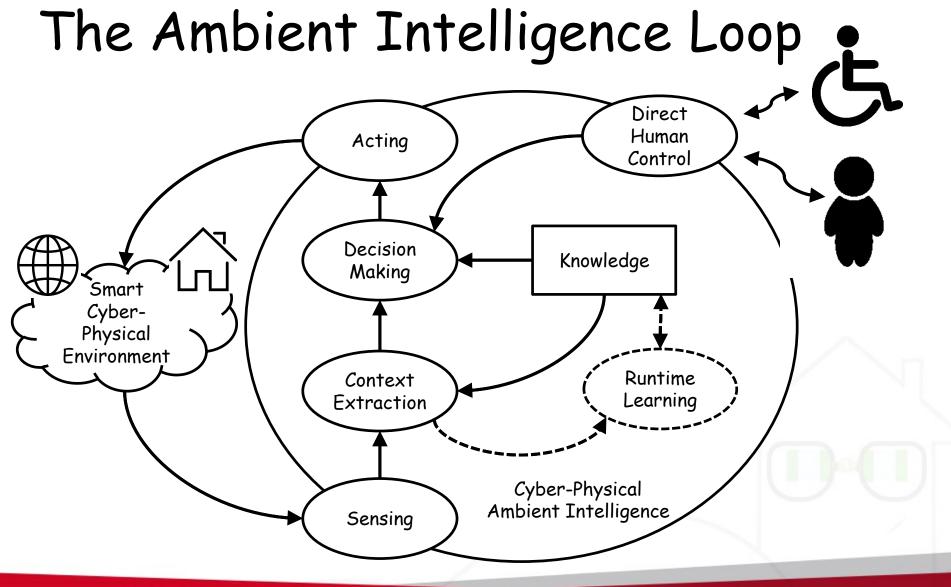


Introduction to Smart Spaces: State of the Art (SotA) and Open Challenges

Leotta F., Mecella M., Sora D., Catarci T. "Surveying Human Habit Modeling and Mining Techniques in Smart Spaces." MDPI – Future Internet, 2019.

Smart Spaces

- "an environment centered on its human users in which a set of embedded networked artefacts, both hardware and software, collectively realize the paradigm of ambient intelligence (AmI)" [UniversAAL Specification]
 - E.g., smart homes, factories, offices, public spaces, business activities
- AmI is Artificial Intelligence applied to Human Computer (Space) Interaction. Main features are:
 - Sensitivity \rightarrow Sense the environment
 - Responsiveness \rightarrow Reactively respond to environment changes
 - Adaptivity \rightarrow Long-term adapt to user preferences



Sensors

- Significant progress on designing sensors
 - Smaller size, lighter weight, lower cost, and longer battery life
 - Embedded in an environment and integrated into everyday objects and onto human bodies
- Large availability of different sensors
 - Traditionally employed for home and building automation
 - e.g. presence detectors, smoke detectors, contact switches for doors and windows, network-attached and close circuit cameras
 - More modern units growingly available as off-theshelf products.
 - e.g. IMUs Inertial Measurements Units such as accelerometer and gyroscopes, WSN nodes

Actuators

- Most common actuators in building automation are switches and dimmers
 - usually employed to control lights, and motors, which control blind/roller shutters, doors, windows and ventilation flaps
- As an AmI system is supposed to assist users in the widest range possible of daily routines, more complex devices need to be controlled
 - Software services on the Internet can be considered as an additional form of (virtual) actuators

Interfaces

- Amazon Alexa, Google Home
 - Integrate wireless devices (via Zigbee protocol for example)
 - Integrate online data

Knowledge: Models for What? (1)

- Context: the state of the environment including the human inhabitants with their actions/activities/habits
- Action: atomic interaction of the human with the environment or a part of it (e.g., a device)
 - Some techniques in literature focuses only on actions
 - Other techniques skip actions while recognizing activities
- Human Preferences: a specific set of rules over contextual variables. The goal here is user satisfaction.
 - Controllable and Uncontrollable variables

Knowledge: Models for What? (2)

- Activity: a sequence of actions (one in the extreme case) or sensor measurements/events with a final goal
 Activities can be collaborative
- Habit: a set of interleaving of activities that happen in specific contextual conditions
 - E.g., what a user does each morning between 08:00 and 10:00am
 - E.g., what a user does between very specific actions (e.g., leaving the bed and leaving the house)

Classification of Modeling Methods (1)

- Specification-based methods
 - Knowledge expressed in terms of some kind of logic language
 - Pros ☺: Human readable → easy to validate
 - Cons ⊗: Hand made by experts → feasible only with a limited number of sensors

Classification of Modeling Methods (2)

- Learning-based methods
 - Techniques from both machine learning and data mining
 - Supervised, Unsupervised, Semi-Supervised methods
 - Pros 😳: No need for hand-made models
 - Supervised methods still require a lot of labeled data
 - Cons 🐵: Usually not human readable
 - E.g., statistical formalisms as HMM

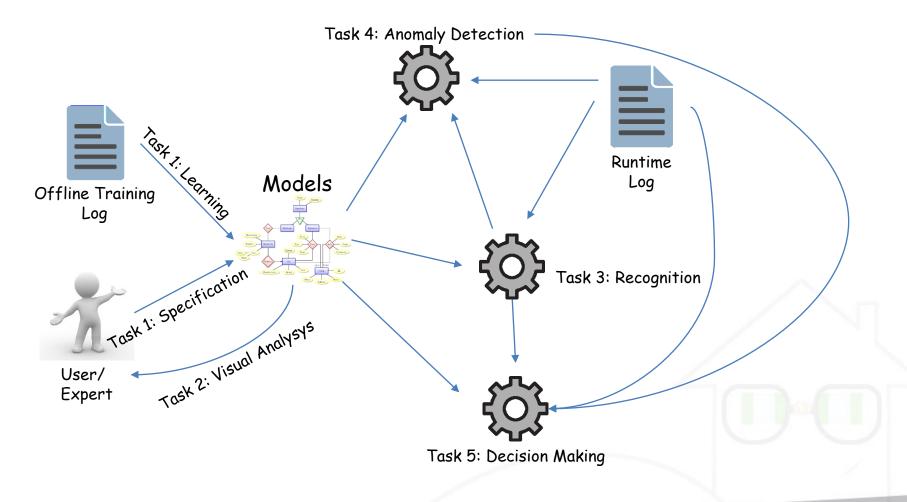
Model Lifecycle (1)

- 1. Specification/Learning
 - The task of manually defining or learning a model from data
 - The specific learning technique has a huge impact on the following tasks
- 2. Visual Analysis
 - The task of inspecting models to understand main characteristics of human life
 - It requires an high level of details of the model
 - Helpful to:
 - understand problems (e.g., for elderly)
 - better design the environment

Model Lifecycle (2)

- 3. Recognition
 - The task of understanding at run-time what is going on by using real-time data
 - Not all modeling formalisms allow to perform this task
- 4. Anomaly Detection
 - The task of detecting if anything strange is happening with respect to the model
 - Produce Alarms
 - Triggers Model Enhancement
 - Manual
 - Runtime Learning
- 5. Decision Making
 - Help human users and or soft bots to act according to their activities/habits/preferences

Lifecycle Pipeline



19

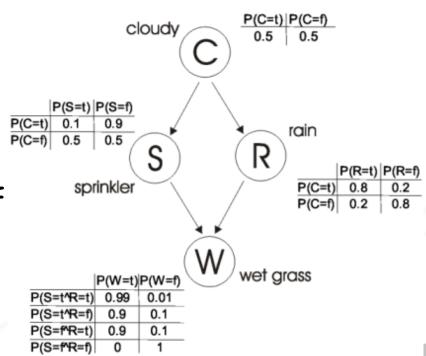
LEARNING BASED METHODS

Bayes Theorem based (1/2)

- Bayes Rule $P(H|X) = \frac{P(X|H)P(H)}{P(X)}$
 - H is our hypotheses
 - i.e., the user is performing a specific activity/habit
 - X is our evidence
 - i.e., the variables representing the current context
 - Inpractical to compute P(X|H)
- Bayesian derivatives usually allows for learning and recognition
- Naive Bayes (method) supposes variables in X to be independent given H
 - Widely used in Ambient Intelligence
 - Supervised method

Bayes Theorem based (2/2)

- Dependencies between variables are sometimes known → Bayesian Network
 - Difficult to compute
 - An interesting version is Dynamic Bayesian Network (DBN)
 - Introduce the notion of temporal evolution



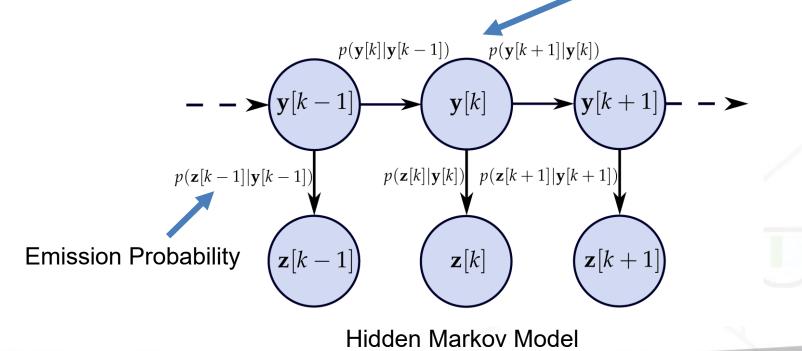
Hidden Markov Models (1)

- Frequently employed for learning and recognition
- Hidden Markov Models (HMMs) are DBNs where the system being modeled is assumed to be a Markov chain that is a sequence of events
- A HMM is composed of a finite set of hidden states (e.g., s(t-1), s(t), and s(t+1)) and observations (e.g., o(t-1), o(t), and o(t+1)) that are generated from states

Hidden Markov Models (2)

- Three types of probability distributions
 - Prior probabilities over initial state
 - State transition probabilities
 - Observation emission probabilities

Transition Probability

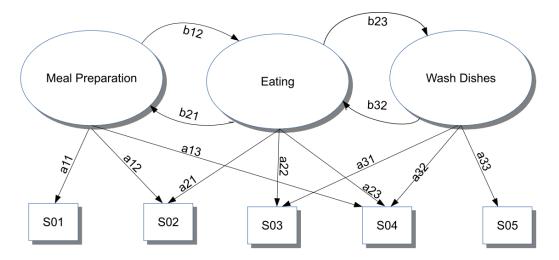


Hidden Markov Models (3)

- HMM is built on three assumptions:
 - Each state depends only on its immediate predecessor
 - Each observation variable only depends on the current state
 - Observations are independent each other
- Supervised Learning
- Unsupervised Learning through Baum-Welch or Viterbi Algorithm

III Discovered hidden states are meaningless without manual labeling III

Hidden Markov Models (4)



- States are activities/habits
- Observations are considered independent given the state
- Possibility for hierarchical models

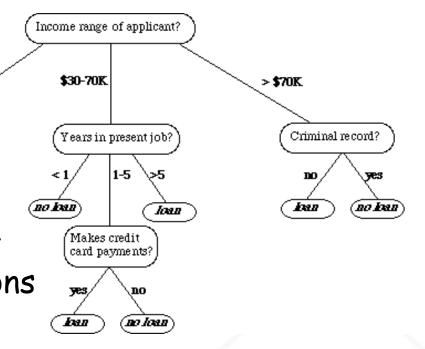
 Also allowing for visual analysis

Conditional Random Fields

- Used to recognize frequent observation sequences
- Can be considered a generalization of HMM
 - Probabilities of emissions and transitions are not constant
 - Probabilities depend on the current subsequence of hidden states given previous emissions

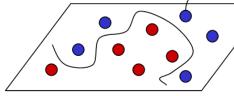
Decision Trees

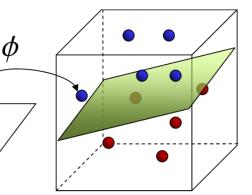
- A decision tree (DT) is a predictive model where each leaf represents a classification and classification and represents a conjunction of features that lead to the target classifications
- Leaves are activity/habits
- Supervised Learning methods
- Not taking into account temporal evolution
- Useful for modeling and recognition in static conditions



Support Vector Machines (1)

- SVMs allow to classify both linear and nonlinear data
 - A SVM uses a nonlinear mapping to transform the **Input Space** original training data into a higher dimension





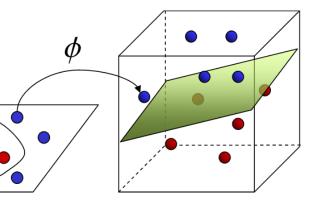
Feature Space

– Within this new dimension, it searches for the linear optimal separating hyperplane that separates the training data of one class the other one

Support Vector Machines (2)

- Supervised binary classification

 This activity or another
- Combined with other learning techniques
 - E.g., Learning taxonomies (e.g., these two activities are not compatible)

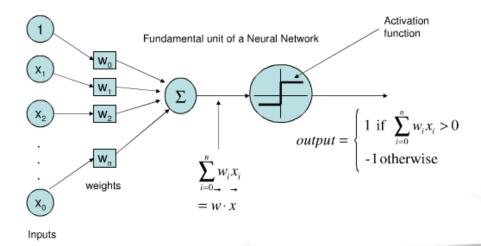


Input Space

Feature Space

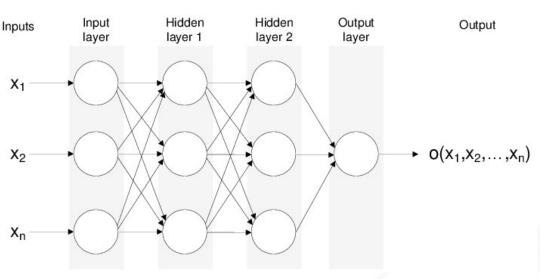
ANN - Artificial Neural Networks (1)

- In an ANN, simple artificial nodes, known as "neurons", "processing elements" or "units", are connected together
 - Originally inspired by biological neuron networks
 - They can automatically learn complex mappings and extract a non-linear combination of features



ANN – Artificial Neural Networks (2)

- When to use them
 - Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
 - Output is discrete or real valued
 - Output is a vector of values
 - Possibly noisy data
 - Form of target function is unknown
 - Human readability of result is unimportant
 - A lot of training data required
 - Curse of overfitting (i.e., models do not easily generalize)
 - Potentially useful to extract feature vectors for other learning methos

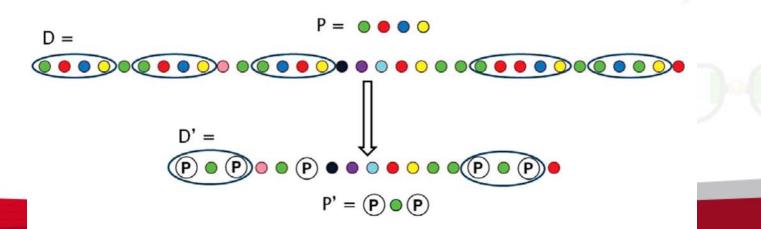


Pattern Mining

- Approaches related to pattern analysis in data mining take as input an event log and extract patterns of events obtained by windowing
- e.g., CASAS project employs a pattern mining technique to discover human activity patterns Allows to discover discontinuous patterns and variations
 - Unsupervised learning
 - Used for labeling unlabeled activities...
 - ...then HMM, CRF, SVM can be used

CASAS Pattern Mining Approach

- Based on a compression mechanism
 - A sequence pattern (P) is identified and used to compress the data set
 - A new best pattern (pattern P) is found in the next iteration of the algorithm $Compression = \frac{DL(D)}{DL(P) + DL(D|P)}$



Emerging Patterns - EPs

- Are patterns of events that strongly characterize an activity or habit
- Given two databases of transactions T1 and T2
 - A transaction is a combination of variable assignments where all the variables are assigned
 - T1 is a set of transactions valid for a specific activity
 - T2 is a set of transactions from contrasting classes
- An itemset is an EP if its support in T1 wrt its support in T2 is high

- The ratio is referred to as growth rate

• Usually supervised learning

Event Condition Action - ECA Rules

- Initially a specification-based method
- Can be compared to decision making in AI agents
 - Reflex agents with state take as input the current state of the world and a set of Condition-Action rules to choose the action to be performed
- An Event Condition Action ECA rule basically has the form "ON event IF condition THEN action", where conditions can take into account time
 - E.g., ON occurs (Shower , Off , t0) IF context (BathroomHumidityLevel (>, 75)) THEN do (On, BathroomFan , t) when t = t0 + 10s
- Unsupervised learning
- Mainly useful for decision making and analysis

SPECIFICATION BASED METHODS

Prolog is a logic based programming language mainly used in AI

 The "in-situation" operator captures a common form of reasoning in context-aware applications To ask if an entity E is in a given situation S (denoted as S*>E)

Recognizing the in_meeting_now situation

- if in meeting now(E) then with someone now(E) has entry for meeting in diary(E) . if with someone now (E) then location*(E, L), people in room*(L, N), N > 1. if has_entry_for_meeting in diary(E) then current time* (T1) diary*(E, `meeting', entry(StartTime, Duration)) within interval (T1, StartTime, Duration) .
- Reasoning about situations is decoupled from the acquisition procedure of sensor readings

Ontology-Based

- Recognizing situations according to an ontology
 - A semantically rich conceptualization of a domai
 - e.g., daily life and activities/habits
- As in PROLOG based, the engineering effort is mainly in constructing the knowledge base (the ontology)
- Recognizing the «sleeping» situation (?user rdf:type socam:Person), (?user, socam:locatedIn, socam:Bedroom), (?user, socam:hasPosture, `LIEDOWN'), (socam:Bedroom, socam:lightLevel, `LOW'), (socam:Bedroom, socam:doorStatus, `CLOSED') -> (?user socam:status `SLEEPING')
- Few approaches try to learn ontologies
- Ontologies are used either to
 - infer a situation or
 - to assess the validity of the results obtained by statistical techniques (learning based)

Temporal and Spatial Logics

- Several initiatives employ temporal and spatial logics such as:
 - Allen's Temporal Logic
 - Spatial Calculi
 - Linear Temporal Logic (LTL)
- Helpful to reason about multiple users

SOTA CONCLUDING REMARKS

41

Wrapping-up SotA

References	RQ-B1.1	RQ-B1.2	RQ-B1.3
AUG-ECA [9] AUG-APUBS [10]	ECA	Н	Action Action
CASAS-HMMNBCRF [16]	NB	L	Activity
CASAS-DISCOREC [11–13] CASAS-HMM [14] CASAS-HMMNBCRF [16] KROS-CRF [24] REIG-SITUATION [25] LES-PHI [31] BUE-WISPS [32]	HMM	М	Activity Activity Activity Activity Situation Activity Activity
CASAS-HAM [15]	МС	М	Event
CASAS-HMMNBCRF [16] KROS-CRF [24]	CRF	L	Activity Activity
REIG-SITUATION [25] STIK-MISVM [27] FLEURY-MCSVM [28]	SVM	L	Situation Activity Activity
CHEN-ONT [18] RIB-PROB [20,21] NUG-EVFUS [22]	ONTO	Н	Activity Action/Activity Action
WANG-EP [19]	EP	L	Action/Activity
YANG-NN [26]	ANN	L	Activity
PALMES-OBJREL [29]	Other	Н	Activity

For references see the paper Leotta et al. @ MDPI Future Internet 2019 on the USB stick

Current Limitations/Opportunities (1)

- Several methods require an extensive labeling
 - Feasible in the lab but more difficult in real settings
 - Human in the loop approach must be followed (e.g., NEST Thermostat)
 - Merge Specification and Learning based approaches
 - If not labeling, at least segmentation
- In several cases, the recognition is performed, but it is coarse-grained
 - To help the user throughout the pipeline (cf. step 5 in slide 19) is very challenging
 - Hierarchical models can be helpful

Labeling: full annotation of activity/habit instances

Segmentation: surrogate in which only separation is performed

Current Limitations/Opportunities (2)

- The problem of multiple users is usually addressed only if labeling the dataset is possible
 - Not all devices/sensors can be equipped with tags
 - Tags are usually considered invasive by users
 - Few papers so far addressing non-invasive sensors and/or without prelabeling
- Visual analysis of human habits and activity is usually difficult

It may help to design better smart spaces

An Idea: BPM?

- Business Process Management BPM can be helpful at modeling human habits and activities
 - Due to the different application contexts, challenges must be addressed
- Few approaches using workflows already proposed but they do not leverage the strong and recent research in process mining

– BPM in IoT is now a hot trend

- Great benefits from the point of view of visual analysis
- Grounded in logics, potentially a trade-off between specification-based and learning-based approaches

Aztiria, A.; Izaguirre, A.; Basagoiti, R.; Augusto, J.C.; Cook, D. Automatic modeling of frequent user behaviours in intelligent environments. In Proc. Intelligent Environments 2010.