scenario in which the process will be enacted,
some domain-dependent data types need to be defined. In our example, we need of a
data type Location type = {loc00, loc10, ..., loc33, lost} for representing locations in the
area (the special constant ’lost’ is used to indicate that we lose track of an actor lo-
cation) and of a data type Status type = {ok,fire,debris}, which enumerates all the
possible states of a location (e.g, a location can be out of danger, on fire or buried by
debris).

Domain-dependent Data Types :

Location_type = {loc00,loc10,loc20,loc30,loc01,loc11,loc02,loc03,loc13,
loc23,loc31,loc32,loc33,lost}
Status_type = {ok,fire,debris}

Under this representation, we consider possible values of a data type as constant
symbols that univocally identify data objects in the scenario of interest. Each tuple yj
may contain one or more data objects belonging to different data types. The domain
dom(vj [yj ]) over which a term is interpreted can be of various types:

— Boolean type: dom(vj [yj ]) = {true, false};
— Integer type: dom(vj [yj ]) = {x...y} s.t. x, y ∈ Z ∧ (x <= y);
— Functional: the domain contains a fixed number of data objects of a designated type.

The data type Boolean type (and its respective data objects true and false) and the
data type Integer type are pre-defined in the framework. However, since integer num-
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bers form a countably infinite set, there is the need to set a lower and an upper bound
to specify which finite subset of integers is relevant for the case to deal with. In the
below example, we are considering the subset of the integers from 0 to 30.

Pre-Defined Data Types :

Boolean_type = {true,false}
Integer_type = {0,1,2,3,4,...,30}

The data perspective can be easily customized through the Data Perspective panel
(cf. Figure 12(c)) provided by the SmartPM Definition Tool.

Atomic terms can be used to express properties of domain objects (and relations over
objects), and argument types of a term - taken from the set of data types previously
defined16 - represent the finite domains over which the atomic term is interpreted.

Some atomic terms are pre-specified for being used in the framework. For example,
since each task has to be assigned to a service that provides all of the skills required
for executing that task, there is the need to consider the services “capabilities”. This
can be done through a boolean term provides[srv:Service,cap:Capability] that is true if
the capability cap is provided by srv and false otherwise. At the same way, a boolean
term requires[task:Task,cap:Capability] is needed for specifying which capabilities are
required for executing a specific task.17 The boolean terms provides and requires can
be customized through the Capability Perspective panel (cf. Figure 12(b)).

Pre-Defined Terms :

provides[srv:Service,cap:Capability] = (bool:Boolean type)
requires[task:Task,cap:Capability] = (bool:Boolean type)

Moreover, we need boolean terms for indicating if people have been evacuated
from a location (e.g., evacuated[loc:Location type] = (bool:Boolean type)) or if some
picture has been collected in a specific location (e.g., photoTaken[loc:Location type] =
(bool:Boolean type)), integer terms for representing the battery charge level of each
robot (e.g., batteryLevel[rb:Robot] = (int:Integer type)) and functional terms for record-
ing the position of each actor and robot (e.g., at[srv:Service] = (loc:Location type))
in the area or for representing the current status of each location (e.g., sta-
tus[loc:Location type] = (st:Status type)).

Note that some terms may be used as constant values. For example, the atomic
term generalBattery[] = (int:Integer type) reflects the battery charge level stored in
the power pack and used for recharging the battery of each robot. The term bat-
teryRecharging[] = (int:Integer type) indicates the amount of battery that is charged af-
ter each recharging action. The terms moveStep[loc1:Location type,loc2:Location type]
= (int:Integer type) and debrisStep[] = (int:Integer type) indicate the amount of battery
consumed respectively after the robot has been moved from a location loc1 to a location
loc2, and after having removed debris from a specific location.

Finally, atomic terms can be also used to express static relations over objects. The
term neigh[loc1:Location type,loc2:Location type] = (bool:Boolean type) indicates all
adjacent locations in the area (for example, neigh[loc00,loc01] = true), while the term
covered[loc:Location type] = (bool:Boolean type) reflects the locations covered by the
main base network.

16Predefined data types, like Boolean type and Integer type, can not be used as arguments of an atomic term.
17The special data type Task will be defined later and can be used only as argument of the pre-defined term
requires.
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The process designer can decide which atomic terms s/he consider relevant for be-
ing monitored during the process enactment, in order to check if their actual value
becomes misaligned with the desired one.

Atomic Terms :

Relevant for Adaptation :

at[act:Actor] = (loc:Location_type)
evacuated[loc:Location_type] = (bool:Boolean type)
status[loc:Location_type] = (st:Status_type)

Not Relevant for Adaptation :

at[rb:Robot] = (loc:Location_type)
batteryLevel[rb:Robot] = (int:Integer type)
photoTaken[loc:Location_type] = = (bool:Boolean type)
generalBattery[] = (int:Integer type)
batteryRecharging[] = (int:Integer type)
moveStep[loc1:Location type,loc2:Location type] = (int:Integer type)
debrisStep[] = (int:Integer type)
neigh[loc1:Location type,loc2:Location type] = (bool:Boolean type)
covered[loc:Location type] = (bool:Boolean type)

The screenshots in Figures 13(a) and 13(b) show, respectively, the list of atomic terms
currently defined in the domain theory and a panel that helps the process designer in
creating/updating a new/existing atomic term.

In addition to atomic terms, the designer can also define complex terms. They are
declared as basic atomic terms, with the additional specification of a well-formed first-
order formula that determines the truth value for the complex term. In our case study,
we need to express that an actor is connected to the network if s/he is in a covered
location or if s/he is in a location adjacent to a location where a robot is located:

isConnected(act:Actor) {
EXISTS(l1:Location type, l2:Location type, rbt:Robot).

(at(act)==l1) AND (Covered(l1)==true OR
(at(rbt)==l2 AND (Neigh(l1,l2)==true OR (l1==l2))))

}

The interpretation of complex terms derives from the corresponding first-order for-
mula and is enacted at run-time by the IndiGolog interpreter.

A formula describing a complex term can be negated (NOT) and existentially or
universally quantified (EXISTS and FORALL). Note that a complex term can be used
in the range of a task precondition, but it can not appear in task effects and can not
involve recursion.

In order to build a well-formed first-order formula, the SmartPM Definition Tool pro-
vides an editor (cf. Figure 13(c)) that integrates a syntax checker to verify on the fly if
the formula under construction is compliant with the first-order logic syntax.

Concerning the definition of process tasks, the process designer is required to specify
which tasks are applicable to the dynamic scenario under study. Such tasks will be
stored in a specific tasks repository, and can be used for designing the control flow of
the process and for adaptation purposes.
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(a) The list of atomic terms in the
domain theory.

(b) Editor for atomic terms. (c) Editor for complex terms.

Fig. 13. Panels for customizing atomic terms and complex formulas.

Tasks Repository :

Tasks = {go, move, takephoto, evacuate, updatestatus, extinguishfire,
chargebattery, removeDebris, synchronize}

Each task is annotated with preconditions and effects. Preconditions are logical con-
straints defined as a conjunction of atomic terms, and they can be used to constrain
the task assignment and must be satisfied before the task is applied, while effects
establish the outcome of a task after its execution.

Definition A.1. A task t[x] ∈ T is a tuple t = (Actt, x, Pret, Efft) that consists of:

— the name Actt of the action involved in the enactment of the task (it often coincides
with the task itself);

— a tuple of data objects x as input parameters;
— a set of preconditions Pret, represented as the conjunction of k atomic conditions

defined over some specific terms, Pret =
∧

l∈1..k pretl . Each pretl can be represented
as {vj [yj ] op expr}, where:
— vj [yj ] ∈ V is an atomic term, with yj ⊆ x, i.e., admissible data objects for yj need

to be defined as task input parameters;
— An expr can be a boolean value (if vj is a boolean term); an input parameter

identified by a data object (if vj is a functional term); an integer number or an
expression involving integer numbers and/or terms, combined with the arithmetic
operators {+,-} (if vj is a integer term);

— The condition op can be expressed as the equality (==) between boolean terms or
functional terms and an admissible expr. On the contrary, if vj is a integer term,
it is possible to define the op condition as an expression that make use of rela-
tional binary comparison operators (<,>,=,≤,≥) and involve integer numbers
and/or integer terms in the expr field.

— a set of deterministic effects Efft, represented as the conjunction of h atomic condi-
tions defined over some specific terms, Efft =

∧
l∈1..h efftl . Each efftl (with l ∈ 1..h)

can be represented as {vj [yj ] op expr}, where:
— vj [yj ] ∈ V and expr are defined as for preconditions.
— The condition op may include assignment expressions to update the values of

integer terms. A numeric effect consists of an assignment operator, the integer
term to be updated and a integer number or a numeric expression. Assignment
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operators include (i) direct assignment (=), to assign to a integer term a value
defined by an integer number; (ii) relative assignments, which can be used to
increase (+=) or decrease (−=) the value of a integer term (additive assignment
effects).

Note that if no preconditions are specified, then the task is always executable. More-
over, the process designer is required to make explicit if a task effect can be considered
as supposed or automatic. A supposed effect indicates that the service executing the
task must return a physical outcome for the supposed effect at run-time, that can be
or not can be equal to the one declared during the task definition. If a supposed effect
involves a relevant term, it is clear that the outcome returned assumes a great value
for monitoring purposes. Otherwise, if an effect is flagged as automatic, when the task
completes, its effect is automatically applied without the need to consider any physical
outcome.

For example, the task GO involves two input parameters from and to of type
Location type, representing a starting and an arrival location. An instance of this task
can be executed only if the actor that will execute it at run-time is at the starting loca-
tion from and provides the required capabilities for executing the task GO. Consider
that in SmartML we make use of a constant symbol SRV C to identify the service that
will execute a specific task at run-time. As a consequence of task execution, the actor
moves from the starting to the arrival location, and this is reflected by assigning to
the functional term at[SRV C] the value to in the effect. The fact that the effect of the
task GO is supposed means that after task execution, the service must return the real
outcome indicating her/his final position.

Each task ti ∈ T together with its preconditions, effects and parameters can be
represented as a XML annotation:

Description of the task go :

<task>
<name>go</name>
<parameters>

<arg>from - Location_type</arg>
<arg>to - Location_type</arg>

</parameters>
<precondition>at[SRVC] == from AND isConnected[PRT] == true</precondition>
<effects>

<supposed>at[SRVC] = to</supposed>
</effects>

</task>

Let us now analyze the task MOVE. Similarly to the task GO, it involves two input
parameters from and to of type Location type, that represent the starting and arrival
locations given in input to a robot.

Description of the task move :

<task>
<name>move</name>
<parameters>

<arg>from - Location_type</arg>
<arg>to - Location_type</arg>

</parameters>
<precondition>at[SRVC] == from AND batteryLevel[SRVC] >= moveStep[from,to]
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Fig. 14. The wizard-based editor to build tasks specifications.

</precondition>
<effects>

<supposed>at[SRVC] = to</supposed>
<automatic>batteryLevel[SRVC] -= moveStep[from,to]</automatic>

</effects>
</task>

An instance of the task MOVE can be executed only if the robot SRV C is at the start-
ing location from and provides enough battery charge for executing the movement. As
a consequence of task execution, the robot moves from the starting to the arrival lo-
cation, and this is reflected by assigning to the functional term at[SRV C] the value to
in the effect. This first effect of MOVE has been flagged as supposed, meaning that the
robot SRV C that will execute the MOVE task at run-time must return the real outcome
indicating its final position. However, since at[SRV C] is not considered as a relevant
term (when SRV C is a robot, see above), if the final position of the robot will differ
with the one declared at design-time, no adaptation mechanism will be triggered. The
second effect of MOVE is flagged as automatic, and states that after the execution of
the MOVE task the battery level of the robot SRV C will be automatically decreased of
a fixed quantity, corresponding to moveStep[from, to].

As shown in Figure 14, the SmartPM Definition Tool provides a wizard-based editor
to build a task specification and to define the single conditions composing the task
preconditions and effects.

We can also represent exogenous events with SmartML. They are events coming from
the external environment that modify asynchronously atomic terms at run-time. In our
case study, we can deal with four different exogenous events:

Exogenous Events :

Ex events = {photoLost, fireRisk, rockSlide, push}

The definition of an exogenous event is similar to a task definition in SmartML. How-
ever, to define an exogenous event there is no need to specify any precondition, while
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(a) The editor for exogenous events. (b) Panel for the configuration of the
initial state.

Fig. 15. Panels for customizing exogenous events and for configuring the initial state.

effects can only be considered as automatic (i.e., they are automatically applied to
the involved terms when the exogenous event is catched). For example, the exogenous
event ROCKSLIDE(loc) alerts about a rock slide collapsed in location loc, and its effect
modifies the value of the atomic term Status[loc] to the value ’debris’.

Description of the exogenous event rockslide :

<ex-event>
<name>rockSlide</name>
<parameters>

<arg>loc - Location_type</arg>
</parameters>
<effects>

<automatic>status[loc] = debris</automatic>
</effects>

</ex-event>

As for the tasks definition, the SmartPM Definition Tool provides a wizard-based edi-
tor to build exogenous event specifications (cf. Figure 15(a)).

Once a process is ready for being executed (i.e., the process designer has completed
the definition of the domain theory and of the process control flow - cf. the following
section), the last step before executing the process consists of instantiating the do-
main theory D with a starting state, which reflects different assignment of values to
the atomic terms. By selecting the item Set Initial State from the Edit menu (cf. Fig-
ure 10), a new panel where the process designer can provide an initial description of
the execution context is opened (cf. Figure 15(b)). We assume complete information
about the starting state. Basically, this means we force the process designer to instan-
tiate every atomic term with an admissible value that represent what is known in
the starting state about the dynamic scenario. Specifically, the starting state is a con-
junction {v1[y1] == val1 ∧ v2[y2] = val2... ∧ vj [yj ] == valj}, where valj (with j ∈ 1..m)
represents the j-th value assigned to the j-th atomic term.

A.2. On defining the control flow of a KiP

Starting from a domain theory D and a set of tasks T, the control flow of a KiP in
SmartPM can be defined through the Business Process Modeling Notation (BPMN).
The notation has been released to the public in May 2004 by the BPMI Notation
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Fig. 16. Associating task specifications to a KiP.

Working Group and was adopted as OMG standard18 for business process modeling
in February 2006. BPMN provides a graphical notation for specifying business pro-
cesses based on a flowcharting technique similar to activity diagrams from UML. In
January 2001, the version 2.0 of the language has been released. If compared to the
previous specifications of the language, which provided only verbal descriptions of the
graphic notations elements and modeling rules, BPMN 2.0 received a formal defini-
tion in the form of a meta-model, that defines the abstract syntax and semantics of the
modeling constructs.

From a formal point of view, in SmartPM we define a KiP as a directed graph con-
sisting of tasks, gateways, events and transitions between them.

Definition A.2. Given a domain theory D and a set of tasks T, a KiP P is a tuple
(N,L) where:

— N = T ∪ E ∪W ∪X is a finite set of nodes, such that :
— T is a set of task instances, i.e., occurrences of a specific task t ∈ T in the range of

the KiP;
— E is a finite set of events, that consists of a single start event # and a single end

event ⊙;
— W = WPS ∪WPJ is a finite set of parallel gateways, represented in the control flow

with the ⋄ shape with a “+” marker inside.
— X = XES ∪ XEJ is a finite set of exclusive gateways, represented in the control

flow with the ⋄ shape with a “X” marker inside.
— L = LT ∪ LE ∪ LWPS

∪ LWPJ
∪ LXES

∪ LXEJ
is a finite set of transitions connecting

events, task instances and gateways:
— LT : T → (T ∪WPS ∪WPJ ∪XES ∪XEJ ∪ ⊙)
— LE : # → (T ∪WPS ∪XES ∪ ⊙)

18http://www.omg.org/spec/BPMN/2.0/
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Fig. 17. The main window of the IndiGolog engine

— LWPS
: WPS → 2T

— LWPJ
: WPJ → (T ∪WPS ∪XES ∪ ⊙)

— LXES
: XES → 2T

— LXEJ
: XEJ → (T ∪XES ∪WPS ∪ ⊙)

Note that the constructs used for defining a KiP are basically a subset of the ones
definable through the BPMN notation. The intuitive meaning of these constructs is
straightforward: an execution of the process starts at # and ends at ⊙; a task is an
atomic activity executed by the process; parallel splits WPS open parallel parts of the
process, whereas parallel joins WPJ re-unite parallel branches; exclusive gateways are
used to create alternative flows in a process where only one of the path can be taken on
the basis of a given condition; transitions are binary relations describing in which order
the flow objects (tasks, events and gateways) have to be performed, and determine the
control flow of the KiP.

As shown in Figure 16, the SmartPM Definition Tool provides a BPMN editor to define
the control flow of a KiP. The editor provides visual, graphical editing and creation of
BPMN 2.0 business processes. It is important to note that set of tasks composing the
control flow must be selected from the repository of available tasks defined according
to SmartML. To accomplish this, the SmartPM Definition Tool allows to associate each
task in the control flow with a task specification previously defined according to the
SmartML syntax (cf. Figure 16).

B. SMARTPM IN ACTION

In this section, we show some screenshots of the SmartPM system while executing the
KiP introduced in our case study.

Once a process is ready for being executed, the SmartML domain theory, the informa-
tion about the initial state and the BPMN process are sent to the XML-to-IndiGolog
Parser component, which - in turn - builds an IndiGolog program and passes it to the
IndiGolog engine for its execution. In parallel, the Domain Builder component builds
the PDDL planning domain to be used for a possible future adaptation of the process.
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(a) (b)

(c) (d)

Fig. 18. The Task Handler of SmartPM.

Figure 17 shows the main window of the IndiGolog engine showing the log of all
actions exchanged between the engine and involved services (i.e., virtualizations of
process services). In the screenshot, we can identify an ASSIGN action that assigns to
service act2 the task GO(id 4, [loc00, loc32], [loc32]).

In Figure 18, we provide some screenshots of the Task Handler module used by
process services to execute process tasks. Specifically, when the IndiGolog PMS assigns
a task to a process service, this event is notified to the task handler of the selected
service through a popup window (cf. Figure 18(a)).

When a process service is ready to start a task, it pushes the button Start It, and
a READYTOSTART action is sent back to the IndiGolog engine. If we analyze the code
in Figure 17, we can note the presence of a row ========> EXOGENOUS EVENT, repre-
senting the fact that the PMS has captured the READYTOSTART action sent by the
process service’s Task Handler. In response, the IndiGolog engine will instruct the pro-
cess service to start the task execution through a START action (cf. the bottom part of
Figure 17).

Now, let us suppose that act1 has been instructed to start the task
GO(id 1, [loc00, loc33], [loc33]). act1 can select one of the valid outcomes (i.e., a list of
Location type data objects) and then push the button End Task when the task is com-
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Fig. 19. The main window of the LPG-td planner.

pleted (cf. Figure 18(b)). If the outcome provided by act1 is different from the one
expected (meaning that act1 has reached a different location than the one desired),
the IndiGolog engine senses the deviation, builds a planning problem that reflects the
gap between physical and expected reality and launches the LPG-TD planner (cf. Fig-
ure 19), which is in charge to synthesize the recovery plan. Note that the deviation we
are analyzing is the same shown in our case study; i.e., we are supposing that act1 has
reached location loc03 rather than location loc33.

During the synthesis and execution of the recovery plan, every running task is inter-
rupted (cf. Figure 18(c)). When the planner finds a recovery procedure, it is passed back
to the Synchronization component, that converts it in a executable IndiGolog process
and sends it to the IndiGolog PMS for its enactment.

Since all the actors/robots need to be continually inter-connected to execute the pro-
cess, the planner finds a recovery procedure that first instructs the robots to move in
specific positions for maintaining the network connection, and then re-assigns the task
GO(loc03, loc33) to act1. In Figure 18(d) it is shown the assignment of a recovery task to
the robot service rb1. Specifically, rb1 executes the first task of the recovery procedure
dealing with the deviation.

We conclude this appendix by pointing out that while other approaches and systems
rely on pre-defines rules to specify the exact behaviors when special events are trig-
gered, here we simply model (a subset of) the running environment and the actions’
effects, without considering any possible exceptional event. We argue that, in most of
cases, modeling the environment, even in detail, is easier than modeling all possible
exceptions.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article 0, Publication date: 2016.

Page 57 of 57 Transactions on Intelligent Systems and Technology

https://mc.manuscriptcentral.com/tist


