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What is a Process in Smart Spaces

* A process is defined as a set of tasks with
precedence relations

* Activity and habits can be considered the
equivalent of processes

— Activity: a sequence of actions (one in the extreme
case) or sensor measurements/events with a final goal
* Activities can be collaborative
— Habit: a set of interleaving of activities that happen in

specific contextual conditions
 E.g., what a user does each morning between 08:00 and 10:00am

 E.g., what a user does between very specific actions (e.g., leaving
the bed and leaving the house)

« Tasks of activity and habits are actions
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Dealing with Granularity

* Clear gap between the granularity of sensor logs and
the traces used for process mining [Baier'2013?

* No one-to-one correspondence between sensor
measurements and performed actions (tasks)

— A single user action may trigger many sensor
measurements

— A single sensor measurement may be related to several
actions

 Required approach:
1. Aggregate sensor measurements to recognize actions
2. Apply process mining

The kind of available sensors strongly influences the
granularity and confidence of recognized actions /

Baier, T., Mendling, J.: Bridging abstraction layers in process mining by automated
matching of events and activities. In BPM 2013,
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Log Segmentation (1/2)

* A common prerequisite of process mining
techniques is to have an event log explicitly
segmented into cases (process instances)

— Case "start” and case "end"” events

— For each event, which case it belongs to

— Relatively easy to instrument a process in an industrial
or business environments

 This assumption is usually not met by sensor logs,
as labeling is generally an expensive task to be
performed by humans

— Especially difficult to associate actions (derived from
sensor measurements) to activities and habits in the
interleaved case and in presence of multiple users
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Log Segmentation (2/2)

« How do we define habits and activities?
— Manually defined?
— Automatically learned and adapted?
— Active learning?

« What about multiple users?

— Usually sensor logs do not contain any information about
which user(s) caused a certain sensor to trigger or to
provide a specific measurement

« The employment of body-area sensors and tags is usually
perceived as invasive by the user and do not solve all the issues

— Mining habits in a multi-user scenario is significantly
harder

* e.g., even though multiple users can be identified by the spatial

distance between PIRs triggering close in time, when
trajectories intersect

* tracking techniques or reasoning must be employed to keep
following users
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Which Formalism? (1/2)

* Question: Does a human habit resemble a "spaghetti” process?

— Approaches to deal with unstructured processes do exist as both
imperative and declarative modeling formalisms

— Human processes in smart spaces are very similar to "artful”
processes (e.g., freating patients in hospitals)
= — ———— — o — — = —————d{(if "”l
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Which Formalism? (2/2)

« Declarative modeling formalisms
— Usually based on temporal logics (e.g., DECLARE [Pesic2007])
* Already applied to smart spaces for reasoning [Magherini2013] \
— The notion of time is qualitative and not quantitative \
« Time is a first-class property of a measurement

« Attempts to support a quantitative notion of time [Westergaard2012] —
— Are typical constraints enough?

* Fuzzy mining [Glinther2007]
— Borrows concepts from the world of maps and cartography

— Zoom in and out on a process model highlighting the importance of
certain tasks and connection between tasks

— More suitable for offline analysis than for online monitoring
Westergaard, M., Maggi, F.M.: Looking into the future. In OTM 2012

Magherini, T., Fantechi, A., Nugent, C.D., Vicario, E.: Using temporal logic and model checking in automated BB
recoghition of human activities for ambient-assisted living. IEEE Trans. Hum. Mach. Syst. 2013

Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: full support for
loosely structured processes. In EDOC 2007

Giinther, C.W., van der Aalst, W.M.P.: Fuzzy mining - adaptive process
simplification based on multi-perspective metrics. In BPM 2007
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Maps and Cartography (2/2)

Clustering of coherent, Removing isolated, less
less significant structures significant structures
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Fuzzy Mining (1/2)

* Fuzzy Mining takes as input different cases of a
process and compute a graph G = <V, E> where V is a
set of nodes and E is a set of directed arcs

— An arc between two nodes vl and v2 is present if vl
precedes (even not immediately) v2

« Significance Metrics

— Measure the importance of an event (unary metric) or a
precedence relation (binary metric)

— Frequency in the log

e Correlation Metrics

— Binary metrics showing how closely related two events
are

— Distance in log is taken into account
— Deep comparison (e.g., names of the events)
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Fuzzy Mining (2/2)

* Aggregated metrics are obtained by
combining significance and correlation
metrics

 What kind of metrics are considered can
be tuned

. Dur'in% the analysis, fil’reringi based on
thresholds is employed to filter out and to
aggregate events and arcs

* Fuzzy mining is supported by commercial
tools (e.g., Disco by Fluxicon) and open
source tools (e.g., ProM)
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Fuzzy Mining: Applying filtering

aggregated node
containing 10 activities
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Fuzzy Mining: Replaying

* Fuzzy Mining
main intent is
analysis
— No enactment

* The availability
of players
allows to replay
logs on the
models




