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June 10, 2022

Exercise #1

The PR robot in Fig. 1 moves on a horizontal plane. Its inertia matrix has the form

M(q) =

(
A B cos q2

B cos q2 C

)
> 0. (1)

Using only the symbolic coefficients A, B and C in (1), provide the expression of the regressor
matrix Y (q, q̇, q̇r, q̈r) and of the complete adaptive control law that guarantees global asymptotic
tracking of a smooth joint trajectory qd(t), without a priori information on the values of the
dynamic coefficients. Neglect all dissipative effects.
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Figure 1: A planar PR robot with the definition of the joint variables q1 and q2.

Exercise #2

A macro-micro planar 4R robot is commanded by kinematic control at the joint velocity level.
The first two links have equal length, L1 = L2 = L, and the last two links are also equal in length
but four times shorter, L3 = L4 = L/4 (micro-manipulator). A trajectory pd,1(t) ∈ R2 is assigned
to the robot end-effector, which is the highest priority task. A second trajectory pd,2(t) ∈ R2 is
assigned to the tip of the second link, which is the end of the supporting macro part of the robot.
Determine the arm configurations qs at which algorithmic singularities occur for the extended
Jacobian of the two simultaneous motion tasks. Specify the additional conditions needed in such
algorithmic singularities under which a task priority approach would enable perfect execution of
the primary task (with some least-squares error on the secondary task).

Exercise #3

The dynamic model of a robot with n elastic joints interacting with the environment can be
expressed by two second-order differential equations, each of dimension n,

M(q)q̈ + S(q, q̇)q̇ + g(q) = τ J + JT(q)F (2)

Bθ̈ + τ J = τ , (3)
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named respectively, the link dynamics and the motor dynamics of the elastic joint robot. In these
equations, θ ∈ Rn are the motor variables (before joint elasticity), q ∈ Rn are the link variables
(after joint elasticity), and τ J = KJ (θ − q) ∈ Rn is the elastic joint torque measured by the joint
torque sensors, with a diagonal joint stiffness matrixKJ > 0. Moreover, the robot is equipped with
two encoders per joint, measuring both θ and q. The dynamic terms on the left-hand side of the top
equation (2) are the same as in a rigid robot; on the right-hand side, there is also the end-effector
robot Jacobian J(q) = (∂f(q)/∂q) associated to the Cartesian task vector x = f(q) ∈ Rm and
the related generalized Cartesian forces F ∈ Rm. On the other hand, in the bottom equation (3),
the diagonal matrix B > 0 collects the reflected motor inertias, while τ ∈ Rn are the input torques
available for control. Suppose also that m = n.

• Using feedback from joint torque sensors and motor velocities, design first a control law for τ
such that the motor dynamics becomes

B0 θ̈ +D0θ̇ + τ J = u, for a diagonal, arbitrary small B0 > 0 and a suitable D0 > 0.

• Thanks to this inertial reduction, the motor dynamics is made arbitrarily fast so that we can
assume τ J ' u (this fast dynamics can be seen as if it were always at steady-state). Complete
then the control design on the robot link dynamics by imposing to the Cartesian task vector x,
the following impedance model

Mx(q) ẍ+ (Sx(q, q̇) +Dm) ẋ+Km(x− xd) = F (4)

where xd is constant, Km > 0 andDm > 0 are desired, diagonal stiffness and damping matrices,
and, assuming to work out of kinematic singularities,

Mx(q) =
(
J(q)M−1(q)JT (q)

)−1
, Sx(q, q̇) = J−T (q)S(q, q)J−1(q)−Mx(q)J̇(q)J−1(q).

Write the final control law for the input torque τ ∈ Rn in explicit form only in terms of the original
state variables q, q̇, θ, and θ̇ . Moreover, if an external constant force F = F̄ is being applied
from the environment to the robot, which will the equilibrium x = xE at steady state and what
will be the value τE of the control torque τ at this equilibrium?

Exercise #4

𝜃

y

x

⊕
g0

𝜏

𝜃 0 = −
𝜋
2

𝜃 𝑇 =
𝜋
2

t

+A

−A

T/2

T

𝜃̈(𝑡)

Figure 2: A one-link arm moving under gravity and the desired joint acceleration profile.

Consider the actuated link under gravity in Fig. 2, with the input torque bounded as |τ | ≤ τmax.
The link should perform a rest-to-rest motion from θ(0) = −π/2 to θ(T ) = π/2 with the bang-bang
acceleration profile θ̈(t) shown in the same figure. Determine analytically the minimum feasible
time T to execute the desired motion with this type of trajectory.

[210 minutes (3.5 hours); open books]
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Solution
June 10, 2022

Exercise #1

We compute the Coriolis and centrifugal terms using the Christoffel symbols:

ci(q, q̇) = q̇TCi(q)q̇, Ci(q) =
1

2

(
∂mi(q)

∂q
+

(
∂mi(q)

∂q

)T

− ∂M(q)

∂qi

)
, i = 1, 2,

where mi(q) is the i-th column of the inertia matrix M(q). This leads to

C1(q) =

(
0 0

0 −B sin q2

)
⇒ c1(q, q̇) = −B sin q2 q̇

2
2 ,

C2(q) = O ⇒ c2(q, q̇) ≡ 0.

Accordingly, the factorization of these terms with the skew-symmetric property is trivial (being
only a centrifugal term present):

c(q, q̇) = S(q, q̇)q̇ =

(
0 −B sin q2q̇2

0 0

)(
q̇1

q̇2

)
=

(
−B sin q2 q̇

2
2

0

)
.

Having defined q̇r = q̇d + Λ(qd − q) = q̇d +K−1D KP (qd − q), the adaptive control law is

τ = M̂(q)q̈r + Ŝ(q, q̇)q̇r +KP (qd − q) +KD(q̇d − q̇)

= Y (q, q̇, q̇r, q̈r)â+KP (qd − q) +KD(q̇d − q̇), (diagonal) KP > 0,KD > 0),

with

Y (q, q̇, q̇r, q̈r) =

(
q̈r1 q̈r2 cos q2 − q̇2q̇2r sin q2 0

0 q̈r1 cos q2 q̈r2

)
, â =

 Â

B̂

Ĉ

 ,

and adaptation law
˙̂a = ΓY T (q, q̇, q̇r, q̈r) (q̇r − q̇) , Γ > 0.

Exercise #2

The two tasks of dimension m1 = m2 = 2 are defined by the following kinematics:

p1 = f1(q) = L

(
c1 + c12

s1 + s12

)
+
L

4

(
c123 + c1234

s123 + s1234

)
= p2 +

L

4

(
c123 + c1234

s123 + s1234

)
,

p2 = f2(q) = L

(
c1 + c12

s1 + s12

)
.

The associated Jacobians J i(q) = ∂f i(q)/∂q, for i = 1, 2, are

J1(q) = L

 −
(
s1 + s12 +

s123 + s1234
4

)
−
(
s12 +

s123 + s1234
4

)
−s123 + s1234

4
−s1234

4

c1 + c12 +
c123 + c1234

4
c12 +

c123 + c1234
4

c123 + c1234
4

c1234
4


J2(q) = L

(
− (s1 + s12) −s12 0 0

c1 + c12 c12 0 0

)
.
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Since n = m1 + m2 = 4, the simultaneous execution of both task leads to the square extended
Jacobian

JE(q) =

(
J1(q)

J2(q)

)
=

(
J11(qM , qm) J12(qM , qm)

J21(qM ) O

)
with qM = (q1, q2) and qm = (q3, q4) being respectively the variables of the macro- and micro-
manipulator.

The determinant of JE(q) is easily computed as

detJE(q) = detJ12(qM , qm) · detJ21(qM ) =
L4

16
sin q2 sin q4.

In particular, sin q2 = 0 corresponds certainly to a rank loss of the secondary task Jacobian J2

(namely, a singularity of the square J21 matrix), whereas sin q4 = 0 corresponds to a singularity of
the square block J12. However, it could be that the 2× 4 primary task Jacobian J2 has still full
rank even if sin q4 = 0. In this case, the primary task may still be generically realized by a task
priority strategy.

The analysis of the rank deficiencies of the extended Jacobian JE and of its sub-parts can be
simplified by using the following two invertible transformations (acting on the columns and on the
rows of the matrix).

• Redefining the joint velocity as

q̇ = T q̇′ with T =
1

L


1 0 0 0

−1 1 0 0

0 −1 4 0

0 0 −4 4

 ,

leads to
JE(q)q̇ = JE(q)T q̇′ = J ′E(q)q̇′

with the simpler form

J ′E(q) =


−s1 −s12 −s123 −s1234
c1 c12 c123 c1234

−s1 −s12 0 0

c1 c12 0 0

 .

• Expressing the task velocities in the frame rotated with joint 1,( 1ṗ1
1ṗ2

)
=

(
0RT

1 (q1) O

O 0RT
1 (q1)

)( 0ṗ1
0ṗ2

)

=

(
0RT

1 (q1) O

O 0RT
1 (q1)

)
J ′E(q)q̇′ = 1J ′E(q)q̇′,

further simplifies the extended Jacobian to

1J ′E(q) =


0 −s2 −s23 −s234
1 c2 c23 c234

0 −s2 0 0

1 c2 0 0

 =

(
1J ′1(q)
1J ′2(q)

)
.
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With the above in mind, a true algorithmic singularity occurs when sin q2 6= 0, i.e., the second task
Jacobian J2 is full rank, the first task Jacobian J1 is also of full rank, but the extended Jacobian
JE is singular, which implies then necessarily sin q4 = 0. To check if this situation is at all possible,
consider the simplified Jacobian 1J ′1 evaluated in particular for q4 = 0 (but with sin q2 6= 0). We
have —this is labeled below as case a :

1J ′1(q)
∣∣
q4=0

=

(
0 −s2 −s23 −s23
1 c2 c23 c23

)
⇒ has rank = 2 (just as J1).

This means that adopting a task priority solution will allow the highest priority task to be exactly
executed (in this case, together with the second one being also rankJ2 = 2), whereas inversion of
the square extended Jacobian JE would be impossible.

A further interesting situation is when the secondary task is singular (sin q2 = 0), together with
the sub-Jacobian J12 of the first task (sin q4 = 0). For instance, when q2 = q4 = 0 one has

1J ′1(q)
∣∣
q2=q4=0

=

(
0 0 −s3 −s3
1 1 c3 c3

)
⇒ has rank = 2 iff sin q3 6= 0.

Also in this situation, labeled below as case b, the task priority solution would allow a correct
execution of the highest priority task, whereas the secondary task would report an error (minimized
in a least square sense).
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Figure 3: Cases a (left) and b (right) of singularities for the extended Jacobian JE of the 4R
macro-micro robot.

The above two situations are depicted in Fig. 3. The task priority solutions are computed as

q̇TP = J#
1 (q)ṗ1 + (J2(q)P 1(q))

#
(
ṗ2 − J2(q)J#

1 (q)ṗ1

)
, (5)

where P 1(q) = I − J#
1 (q)J1(q). In both cases, we have set the link length parameter and the

task velocities to

L = 1 [m], ṗ1 = ṗ2 =

(
1

1

)
[m/s].

When qa = (0, π/2, π/2, 0) (algorithmic singularity, case a), the joint velocity (5) provides the
correct solution for both tasks:

q̇TP,a =


1

−2

0.8

0.4

 [rad/s] ⇒ JE(qa)q̇TP,a =


1

1

1

1

 [m/s].
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When qb = (0, 0, π/2, 0) (case b), the Jacobian J2 of the second task is not of full rank, and thus
JE is singular), the joint velocity (5) still provides the correct solution for the high-priority task

q̇TP,b =


0.7586

−0.5172

−1.793

−0.8966

 [rad/s] ⇒ JE(qb)q̇TP,b =


1

1

0

1

 [m/s].

while the x-component of the second task velocity ṗ2 is clearly not realized.

Exercise #3

The first step in the control design is achieved simply by choosing

τ =
(
I −BB−10

)
τ J +BB−10

(
u−D0θ̇

)
. (6)

Assuming that τ J = u, then the rest of the procedure follows a standard impedance control design
for a task that involves a constant reference xd and when the apparent inertia is chosen as the
natural Cartesian inertia of the robot, with consistent Coriolis/centrifugal terms included in the
model to be matched. Thus, no force feedback will be required. The Cartesian model of the link
dynamics (viz., that of a rigid robot) is

Mx(q)ẍ+ Sx(q, q̇)ẋ+ gx(q) = F + J−T (q)u. (7)

Comparing (7) with the target model (4), the equivalence is obtained by choosing

u = JT (q) (Km(xd − x)−Dmẋ+ gx(q)) = JT (q) (Km(xd − x)−Dmẋ) + g(q), (8)

being gx(q) = J−T (q)g(q). Putting together eqs. (6) and (8) gives finally

τ =
(
I −BB−10

)
KJ(θ − q) +BB−10

(
JT (q) (Km(xd − f(q))−DmJ(q)q̇) + g(q)−D0θ̇

)
.

If an external constant force F = F̄ is applied at the robot end effector, the system will find the
steady-state equilibrium

xE = xd +K−1m F̄ .

The value of the control signal u at this equilibrium is

uE = JT (qE)F̄ + g(qE),

where the equilibrium configuration qE is such that f(qE) = xE . Moreover, since the elastic torque
at steady state will be τ J,E = uE , it follows from (6) that the control torque at the equilibrium is
τE = uE .

Exercise #4

The dynamics of the actuated pendulum under gravity is given by

Iθ̈ +mg0d sin θ = τ,

where m > 0 is the link mass, d > 0 is the distance of its center of mass from the joint, and
I = Ic + md2 > 0 is the link inertia around the joint axis at the base. With the bang-bang
acceleration profile θ̈(t) given in Fig. 2, when starting at rest in θ(0) = θ0 one has by integration

θ̇(t) =

{
At, t ∈ [0, T/2]

A(T − t), t ∈ [T/2, T ]
θ(t) =

{
θ0 + 1

2At
2, t ∈ [0, T/2]

θ0 + 1
4AT

2 − 1
2A(T − t)2, t ∈ [T/2, T ]
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yielding θ(T ) = θ0 + 1
4AT

2. Thus, for a rest-to-rest angular motion ∆ = θ(T )− θ0 to be executed
in T seconds, the bang-bang value A of the acceleration will have to be

A =
4∆

T 2
.

From the inverse dynamics for the desired motion, one should note that the maximum of the
gravity torque τg = mg0d sin θ in absolute value occurs at θ = ±π/2. However, the gravity torque

has always opposite sign of the inertial torque Iθ̈ = ±IA (see the dotted blue line in the right of
Fig. 4), subtracting from the total torque that the actuator needs to deliver for the desired motion.
Stated differently, it helps in the acceleration phase (τg(t) has negative sign when t ∈ [0, T/2)) as
well as in the deceleration phase (τg(t) has positive sign when t ∈ (T/2, T ]). Therefore, we easily
see that

max
t∈[0,T ]

|τ(t)| = |τ (T/2)| = IA = I
4∆

T 2
≤ τmax,

i.e., at t = T/2, where τg(T/2) = τg(θ = 0) = 0. From this, the minimum motion time for the
required ∆ = π is

Tmin =

√
4∆I

τmax
=

√
4πI

τmax
.
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Figure 4: The joint acceleration profile and the associated joint torque profile.
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