
Robotics 2
January 11, 2022

Exercise #1

The RPR robot in Fig. 1 moves on a horizontal plane, carrying at its end effector a payload of
mass mp and inertia Ip. The links of the robot can be considered as uniform rods of length li and
mass mi, i = 1, 2, 3. The robot control architecture receives as reference input a high-level joint
velocity command q̇r ∈ R3.

[i] The first task requires to move the end-effector point P along a desired trajectory pd(t) ∈ R2,
while locally minimizing the robot kinetic energy T = 1

2 q̇
TM(q)q̇. Design a high-level control

law q̇[i]
r realizing this task and provide the detailed symbolic expression of all its terms.

[ii] Consider next the presence of a circular obstacle Oobs of radius r that is placed in a known

position Pobs in the robot workspace. Modify the previous control law into a q̇[ii]
r so as to try

also avoiding collisions between the full robot body and the obstacle. Provide the symbolic
expression of the additional terms in this law.

[iii] Using the following kinematic and dynamic data

l1 = 0.45, l2 = 0.7, l3 = 0.35 [m], m1 = m2 = 10, m3 = 4, mp = 2 [kg], Ip = 0.01 [kgm2],

compute the numerical values of the command q̇[i]
r when the robot is in the configuration

q = q̄ = (π/4, 0.25,−π/4) [rad,m,rad] and the desired end-effector velocity is ṗd = (1,−1).

For case [ii], repeat the same evaluation for q̇[ii]
r , when the circular obstacle is placed at the

point Pobs = (0.1 + l1
√

2,−0.1) ' (0.736,−0.1) [m] and has radius r = 0.05 [m].
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Figure 1: A planar RPR robot with a payload on the end effector. A circular obstacle Oobs may
also be present in a generic position Pobs in the robot workspace.

Exercise #2

Consider a robot manipulator with n revolute joints and with dynamic model given by

M(q)q̈ + c(q, q̇) + g(q) = τ . (1)

At time t = 0, the robot is in a state x(0) =
(
qT (0) q̇T (0)

)T
=
(
qT0 q̇T0

)T ∈ R2n, with q̇0 6= 0.
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[i] Define a joint torque law τ = τ (x, t) that is continuous w.r.t. time and that will bring the
robot with a coordinated joint motion in exactly T seconds to an equilibrium state, i.e., to an
arbitrary configuration q(T ) with q̇(0) = 0, where the robot will remain for all t ≥ T .

[ii] According to your choice, you should be able to provide in closed form both the reached joint
configuration qf = q(T ) and the resulting initial acceleration q̈0 = q̈(0).

[iii] Consider the case of a robot with g(q) ≡ 0. Assume that acceleration bounds |q̈i| ≤ Amax,i,
i = 1, . . . , n, are imposed on the already defined robot motion and that at least one of the
joints exceeds its bound at some time instant t̄ ∈ [0, T ]. Provide the expression of the minimum
factor k > 0 such that the robot trajectory resulting from an uniform scaling of the motion
time to T ′ = kT will satisfy all the given bounds.

Exercise #3

The end effector of the PR robot in Fig. 2 is constrained to move along a line segment, between
points A and B. Assume that all dissipative effects are negligible and that the robot dynamic
model in free space has the form (1).

[i] Derive the (one-dimensional) reduced dynamic model of the constrained robot and the explicit
expression of the force multiplier λ ∈ R.

[ii] If the end-effector has to execute a rest-to-rest motion from A to B with a cubic profile in a
total time T without generating any constraint force at the contact during the motion, what
would be the explicit expression of the control law?

[iii] Using the following data

L = 1, d2 = 0.6 [m], m1 = 15, m2 = 8 [kg], I2 = 1.2 [kgm2],

A = (0.7, 2), B = (0.5, 1) [m], T = 2 [s],

compute at the initial time t = 0 the numerical value τ (0) ∈ R2 of the force/torque commands
at the joints that execute the task specified in [ii].
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Figure 2: A planar PR robot with its end effector constrained on a segment AB of a line.

[210 minutes (3.5 hours); open books]
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Solution
January 11, 2022

Exercise #1

There is a unique solution to the problem of finding a joint velocity command q̇r ∈ RN (here,
N = 3) that realizes a given task velocity ṗd ∈ RM , with M < N (here, M = 2), by minimizing
the kinetic energy of the robot, i.e., for problem [i],

min
q̇

1

2
q̇TM(q)q̇, s.t. J(q)q̇ = ṗd,

where M(q) > 0 is the robot inertia matrix and J(q) is the task Jacobian, both evaluated at the
current configuration q. The solution is obtained by the weighted pseudoinverse

q̇[i]
r = J#

M (q) ṗd = M−1(q)JT (q)
(
J(q)M−1(q)JT (q)

)−1

ṗd. (2)

For the planar RPR robot in Fig. 1, the Jacobian matrix is computed from the direct kinematics1

p = f(q) =

(
l1c1 − q2s1 + l3c13

l1s1 + q2c1 + l3s13

)
as

J(q) =
∂f(q)

∂q
=

(
− (l1s1 + q2c1 + l3s13) −s2 −l3s13

l1c1 − q2s1 + l3c13 c1 l3c13

)
. (3)

Next, we compute the inertia matrix M(q) by extracting its elements from the total robot kinetic
energy T . In doing so, we also use the fact that the links are uniform thin rods of length li,
i = 1, 2, 3. The center of mass is then located at the link midpoint (at a distance di = li/2
to the end of the rod), while the barycentric inertia (around an axis normal to the plane) is
Ii = (1/12)mil

2
i . The payload will be included in the kinetic energy of the robot.

Kinetic energy and inertia matrix

Link 1

T1 =
1

2

(
I1 +m1d

2
1

)
q̇2
1 =

1

2

m1l
2
1

3
q̇2
1

Link 2

T2 =
1

2
m2 ‖vc2‖2 +

1

2
I2 q̇

2
1 ⇒

pc2 =

(
l1c1 − (q2 − d2) s1

l1s1 + (q2 − d2) c1

)
⇒ vc2 = ṗc2 =

(
− (l1s1 + (q2 − d2) c1) q̇1 − s1 q̇2

(l1c1 − (q2 − d2) s1) q̇1 + c1 q̇2

)
⇒ ‖vc2‖2 =

(
l21 + (q2 − d2)2

)
q̇2
1 + q̇2

2 + 2l1 q̇1q̇2 ⇒

T2 =
1

2

((
I2 +m2

(
l21 + (q2 − d2)2

))
q̇2
1 +m2 q̇

2
2 + 2m2l1 q̇1q̇2

)
=

1

2

(
m2

(
l21 +

l22
3

+ q2
2 − l2q2

)
q̇2
1 +m2 q̇

2
2 + 2m2l1 q̇1q̇2

)
1In the following, the shorthand notation for trigonometric quantities is used (e.g., s13 = sin (q1 + q3)).
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Link 3

T3 =
1

2
m3 ‖vc3‖2 +

1

2
I3 (q̇1 + q̇3)

2 ⇒

pc3 =

(
l1c1 − q2s1 + d3c13

l1s1 + q2c1 + d3s13

)
⇒ vc3 =

(
− (l1s1 + q2c1 + d3s13) q̇1 − s1 q̇2 − d3s13 q̇3

(l1c1 − q2s1 + d3c13) q̇1 + c1 q̇2 + d3c13 q̇3

)
⇒ ‖vc3‖2 =

(
l21 + q2

2 + d2
3 + 2l1d3c3 + 2q2d3s3

)
q̇2
1 + q̇2

2 + d2
3 q̇

2
3

+ 2 (l1 + d3c3) q̇1q̇2 + 2d3 (d3 + l1c3 + q2s3) q̇1q̇3 + 2d3c3 q̇2q̇3 ⇒

T3 =
1

2

((
I3 +m3

(
l21 + q2

2 + d2
3 + 2l1d3c3 + 2q2d3s3

))
q̇2
1 +m3q̇

2
2 +

(
I3 +m3d

2
3

)
q̇2
3

+ 2m3 (l1 + d3c3) q̇1q̇2 + 2 (I3 +m3d3 (d3 + l1c3 + q2s3)) q̇1q̇3 + 2m3d3c3 q̇2q̇3)

=
1

2

(
m3

(
l21 +

l23
3

+ q2
2 + l1l3c3 + q2l3s3

)
q̇2
1 +m3 q̇

2
2 +m3

l23
3
q̇2
3

+ 2m3

(
l1 +

l3
2

)
q̇1q̇2 + 2m3

(
l23
3

+ l1
l3
2
c3 + q2

l3
2
s3

)
q̇1q̇3 + 2m3

l3
2
q̇2q̇3

)
Payload

Tp =
1

2
mp ‖vp‖2 +

1

2
Ip (q̇1 + q̇3)

2 ⇒

pp =

(
l1c1 − q2s1 + l3c13

l1s1 + q2c1 + l3s13

)
⇒ vp =

(
− (l1s1 + q2c1 + l3s13) q̇1 − s1 q̇2 − l3s13 q̇3

(l1c1 − q2s1 + l3c13) q̇1 + c1 q̇2 + l3c13 q̇3

)
⇒ ‖vp‖2 =

(
l21 + q2

2 + l23 + 2l1l3c3 + 2q2l3s3

)
q̇2
1 + q̇2

2 + l23 q̇
2
3

+ 2 (l1 + l3c3) q̇1q̇2 + 2l3 (l3 + l2c3 + q3s3) q̇1q̇3 + 2l3c3 q̇2q̇3 ⇒

Tp =
1

2

((
Ip +mp

(
l21 + l23 + q2

2 + 2l1l3c3 + 2q2l3s3

))
q̇2
1 +mpq̇

2
2 +

(
Ip +mpl

2
3

)
q̇2
3

+ 2mp (l1 + l3c3) q̇1q̇2 + 2
(
Ip +mp

(
l23 + l1l3c3 + q2l3s3

))
q̇1q̇3 + 2mpl3c3 q̇2q̇3

)
Therefore, from

T = T1 + T2 + T3 + Tp =
1

2
q̇TM(q)q̇ =

1

2

3∑
i,j=1

mij(q) q̇iq̇j

we obtain by extraction the coefficients of q̇iq̇j the elements mij = mji of the symmetric inertia
matrix

M(q) =

 m11 m12 m13

m12 m22 m23

m13 m23 m33

, (4)
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with

m11 =
m1l

2
1

3
+m2

(
l21 +

l22
3

+ q2
2 − l2q2

)
+m3

(
l21 +

l23
3

+ q2
2 + l1l3c3 + q2l3s3

)
+ Ip +mp

(
l21 + l23 + q2

2 + 2l1l3c3 + 2q2l3s3

)
m12 = (m2 +m3 +mp) l1 +

(
m3

l3
2

+mpl3

)
c3

m13 = Ip +mpl
2
3 +m3

l23
3

+

(
m3

l3
2

+mpl3

)(
l1c3 + q2s3

)
m22 = m2 +m3 +mp

m23 =

(
m3

l3
2

+mpl3

)
c3

m33 = m3
l23
3

+ Ip +mpl
2
3.

Using the given data, we have from (3)

J(q̄) =

(
−0.495 −0.7071 0

0.4914 0.7071 0.35

)
and from (4)

M(q̄) =

 5.6126 8.1899 0.6163

8.1899 16 0.9899

0.6163 0.9899 0.4183

 .

Thus, we compute numerically the solution (2) obtaining

q̇[i]
r = J#

M (q̄) ṗd =

 −2.0329 0.1042

0.0088 −0.0729

2.8365 2.8582

( 1

−1

)
=

 −2.1371

0.0818

−0.0217

 [rad/s,m/s,rad/s]. (5)

For case [ii], the solution includes a null space term with the gradient of the distance function
Hobs(q) between the fixed obstacle Oobs and the entire robot body R = R(q) —the robot occupies
a region in the Cartesian space that depends indeed on the current configuration q. This results
in

q̇[ii]
r = J#

M (q) ṗd + α
(
I − J#

M (q)J(q)
)
∇qHobs(q)

= α∇qHobs(q) + J#
M (q)

(
ṗd − αJ(q)∇qHobs(q)

)
,

(6)

for a sufficiently small step size α > 0. The distance function from the obstacle (also known as the
clearance of the robot) is defined as

Hobs(q) = min
a(q) ∈ R
b ∈ Oobs

‖a(q)− b‖, (7)

with the Euclidean norm

‖a(q)− b‖ =

√
(a(q)− b)T (a(q)− b).
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Accordingly, the gradient of Hobs(q) is evaluated2 as

∇qHobs(q) =

(
∂Hobs(q)

∂q

)T

=
1

2

1

‖a(q)− b‖

(
∂a(q)

∂q

)T (
a(q)− b

)
. (8)
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Figure 3: The clearance between the RPR robot and the circular obstacle Oobs when the robot is
in the configuration q̄ = (π/4, 0.25,−π/4).

We use now the given data and illustrate the situation in Fig. 3. At q = q̄, the two points on the
robot R and on the obstacle Oobs that are giving the clearance of the robot are point A at the
lower end of the second link and point B on the boundary of the circular obstacle (at a distance
r = 0.05 [m] from its center Pobs = (0.736,−0.1) [m]), along the line having the same orientation
of the second link. For varying q, the position of the point A on the robot and its Jacobian are

a(q) =

(
l1c1 − (q2 − l2)s1

l1s1 + (q2 − l2)c1

)
⇒ ∂a(q)

∂q
=

(
−l1s1 − (q2 − l2)c1 −s1 0

l1c1 − (q2 − l2)s1 c1 0

)
.

Moreover the position of the point B on the obstacle is given by

b = pobs + r
a(q)− pobs
‖a(q)− pobs‖

.

Thus, we have from (7)

a(q̄) =

(
0.6364

0

)
, b =

(
0.7007

−0.0646

)
⇒ Hobs(q̄) = ‖a(q̄)− b‖ = 0.0911 [m],

with the gradient in (8) being

∇qHobs(q̄) =

 0.4509

1

0

 .

2The expression in (8) holds in situations when the function Hobs(q) is differentiable. This occurs when the two
points on the robot R and on the obstacle Oobs that determine the minimum distance at the current configuration
q do not jump form one location to another. In practice, the gradient ∇qHobs(q) is often computed numerically by
finite differences of Hobs(q) between two successive configuration q(tk) and q(tk−1) attained during motion (with
some safeguarding rule to obtain bounded variations).
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Setting for instance α = 1, the evaluation of (6) yields the solution

q̇[ii]
r =

 −3.6742

1.1577

−0.0373

 [rad/s,m/s,rad/s]. (9)

Compare now the two joint velocity commands in (5) and (9). It is evident that the presence of
the obstacle will modify the inertia-weighted minimum norm solution by pushing away the second
link through the sliding of the second (prismatic) joint in the positive direction. In order to still
achieve the desired end-effector velocity ṗd while compensating for this extra joint motion, the

first robot joint in q̇[ii]
r will rotate in the clockwise direction by a larger amount than in q̇[i]

r .

Exercise #2

To address the general problem of a robot motion that has to be completed in a prescribed finite
time, it is convenient to apply first to (1) the nonlinear feedback law

τ = τ (q, q̇, t) = M(q)u(t) + c(q, q̇) + g(q), (10)

obtaining the linear and decoupled system q̈ = u. Then, we use the acceleration command u(t),
which has to be continuous w.r.t. time for all t > 0, to plan a state-to-rest trajectory qd(t) in exactly
T seconds. Since the final configuration is not specified a priori, but the state to be reached at
time t = T should be an equilibrium, we will impose the following minimal set of (asymmetric)
boundary conditions to the interpolating trajectory:

qd(0) = q0, q̇d(0) = q̇0 6= 0, q̇d(T ) = 0, q̈d(T ) = 0. (11)

One can satisfy these conditions by choosing a cubic trajectory in normalized time σ = t/T ∈ [0, 1],

qd(σ) = aσ3 + bσ2 + cσ + d, (12)

with a ∈ Rn, b ∈ Rn, c ∈ Rn, and d ∈ Rn. The joint motion will automatically be coordinated
since the total time T is the same for all joints. Imposing the boundary conditions (11) on the
vector function (12) leads to

qd(0) = q0 ⇒ d = q0, q̇d(0) = q̇0 ⇒ c = q̇0,

and {
q̇d(1) = 0

q̈d(1) = 0
⇒


1

T
(3a+ 2b+ q̇0) = 0

1

T 2
(6a+ 2b) = 0

⇒

 a =
q̇0

3

b = −q̇0.

As a result, we obtain

qd(t) =
q̇0

3

(
t

T

)3

− q̇0

(
t

T

)2

+ q̇0

(
t

T

)
+ q0, (13)

and thus the requested values

qf = qd(T ) = q0 +
q̇0

3
, q̈0 = q̈d(0) = −2q̇0

T 2
. (14)
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The actual torque law realizing the task will be given by (10) with

u(t) =

 q̈d(t) =
2q̇0

T 2

(
t

T
− 1

)
, t ∈ [0, T ]

0, t ≥ T.
(15)

We note that, after stopping the robot at time t = T in q = qf , the applied torque (10) with (15)
will become equal to τ (t) = g(qf ), keeping the robot in equilibrium for all times t ≥ T as requested.

The choice of a cubic function (12) is also convenient for addressing the presence of bounds on
the joint accelerations. In fact, the accelerations in (15) are linear functions of time and their
maximum (absolute) value is always attained at t = 0, as given by the second equation in (14).
We have

|q̈i(t)| ≤ Amax,i, ∀t ∈ [0,+∞) ⇐⇒ max
t∈[0,T ]

|q̈d,i(t)| =
2|q̇0,i|
T 2

≤ Amax,i, i = 1, . . . , n.

Assuming that at least one of the joints exceeds its bound during the planned motion implies that
this will happen at t = 0. Define the index i∗ of the maximum violating joint as

i∗ = arg

{
max

i=1,...,n

|q̇0,i|
Amax,i

}
, with |q̈d,i∗(0)| = 2|q̇0,i∗ |

T 2
> Amax,i∗ .

Then, the uniform scaling of motion time with minimum k > 0 that guarantees satisfaction of all
acceleration bounds is given by

2|q̇0,i∗ |
(kT )2

= Amax,i∗ ⇒ k =
1

T

√
2|q̇0,i∗ |
Amax,i∗

> 1 ⇒ T ′ = kT. (16)

The absence of the gravity term g(q) plays no role in the solution. In that case, when the robot
comes to rest at the end of the motion, the control law will simply vanish (τ (t) = 0, for t ≥ T ).

Exercise #3

We derive first the dynamic model of the PR robot in Fig. 2 when moving in an unconstrained
way in the vertical plane (under gravity).

Kinetic energy and inertia matrix

T1 =
1

2
m1 q̇

2
1 , T2 =

1

2
m2 ‖vc2‖2 +

1

2
I2 q̇

2
2 ,

pc2 =

(
d2 cos q2

q1 + d2 sin q2

)
⇒ vc2 = ṗc2 =

(
−d2 sin q2 q̇2

q̇1 + d2 cos q2 q̇2

)
⇒ ‖vc2‖2 = q̇2

1+d2
2q̇

2
2+2d2 cos q2 q̇1q̇2

⇒ T = T1 + T2 =
1

2
q̇TM(q)q̇, with M(q) =

(
m1 +m2 m2d2 cos q2

m2d2 cos q2 I2 +m2d
2
c2

)
.

Potential energy and gravity vector

U1 = m1g0 q1, U2 = m2g0 (q1 + sin q2) ⇒ U = U1 + U2

⇒ g(q) =

(
∂U(q)

∂q

)T

=

(
g0 (m1 +m2)

g0m2d2 cos q2

)
.
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Coriolis and centrifugal vector

C1(q) =
1

2

((
∂m1

∂q

)
+

(
∂m1

∂q

)T

−
(
∂M

∂q1

))
=

(
0 0

0 −m2d2 sin q2

)
⇒ c1(q, q̇) = q̇TC1(q)q̇ = −m2d2 sin q2 q̇

2
2

C2(q) =
1

2

((
∂m2

∂q

)
+

(
∂m2

∂q

)T

−
(
∂M

∂q2

))
= 0 ⇒ c2(q, q̇) = 0

⇒ c(q, q̇) =

(
−m2d2 sin q2 q̇

2
2

0

)
.

Dynamic model

M(q)q̈ + c(q, q̇) + g(q) = τ ⇐⇒{
(m1 +m2) q̈1 +m2d2 cos q2 q̈2 −m2d2 sin q2 q̇

2
2 + g0 (m1 +m2) = τ1

m2d2 cos q2 q̈1 +
(
I2 +m2d

2
2

)
q̈2 + g0m2d2 cos q2 = τ2.

(17)

We write next the Cartesian constraint on the end-effector position p = (px, py): point P should
to belong to the line L passing through the two points A and B. Assuming that both xA 6= xB
and yA 6= yB hold true, we can use the parametric expression of the line

L :
x− xB
xA − xB

=
y − yB
yA − yB

⇒ P ∈ L : k(p) =
py − yB
yA − yB

− px − xB
xA − xB

= 0. (18)

Substituting the direct kinematics p = f(q) for the point P in (18) yields

p = f(q) =

(
L cos q2

q1 + L sin q2

)
⇒ h(q) = k (f(q)) =

q1 + L sin q2 − yB
yA − yB

− L cos q2 − xB
xA − xB

= 0,

(19)
with the Jacobian of the scalar constraint given by

A(q) =
∂h(q)

∂q
=

(
1

yA − yB
L cos q2

yA − yB
+

L sin q2

xA − xB

)
⇒ A(q)q̇ = 0. (20)

In the assumed hypothesis on the relative location of the two points A and B, the matrix A(q) is
always well defined and has full rank.

In order to obtain the reduced dynamic model of the constrained PR robot, the basic step is to
define a 1 × 2 (row) vector D(q) that is linearly independent from A(q). A simple choice is the
following constant matrix with rank one:

D =
(

0 yA − yB
)

⇒ det

(
A(q)

D

)
= 1. (21)

Thus, (
A(q)

D

)−1

=

 yA − yB −
(
L cos q2

yA − yB
+

L sin q2

xA − xB

)
0

1

yA − yB

 ∆
=
(
E F (q)

)
.
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We define then the pseudo-velocity v ∈ R on the Cartesian line and the inverse mapping to q̇ as

v = D q̇ = (yA − yB) q̇2 , q̇ = F (q)v =


−
(
L cos q2

yA − yB
+

L sin q2

xA − xB

)
1

yA − yB

 v. (22)

Being

Ḋ = 0 and Ȧ(q) =

(
0

(
L cos q2

xA − xB
− L sin q2

yA − yB

)
q̇2

)
,

the reduced dynamic model of the constrained PR robot is given by the single differential equation(
F T(q)M(q)F (q)

)
v̇ = F T(q)

(
τ − c(q, q̇)− g(q)

)
+ F T(q)M(q)E Ȧ(q)F (q) v, (23)

with the scalars

F T(q)M(q)F (q) = (m1 +m2)

(
L cos q2

yA − yB
+

L sin q2

xA − xB

)2

+
I2 +m2d

2
c2

(yA − yB)2

− 2
m2d2 cos q2

yA − yB

(
L cos q2

yA − yB
+

L sin q2

xA − xB

)
and

F T(q)M(q)E Ȧ(q)F (q) = − (m1 +m2)

(
L cos q2

xA − xB
− L sin q2

yA − yB

)2

q̇2

m2d2 cos q2

yA − yB

(
L cos q2

xA − xB
− L sin q2

yA − yB

)
q̇2 .

Similarly, the multiplier λ ∈ R that produces the normal force when attempting to violate the
constraint is

λ =
(
ETM(q)F (q)

)
v̇ −

(
ETM(q)E Ȧ(q)F (q)

)
v +ET

(
c(q, q̇) + g(q)− τ

)
, (24)

with the scalars

ETM(q)F (q) = (yA − yB)

(
m2d2 cos q2

yA − yB
− (m1 +m2)

(
L cos q2

yA − yB
+

L sin q2

xA − xB

))
and

ETM(q)E Ȧ(q)F (q) = (m1 +m2)(yA − yB)

(
L cos q2

xA − xB
− L sin q2

yA − yB

)
q̇2 .

The desired rest-to-rest motion from A to B on the line L in time T is planned in a parametric
way by defining the path as

pd(s) = pA + s
pB − pA

∆
, s ∈ [0,∆] , ∆ = ‖pB − pA‖ =

√
(xA − xB)2 + (yA − yB)2,

where pA ∈ R2 and pB ∈ R2 are, respectively, the position vectors of point A and point B, and
the timing law with a cubic profile as

s = sd(t) = ∆

(
3

(
t

T

)2

− 2

(
t

T

)3
)
, t ∈ [0, T ] .
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Note that the parameter s is here the actual length of the path traced during motion. The desired
pseudo-velocity and pseudo-acceleration are then

vd(t) = ṡd(t) = 6∆
t

T

(
1− t

T

)
, v̇d(t) =

6∆

T 2

(
1− 2

t

T

)
, t ∈ [0, T ] .

At time t = 0, the position p of the robot end effector should be matched with the position pA
of the point A (on the linear constraint h(q) = 0). The initial configuration q(0) is obtained by
solving the inverse kinematics problem for the PR robot

f(q) =

(
L cos q2

q1 + L sin q2

)
=

(
xA

yA

)
= pA.

This yields3

q0 = q(0) = f−1(pA) =

 yA − sin
(

arccos
(xA
L

))
arccos

(xA
L

)
 =

 yA −
√

1−
(xA
L

)2

arccos
(xA
L

)
 .

Moreover, since the robot starts at rest, it is q̇0 = q̇(0) = 0 (consistently with vd(0) = 0).

To execute the desired constrained motion with v̇ = v̇d(t) and λ = λd = 0 (no forces are generated
normal to the line L), we apply the inverse constrained dynamics control law

τ = M(q)F (q) v̇d + c(q, q̇) + g(q)−M(q)E Ȧ(q)q̇, (25)

with

M(q)F (q) =


− (m1 +m2)

(
L cos q2

xA − xB
− L sin q2

yA − yB

)
+
m2d2 cos q2

yA − yB

−m2d2 cos q2

(
L cos q2

xA − xB
− L sin q2

yA − yB

)
+
I2 +m2d

2
2

yA − yB


and

M(q)E Ȧ(q) =


0 (m1 +m2) (yA − yB)

(
L cos q2

xA − xB
− L sin q2

yA − yB

)
q̇2

0 m2d2 cos q2 (yA − yB)

(
L cos q2

xA − xB
− L sin q2

yA − yB

)
q̇2

 .

At time t = 0, we have
τ 0 = τ (0) = M(q0)F (q0)v̇d(0) + g(q0) (26)

With the given numerical data, we compute the following relevant quantities: the path length and
the initial pseudo-acceleration

∆ = 1.0198 [m], v̇d(0) = 1.5297 [m/s2];

the inverse kinematics solution at the point A

q0 =

(
1.2859

0.7954

)
[m,rad];

3We chose arbitrarily only one of the two inverse solutions. The other solution has a sign − in front of arccos
and a sign + in front of the square root.
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the inertia matrix, the gravity vector, and the F term evaluated at the initial configuration q0

M(q0) =

(
23 3.36

3.36 4.08

)
, g(q0) =

(
225.63

32.96

)
, F (q0) =

(
4.27

1

)
.

Finally, plugging in (26) the above values, we obtain

τ 0 =

(
381.02

61.15

)
[N,Nm].

∗ ∗ ∗ ∗ ∗
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