
Robotics 2
June 12, 2023

Exercise 1

Consider the 4R planar robot in Fig. 1, with generic lengths, masses and inertias of the links but
with the center of mass of each link placed on its kinematic axis. As shown in the figure, the
absolute angles of the links with respect to the axis x0 must be used as generalized coordinates q.
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Figure 1: A 4R planar robot.

• Compute the inertia matrix M(q) of this robot.

• From the elements of M(q), derive the expression of the robot inertia matrix when using instead
the Denavit-Hartenberg joint angles θ as generalized coordinates.

• With the experience gained for the case n = 4, provide the general expression of the kinetic
energy Ti(q, q̇) of link i in a nR planar robot using the generalized coordinates q and under
similar assumptions.

Exercise 2

Let the robot of Fig. 1 have all four links of unitary length, and suppose that we can command
the robot using the joint velocities q̇ ∈ R4. With the robot in the configuration

q0 =
(

0
π

6
−π

3
−π

3

)T
,

consider two (alternative or simultaneous) tasks: (i) the end-effector should move with a velocity
ve ∈ R2; and (ii) the tip of the second link should move with a velocity vt ∈ R2. Determine the
joint velocity commands q̇ for the following problems:

a. execute at best the end-effector task ve = (0.4330,−0.75), while minimizing the norm of q̇;

b. execute at best the second link tip task vt = (−0.5, 0.8660), while minimizing the norm of q̇;

c. execute at best both tasks ve and vt simultaneously;

d. execute at best both tasks ve and vt, with priority to the end-effector task ve;

e. execute at best both tasks ve and vt, with priority to the second link tip task vt.

For each case, provide also the obtained velocity errors ee and et on both tasks (whether assigned
or not) and their norm.
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Exercise 3

For regulating the PRR planar robot shown in Fig. 2 to a desired configuration qd, the PD+gravity
compensation torque τ = KP (qd − q)−KDq̇ + g(qd) is being used, with diagonal gain matrices
KP > 0 and KD > 0. For this control law, provide the symbolic expression of the feedforward
term g(qd) and of the minimum constant value for the elements of KP that guarantees global
asymptotic stabilization of any desired equilibrium configuration qd.
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Figure 2: A PRR planar robot under gravity.
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Figure 3: The mechanism with a constrained
2R robot for elevating payloads.

Exercise 4

The mechanism in Fig. 3 elevates payloads by means of a 2R robot, which is constrained at
its end effector by a vertical guide. The robot has unitary link lengths. The extension of the
vertical motion is limited between points A = (0, 0.95) and B = (0, 1.45) —the robot is never in a
singularity. When including also the payload mp, the inertia matrix of the unconstrained 2R robot
is parametrized as

M(q) =

(
a1 + 2a2 c2 a3 + a2 c2

a3 + a2 c2 a3

)
.

Derive all the individual elements of the reduced dynamic model of this constrained robotic system.
In particular, provide:

• the remaining elements c(q, q̇) and g(q) of the 2R robot dynamic model;

• the 1× 2 Jacobian of the constraint A(q) and a 1× 2 completion matrix D(q) that guarantees
non-singularity in the operating region, together with their time derivatives Ȧ(q) and Ḋ(q);

• a physical interpretation of the pseudo-velocity v ∈ R;

• the (scalar) reduced inertia F T(q)M(q)F (q).

Design then a suitable motion control law for the torque τ ∈ R2 that should impose a desired
cyclic motion from A to B and vice versa in a total motion time T . The joint motion of the 2R
robot should have a continuous acceleration profile at all times. Moreover, no reaction force λ ∈ R
should be exerted on the end-effector by the constraining guide.

[240 minutes; open books]
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Solution

June 12, 2023

Exercise 1

We compute the kinetic energy of this 4R planar robot, taking advantage of the absolute coordinates
qi, i = 1, . . . , 4, as shown in Fig. 1. Let mi be the mass and li the kinematic length of link i, dci
the distance along the link axis of the center of mass (CoM) of link i from the previous joint, and
Ici the barycentric inertia of link i around the axis normal to the plane of motion. The position
pci and the velocity vci of the CoM of link i are two-dimensional vectors in the plane (x0,y0).

For the first link, we have

T1 =
1

2

(
Ic1 +m1d

2
c1

)
q̇21 .

For the second link, being

vc2 = ṗc2 =
d

dt

(
l1c1 + dc2c2

l1s1 + dc2s2

)
=

(
− (l1s1q̇1 + dc2s2q̇2)

l1c1q̇1 + dc2c2q̇2

)
,

it is

T2 =
1

2
Ic2q̇

2
2 +

1

2
m2‖vc2‖2 =

1

2
m2l

2
1 q̇

2
1 +

1

2

(
Ic2 +m2d

2
c2

)
q̇22 +m2l1dc2c2−1q̇1q̇2,

where c2−1 = cos(q2 − q1).

For the third link, being

vc3 = ṗc3 =
d

dt

(
l1c1 + l2c2 + dc3c3

l1s1 + l2s2 + dc3s3

)
=

(
− (l1s1q̇1 + l2s2q̇2 + dc3s3q̇3)

l1c1q̇1 + l2c2q̇2 + dc3c3q̇3

)
,

it is

T3 =
1

2
Ic3q̇

2
3 +

1

2
m3‖vc3‖2

=
1

2
m3

(
l21 q̇

2
1 + l22 q̇

2
2

)
+

1

2

(
Ic3 +m3d

2
c3

)
q̇23

+m3 (l1l2c2−1q̇1q̇2 + l1dc3c3−1q̇1q̇3 + l2dc3c3−2q̇2q̇3) ,

where c3−1 = cos(q3 − q1) and c3−2 = cos(q3 − q2).

For the fourth and last link, we follow the same pattern and obtain

T4 =
1

2
Ic4q̇

2
4 +

1

2
m4‖vc4‖2

=
1

2
m4

(
l21 q̇

2
1 + l22 q̇

2
2 + l23 q̇

2
3

)
+

1

2

(
Ic4 +m4d

2
c4

)
q̇24

+m4 (l1l2c2−1q̇1q̇2 + l1l3c3−1q̇1q̇3 + l2l3c3−2q̇2q̇3

+ (l1c4−1q̇1 + l2c4−2q̇2 + l3c4−3q̇3) dc4q̇4) ,

where c4−1 = cos(q4 − q1), c4−2 = cos(q4 − q2) and c4−3 = cos(q4 − q4).

Finally,

T = T1 + T2 + T3 + T4 =
1

2
q̇TM(q)q̇
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and the robot inertia matrix is given by

M(q) =
Ic1 +m1d

2
c1 + (m2 +m3 +m4) l

2
1 symm

(m2dc2 + (m3 +m4) l2) l1c2−1 Ic2 +m2d
2
c2 + (m3 +m4) l

2
2

(m3dc3 +m4l3) l1c3−1 (m3dc3 +m4l3) l2c3−2 Ic3 +m3d
2
c3 +m4l

2
3

m4dc4l1c4−1 m4dc4l2c4−2 m4dc4l3c4−3 Ic4 +m4d
2
c4

 .

The coordinate transformation between the θ variables of Denavit-Hartenberg and the generalized
coordinates q is linear and is given by

q = T θ =


1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

θ ⇐⇒ θ = T−1q =


1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

 q.
To obtain the inertia matrix in the new coordinates θ, we first replace the arguments of the cosine
functions inside the elements mij(q) of M(q) as follows:

c2−1 = cos θ2, c3−1 = cos(θ2 + θ3), c4−1 = cos(θ2 + θ3 + θ4),

c3−2 = cos θ3 c4−2 = cos(θ3 + θ4), c4−3 = cos θ4.

Applying then the transformation rule, one obtains

M̃(θ) = T TM(q)|q=Tθ T

=



m11 + 2m12 + 2m13 + 2m14

+m22 + 2m23 + 2m24

+m33 + 2m34 +m44

symm

m12 +m13 +m14

+m22 + 2m23 + 2m24

+m33 + 2m34 +m44

m22 + 2m23 + 2m24

+m33 + 2m34 +m44

m13 +m14 +m23 +m24

+m33 + 2m34 +m44

m23 +m24

+m33 + 2m34 +m44
m33 + 2m34 +m44

m14 +m24 +m34 +m44 m24 +m34 +m44 m34 +m44 m44


|q=Tθ

,

which clearly shows how more cumbersome would be the explicit expression of the robot inertia
matrix for this robot when using the DH (relative) angles θ.

For the nR planar robot, based on the previous derivations and under the same assumptions, it is
easy to find the general expression for the kinetic energy of link i, for i = 1, . . . , n:

Ti(q, q̇) =
1

2
Iciq̇

2
i +

1

2
mi‖vci‖2,

with

‖vci‖2 =

i−1∑
j=1

l2j q̇
2
j + d2ciq̇

2
i + 2

i−1∑
j=1

 i−1∑
k=j+1

lkck−j q̇k

 lj q̇j + 2

i−1∑
j=1

ljci−j q̇j

 dciq̇i.
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Exercise 2

With all links of the 4R planar robot being of unitary length and using again the absolute joint
variables of Fig. 1, the Jacobians for the two considered tasks are

Je(q) =

(
−s1 −s2 −s3 −s4
c1 c2 c3 c4

)
ve = Je(q)q̇

and

J t(q) =

(
−s1 −s2 0 0

c1 c2 0 0

)
vt = J t(q)q̇.

In the configuration q0 (see Fig. 4), we have

Je(q0) =

(
0 −0.5 0.8660 0.8660

1 0.8660 0.5 0.5

)
⇒ rank Je(q0) = 2

and

J t(q0) =

(
0 −0.5 0 0

1 0.8660 0 0

)
⇒ rank J t(q0) = 2,

showing that both tasks can certainly be executed separately, no matter which are the values of
ve and vt. However, the complete Jacobian for the two simultaneous tasks is singular,

rank J(q0) = rank

(
Je(q0)

J t(q0)

)
= 3 < 4,

and thus the robot is in an algorithmic singularity.

y0

x0q2 = 𝜋 6⁄

q1 = 0
q3 = −𝜋 3⁄

q4 = −𝜋 3⁄

vt

ve

Figure 4: The 4R planar robot in the configuration q0, with the two assigned tasks.

With the above in mind, we set for ve and vt the given numerical values (see again Fig. 4), and
solve the stated problems as follows.

a. Execute at best the end-effector task ve = (0.4330,−0.75), while minimizing the norm of q̇:

q̇a = J#
e (q0)ve =


−0.4
−0.5196

0.1
0.1

 ⇒
ee = ve − Je(q0)q̇a = 0

et = vt − J t(q0)q̇a =

(
−0.7598
1.7160

)
⇒ ‖et‖ = 1.8767.
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b. Execute at best the second link tip task vt = (−0.5, 0.8660), while minimizing the norm of q̇:

q̇b = J#
t (q0)vt =


0
1
0
0

 ⇒
et = vt − J t(q0)q̇b = 0

ee = ve − J t(q0)q̇b =

(
0.9330
−1.6160

)
⇒ ‖ee‖ = 1.8660.

c. Execute at best both tasks ve and vt simultaneously:

q̇c = J#(q0)

(
ve
vt

)
=


0

0.0670
0
0

 ⇒ e =

(
ve
vt

)
− J(q0)q̇c =


0.4665
−0.8080
−0.4665
0.8080


⇒ ‖e‖ = 1.3195.

d. Execute at best both tasks ve and vt, with priority to the end-effector task ve:

q̇d = J#
e (q0)ve + (J t(q0)P e(q0))

#
(
vt − J t(q0)J#

e (q0)ve

)
=


0

−0.8660
0
0


with P e(q0) = I − J#

e (q0)Je(q0).

⇒
ee = ve − Je(q0)q̇d = 0

et = vt − J t(q0)q̇d =

(
−0.9330
1.6160

)
⇒ ‖e‖ = ‖et‖ = 1.8660.

e. Execute at best both tasks ve and vt, with priority to the second link tip task vt:

q̇e = J#
t (q0)vt + (Je(q0)P t(q0))

#
(
ve − Je(q0)J#

t (q0)vt

)
=


0
1
0
0


with P t(q0) = I − J#

t (q0)J t(q0).

⇒
et = vt − J t(q0)q̇e = 0

ee = ve − Je(q0)q̇e =

(
0.9330
−1.6160

)
⇒ ‖e‖ = ‖ee‖ = 1.8660.

Summarizing, one can observe that:

• As expected, the attempt to execute both tasks simultaneously without the use of any priority
(case c.) produces errors on all tasks components, due to the algorithmic singularity. On the
other hand, the introduction of priority preserves the correct execution of one of the two tasks.
Nonetheless, the norm of the error on the complete set of tasks in the first case is smaller
(‖e‖ = 1.3195) than when using priorities (‖e‖ = 1.8660 in both cases d. and e.).

• In the specific situation considered, the independent execution of either of the two tasks without
care of the other (cases a. and b.) and their simultaneous execution with priority given to either
of the two tasks (cases d. and e., respectively) produce exactly the same error in norm for the
discarded or the lower priority task.
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• The two chosen velocity tasks for the tip of the second link and for the end-effector are highly
conflicting (as apparent also from the geometry in Fig. 4). In fact, the two velocity vectors
ve and vt have a common direction, but opposite orientations. Moreover, they lie along the
Cartesian direction where the third and fourth link of the robot are stretched: as a consequence,
joints 3 and 4 cannot contribute to their simultaneous execution. Note also that these two task
velocities are slightly different in norm (‖ve‖ = 0.8660, ‖vt‖ = 1): if we had chosen still the
same common direction, but exactly opposite values (i.e., ve = −vt), the best solution in case
c. would have been q̇c = 0 (the robot does not move!).

Exercise 3

With reference to Fig. 2, the potential energy due to gravity is computed (up to constants) for
each link as

U1(q1) = m1g0q1 U2(q1, q2) = m2g0 (q1 + dc2 sin q2) U3(q1, q2) = m3g0 (q1 + l2 sin q2) ,

where g0 = 9.81. Thus, from U = U1 + U2 + U3 = U(q), one has

g(q) =

(
∂U

∂q

)T
=

 g0 (m1 +m2 +m3)

g0 cos q2 (m2dc2 +m3l2)

0

 , (1)

from which the feedforward term g(qd) in the control law follows by direct substitution of q2 = q2,d.

A well known sufficient condition for the global asymptotic stability of a desired equilibrium config-
uration qd in a robot controlled by PD + gravity compensation is that KP,m > α. For a diagonal
gain matrix KP , KP,m is the smallest diagonal element of the matrix. The constant α is defined
as a value that bounds the norm of the Hessian matrix of the gravitational potential energy in all
configurations, or

∥∥∥∥∂2U∂q2
∥∥∥∥ =

∥∥∥∥∂g∂q
∥∥∥∥ =

√√√√λmax

{(
∂g

∂q

)T(
∂g

∂q

)}
≤ α, ∀q. (2)

Therefore, from

∂g

∂q
=

 0 0 0

0 −g0 sin q2 (m2dc2 +m3l2) 0

0 0 0

 ,

the only positive eigenvalue of the symmetric, positive semi-definite matrix

{(
∂g
∂q

)T(
∂g
∂q

)}
is

λmax(q2) = g20 (m2dc2 +m3l2)
2

sin2 q2

and so the minimum value for α that globally satisfies (2) is

α = g0 (m2dc2 +m3l2) > 0.

Indeed, due to the structure of the gravity vector (1) for this robot, with a first constant component
and a zero third component, it is easy to see that the sufficient condition is simplified to KP,2 > α
while the other two diagonal gains KP,1 and KP,3 only need to be positive.
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Exercise 4

Given the inertia matrix M(q) of the unconstrained 2R planar robot, the Coriolis and centrifugal
terms are derived using the Christoffel symbols (without the need of knowing the actual expressions
of the dynamic coefficients). One obtains

c(q, q̇) =

(
−a2s2 (2q̇1 + q̇2) q̇2

a2s2q̇
2
1

)
.

As for the gravity term, the potential energy should include also the payload. Therefore, being the
link lengths l1 = l2 = 1, we have

U1(q1) = m1g0dc1s1 U2(q1, q2) = m2g0 (s1 + dc2s12) Up(q1, q2) = mpg0 (s1 + s12) ,

where g0 = 9.81. From U = U1 + U2 + Up = U(q), one has

g(q) =

(
∂U

∂q

)T
=

(
g0 (m1dc1 +m2 +mp) c1 + g0 (m2dc2 +mp) c12

g0 (m2dc2 +mp) c12

)
=

(
a4c1 + a5c12

a5c12

)
.

The guide constrains the motion of the robot end-effector to h(q) = px(q) = 0. Thus, from the
direct kinematics, we have

h(q) = c1 + c12 = 0 ⇒ A(q) =
∂h

∂q
=
(
− (s1+ s12) −s12

)
.

A convenient choice for completing a square nonsingular matrix is

D(q) =
(
c1+ c12 c12

)
. (3)

In fact, the resulting matrix is nothing else than the robot Jacobian(
A(q)

D(q)

)
=

(
− (s1+ s12) −s12
c1+ c12 c12

)
= J(q),

whose determinant detJ(q) = s2 never vanishes in the operating region of the constrained mech-
anism. Therefore, we can safely invert this matrix and obtain(

A(q)

D(q)

)−1

=
1

s2

(
c12 s12

− (c1+ c12) − (s1+ s12)

)
=
(
E(q) F (q)

)
.

Moreover, the following time derivatives are needed:

Ȧ(q) =
(
−c1q̇1− c12 (q̇1 + q̇2) −c12 (q̇1 + q̇2)

)
Ḋ(q) =

(
−s1q̇1− s12 (q̇1 + q̇2) −s12 (q̇1 + q̇2)

)
.

The choice (3) leads also to a simple physical interpretation of the pseudo-velocity

v = D(q)q̇ = c1q̇1 + c12 (q̇1 + q̇2)

as the end-effector velocity component along the y direction, i.e., v = vy = ṗy(q). Finally, the
reduced inertia of the constrained robot is evaluated as

F T(q)M(q)F (q) =
1

s22

(
a3s

2
1 + (a1 − a3) s212 − 2a2s1s12c2

)
> 0.
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The motion control law is computed by inverse dynamics and is given by

τ = M(q)
(
F (q)v̇d −

(
E(q)Ȧ(q) + F (q)Ḋ(q)

)
q̇
)

+ c(q, q̇) + g(q), (4)

where each individual term has already been defined, except for the desired pseudo-acceleration v̇d.
It can be shown that the control law (4) provides

v̇ = v̇d, λ = 0,

as requested.

Multiple possibilities are available for the definition of a smooth cyclic motion with period T
between points A and B. For instance, one can use two specular quintic polynomials, one for the
elevation from A to B in the time interval t ∈ [0, T/2], the other for returning from B to A with
t ∈ [T/2, T ]. By imposing zero boundary conditions on the first and second time derivatives at
Ay = 0.95 and By = 1.45, we obtain

py,d(t) =


Ay + (By −Ay)

(
10σ3 − 15σ4 + 6σ5

)
, σ =

t

T/2
, t ∈ [0, T/2],

By + (Ay −By)
(
10σ3 − 15σ4 + 6σ5

)
, σ =

t− T/2
T/2

, t ∈ [T/2, T ].

From this, we get the pseudo-acceleration command

v̇d(t) = p̈y,d(t) =


60 (By −Ay)

(T/2)2
(
σ − 3σ2 + 2σ3

)
, σ =

t

T/2
, t ∈ [0, T/2],

60 (Ay −By)

(T/2)2
(
σ − 3σ2 + 2σ3

)
, σ =

t− T/2
T/2

, t ∈ [T/2, T ].

The desired position profile py,d(t) and the pseudo-acceleration command v̇d(t) are shown in Fig. 5,
for a chosen motion period of T = 1 s.
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Figure 5: Periodic motion of the constrained robot end-effector: py,d(t) [left] and v̇d(t) [right].
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