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Smart Spaces

« "“an environment centered on its human users in
which a set of embedded networked artefacts,
both hardware and software, collectively realize
the paradigm of ambient intelligence (AmI)"

[UniversAAL Specification]

— E.g., smart homes, factories, offices, public spaces,
business activities

« AmI is Artificial Intelligence applied fo Human
Computer (Space) Interaction. Main features are:
— Sensitivity > Sense the environment

— Responsiveness > Reactively respond to environment
changes

— Adaptivity = Long-term adapt to user preferences
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Sensors

* Significant progress on desighing sensors

— Smaller size, lighter weight, lower cost, and longer
battery life

— Embedded in an environment and integrated into
everyday objects and onto human bodies

* Large availability of different sensors
— Traditionally employed for home and building
automation

* e.g. presence detectors, smoke detectors, contact
switches for doors and windows, network-attached and
close circuit cameras

— More modern units growingly available as off-the-
shelf products.

* e.g. IMUs - Inertial Measurements Units such as
accelerometer and gyroscopes, WSN nodes
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Actuators

* Most common actuators in building
automation are switches and dimmers
— usually employed to control lights, and

motors, which control blind/roller shutters,
doors, windows and ventilation flaps

« As an AmI system is supposed to assist
users in the widest range possible of
daily routines, more complex devices
need to be controlled
— Software services on the Internet can be

considered as an additional form of (virtual)
actuators
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Interfaces

« Amazon Alexa, Google Home

— Integrate wireless devices (via Zigbee
protocol for example)

— Integrate online data
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Knowledge Models for What? (1)

Context: the state of the environment
including the human inhabitants with their
actions/activities/habits

« Action: atomic interaction of the human
with the environment or a part of it (e.g., a
device)

— Some techniques in literature focuses only on
actions

— Other techniques skip actions while recognizing
activities

* Human Preferences: a specific set of rules
over contextual variables. The goal here is
user satisfaction.

— Controllable and Uncontrollable variables
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Knowledge Models for What? (2)

* Activity: a sequence of actions (one in
the extreme case) or sensor
measurements/events with a final goal

— Activities can be collaborative

* Habit: a set of interleaving of activities
that happen in specific contextual
conditions

— E.g., what a user does each morning between
08:00 and 10:00am

— E.g., what a user does between very specific
actions (e.g., leaving the bed and leaving the
house)
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Classification of
Modeling Methods (1)

» Specification-based methods

— Knowledge expressed in terms of some
kind of logic language

— Pros ©: Human readable - easy to
validate

— Cons ®: Hand made by experts >
feasible only with a limited number of
sensors
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Classification of
Modeling Methods (2)

* Learning-based methods
— Techniques from both machine learning
and data mining

« Supervised, Unsupervised, Semi-Supervised
methods

— Pros ©: No need for hand-made models

» Supervised methods still require a lot of
labeled data

— Cons ®: Usually not human readable
* E.g., statistical formalisms as HMM
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Model Lifecycle (1)

1. Specification/Learning

— The task of manually defining or learning a model
from data

— The specific learning technique has a huge
impact on the following tasks

2. Visual Analysis

— The task of inspecting models to understand main
characteristics of human life

— It requires an high level of details of the
model

— Helpful to:
* understand problems (e.g., for elderly)
* better design the environment
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Model Lifecycle (2)

3. Recognition

— The task of understanding at run-time what is going on by
using real-time data

— Not all modeling formalisms allow to perform this task

4. Anomaly Detection

— The task of deTec’rinlg if anything strange is happening with
respect to the mode

— Produce Alarms

— Triggers Model Enhancement
* Manual
* Runtime Learning

5. Decision Making

— Help human users and or soft bots to act according to
their activities/habits/preferences
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Lifecycle Pipeline

Task 4: Anomaly Detection

L

Task 3: Recognition

Task 5: Decision Making
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LEARNING BASED METHODS
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Bayes Theorem based (1/2)

. _ P(X|H)p(H)
Bayes Rule P(H|X) = P00
— H is our hypotheses
* i.e., the user is performing a specific activity/habit
— X is our evidence
* i.e., the variables representing the current context
— Inpractical to compute P(X|H)
 Bayesian derivatives usually allows for learning
and recognition

* Naive Bayes (method) supposes variables in X to be
independent given H

— Widely used in Ambient Intelligence
— Supervised method




SAPIENZA (s
UUNIVERSITA DI ROM,

(Se=
A '.._:.;_1:1. II rrr:".'
NI S

Bayes Theorem based (2/2)

Dependencies between variables are
sometimes known - Bayesian Network

— Difficult o compute oy ERED

— An interesting version <
is Dynamic Bayesian = revess /o0 ,
Network (DBN) RS ) (R e

+ Introduce the notionof ™™ "\ /  "&ioeios
temporal evolution

PW=t)PW=f) "~ wet grass
P(S=t"R=1) 0.99 | 0.01
P(S=tR=f) 0.9 | 0.1
P(S=fFR=t)] 09 | 0.1
P(S=fR=f)| 0O 1

2
(9]
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Hidden Markov Models (1)

* Frequently employed for learning and
recognition

« Hidden Markov Models (HMMs) are DBNs
where the system being modeled is assumed
to be a Markov chain that is a sequence of
events

* A HMM is composed of a finite set of
hidden states (e.g., s(t-1), s(t), and s(1+1))
and observations (e.g., o(+-1), o(t), and
o(t+1)) that are generated from states
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Hidden Markov Models (2)

« Three types of probability distributions
* Prior probabilities over initial state
« State transition probabilities
« Observation emission probabilities

/ Transition Probability

p(y[kl|y[k —1]) p(ylk +1]|y[k])

Emission Probability

Hidden Markov Model
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Hidden Markov Models (3)

* HMM is built on three assumptions:

— Each state depends only on its immediate
predecessor

— Each observation variable only depends on
the current state

— Observations are independent each other
« Supervised Learni Il D d
upervisedLearning - [NIEEREN
» Unsupervised Learning meaningless
through Baum-Welch or Viterbi [ISSE
Algorithm
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Hidden Markov Models (4)
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« States are activities/habits

» Observations are considered independent
given the state

» Possibility for hierarchical models
— Also allowing for visual analysis
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Conditional Random Fields

 Used to recognize frequent observation
sequences

» Can be considered a generalization of
HMM

— Probabilities of emissions and transitions
are not constant

— Probabilities depend on the current
subsequence of hidden states given
previous emissions
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Decision Trees

« A decision tree (DT) isa
predictive model where

each leaf representsa %=
classification and (e
each branch ws” \ao
represents (Toun ) (o)

a conjunction of features that

(Iru:l:ume range of applicant? )

$30- 0K = $70E

(‘f ears in present ju:ﬂ::?) Crimingl recond?

L | 1-5 m; :\%
(T (oo iy

IMakes credit
card pasamne nts?

lead to the target classifications ../

Leaves are activity/habits
Supervised Learning methods

(A ) (@ dou)

Not taking into account temporal evolution
Useful for modeling and recognition in static conditions
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Support Vector Machines (1

* SVMs allow to classify both
linear and nonlinear data

— A SVM uses a |
nonlinear mapping m /

to transform the
original training data
into a higher dimension

— Within this new dimension, it searches for
the linear optimal separating hyperplane
that separates the training data of one
class the other one

Input Space Feature Space
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Support Vector Machines (2)

» Supervised binary classification
— This activity or another

« Combined with other learning
techniques

— E.g., Learning taxonomies
(e.g., these two activities

are not compatible) /

Input Space Feature Space
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ANN - Artificial Neural Networks (1)

» Inan ANN, simple artificial nodes, known as
"neurons”, "processmg elements" or "units", are
connected together
— Originally inspired by biological neuron networks

— They can automatically learn complex mappings and
extract a non-linear combination of features

Activation
\. Fundamantal unit of a Neural Network ‘/,//'““'3"0”
O -
.—. /Q v Lif Y wx >0
outpul = i
-1 otherwise
Zwl
wegh[

Inputs
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ANN - Artificial Neural Networks (2)

*  When to use them
— Input is high-dimensional discrete or real-valued (e.g. raw sensor input)

— Output is discrete or | |
Inputs Input Hidden Hidden Output Output
r‘eal VGlLled layer layer 1 layer 2 layer

— QOutput is a vector
of values

— Possibly noisy data

— Form of target function
is unknown

— Human readability of Xn
result is unimportant

— A lot of training data required
— Curse of overfitting (i.e., models do not easily generalize)

— Potentially useful to extract feature vectors for other learning
methos
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Pattern Mining

« Approaches related to pattern analysis in data
mining take as input an event log and extract
patterns of events obtained by windowing

* e.g., CASAS project employs a pattern mining

technique to discover human activity patterns
Allows to discover discontinuous patterns and variations

— Unsupervised learning
— Used for labeling unlabeled activities...
— ..then HMM, CRF, SVM can be used
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CASAS Pattern Mining Approach
» Based on a compression mechanism

— A sequence pattern (P) is identified and
used to compress the data set

— A new best pattern (pattern P) is found in

the next iteration of the algorithm
DL(D)

DL(P) + DL(D|P)

P= 0@e@0

1 =
@0 000@00000@00 000000000000 0Q@000

Compression =

D' =

oa@oooooaso

- P=Pe®P -
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Emerging Patterns - EPs

* Are patterns of events that strongly
characterize an activity or habit
* Given two databases of transactions T1 and T2

— A transaction is a combination of variable
assignments where all the variables are assignhed

— Tl is a set of transactions valid for a specific
activity

— T2 is a set of transactions from contrasting
classes

* Anitemseft is an EP if its support in T1 wrt its
support in T2 is high

— The ratio is referred to as growth rate
* Usually supervised learning
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Event Condition Action - ECA Rules

Initially a specification-based method

Can be compared to decision making in AT agents

— Reflex agents with state take as input the current state
of the world and a set of Condition-Action rules to choose
the action to be performed

An Event Condition Action - ECA rule basically has
the form "ON event IF condition THEN action”,
where conditions can take into account time

— Eg, ON occurs ( Shower , Off , tO0 )
IF context (BathroomHumidityLevel (>, 75))
THEN do (On, BathroomFan , t) when t = t0O + 10s

Unsupervised learning
Mainly useful for decision making and analysis
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SPECIFICATION BASED
METHODS
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Prolog is a logic based
PI"O I 09 BGSZd — programming language mainly
used in AL

* The "in-situation” operator captures a common
form of reasoning in context-aware applications

— To ask if an entity E is in a given situation S
(denoted as S*>E3/

* Recognizing the in_meeting_now situation
1f 1n meeting now (E) then
with someone now(E) ,
has entry for meeting in diary (E)
if with someone now (E) then
location* (E, L) , people in room* (L, N) , N > 1.
if has entry for meeting in diary(E) then
current time*(T1) ,
diary* (E, ‘meeting’, entry(StartTime, Duration)) ,
within interval (Tl, StartTime, Duration)

» Reasoning about situations is decoupled from
the acquisition procedure of sensor readings

SAPTENZA (50
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Ontology-Based

Recognizing situations according to an ontology
— A semantically rich conceptualization of a domai
— e.g., daily life and activities/habits

As in PROLOG based, the engineering effort is mainly in

constructing the knowledge base (the ontology)
Recognizing the «sleeping» situation

(?user rdf:type socam:Person),

(?user, socam:locatedIn, socam:Bedroom),

(?user, socam:hasPosture, ‘LIEDOWN’),
(socam:Bedroom, socam:lightLevel, ‘LOW’),

(socam:Bedroom, socam:doorStatus, ‘CLOSED’)
-> (?user socam:status ‘SLEEPING')

Few approaches try to learn ontologies
Ontologies are used either to

— infer a situation or

— to assess the validity of the results obtained by statistical
techniques (learning based)
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Temporal and Spatial Logics

» Several initiatives employ temporal and
spatial logics such as:

— Allen’s Temporal Logic
— Spatial Calculi
— Linear Temporal Logic (LTL)

 Helpful to reason about multiple users
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SOTA CONCLUDING
REMARKS
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Wrapping-up SotA
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Current Limitations/Opportunities

« Several methods require an extensive

labeling Labeling: full

— Feasible in the lab but more difficult in annotation of
real settings activity/habit

— Human in the loo ag_pr'oach must be instances
followed (e.g., NEST Thermostat) o
— Merge Specification and Learning based 539“‘3“:“'9“'
approaches / ﬁ"i';f]ggnle in
— If not labeling, at least segmentra.’rion. Sepamtioi; s
« In several cases, the recognition is performed

performed, but it is coarse-grained

— To help the user throughout the pipeline
(cf. step 5 in slide 19) is very challenging

— Hierarchical models can be helpful
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Current Limitations/Opportunities (2)

* The problem of multiple users is usually
addressed only if labeling the dataset is
possible
— Not all devices/sensors can be equipped with

Tags
— Tags are usually considered invasive by users

— Few papers so far addressing non-invasive
sensors and/or without prelabeling

» Visual analysis of human habits and activity
is usually difficult

— It may help to designh better smart spaces
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An Idea: BPM?

» Business Process Management - BPM can be
helpful at modeling human habits and activities
— Due to the different application contexts,
challenges must be addressed

* Few approaches using workflows already
proposed but they do not leverage the strong
/— and recent research in process mining

— BPM in IoT is now a hot trend
* Great benefits from the point of view of visual
analysis

» Grounded in logics, potentially a tfrade-off
between specification-based and learning-based

| approaches

Aztiria, A.; Izaguirre, A.; Basagoiti, R.; Augusto, J.C.; Cook, D. Automatic modeling of frequent

user behaviours in intelligent environments. In Proc. Intelligent Environments 2010.




