
Robotics 2
October 21, 2022

Exercise

Consider the PR robot in Fig. 1, moving in a vertical plane.
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Figure 1: A PR planar robot with the relevant dynamic parameters and variables.

1. Derive the dynamic model of the robot in the form

M(q)q̈ + c(q, q̇) + g(q) = u.

2. Find a linear parametrization of the dynamic model in the form

Y (q, q̇, q̈)a = u,

where a ∈ Rp has the minimal possible dimension p (the gravity acceleration g0 is known).

3. Design a control law u = u(q, q̇, qd) that globally asymptotically stabilizes the robot to the
desired configuration qd = (0, π) [m,rad], when only the total mass m = m1 +m2 of the robot,
the acceleration g0, and the length `2 of the second link are known.

4. Suppose that the robot is initially in equilibrium at qin = q(0) = (0, 0). Under the action of
the control law designed in step 3, determine the sign of the initial acceleration q̈1(0) of the first
joint, in case this is different from zero.

5. Assume now that all robot dynamic parameters are known. Show how it is possible to design a
model-based command u = u(t) that will transfer the robot from the state (q(0), q̇(0)) = (qin,0)
to the final state (q(T ), q̇(T )) = (qd,0) in a given time T > 0 and without moving the first joint.

6. The robot input commands are now limited as |ui(t)| ≤ Ui, i = 1, 2. Consider the rest-to-rest
task of moving in minimum time T from q(0) = (q1(0), q̄2) to q(T ) = (q1(0)−∆, q̄2), with ∆ > 0,
while keeping the second joint constantly at q2 = q̄2 > 0. Determine the optimal solution in an
analytic way and sketch the time-optimal profiles of q̈1(t), q̈2(t), u1(t) and u2(t) for t ∈ [0, T ].

[180 minutes; open books]
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Solution

October 21, 2022

1. Dynamic model

Kinetic energy

T = T1 + T2,

with

T1 =
1

2
m1q̇

2
1 , T2 =

1

2
m2‖vc2‖2 +

1

2
Ic2 q̇

2
2 ,

where

vc2 = ṗc2 =
d

dt

(
q1 + dc2c2
dc2s2

)
=

(
q̇1 − dc2s2q̇2
dc2c2q̇2

)
⇒ ‖vc2‖2 = q̇21 + d2c2q̇

2
2 − 2dc2s2q̇1q̇2.

Thus

T =
1

2
(m1 +m2) q̇21 +

1

2

(
Ic2 +m2d

2
c2

)
q̇22 −m2dc2s2q̇1q̇2.

Inertia matrix

T =
1

2
q̇TM(q)q̇ ⇒ M(q) =

(
m1(q) m2(q)

)
=

(
m1 +m2 −m2dc2s2

−m2dc2s2 Ic2 +m2d
2
c2

)
.

Coriolis and centrifugal terms

c(q, q̇) =

(
q̇TC1(q) q̇

q̇TC2(q) q̇

)
, with Ci(q) =

1

2

(
∂mi(q)

∂q
+

(
∂mi(q)

∂q

)T

− ∂M(q)

∂qi

)
, i = 1, 2.

Since

C1(q) =

(
0 0

0 −m2dc2c2

)
, C2(q) = O,

we have

c(q, q̇) =

(
−m2dc2c2q̇

2
2

0

)
.

Potential energy and gravity terms

U = U1 + U2 = −m1g0q1 −m2g0 (q1 + dc2c2),

and so

g(q) =

(
∂U

∂q

)T

=

(
− (m1 +m2) g0

m2dc2 g0s2

)
.

Robot equations

M(q)q̈ + c(q, q̇) + g(q) = u

⇓(
m1 +m2 −m2dc2s2

−m2dc2s2 Ic2 +m2d
2
c2

)(
q̈1

q̈2

)
+

(
−m2dc2c2q̇

2
2

0

)
+

(
− (m1 +m2) g0

m2dc2 g0s2

)
=

(
u1

u2

)
.

(1)
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2. Linear parametrization

Y (q, q̇, q̈)a =

(
q̈1 − g0 −s2 q̈2 − c2 q̇22 0

0 −s2 (q̈1 − g0) q̈2

) m1 +m2

m2dc2

Ic2 +m2d
2
c2

,
with a minimal number p = 3 of dynamic coefficients ai, i = 1, 2, 3.

3. Regulation control

Under the given assumptions, we can design a PD plus constant gravity compensation law as

u = KP (qd − q)−KDq̇ + g(qd) (2)

with diagonal gain matrices KP > 0, KD > 0 and with KPm > α, where ‖∂g/∂q‖ ≤ α. In fact,
for qd = (0, π), the control law (2) becomes simply

u =

(
−KP1q1 −KD1q̇1 −mg0
KP2(π − q2)−KD2q̇2

)
, (3)

where m (= m1 +m2) and g0 are known. Moreover,

∂g

∂q
=

(
0 0

0 m2dc2 g0c2

)
⇒

∥∥∥∥∂g∂q
∥∥∥∥ =

√√√√λmax

{
∂g

∂q

(
∂g

∂q

)T}
= m2dc2 g0|c2| < m`2g0 = α,

being `2 also known. Thus, to guarantee global asymptotic stabilization to qd with the control
law (3) we choose

KPm = min {KP1,KP2} ≥ m`2g0.

4. Initial acceleration

Isolating the acceleration q̈ from the dynamic model (1) and evaluating it at t = 0, with initial
state (q(0), q̇(0)) = (0,0) and when using the control law (3), gives

q̈(0) = M−1(q(0)) (u(0)− g(q(0)) =
1

detM(q(0))

(
Ic2 +m2d

2
c2 0

0 m1 +m2

)(
0

KP2 π

)
,

since in particular qd1 − q1(0) = 0 and u1(0)− g1(0) = −mg0 + (m1 +m2) g0 = 0. Thus,

q̈1(0) = 0.

This should not be unexpected, being the dynamics of the two joints fully decoupled in the initial
state and joint 1 still at an equilibrium under the control law (3). Note that a simple PD control
law without the gravity compensation term g(qd) in (3) would result in an initial acceleration
q̈1(0) = g0 = 9.81 > 0, i.e., the first (prismatic) joint would initially slide downwards.

5. Inverse dynamics command

The desired motion task is obtained by using inverse dynamics on a suitable rest-to-rest trajectory
interpolating the initial and final configuration in a given time T . Consider for instance the cubic
polynomial trajectory

qd(t) = qin + (qd − qin)

(
−2

(
t

T

)3

+ 3

(
t

T

)2
)
, t ∈ [0, T ],
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or, componentwise,

qd1(t) = 0 ⇒ q̇d1(t) = q̈d1(t) = 0,

qd2(t) = π

(
−2

(
t

T

)3

+ 3

(
t

T

)2
)
⇒ q̇d2(t) = 6π

(
−
(
t

T

)2

+
t

T

)
⇒ q̈d2(t) = 12π

(
1− 2

t

T

)
.

Accordingly, the required command is computed as

u = ud(t) = M(qd(t))q̈d(t) + c(qd(t), q̇d(t)) + g(qd(t))

=

(
−m2dc2

(
sin qd2(t) q̈d2(t)− cos qd2(t) q̇2d2(t)

)
− (m1 +m2) g0(

Ic2 +m2d
2
c2

)
q̈d2(t) +m2dc2 g0 sin qd2(t)

)
, t ∈ [0, T ].

6. Minimum time motion

The problem can be formulated as a minimum-time motion on a prescribed path in the joint space,
where q1 needs to move between q1(0) and q1(0)−∆ while q2 is kept always at the constant value
q̄2 (hence, q̇2 = q̈2 = 0). Since the velocity term c(q, q̇) = 0 for q̇2 = 0, from eq. (1) the dynamics
along this path is then

M(q̄2)

(
q̈1

0

)
+ g(q̄2) =

(
m1 +m2

−m2dc2 sin q̄2

)
(q̈1 − g0) = u, (4)

which is parametrized by the single acceleration q̈1(t), with s(t) = q1(t) acting as the (scalar)
timing law. Note that the two differential equations in (4) are linear and not independent. This
means that one equation should be used in forward dynamics (with the optimal input command)
to determine the acceleration q̈1, while the other will be used in inverse dynamics to find the other
input command.

For compactness, define the two constants

a = m1 +m2 > 0, b = m2dc2 sin q̄2 > 0.

being q̄2 ∈ (0, π) and thus sin q̄2 > 0. Then, from (4) and using the bounds on the input commands,
we have

−U1 ≤ a (q̈1 − g0) ≤ U1, −U2 ≤ −b (q̈1 − g0) ≤ U2.

Manipulating the inequalities, we obtain that q̈1(t), for t ∈ [0, T ], is bounded by

max

{
−U1

a
+ g0,−

U2

b
+ g0

}
= q̈−1 ≤ q̈1(t) ≤ q̈+1 = min

{
U1

a
+ g0,

U2

b
+ g0

}
. (5)

While q̈+1 > 0 clearly holds, it is necessary to enforce q̈−1 < 0 in order to be able to perform any
desired (rest-to-rest) motion transfer by ∆ ≶ 0 with a suitable sequence of positive and negative
acceleration of the first joint. However, this condition is trivially obtained once we realize that the
minimum requirement for the actuation torques at each joint is that they should be able to sustain
(at least) the robot gravity load in any configuration. As a result, we can safely assume that

U1 > (m1 +m2) g0 = a g0, U2 > m2dc2 g0 > m2dc2 sin q̄2 g0 = b g0 ⇒ q̈−1 < 0.

Note that the two possible saturation levels for the acceleration of the first joint (at its positive
or negative value) correspond to two different physical situations: either because the first actuator
pushes/pulls the robot as fast as possible (U1 saturates), or because the second actuator reaches

4



its limit capability in order to keep the second link at the fixed configuration q̄2 (U2 saturates).
Furthermore, it follows from the expressions of the bounds in (5) that the same actuator will
saturate during the acceleration and deceleration phases, while equation (4) shows that the two
input commands will always have opposite signs.

With such asymmetric bounds on the feasible acceleration of joint 1, the requested rest-to-rest
motion task for a displacement −∆ < 0 (thus, moving against gravity) will be executed in minimum
time T by the following acceleration command:

q̈1(t) =

{
q̈−1 , t ∈ [0, Ts),

q̈+1 , t ∈ [Ts, T ).

The values of Ts and T are obtained from the two relationships:

q̈−1 Ts + q̈+1 (T − Ts) = 0 (rest-to-rest motion enforced)

1

2
q̈−1 T

2
s −

1

2
q̈+1 (T − Ts)2 = −∆ (net displacement to be achieved).

As a result,

T =

√
2∆
(
q̈+1 − q̈

−
1

)∣∣q̈−1 ∣∣ q̈+1 , Ts =
q̈+1

q̈+1 − q̈
−
1

T.

Note that in case of opposite values of the positive and negative acceleration (q̈+1 = −q̈−1 = A),

these formulas return the usual symmetric bang-bang profile with T =
√

4∆/A and Ts = T/2.

Qualitative optimal profiles of q̈1(t), u1(t) and u2(t) for t ∈ [0, T ] are sketched in Fig. 2, assuming
here that U1/a < U2/b. Indeed, q̈2(t) = 0 at any time t (thus, it is not shown).
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Figure 2: Time-optimal profiles of q̈1(t), u1(t) and u2(t) for a displacement −∆ < 0 of q1.

On the other hand, Figure 3 shows the numerical results obtained with the data

m1 = 8, m2 = 5 [kg], dc2 = 1 [m], q̄2 =
π

4
[rad], U1 = 260 [N], U2 = 100 [Nm], (6)
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yielding for a displacement of −∆ = −1 [m] of q1:

q̈−1 = −10.19, q̈+1 = 29.81 [rad/s2], T = 0.5132, Ts = 0.3825 [s].

The first joint saturates its command (|u1| = U1 = 260 [N]), whereas the command to the second
joint is set to a maximum (absolute) value of |u2| = −b

(
q̈−1 − g0

)
= 70.7107 < 100 = U2 [Nm].
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Figure 3: Time-optimal profiles of q̈1(t), u1(t) and u2(t) for the data in (6) and −∆ = −1.
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