
Robotics 2

February 3, 2022

Exercise #1

The RPR robot in Fig. 1 moves in a vertical plane and is controlled by the joint torque τ ∈ R3.

a) Provide a linear parametrization of the gravity term g(q) = G(q)aG in the robot dynamic
model, where the matrix G(q) contains only known kinematic quantities (including the gravity
acceleration g0). Introduce kinematic and dynamic parameters as needed.

b) Design a control law τ = τ r(q, q̇, ep), driven by the Cartesian error ep = pd−p, that achieves
regulation of the end-effector position to a desired constant value pd ∈ R2, up to singularities.
Give the explicit expression of all terms in this control law.

c) Find a robot configuration qs and an associated desired position pd, with ep = pd−f(qs) 6= 0,
such that the robot will not move when at rest in qs under the action of the previous control
law τ = τ r(qs,0, ep).
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Figure 1: A planar RPR robot.

Exercise #2

Consider the planar 4R robot in Fig. 2, having equal links of unitary length. The robot is com-
manded by the joint acceleration q̈ ∈ R4.

a) The end effector of the robot should follow a desired smooth position trajectory pd(t) ∈ R2.
Provide the general form of the command q̈a that executes the task in nominal conditions,
while minimizing instantaneously the objective function

H =
1

2
‖ q̈ +Kd q̇ ‖2, Kd > 0. (1)

Moreover, study the singularities that may be encountered during the execution of this task.

b) Consider again the problem in item a), but now with the desired task augmented in order to
keep the end-effector angular speed at some constant value ωz,d ∈ R. Provide the general form
of the command q̈b that executes the extended task.
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c) Compute the numerical value of q̈a when the robot is in the nominal state xd = (qd, q̇d) ∈ R8

and for a desired p̈d ∈ R2 given by

qd =


π/4

π/3

−π/2
0

 [rad], q̇d =


−0.8

1

0.2

0

 [rad/s], p̈d =

(
1

1

)
[m/s2],

having set Kd = I4×4 in (1).

d) Compute the numerical value of q̈b in the same conditions of item c). What are the values of
pd, ṗd, and ωz,d in this case?
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Figure 2: A planar 4R robot, with a sketch of its Cartesian tasks.

Exercise #3

Figure 3 shows a 2R robot with unitary link lengths whose end effector is mechanically constrained
to move only along the vertical segment between points A = (0, 1) and B = (0,

√
2), under the

action of the single available motor torque τ at the first joint. The second joint is passive and all
dissipative effects can be neglected.

a) Derive a (one-dimensional) reduced dynamic model of the constrained robot.

b) If the robot is in an equilibrium state with its end effector in A, what is the applied torque τ0?

c) Suppose that the end effector should execute a rest-to-rest motion from A and B with a
sinusoidal acceleration profile at an angular frequency ω = 0.5 [rad/s]. What is the explicit
expression of the needed torque command τd(t)?
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Figure 3: A 2R robot in constrained motion, with one actuator only at the first joint.

[210 minutes (3.5 hours); open books]
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Solution
February 3, 2022

Exercise #1

We compute first the gravity term g(q) needed in the regulation law and provide a linear parametriza-
tion for it. The potential energy of each link is computed from the general expression (with vectors
in R2, being the problem planar)

Ui = −mi g
T
0 ri,ci , g0 =

(
0

−g0

)
⇒ Ui = mig0 ri,ciy

with g0 = 9.81 [m/s2]. Thus,

U1 = m1g0 d1 sin q1,

U2 = m2g0 (l1 sin q1 + (q2 − d2) cos q1) ,

U3 = m3g0 (l1 sin q1 + q2 cos q1 + d3 sin(q1 + q3)) ,

where l1 is the length of link 1, d1 and d3 are the positions of the center mass of link 1 and link 3,
respectively, computed from their proximal base, and d2 is the position of the center mass of link 2
as computed from its distal base (i.e., the axis of joint 3). As a result, from U = U1 +U2 +U3, we
obtain

g(q) =

(
∂U(q)

∂q

)T
= g0


(m1d1 + (m2 +m3)l1) cos q1 − (m2(q2 − d2) +m3q2) sin q1

+m3d3 cos(q1 + q3)

(m2 +m3) cos q1

m3d3 cos(q1 + q3)

 . (2)

This can be linearly parametrized by a (3 × 4) regressor matrix G(q) and a vector of dynamic
coefficients aG ∈ R4 as follows:

g(q) = G(q)aG =

 g0 (l1 cos q1 − q2 sin q1) g0 cos q1 g0 sin q1 g0 cos (q1 + q3)

g0 cos q1 0 0 0

0 0 0 g0 cos (q1 + q3)



m2 +m3

m1d1

m2d2

m3d3

.
Indeed, also other parametrizations that are still minimal (i.e., of dimension 4) can be found.

The required Cartesian regulator is given by1

τ r = JT(q)KP (pd − f(q))−KDq̇ + g(q), with KP > 0, KD > 0. (3)

Having already given the gravity term in (2), the missing expressions in (3) are the direct kinematics

f(q) =

(
l1 cos q1 − q2 sin q1 + l3 cos(q1 + q3)

l1 sin q1 + q2 cos q1 + l3 sin(q1 + q3)

)
and its associated Jacobian

J(q) =
∂f(q)

∂q
=

(
− (l1 sin q1 + q2 cos q1 + l3 sin(q1 + q3)) − sin q1 −l3 sin(q1 + q3)

l1 cos q1 − q2 sin q1 + l3 cos(q1 + q3) cos q1 l3 cos (q1 + q3)

)
. (4)

1Alternatively, one can replace the joint damping term −KD q̇ by a Cartesian damping −JT(q)KD,c J(q)q̇,
with KD,c > 0. However, there is no actual advantage in doing so.
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To answer to item c), we need to find the singular configurations qs of J(q). In fact, the con-
troller (3) gets stuck with the robot at rest in an end-effector position ps = f(qs) different from
the desired pd if and only if the (gain scaled) error KPep, with ep = pd − ps 6= 0, lies in the null
space of the transpose of the Jacobian Js = J(qs). And this can happen only when the Jacobian
in (4) loses rank. Analyzing the three minors (obtained by deleting one column of J at a time),
we have

detJ−1 = l3 sin q3, detJ−2 = l3 (l1 sin q3 − q2 cos q3) , detJ−3 = −(q2 + l3 sin q3).

These are simultaneously zero if and only if q2 = 0 and q3 = 0 or π (with arbitrary q1). Take for
example qs = (q1, 0, 0). We have

ps = (l1 + l3)

(
cos q1

sin q1

)
, Js =

(
− (l1 + l3) sin q1 − sin q1 −l3 sin q1

(l1 + l3) cos q1 cos q1 l3 cos q1

)

and so

N
{
JT

s

}
= α

(
cos q1

sin q1

)
.

Consider a gain KP = kP I2×2, kP > 0. By choosing

pd = ∆

(
cos q1

sin q1

)
, ∆ < l1 + l3 ⇒ KPep = kP (∆− (l1 + l3))

(
cos q1

sin q1

)
6= 0,

with the robot at rest (q̇ = 0), the control law (3) becomes simply τ r = τ r(qs,0, ep) = g(qs). In
the closed-loop system, with the robot dynamics evaluated at the state xs = (qs,0), it is

M(qs) q̈ + c(qs,0) + g(qs) = g(qs) ⇒ M(qs) q̈ = 0 ⇔ q̈ = 0,

so that the state xs is an equilibrium and the robot will not move under the action of (3), despite
of the residual Cartesian position error.

Exercise #2

We compute the direct and the differential kinematics up to the second order of the planar 4R
robot for the positional task of its end effector. Being all links of unitary length, we have

p = f(q) =

(
c1 + c12 + c123 + c1234

s1 + s12 + s123 + s1234

)
,

with the shorthand notation for trigonometric quantities (e.g., c123 = cos(q1 + q2 + q3)). Differen-
tiating once w.r.t. time, we obtain

ṗ =
∂f(q)

∂q
q̇ = J(q)q̇,

with the (2× 4) Jacobian matrix

J(q) =

(
− (s1 + s12 + s123 + s1234) − (s12 + s123 + s1234) − (s123 + s1234) −s1234

c1 + c12 + c123 + c1234 c12 + c123 + c1234 c123 + c1234 c1234

)
. (5)

Differentiating a second time, we get

p̈ = J(q)q̈ + n(q, q̇), (6)
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with the quadratic term in the joint velocities

n(q, q̇) =J̇(q)q̇ = −

(
c1 q̇

2
1 + c12 (q̇1 + q̇2)

2
+ c123 (q̇1 + q̇2 + q̇3)

2
+ c1234 (q̇1 + q̇2 + q̇3 + q̇4)

2

s1 q̇
2
1 + s12 (q̇1 + q̇2)

2
+ s123 (q̇1 + q̇2 + q̇3)

2
+ s1234 (q̇1 + q̇2 + q̇3 + q̇4)

2

)
.

At the current robot state (q, q̇) and for a given p̈ = p̈d, finding a solution q̈ to (6) that minimizes
instantaneously the objective function (1) is a standard LQ problem with the unique solution

q̈a = J#(q) (p̈d − n(q, q̇))−
(
I − J#(q)J(q)

)
Kd q̇

= −Kd q̇ + J#(q)
(
p̈d − n(q, q̇) + J(q)Kd q̇

)
.

(7)

In fact, the preferred acceleration in the objective function (1), i.e., the one that would minimize
H in the unconstrained case, is q̈0 = −Kdq̇. This achieves damping of joint velocities in the null
space of the task, as apparent from the first expression in (7). The second equivalent expression is
however more efficient to evaluate.

The singularities of J(q) may affect the execution of the task and need to be analyzed in advance.
Even if not strictly necessary, it is convenient for this purpose to simplify the Jacobian by the
following factorization2

J(q) =

(
−s1 −s12 −s123 −s1234

c1 c12 c123 c1234

)
1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

 = J ′(q)T , (8)

where T is a nonsingular matrix (with det T = 1). Thus, the configurations at which J ′(q) loses
rank coincide with those of J(q). By inspecting the six (2× 2) minors of J ′, it is easy to see that
this happens in the singular configurations

qs : { q1 is arbitrary, q2 = 0 or π, q3 = 0 or π, q4 = 0 or π } .

In all these 8 types of singular configurations, the links of the robot are either stretched or folded
along the single direction specified by q1.

We extend now the task with the angular component, concerning the orientation of the end-effector.
We proceed incrementally, using the results obtained so far for the two-dimensional task. We have

pe =

(
f(q)

q1 + q2 + q3 + q4

)
,

and thus

ṗe = Je(q) q̇ =

(
J(q)

1 1 1 1

)
q̇

and

p̈e = Je(q) q̈ +J̇e(q) q̇ = Je(q) q̈ + ne(q, q̇) = Je(q) q̈ +

(
n(q, q̇)

0

)
.

2This is a common trick for planar nR robot structures.
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The solution of the LQ problem takes exactly the same form as in (7), once the augmented quan-
tities are used, including the augmented desired acceleration p̈e,d, which is given by p̈d ∈ R2 with
an extra third component equal to 0, or

p̈e,d =

(
p̈d
ω̇z,d

)
=

(
p̈d
0

)
.

Thus,

q̈b = J#
e (q)

(
p̈e,d − ne(q, q̇)

)
−
(
I − J#

e (q)Je(q)
)
Kd q̇

= −Kd q̇ + J#
e (q)

(
p̈e,d − ne(q, q̇) + Je(q)Kd q̇

)
.

(9)

The only difference will be in the analysis of the singularities of the (3 × 4) Jacobian Je(q).
Proceeding as before with the same transformation matrix T , we have

Je(q) = J ′e(q)T , with J ′e(q) =

 −s1 −s12 −s123 −s1234

c1 c12 c123 c1234

0 0 0 1

 . (10)

Accordingly, the singular configurations of Je(q) are namely

qs : { q1 is arbitrary, q2 = 0 or π, q3 = 0 or π, q4 is arbitrary } ,

namely the same as those of the (2 × 3) Jacobian of a planar 3R robot in a positional task. In
these 4 types of singular configurations, the first three links of the robot are either stretched or
folded along the single direction specified again by q1.

Using the values qd, q̇d, and p̈d specified in item c) of the text of this Exercise, we evaluate (7)
and (9) as

q̈a =


−0.3074

−1.6378

2.0496

1.1248

 [rad/s2], q̈b =


0.3163

−2.5735

3.0503

−0.7932

 [rad/s2].

The extended position and orientation task vector and the end-effector linear and angular velocity
at the current state xd = (qd, q̇d) are

pe =

(
pd

φd

)
=

 2.3801

2.1907

0.2618

 [m, m, rad], ṗe =

(
ṗd

ωz,d

)
=

 0.1654

0.1553

0.4

 [m/s, m/s, rad/s].

Exercise #3

Apart from the knowledge of unitary link lengths, no dynamic information is provided about the
planar 2R robot in Fig. 3, Therefore, in its dynamic model,

M(q) q̈ + c(q, q̇) + g(q) = u+AT (q)λ =

(
τ

0

)
+AT (q)λ, (11)

we will use a parametric form for the inertia, Coriolis/centrifugal, and gravity terms

M(q) =

(
a1 + 2a2c2 a3 + a2c2

a3 + a2c2 a3

)
, c(q, q̇) =

(
−a2s2 (q̇2 + 2q̇1) q̇2

a2s2q̇
2
1

)
, g(q) =

(
a4c1 + a5c12

a5c12

)
,
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with dynamic coefficients ai, i = 1 . . . , 5, and using the shorthand notation for trigonometric
quantities. On the right-hand side of (11), we have taken into account that there is no motor
at the second joint (the joint is passive) and that the robot is subject to a holonomic constraint,
providing a reaction force λ ∈ R. The scalar constraint on the robot end effector is written as

k(p) = px = 0 ⇒ h(q) = k (f(q)) = c1 + c12 = 0.

The Jacobian of this constraint is

A(q) =
∂h(q)

∂q
=
(
− (s1 + s12) −s12

)
. (12)

In the assumed hypothesis on the location of the two points A and B, the matrix A(q) is always
well defined and with full rank (= 1).

In order to obtain the reduced dynamic model of the constrained 2R robot, the basic step is to
define a 1 × 2 (row) vector D(q) that is linearly independent from A(q), possibly everywhere in
the region of interest. A useful choice is given by the following matrix (also with rank one in the
constrained space)

D(q) =
(
c1 + c12 c12

)
⇒

(
A(q)

D(q)

)
= J(q), (13)

generating in this way the (2 × 2) robot Jacobian. This matrix is always nonsingular in the
constrained region of operation of the 2R robot. Thus,(

A(q)

D(q)

)−1

= J−1(q) =
adj {J(q)}
detJ(q)

=
1

s2

(
c12 s12

− (c1 + c12) − (s1 + s12)

)
∆
=
(
E(q) F (q)

)
.

We define then the pseudo-velocity vy ∈ R on the Cartesian line and the inverse mapping to q̇ as

vy = D(q) q̇ = c1 q̇1 + c12 (q̇1 + q̇2) , q̇ = F (q) vy =

(
s12

− (s1 + s12)

)
vy. (14)

Note that a subscript y has been added to v since this is exactly the y-component of the end-effector
velocity, the only allowed by the constraint. Since the elements of the matrix F (q) are available
analytically, we can obtain its time derivative in closed form3

Ḟ (q) =
1

s2

(
c12 (q̇1 + q̇2)

−c1q̇1 − c12 (q̇1 + q̇2)

)
− c2 q̇2

s2
2

(
s12

− (s1 + s12)

)
Thus, the reduced dynamic model of the constrained 2R robot is given by the single differential
equation (

F T(q)M(q)F (q)
)
v̇y = F T(q)

(
u− c(q, q̇)− g(q)−M(q)Ḟ (q) vy

)
, (15)

with the (always positive) reduced inertia given by the scalar

F T(q)M(q)F (q) =
1

s2
2

(
a3s

2
1 + (a1 − a3)s2

12 − 2a2s1c2s12

)
.

3This means that we don’t need to replace the term Ḟ (q)q̇ by the longer expression −
(
Ė(q)Ȧ(q) + F (q)Ḋ(q)

)
q̇

within the derivations of the constrained dynamics. This is reflected in the form of the resulting equation (15).
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Being only the single torque τ available as input, we have

F T(q)u =
1

s2

(
s12 − (s1 + s12)

)( τ

0

)
=
s12

s2
τ, (16)

with s2 6= 0 in the domain of interest. For the following developments, the derivation of the
expression of the force multiplier λ is not needed.

For item b), we need to find the robot configuration associated with point A. The inverse kinematic
solution for this point can be found by geometric inspection: qA = (π/6, 2π/3). Setting the robot
at rest, we have that

q̇ = 0 ⇒ c(qA,0) = 0, vy = D(qA)q̇ = 0,

and from (15) it follows(
F T(qA)M(qA)F (qA)

)
v̇y = F T(qA)u−F T(qA) g(qA) =

s12

s2

∣∣∣∣
q=qA

τ− s12a4c1 − s1a5c12

s2

∣∣∣∣
q=qA

.

In order to have v̇y = 0, i.e., an equilibrium, we need to apply the torque

τ0 =

(
a4c1 −

s1

s12
a5c12

)∣∣∣∣
q=qA

=

√
3

2
(a4 + a5) . (17)

The value in (17) implicitly takes into account the reaction force (i.e., λ) imposed by the constraint
at the end effector, which helps sustaining the robot against gravity in the configuration qA, even
in the absence of a motor torque at joint 2. In fact, note that this is not the first component of
the gravity torque g(qA), which is

g1(qA) = (a4c1 + a5c12)|q=qA
=

√
3

2
(a4 − a5) .

For item c), we design first the required motion trajectory for the end-effector. We start from the
desired acceleration profile

v̇y,d(t) = ∆ sinωt, t ∈ [0, T ], T =
2π

ω
, (18)

which is zero at start (for t = 0) and end (for t = T ). The amplitude ∆ > 0 needs yet to be
defined. Integrating this acceleration profile, and imposing zero speed at the motion start and end,
we obtain

vy,d(t) =
∆

ω
(1− cosωt) , t ∈ [0, T ]. (19)

The positional trajectory starting from A = (0, 1) at time t = 0 is then

py,d(t) = yA +
∆

ω

(
t− 1

ω
sinωt

)
.

We impose that the motion ends in point B = (0,
√

2) at time t = T = 2π/ω, obtaining eventually
the value of ∆

py,d(T ) = yA +
∆

ω

2π

ω
= yB ⇒ ∆ =

ω2

2π
(yB − yA) =

ω2

2π

(√
2− 1

)
> 0.
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To compute the torque τd(t) that realizes the motion, we use (18), (19), and again (15), evaluated
along the nominal state trajectory xd(t) = (qd(t), q̇d(t)):

τd(t) =
s2

s12

∣∣∣∣
q=qd(t)

· F T(qd(t))
(
M(qd(t))F (qd(t)) v̇y,d(t) + c(qd(t), q̇d(t)) + g(qd(t))

+M(qd(t))Ḟ (qd(t)) vy,d(t)
)
.

(20)

To determine the state trajectory xd(t), t ∈ [0, T ], to be used in (20), one starts with

qd(0) = qA, q̇d(0) = 0,

and integrates forward in time the joint acceleration

q̈d = F (qd) v̇y,d + Ḟ (qd)F (qd)q̇d,

as driven by the desired (reduced) acceleration profile v̇y,d(t) in (18).

∗ ∗ ∗ ∗ ∗
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